1 /* 2 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 3 * Routines for control of YMF724/740/744/754 chips 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/delay.h> 22 #include <linux/firmware.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/pci.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/mutex.h> 30 #include <linux/module.h> 31 32 #include <sound/core.h> 33 #include <sound/control.h> 34 #include <sound/info.h> 35 #include <sound/tlv.h> 36 #include "ymfpci.h" 37 #include <sound/asoundef.h> 38 #include <sound/mpu401.h> 39 40 #include <asm/io.h> 41 #include <asm/byteorder.h> 42 43 /* 44 * common I/O routines 45 */ 46 47 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip); 48 49 static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset) 50 { 51 return readb(chip->reg_area_virt + offset); 52 } 53 54 static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val) 55 { 56 writeb(val, chip->reg_area_virt + offset); 57 } 58 59 static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset) 60 { 61 return readw(chip->reg_area_virt + offset); 62 } 63 64 static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val) 65 { 66 writew(val, chip->reg_area_virt + offset); 67 } 68 69 static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset) 70 { 71 return readl(chip->reg_area_virt + offset); 72 } 73 74 static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val) 75 { 76 writel(val, chip->reg_area_virt + offset); 77 } 78 79 static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary) 80 { 81 unsigned long end_time; 82 u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR; 83 84 end_time = jiffies + msecs_to_jiffies(750); 85 do { 86 if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0) 87 return 0; 88 schedule_timeout_uninterruptible(1); 89 } while (time_before(jiffies, end_time)); 90 snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg)); 91 return -EBUSY; 92 } 93 94 static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val) 95 { 96 struct snd_ymfpci *chip = ac97->private_data; 97 u32 cmd; 98 99 snd_ymfpci_codec_ready(chip, 0); 100 cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val; 101 snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd); 102 } 103 104 static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg) 105 { 106 struct snd_ymfpci *chip = ac97->private_data; 107 108 if (snd_ymfpci_codec_ready(chip, 0)) 109 return ~0; 110 snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg); 111 if (snd_ymfpci_codec_ready(chip, 0)) 112 return ~0; 113 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) { 114 int i; 115 for (i = 0; i < 600; i++) 116 snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 117 } 118 return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA); 119 } 120 121 /* 122 * Misc routines 123 */ 124 125 static u32 snd_ymfpci_calc_delta(u32 rate) 126 { 127 switch (rate) { 128 case 8000: return 0x02aaab00; 129 case 11025: return 0x03accd00; 130 case 16000: return 0x05555500; 131 case 22050: return 0x07599a00; 132 case 32000: return 0x0aaaab00; 133 case 44100: return 0x0eb33300; 134 default: return ((rate << 16) / 375) << 5; 135 } 136 } 137 138 static u32 def_rate[8] = { 139 100, 2000, 8000, 11025, 16000, 22050, 32000, 48000 140 }; 141 142 static u32 snd_ymfpci_calc_lpfK(u32 rate) 143 { 144 u32 i; 145 static u32 val[8] = { 146 0x00570000, 0x06AA0000, 0x18B20000, 0x20930000, 147 0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000 148 }; 149 150 if (rate == 44100) 151 return 0x40000000; /* FIXME: What's the right value? */ 152 for (i = 0; i < 8; i++) 153 if (rate <= def_rate[i]) 154 return val[i]; 155 return val[0]; 156 } 157 158 static u32 snd_ymfpci_calc_lpfQ(u32 rate) 159 { 160 u32 i; 161 static u32 val[8] = { 162 0x35280000, 0x34A70000, 0x32020000, 0x31770000, 163 0x31390000, 0x31C90000, 0x33D00000, 0x40000000 164 }; 165 166 if (rate == 44100) 167 return 0x370A0000; 168 for (i = 0; i < 8; i++) 169 if (rate <= def_rate[i]) 170 return val[i]; 171 return val[0]; 172 } 173 174 /* 175 * Hardware start management 176 */ 177 178 static void snd_ymfpci_hw_start(struct snd_ymfpci *chip) 179 { 180 unsigned long flags; 181 182 spin_lock_irqsave(&chip->reg_lock, flags); 183 if (chip->start_count++ > 0) 184 goto __end; 185 snd_ymfpci_writel(chip, YDSXGR_MODE, 186 snd_ymfpci_readl(chip, YDSXGR_MODE) | 3); 187 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 188 __end: 189 spin_unlock_irqrestore(&chip->reg_lock, flags); 190 } 191 192 static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip) 193 { 194 unsigned long flags; 195 long timeout = 1000; 196 197 spin_lock_irqsave(&chip->reg_lock, flags); 198 if (--chip->start_count > 0) 199 goto __end; 200 snd_ymfpci_writel(chip, YDSXGR_MODE, 201 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3); 202 while (timeout-- > 0) { 203 if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0) 204 break; 205 } 206 if (atomic_read(&chip->interrupt_sleep_count)) { 207 atomic_set(&chip->interrupt_sleep_count, 0); 208 wake_up(&chip->interrupt_sleep); 209 } 210 __end: 211 spin_unlock_irqrestore(&chip->reg_lock, flags); 212 } 213 214 /* 215 * Playback voice management 216 */ 217 218 static int voice_alloc(struct snd_ymfpci *chip, 219 enum snd_ymfpci_voice_type type, int pair, 220 struct snd_ymfpci_voice **rvoice) 221 { 222 struct snd_ymfpci_voice *voice, *voice2; 223 int idx; 224 225 *rvoice = NULL; 226 for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) { 227 voice = &chip->voices[idx]; 228 voice2 = pair ? &chip->voices[idx+1] : NULL; 229 if (voice->use || (voice2 && voice2->use)) 230 continue; 231 voice->use = 1; 232 if (voice2) 233 voice2->use = 1; 234 switch (type) { 235 case YMFPCI_PCM: 236 voice->pcm = 1; 237 if (voice2) 238 voice2->pcm = 1; 239 break; 240 case YMFPCI_SYNTH: 241 voice->synth = 1; 242 break; 243 case YMFPCI_MIDI: 244 voice->midi = 1; 245 break; 246 } 247 snd_ymfpci_hw_start(chip); 248 if (voice2) 249 snd_ymfpci_hw_start(chip); 250 *rvoice = voice; 251 return 0; 252 } 253 return -ENOMEM; 254 } 255 256 static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip, 257 enum snd_ymfpci_voice_type type, int pair, 258 struct snd_ymfpci_voice **rvoice) 259 { 260 unsigned long flags; 261 int result; 262 263 if (snd_BUG_ON(!rvoice)) 264 return -EINVAL; 265 if (snd_BUG_ON(pair && type != YMFPCI_PCM)) 266 return -EINVAL; 267 268 spin_lock_irqsave(&chip->voice_lock, flags); 269 for (;;) { 270 result = voice_alloc(chip, type, pair, rvoice); 271 if (result == 0 || type != YMFPCI_PCM) 272 break; 273 /* TODO: synth/midi voice deallocation */ 274 break; 275 } 276 spin_unlock_irqrestore(&chip->voice_lock, flags); 277 return result; 278 } 279 280 static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice) 281 { 282 unsigned long flags; 283 284 if (snd_BUG_ON(!pvoice)) 285 return -EINVAL; 286 snd_ymfpci_hw_stop(chip); 287 spin_lock_irqsave(&chip->voice_lock, flags); 288 if (pvoice->number == chip->src441_used) { 289 chip->src441_used = -1; 290 pvoice->ypcm->use_441_slot = 0; 291 } 292 pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0; 293 pvoice->ypcm = NULL; 294 pvoice->interrupt = NULL; 295 spin_unlock_irqrestore(&chip->voice_lock, flags); 296 return 0; 297 } 298 299 /* 300 * PCM part 301 */ 302 303 static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice) 304 { 305 struct snd_ymfpci_pcm *ypcm; 306 u32 pos, delta; 307 308 if ((ypcm = voice->ypcm) == NULL) 309 return; 310 if (ypcm->substream == NULL) 311 return; 312 spin_lock(&chip->reg_lock); 313 if (ypcm->running) { 314 pos = le32_to_cpu(voice->bank[chip->active_bank].start); 315 if (pos < ypcm->last_pos) 316 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 317 else 318 delta = pos - ypcm->last_pos; 319 ypcm->period_pos += delta; 320 ypcm->last_pos = pos; 321 if (ypcm->period_pos >= ypcm->period_size) { 322 /* 323 printk(KERN_DEBUG 324 "done - active_bank = 0x%x, start = 0x%x\n", 325 chip->active_bank, 326 voice->bank[chip->active_bank].start); 327 */ 328 ypcm->period_pos %= ypcm->period_size; 329 spin_unlock(&chip->reg_lock); 330 snd_pcm_period_elapsed(ypcm->substream); 331 spin_lock(&chip->reg_lock); 332 } 333 334 if (unlikely(ypcm->update_pcm_vol)) { 335 unsigned int subs = ypcm->substream->number; 336 unsigned int next_bank = 1 - chip->active_bank; 337 struct snd_ymfpci_playback_bank *bank; 338 u32 volume; 339 340 bank = &voice->bank[next_bank]; 341 volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15); 342 bank->left_gain_end = volume; 343 if (ypcm->output_rear) 344 bank->eff2_gain_end = volume; 345 if (ypcm->voices[1]) 346 bank = &ypcm->voices[1]->bank[next_bank]; 347 volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15); 348 bank->right_gain_end = volume; 349 if (ypcm->output_rear) 350 bank->eff3_gain_end = volume; 351 ypcm->update_pcm_vol--; 352 } 353 } 354 spin_unlock(&chip->reg_lock); 355 } 356 357 static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream) 358 { 359 struct snd_pcm_runtime *runtime = substream->runtime; 360 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 361 struct snd_ymfpci *chip = ypcm->chip; 362 u32 pos, delta; 363 364 spin_lock(&chip->reg_lock); 365 if (ypcm->running) { 366 pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 367 if (pos < ypcm->last_pos) 368 delta = pos + (ypcm->buffer_size - ypcm->last_pos); 369 else 370 delta = pos - ypcm->last_pos; 371 ypcm->period_pos += delta; 372 ypcm->last_pos = pos; 373 if (ypcm->period_pos >= ypcm->period_size) { 374 ypcm->period_pos %= ypcm->period_size; 375 /* 376 printk(KERN_DEBUG 377 "done - active_bank = 0x%x, start = 0x%x\n", 378 chip->active_bank, 379 voice->bank[chip->active_bank].start); 380 */ 381 spin_unlock(&chip->reg_lock); 382 snd_pcm_period_elapsed(substream); 383 spin_lock(&chip->reg_lock); 384 } 385 } 386 spin_unlock(&chip->reg_lock); 387 } 388 389 static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream, 390 int cmd) 391 { 392 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 393 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 394 struct snd_kcontrol *kctl = NULL; 395 int result = 0; 396 397 spin_lock(&chip->reg_lock); 398 if (ypcm->voices[0] == NULL) { 399 result = -EINVAL; 400 goto __unlock; 401 } 402 switch (cmd) { 403 case SNDRV_PCM_TRIGGER_START: 404 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 405 case SNDRV_PCM_TRIGGER_RESUME: 406 chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr); 407 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 408 chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr); 409 ypcm->running = 1; 410 break; 411 case SNDRV_PCM_TRIGGER_STOP: 412 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 413 kctl = chip->pcm_mixer[substream->number].ctl; 414 kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 415 } 416 /* fall through */ 417 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 418 case SNDRV_PCM_TRIGGER_SUSPEND: 419 chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0; 420 if (ypcm->voices[1] != NULL && !ypcm->use_441_slot) 421 chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0; 422 ypcm->running = 0; 423 break; 424 default: 425 result = -EINVAL; 426 break; 427 } 428 __unlock: 429 spin_unlock(&chip->reg_lock); 430 if (kctl) 431 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 432 return result; 433 } 434 static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream, 435 int cmd) 436 { 437 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 438 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 439 int result = 0; 440 u32 tmp; 441 442 spin_lock(&chip->reg_lock); 443 switch (cmd) { 444 case SNDRV_PCM_TRIGGER_START: 445 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 446 case SNDRV_PCM_TRIGGER_RESUME: 447 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number); 448 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 449 ypcm->running = 1; 450 break; 451 case SNDRV_PCM_TRIGGER_STOP: 452 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 453 case SNDRV_PCM_TRIGGER_SUSPEND: 454 tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number); 455 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp); 456 ypcm->running = 0; 457 break; 458 default: 459 result = -EINVAL; 460 break; 461 } 462 spin_unlock(&chip->reg_lock); 463 return result; 464 } 465 466 static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices) 467 { 468 int err; 469 470 if (ypcm->voices[1] != NULL && voices < 2) { 471 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]); 472 ypcm->voices[1] = NULL; 473 } 474 if (voices == 1 && ypcm->voices[0] != NULL) 475 return 0; /* already allocated */ 476 if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL) 477 return 0; /* already allocated */ 478 if (voices > 1) { 479 if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) { 480 snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]); 481 ypcm->voices[0] = NULL; 482 } 483 } 484 err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]); 485 if (err < 0) 486 return err; 487 ypcm->voices[0]->ypcm = ypcm; 488 ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt; 489 if (voices > 1) { 490 ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1]; 491 ypcm->voices[1]->ypcm = ypcm; 492 } 493 return 0; 494 } 495 496 static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx, 497 struct snd_pcm_runtime *runtime, 498 int has_pcm_volume) 499 { 500 struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx]; 501 u32 format; 502 u32 delta = snd_ymfpci_calc_delta(runtime->rate); 503 u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate); 504 u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate); 505 struct snd_ymfpci_playback_bank *bank; 506 unsigned int nbank; 507 u32 vol_left, vol_right; 508 u8 use_left, use_right; 509 unsigned long flags; 510 511 if (snd_BUG_ON(!voice)) 512 return; 513 if (runtime->channels == 1) { 514 use_left = 1; 515 use_right = 1; 516 } else { 517 use_left = (voiceidx & 1) == 0; 518 use_right = !use_left; 519 } 520 if (has_pcm_volume) { 521 vol_left = cpu_to_le32(ypcm->chip->pcm_mixer 522 [ypcm->substream->number].left << 15); 523 vol_right = cpu_to_le32(ypcm->chip->pcm_mixer 524 [ypcm->substream->number].right << 15); 525 } else { 526 vol_left = cpu_to_le32(0x40000000); 527 vol_right = cpu_to_le32(0x40000000); 528 } 529 spin_lock_irqsave(&ypcm->chip->voice_lock, flags); 530 format = runtime->channels == 2 ? 0x00010000 : 0; 531 if (snd_pcm_format_width(runtime->format) == 8) 532 format |= 0x80000000; 533 else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 534 runtime->rate == 44100 && runtime->channels == 2 && 535 voiceidx == 0 && (ypcm->chip->src441_used == -1 || 536 ypcm->chip->src441_used == voice->number)) { 537 ypcm->chip->src441_used = voice->number; 538 ypcm->use_441_slot = 1; 539 format |= 0x10000000; 540 } 541 if (ypcm->chip->src441_used == voice->number && 542 (format & 0x10000000) == 0) { 543 ypcm->chip->src441_used = -1; 544 ypcm->use_441_slot = 0; 545 } 546 if (runtime->channels == 2 && (voiceidx & 1) != 0) 547 format |= 1; 548 spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags); 549 for (nbank = 0; nbank < 2; nbank++) { 550 bank = &voice->bank[nbank]; 551 memset(bank, 0, sizeof(*bank)); 552 bank->format = cpu_to_le32(format); 553 bank->base = cpu_to_le32(runtime->dma_addr); 554 bank->loop_end = cpu_to_le32(ypcm->buffer_size); 555 bank->lpfQ = cpu_to_le32(lpfQ); 556 bank->delta = 557 bank->delta_end = cpu_to_le32(delta); 558 bank->lpfK = 559 bank->lpfK_end = cpu_to_le32(lpfK); 560 bank->eg_gain = 561 bank->eg_gain_end = cpu_to_le32(0x40000000); 562 563 if (ypcm->output_front) { 564 if (use_left) { 565 bank->left_gain = 566 bank->left_gain_end = vol_left; 567 } 568 if (use_right) { 569 bank->right_gain = 570 bank->right_gain_end = vol_right; 571 } 572 } 573 if (ypcm->output_rear) { 574 if (!ypcm->swap_rear) { 575 if (use_left) { 576 bank->eff2_gain = 577 bank->eff2_gain_end = vol_left; 578 } 579 if (use_right) { 580 bank->eff3_gain = 581 bank->eff3_gain_end = vol_right; 582 } 583 } else { 584 /* The SPDIF out channels seem to be swapped, so we have 585 * to swap them here, too. The rear analog out channels 586 * will be wrong, but otherwise AC3 would not work. 587 */ 588 if (use_left) { 589 bank->eff3_gain = 590 bank->eff3_gain_end = vol_left; 591 } 592 if (use_right) { 593 bank->eff2_gain = 594 bank->eff2_gain_end = vol_right; 595 } 596 } 597 } 598 } 599 } 600 601 static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip) 602 { 603 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 604 4096, &chip->ac3_tmp_base) < 0) 605 return -ENOMEM; 606 607 chip->bank_effect[3][0]->base = 608 chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr); 609 chip->bank_effect[3][0]->loop_end = 610 chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024); 611 chip->bank_effect[4][0]->base = 612 chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048); 613 chip->bank_effect[4][0]->loop_end = 614 chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024); 615 616 spin_lock_irq(&chip->reg_lock); 617 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 618 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3); 619 spin_unlock_irq(&chip->reg_lock); 620 return 0; 621 } 622 623 static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip) 624 { 625 spin_lock_irq(&chip->reg_lock); 626 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 627 snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3)); 628 spin_unlock_irq(&chip->reg_lock); 629 // snd_ymfpci_irq_wait(chip); 630 if (chip->ac3_tmp_base.area) { 631 snd_dma_free_pages(&chip->ac3_tmp_base); 632 chip->ac3_tmp_base.area = NULL; 633 } 634 return 0; 635 } 636 637 static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream, 638 struct snd_pcm_hw_params *hw_params) 639 { 640 struct snd_pcm_runtime *runtime = substream->runtime; 641 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 642 int err; 643 644 if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0) 645 return err; 646 if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0) 647 return err; 648 return 0; 649 } 650 651 static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream) 652 { 653 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 654 struct snd_pcm_runtime *runtime = substream->runtime; 655 struct snd_ymfpci_pcm *ypcm; 656 657 if (runtime->private_data == NULL) 658 return 0; 659 ypcm = runtime->private_data; 660 661 /* wait, until the PCI operations are not finished */ 662 snd_ymfpci_irq_wait(chip); 663 snd_pcm_lib_free_pages(substream); 664 if (ypcm->voices[1]) { 665 snd_ymfpci_voice_free(chip, ypcm->voices[1]); 666 ypcm->voices[1] = NULL; 667 } 668 if (ypcm->voices[0]) { 669 snd_ymfpci_voice_free(chip, ypcm->voices[0]); 670 ypcm->voices[0] = NULL; 671 } 672 return 0; 673 } 674 675 static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream) 676 { 677 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 678 struct snd_pcm_runtime *runtime = substream->runtime; 679 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 680 struct snd_kcontrol *kctl; 681 unsigned int nvoice; 682 683 ypcm->period_size = runtime->period_size; 684 ypcm->buffer_size = runtime->buffer_size; 685 ypcm->period_pos = 0; 686 ypcm->last_pos = 0; 687 for (nvoice = 0; nvoice < runtime->channels; nvoice++) 688 snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime, 689 substream->pcm == chip->pcm); 690 691 if (substream->pcm == chip->pcm && !ypcm->use_441_slot) { 692 kctl = chip->pcm_mixer[substream->number].ctl; 693 kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 694 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id); 695 } 696 return 0; 697 } 698 699 static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream, 700 struct snd_pcm_hw_params *hw_params) 701 { 702 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 703 } 704 705 static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream) 706 { 707 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 708 709 /* wait, until the PCI operations are not finished */ 710 snd_ymfpci_irq_wait(chip); 711 return snd_pcm_lib_free_pages(substream); 712 } 713 714 static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream) 715 { 716 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 717 struct snd_pcm_runtime *runtime = substream->runtime; 718 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 719 struct snd_ymfpci_capture_bank * bank; 720 int nbank; 721 u32 rate, format; 722 723 ypcm->period_size = runtime->period_size; 724 ypcm->buffer_size = runtime->buffer_size; 725 ypcm->period_pos = 0; 726 ypcm->last_pos = 0; 727 ypcm->shift = 0; 728 rate = ((48000 * 4096) / runtime->rate) - 1; 729 format = 0; 730 if (runtime->channels == 2) { 731 format |= 2; 732 ypcm->shift++; 733 } 734 if (snd_pcm_format_width(runtime->format) == 8) 735 format |= 1; 736 else 737 ypcm->shift++; 738 switch (ypcm->capture_bank_number) { 739 case 0: 740 snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format); 741 snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate); 742 break; 743 case 1: 744 snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format); 745 snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate); 746 break; 747 } 748 for (nbank = 0; nbank < 2; nbank++) { 749 bank = chip->bank_capture[ypcm->capture_bank_number][nbank]; 750 bank->base = cpu_to_le32(runtime->dma_addr); 751 bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift); 752 bank->start = 0; 753 bank->num_of_loops = 0; 754 } 755 return 0; 756 } 757 758 static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream) 759 { 760 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 761 struct snd_pcm_runtime *runtime = substream->runtime; 762 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 763 struct snd_ymfpci_voice *voice = ypcm->voices[0]; 764 765 if (!(ypcm->running && voice)) 766 return 0; 767 return le32_to_cpu(voice->bank[chip->active_bank].start); 768 } 769 770 static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream) 771 { 772 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 773 struct snd_pcm_runtime *runtime = substream->runtime; 774 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 775 776 if (!ypcm->running) 777 return 0; 778 return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift; 779 } 780 781 static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip) 782 { 783 wait_queue_t wait; 784 int loops = 4; 785 786 while (loops-- > 0) { 787 if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0) 788 continue; 789 init_waitqueue_entry(&wait, current); 790 add_wait_queue(&chip->interrupt_sleep, &wait); 791 atomic_inc(&chip->interrupt_sleep_count); 792 schedule_timeout_uninterruptible(msecs_to_jiffies(50)); 793 remove_wait_queue(&chip->interrupt_sleep, &wait); 794 } 795 } 796 797 static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id) 798 { 799 struct snd_ymfpci *chip = dev_id; 800 u32 status, nvoice, mode; 801 struct snd_ymfpci_voice *voice; 802 803 status = snd_ymfpci_readl(chip, YDSXGR_STATUS); 804 if (status & 0x80000000) { 805 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1; 806 spin_lock(&chip->voice_lock); 807 for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) { 808 voice = &chip->voices[nvoice]; 809 if (voice->interrupt) 810 voice->interrupt(chip, voice); 811 } 812 for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) { 813 if (chip->capture_substream[nvoice]) 814 snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]); 815 } 816 #if 0 817 for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) { 818 if (chip->effect_substream[nvoice]) 819 snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]); 820 } 821 #endif 822 spin_unlock(&chip->voice_lock); 823 spin_lock(&chip->reg_lock); 824 snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000); 825 mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2; 826 snd_ymfpci_writel(chip, YDSXGR_MODE, mode); 827 spin_unlock(&chip->reg_lock); 828 829 if (atomic_read(&chip->interrupt_sleep_count)) { 830 atomic_set(&chip->interrupt_sleep_count, 0); 831 wake_up(&chip->interrupt_sleep); 832 } 833 } 834 835 status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG); 836 if (status & 1) { 837 if (chip->timer) 838 snd_timer_interrupt(chip->timer, chip->timer_ticks); 839 } 840 snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status); 841 842 if (chip->rawmidi) 843 snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data); 844 return IRQ_HANDLED; 845 } 846 847 static struct snd_pcm_hardware snd_ymfpci_playback = 848 { 849 .info = (SNDRV_PCM_INFO_MMAP | 850 SNDRV_PCM_INFO_MMAP_VALID | 851 SNDRV_PCM_INFO_INTERLEAVED | 852 SNDRV_PCM_INFO_BLOCK_TRANSFER | 853 SNDRV_PCM_INFO_PAUSE | 854 SNDRV_PCM_INFO_RESUME), 855 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 856 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 857 .rate_min = 8000, 858 .rate_max = 48000, 859 .channels_min = 1, 860 .channels_max = 2, 861 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 862 .period_bytes_min = 64, 863 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 864 .periods_min = 3, 865 .periods_max = 1024, 866 .fifo_size = 0, 867 }; 868 869 static struct snd_pcm_hardware snd_ymfpci_capture = 870 { 871 .info = (SNDRV_PCM_INFO_MMAP | 872 SNDRV_PCM_INFO_MMAP_VALID | 873 SNDRV_PCM_INFO_INTERLEAVED | 874 SNDRV_PCM_INFO_BLOCK_TRANSFER | 875 SNDRV_PCM_INFO_PAUSE | 876 SNDRV_PCM_INFO_RESUME), 877 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 878 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 879 .rate_min = 8000, 880 .rate_max = 48000, 881 .channels_min = 1, 882 .channels_max = 2, 883 .buffer_bytes_max = 256 * 1024, /* FIXME: enough? */ 884 .period_bytes_min = 64, 885 .period_bytes_max = 256 * 1024, /* FIXME: enough? */ 886 .periods_min = 3, 887 .periods_max = 1024, 888 .fifo_size = 0, 889 }; 890 891 static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime) 892 { 893 kfree(runtime->private_data); 894 } 895 896 static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream) 897 { 898 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 899 struct snd_pcm_runtime *runtime = substream->runtime; 900 struct snd_ymfpci_pcm *ypcm; 901 int err; 902 903 runtime->hw = snd_ymfpci_playback; 904 /* FIXME? True value is 256/48 = 5.33333 ms */ 905 err = snd_pcm_hw_constraint_minmax(runtime, 906 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 907 5334, UINT_MAX); 908 if (err < 0) 909 return err; 910 err = snd_pcm_hw_rule_noresample(runtime, 48000); 911 if (err < 0) 912 return err; 913 914 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 915 if (ypcm == NULL) 916 return -ENOMEM; 917 ypcm->chip = chip; 918 ypcm->type = PLAYBACK_VOICE; 919 ypcm->substream = substream; 920 runtime->private_data = ypcm; 921 runtime->private_free = snd_ymfpci_pcm_free_substream; 922 return 0; 923 } 924 925 /* call with spinlock held */ 926 static void ymfpci_open_extension(struct snd_ymfpci *chip) 927 { 928 if (! chip->rear_opened) { 929 if (! chip->spdif_opened) /* set AC3 */ 930 snd_ymfpci_writel(chip, YDSXGR_MODE, 931 snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30)); 932 /* enable second codec (4CHEN) */ 933 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 934 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010); 935 } 936 } 937 938 /* call with spinlock held */ 939 static void ymfpci_close_extension(struct snd_ymfpci *chip) 940 { 941 if (! chip->rear_opened) { 942 if (! chip->spdif_opened) 943 snd_ymfpci_writel(chip, YDSXGR_MODE, 944 snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30)); 945 snd_ymfpci_writew(chip, YDSXGR_SECCONFIG, 946 (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010); 947 } 948 } 949 950 static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream) 951 { 952 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 953 struct snd_pcm_runtime *runtime = substream->runtime; 954 struct snd_ymfpci_pcm *ypcm; 955 int err; 956 957 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 958 return err; 959 ypcm = runtime->private_data; 960 ypcm->output_front = 1; 961 ypcm->output_rear = chip->mode_dup4ch ? 1 : 0; 962 ypcm->swap_rear = 0; 963 spin_lock_irq(&chip->reg_lock); 964 if (ypcm->output_rear) { 965 ymfpci_open_extension(chip); 966 chip->rear_opened++; 967 } 968 spin_unlock_irq(&chip->reg_lock); 969 return 0; 970 } 971 972 static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream) 973 { 974 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 975 struct snd_pcm_runtime *runtime = substream->runtime; 976 struct snd_ymfpci_pcm *ypcm; 977 int err; 978 979 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 980 return err; 981 ypcm = runtime->private_data; 982 ypcm->output_front = 0; 983 ypcm->output_rear = 1; 984 ypcm->swap_rear = 1; 985 spin_lock_irq(&chip->reg_lock); 986 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 987 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2); 988 ymfpci_open_extension(chip); 989 chip->spdif_pcm_bits = chip->spdif_bits; 990 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 991 chip->spdif_opened++; 992 spin_unlock_irq(&chip->reg_lock); 993 994 chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 995 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 996 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 997 return 0; 998 } 999 1000 static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream) 1001 { 1002 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1003 struct snd_pcm_runtime *runtime = substream->runtime; 1004 struct snd_ymfpci_pcm *ypcm; 1005 int err; 1006 1007 if ((err = snd_ymfpci_playback_open_1(substream)) < 0) 1008 return err; 1009 ypcm = runtime->private_data; 1010 ypcm->output_front = 0; 1011 ypcm->output_rear = 1; 1012 ypcm->swap_rear = 0; 1013 spin_lock_irq(&chip->reg_lock); 1014 ymfpci_open_extension(chip); 1015 chip->rear_opened++; 1016 spin_unlock_irq(&chip->reg_lock); 1017 return 0; 1018 } 1019 1020 static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream, 1021 u32 capture_bank_number) 1022 { 1023 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1024 struct snd_pcm_runtime *runtime = substream->runtime; 1025 struct snd_ymfpci_pcm *ypcm; 1026 int err; 1027 1028 runtime->hw = snd_ymfpci_capture; 1029 /* FIXME? True value is 256/48 = 5.33333 ms */ 1030 err = snd_pcm_hw_constraint_minmax(runtime, 1031 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1032 5334, UINT_MAX); 1033 if (err < 0) 1034 return err; 1035 err = snd_pcm_hw_rule_noresample(runtime, 48000); 1036 if (err < 0) 1037 return err; 1038 1039 ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL); 1040 if (ypcm == NULL) 1041 return -ENOMEM; 1042 ypcm->chip = chip; 1043 ypcm->type = capture_bank_number + CAPTURE_REC; 1044 ypcm->substream = substream; 1045 ypcm->capture_bank_number = capture_bank_number; 1046 chip->capture_substream[capture_bank_number] = substream; 1047 runtime->private_data = ypcm; 1048 runtime->private_free = snd_ymfpci_pcm_free_substream; 1049 snd_ymfpci_hw_start(chip); 1050 return 0; 1051 } 1052 1053 static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream) 1054 { 1055 return snd_ymfpci_capture_open(substream, 0); 1056 } 1057 1058 static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream) 1059 { 1060 return snd_ymfpci_capture_open(substream, 1); 1061 } 1062 1063 static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream) 1064 { 1065 return 0; 1066 } 1067 1068 static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream) 1069 { 1070 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1071 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1072 1073 spin_lock_irq(&chip->reg_lock); 1074 if (ypcm->output_rear && chip->rear_opened > 0) { 1075 chip->rear_opened--; 1076 ymfpci_close_extension(chip); 1077 } 1078 spin_unlock_irq(&chip->reg_lock); 1079 return snd_ymfpci_playback_close_1(substream); 1080 } 1081 1082 static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream) 1083 { 1084 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1085 1086 spin_lock_irq(&chip->reg_lock); 1087 chip->spdif_opened = 0; 1088 ymfpci_close_extension(chip); 1089 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 1090 snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2); 1091 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1092 spin_unlock_irq(&chip->reg_lock); 1093 chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1094 snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE | 1095 SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id); 1096 return snd_ymfpci_playback_close_1(substream); 1097 } 1098 1099 static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream) 1100 { 1101 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1102 1103 spin_lock_irq(&chip->reg_lock); 1104 if (chip->rear_opened > 0) { 1105 chip->rear_opened--; 1106 ymfpci_close_extension(chip); 1107 } 1108 spin_unlock_irq(&chip->reg_lock); 1109 return snd_ymfpci_playback_close_1(substream); 1110 } 1111 1112 static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream) 1113 { 1114 struct snd_ymfpci *chip = snd_pcm_substream_chip(substream); 1115 struct snd_pcm_runtime *runtime = substream->runtime; 1116 struct snd_ymfpci_pcm *ypcm = runtime->private_data; 1117 1118 if (ypcm != NULL) { 1119 chip->capture_substream[ypcm->capture_bank_number] = NULL; 1120 snd_ymfpci_hw_stop(chip); 1121 } 1122 return 0; 1123 } 1124 1125 static struct snd_pcm_ops snd_ymfpci_playback_ops = { 1126 .open = snd_ymfpci_playback_open, 1127 .close = snd_ymfpci_playback_close, 1128 .ioctl = snd_pcm_lib_ioctl, 1129 .hw_params = snd_ymfpci_playback_hw_params, 1130 .hw_free = snd_ymfpci_playback_hw_free, 1131 .prepare = snd_ymfpci_playback_prepare, 1132 .trigger = snd_ymfpci_playback_trigger, 1133 .pointer = snd_ymfpci_playback_pointer, 1134 }; 1135 1136 static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = { 1137 .open = snd_ymfpci_capture_rec_open, 1138 .close = snd_ymfpci_capture_close, 1139 .ioctl = snd_pcm_lib_ioctl, 1140 .hw_params = snd_ymfpci_capture_hw_params, 1141 .hw_free = snd_ymfpci_capture_hw_free, 1142 .prepare = snd_ymfpci_capture_prepare, 1143 .trigger = snd_ymfpci_capture_trigger, 1144 .pointer = snd_ymfpci_capture_pointer, 1145 }; 1146 1147 int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1148 { 1149 struct snd_pcm *pcm; 1150 int err; 1151 1152 if (rpcm) 1153 *rpcm = NULL; 1154 if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0) 1155 return err; 1156 pcm->private_data = chip; 1157 1158 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops); 1159 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops); 1160 1161 /* global setup */ 1162 pcm->info_flags = 0; 1163 strcpy(pcm->name, "YMFPCI"); 1164 chip->pcm = pcm; 1165 1166 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1167 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1168 1169 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1170 snd_pcm_std_chmaps, 2, 0, NULL); 1171 if (err < 0) 1172 return err; 1173 1174 if (rpcm) 1175 *rpcm = pcm; 1176 return 0; 1177 } 1178 1179 static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = { 1180 .open = snd_ymfpci_capture_ac97_open, 1181 .close = snd_ymfpci_capture_close, 1182 .ioctl = snd_pcm_lib_ioctl, 1183 .hw_params = snd_ymfpci_capture_hw_params, 1184 .hw_free = snd_ymfpci_capture_hw_free, 1185 .prepare = snd_ymfpci_capture_prepare, 1186 .trigger = snd_ymfpci_capture_trigger, 1187 .pointer = snd_ymfpci_capture_pointer, 1188 }; 1189 1190 int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1191 { 1192 struct snd_pcm *pcm; 1193 int err; 1194 1195 if (rpcm) 1196 *rpcm = NULL; 1197 if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0) 1198 return err; 1199 pcm->private_data = chip; 1200 1201 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops); 1202 1203 /* global setup */ 1204 pcm->info_flags = 0; 1205 sprintf(pcm->name, "YMFPCI - %s", 1206 chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97"); 1207 chip->pcm2 = pcm; 1208 1209 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1210 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1211 1212 if (rpcm) 1213 *rpcm = pcm; 1214 return 0; 1215 } 1216 1217 static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = { 1218 .open = snd_ymfpci_playback_spdif_open, 1219 .close = snd_ymfpci_playback_spdif_close, 1220 .ioctl = snd_pcm_lib_ioctl, 1221 .hw_params = snd_ymfpci_playback_hw_params, 1222 .hw_free = snd_ymfpci_playback_hw_free, 1223 .prepare = snd_ymfpci_playback_prepare, 1224 .trigger = snd_ymfpci_playback_trigger, 1225 .pointer = snd_ymfpci_playback_pointer, 1226 }; 1227 1228 int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1229 { 1230 struct snd_pcm *pcm; 1231 int err; 1232 1233 if (rpcm) 1234 *rpcm = NULL; 1235 if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0) 1236 return err; 1237 pcm->private_data = chip; 1238 1239 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops); 1240 1241 /* global setup */ 1242 pcm->info_flags = 0; 1243 strcpy(pcm->name, "YMFPCI - IEC958"); 1244 chip->pcm_spdif = pcm; 1245 1246 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1247 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1248 1249 if (rpcm) 1250 *rpcm = pcm; 1251 return 0; 1252 } 1253 1254 static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = { 1255 .open = snd_ymfpci_playback_4ch_open, 1256 .close = snd_ymfpci_playback_4ch_close, 1257 .ioctl = snd_pcm_lib_ioctl, 1258 .hw_params = snd_ymfpci_playback_hw_params, 1259 .hw_free = snd_ymfpci_playback_hw_free, 1260 .prepare = snd_ymfpci_playback_prepare, 1261 .trigger = snd_ymfpci_playback_trigger, 1262 .pointer = snd_ymfpci_playback_pointer, 1263 }; 1264 1265 static const struct snd_pcm_chmap_elem surround_map[] = { 1266 { .channels = 1, 1267 .map = { SNDRV_CHMAP_MONO } }, 1268 { .channels = 2, 1269 .map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 1270 { } 1271 }; 1272 1273 int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm) 1274 { 1275 struct snd_pcm *pcm; 1276 int err; 1277 1278 if (rpcm) 1279 *rpcm = NULL; 1280 if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0) 1281 return err; 1282 pcm->private_data = chip; 1283 1284 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops); 1285 1286 /* global setup */ 1287 pcm->info_flags = 0; 1288 strcpy(pcm->name, "YMFPCI - Rear PCM"); 1289 chip->pcm_4ch = pcm; 1290 1291 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1292 snd_dma_pci_data(chip->pci), 64*1024, 256*1024); 1293 1294 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1295 surround_map, 2, 0, NULL); 1296 if (err < 0) 1297 return err; 1298 1299 if (rpcm) 1300 *rpcm = pcm; 1301 return 0; 1302 } 1303 1304 static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1305 { 1306 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1307 uinfo->count = 1; 1308 return 0; 1309 } 1310 1311 static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol, 1312 struct snd_ctl_elem_value *ucontrol) 1313 { 1314 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1315 1316 spin_lock_irq(&chip->reg_lock); 1317 ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff; 1318 ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff; 1319 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1320 spin_unlock_irq(&chip->reg_lock); 1321 return 0; 1322 } 1323 1324 static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol, 1325 struct snd_ctl_elem_value *ucontrol) 1326 { 1327 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1328 unsigned int val; 1329 int change; 1330 1331 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1332 (ucontrol->value.iec958.status[1] << 8); 1333 spin_lock_irq(&chip->reg_lock); 1334 change = chip->spdif_bits != val; 1335 chip->spdif_bits = val; 1336 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL) 1337 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 1338 spin_unlock_irq(&chip->reg_lock); 1339 return change; 1340 } 1341 1342 static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata = 1343 { 1344 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1345 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1346 .info = snd_ymfpci_spdif_default_info, 1347 .get = snd_ymfpci_spdif_default_get, 1348 .put = snd_ymfpci_spdif_default_put 1349 }; 1350 1351 static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1352 { 1353 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1354 uinfo->count = 1; 1355 return 0; 1356 } 1357 1358 static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1359 struct snd_ctl_elem_value *ucontrol) 1360 { 1361 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1362 1363 spin_lock_irq(&chip->reg_lock); 1364 ucontrol->value.iec958.status[0] = 0x3e; 1365 ucontrol->value.iec958.status[1] = 0xff; 1366 spin_unlock_irq(&chip->reg_lock); 1367 return 0; 1368 } 1369 1370 static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata = 1371 { 1372 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1373 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1374 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1375 .info = snd_ymfpci_spdif_mask_info, 1376 .get = snd_ymfpci_spdif_mask_get, 1377 }; 1378 1379 static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1380 { 1381 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1382 uinfo->count = 1; 1383 return 0; 1384 } 1385 1386 static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1387 struct snd_ctl_elem_value *ucontrol) 1388 { 1389 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1390 1391 spin_lock_irq(&chip->reg_lock); 1392 ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff; 1393 ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff; 1394 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; 1395 spin_unlock_irq(&chip->reg_lock); 1396 return 0; 1397 } 1398 1399 static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1400 struct snd_ctl_elem_value *ucontrol) 1401 { 1402 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1403 unsigned int val; 1404 int change; 1405 1406 val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) | 1407 (ucontrol->value.iec958.status[1] << 8); 1408 spin_lock_irq(&chip->reg_lock); 1409 change = chip->spdif_pcm_bits != val; 1410 chip->spdif_pcm_bits = val; 1411 if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2)) 1412 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits); 1413 spin_unlock_irq(&chip->reg_lock); 1414 return change; 1415 } 1416 1417 static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata = 1418 { 1419 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1420 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1421 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1422 .info = snd_ymfpci_spdif_stream_info, 1423 .get = snd_ymfpci_spdif_stream_get, 1424 .put = snd_ymfpci_spdif_stream_put 1425 }; 1426 1427 static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) 1428 { 1429 static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"}; 1430 1431 return snd_ctl_enum_info(info, 1, 3, texts); 1432 } 1433 1434 static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1435 { 1436 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1437 u16 reg; 1438 1439 spin_lock_irq(&chip->reg_lock); 1440 reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1441 spin_unlock_irq(&chip->reg_lock); 1442 if (!(reg & 0x100)) 1443 value->value.enumerated.item[0] = 0; 1444 else 1445 value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0); 1446 return 0; 1447 } 1448 1449 static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) 1450 { 1451 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1452 u16 reg, old_reg; 1453 1454 spin_lock_irq(&chip->reg_lock); 1455 old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 1456 if (value->value.enumerated.item[0] == 0) 1457 reg = old_reg & ~0x100; 1458 else 1459 reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9); 1460 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg); 1461 spin_unlock_irq(&chip->reg_lock); 1462 return reg != old_reg; 1463 } 1464 1465 static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = { 1466 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1467 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1468 .name = "Direct Recording Source", 1469 .info = snd_ymfpci_drec_source_info, 1470 .get = snd_ymfpci_drec_source_get, 1471 .put = snd_ymfpci_drec_source_put 1472 }; 1473 1474 /* 1475 * Mixer controls 1476 */ 1477 1478 #define YMFPCI_SINGLE(xname, xindex, reg, shift) \ 1479 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1480 .info = snd_ymfpci_info_single, \ 1481 .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \ 1482 .private_value = ((reg) | ((shift) << 16)) } 1483 1484 #define snd_ymfpci_info_single snd_ctl_boolean_mono_info 1485 1486 static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol, 1487 struct snd_ctl_elem_value *ucontrol) 1488 { 1489 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1490 int reg = kcontrol->private_value & 0xffff; 1491 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1492 unsigned int mask = 1; 1493 1494 switch (reg) { 1495 case YDSXGR_SPDIFOUTCTRL: break; 1496 case YDSXGR_SPDIFINCTRL: break; 1497 default: return -EINVAL; 1498 } 1499 ucontrol->value.integer.value[0] = 1500 (snd_ymfpci_readl(chip, reg) >> shift) & mask; 1501 return 0; 1502 } 1503 1504 static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol, 1505 struct snd_ctl_elem_value *ucontrol) 1506 { 1507 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1508 int reg = kcontrol->private_value & 0xffff; 1509 unsigned int shift = (kcontrol->private_value >> 16) & 0xff; 1510 unsigned int mask = 1; 1511 int change; 1512 unsigned int val, oval; 1513 1514 switch (reg) { 1515 case YDSXGR_SPDIFOUTCTRL: break; 1516 case YDSXGR_SPDIFINCTRL: break; 1517 default: return -EINVAL; 1518 } 1519 val = (ucontrol->value.integer.value[0] & mask); 1520 val <<= shift; 1521 spin_lock_irq(&chip->reg_lock); 1522 oval = snd_ymfpci_readl(chip, reg); 1523 val = (oval & ~(mask << shift)) | val; 1524 change = val != oval; 1525 snd_ymfpci_writel(chip, reg, val); 1526 spin_unlock_irq(&chip->reg_lock); 1527 return change; 1528 } 1529 1530 static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0); 1531 1532 #define YMFPCI_DOUBLE(xname, xindex, reg) \ 1533 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 1534 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 1535 .info = snd_ymfpci_info_double, \ 1536 .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \ 1537 .private_value = reg, \ 1538 .tlv = { .p = db_scale_native } } 1539 1540 static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1541 { 1542 unsigned int reg = kcontrol->private_value; 1543 1544 if (reg < 0x80 || reg >= 0xc0) 1545 return -EINVAL; 1546 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1547 uinfo->count = 2; 1548 uinfo->value.integer.min = 0; 1549 uinfo->value.integer.max = 16383; 1550 return 0; 1551 } 1552 1553 static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1554 { 1555 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1556 unsigned int reg = kcontrol->private_value; 1557 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1558 unsigned int val; 1559 1560 if (reg < 0x80 || reg >= 0xc0) 1561 return -EINVAL; 1562 spin_lock_irq(&chip->reg_lock); 1563 val = snd_ymfpci_readl(chip, reg); 1564 spin_unlock_irq(&chip->reg_lock); 1565 ucontrol->value.integer.value[0] = (val >> shift_left) & mask; 1566 ucontrol->value.integer.value[1] = (val >> shift_right) & mask; 1567 return 0; 1568 } 1569 1570 static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1571 { 1572 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1573 unsigned int reg = kcontrol->private_value; 1574 unsigned int shift_left = 0, shift_right = 16, mask = 16383; 1575 int change; 1576 unsigned int val1, val2, oval; 1577 1578 if (reg < 0x80 || reg >= 0xc0) 1579 return -EINVAL; 1580 val1 = ucontrol->value.integer.value[0] & mask; 1581 val2 = ucontrol->value.integer.value[1] & mask; 1582 val1 <<= shift_left; 1583 val2 <<= shift_right; 1584 spin_lock_irq(&chip->reg_lock); 1585 oval = snd_ymfpci_readl(chip, reg); 1586 val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2; 1587 change = val1 != oval; 1588 snd_ymfpci_writel(chip, reg, val1); 1589 spin_unlock_irq(&chip->reg_lock); 1590 return change; 1591 } 1592 1593 static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol, 1594 struct snd_ctl_elem_value *ucontrol) 1595 { 1596 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1597 unsigned int reg = YDSXGR_NATIVEDACOUTVOL; 1598 unsigned int reg2 = YDSXGR_BUF441OUTVOL; 1599 int change; 1600 unsigned int value, oval; 1601 1602 value = ucontrol->value.integer.value[0] & 0x3fff; 1603 value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16; 1604 spin_lock_irq(&chip->reg_lock); 1605 oval = snd_ymfpci_readl(chip, reg); 1606 change = value != oval; 1607 snd_ymfpci_writel(chip, reg, value); 1608 snd_ymfpci_writel(chip, reg2, value); 1609 spin_unlock_irq(&chip->reg_lock); 1610 return change; 1611 } 1612 1613 /* 1614 * 4ch duplication 1615 */ 1616 #define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info 1617 1618 static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1619 { 1620 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1621 ucontrol->value.integer.value[0] = chip->mode_dup4ch; 1622 return 0; 1623 } 1624 1625 static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1626 { 1627 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1628 int change; 1629 change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch); 1630 if (change) 1631 chip->mode_dup4ch = !!ucontrol->value.integer.value[0]; 1632 return change; 1633 } 1634 1635 static struct snd_kcontrol_new snd_ymfpci_dup4ch __devinitdata = { 1636 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1637 .name = "4ch Duplication", 1638 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 1639 .info = snd_ymfpci_info_dup4ch, 1640 .get = snd_ymfpci_get_dup4ch, 1641 .put = snd_ymfpci_put_dup4ch, 1642 }; 1643 1644 static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = { 1645 { 1646 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1647 .name = "Wave Playback Volume", 1648 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1649 SNDRV_CTL_ELEM_ACCESS_TLV_READ, 1650 .info = snd_ymfpci_info_double, 1651 .get = snd_ymfpci_get_double, 1652 .put = snd_ymfpci_put_nativedacvol, 1653 .private_value = YDSXGR_NATIVEDACOUTVOL, 1654 .tlv = { .p = db_scale_native }, 1655 }, 1656 YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL), 1657 YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL), 1658 YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL), 1659 YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL), 1660 YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL), 1661 YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL), 1662 YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL), 1663 YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL), 1664 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL), 1665 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL), 1666 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL), 1667 YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL), 1668 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0), 1669 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0), 1670 YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4), 1671 }; 1672 1673 1674 /* 1675 * GPIO 1676 */ 1677 1678 static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin) 1679 { 1680 u16 reg, mode; 1681 unsigned long flags; 1682 1683 spin_lock_irqsave(&chip->reg_lock, flags); 1684 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1685 reg &= ~(1 << (pin + 8)); 1686 reg |= (1 << pin); 1687 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1688 /* set the level mode for input line */ 1689 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG); 1690 mode &= ~(3 << (pin * 2)); 1691 snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode); 1692 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1693 mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS); 1694 spin_unlock_irqrestore(&chip->reg_lock, flags); 1695 return (mode >> pin) & 1; 1696 } 1697 1698 static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable) 1699 { 1700 u16 reg; 1701 unsigned long flags; 1702 1703 spin_lock_irqsave(&chip->reg_lock, flags); 1704 reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE); 1705 reg &= ~(1 << pin); 1706 reg &= ~(1 << (pin + 8)); 1707 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg); 1708 snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin); 1709 snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8))); 1710 spin_unlock_irqrestore(&chip->reg_lock, flags); 1711 1712 return 0; 1713 } 1714 1715 #define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info 1716 1717 static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1718 { 1719 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1720 int pin = (int)kcontrol->private_value; 1721 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1722 return 0; 1723 } 1724 1725 static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1726 { 1727 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1728 int pin = (int)kcontrol->private_value; 1729 1730 if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) { 1731 snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]); 1732 ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin); 1733 return 1; 1734 } 1735 return 0; 1736 } 1737 1738 static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = { 1739 .name = "Shared Rear/Line-In Switch", 1740 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1741 .info = snd_ymfpci_gpio_sw_info, 1742 .get = snd_ymfpci_gpio_sw_get, 1743 .put = snd_ymfpci_gpio_sw_put, 1744 .private_value = 2, 1745 }; 1746 1747 /* 1748 * PCM voice volume 1749 */ 1750 1751 static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol, 1752 struct snd_ctl_elem_info *uinfo) 1753 { 1754 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 1755 uinfo->count = 2; 1756 uinfo->value.integer.min = 0; 1757 uinfo->value.integer.max = 0x8000; 1758 return 0; 1759 } 1760 1761 static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol, 1762 struct snd_ctl_elem_value *ucontrol) 1763 { 1764 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1765 unsigned int subs = kcontrol->id.subdevice; 1766 1767 ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left; 1768 ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right; 1769 return 0; 1770 } 1771 1772 static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol, 1773 struct snd_ctl_elem_value *ucontrol) 1774 { 1775 struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol); 1776 unsigned int subs = kcontrol->id.subdevice; 1777 struct snd_pcm_substream *substream; 1778 unsigned long flags; 1779 1780 if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left || 1781 ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) { 1782 chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0]; 1783 chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1]; 1784 if (chip->pcm_mixer[subs].left > 0x8000) 1785 chip->pcm_mixer[subs].left = 0x8000; 1786 if (chip->pcm_mixer[subs].right > 0x8000) 1787 chip->pcm_mixer[subs].right = 0x8000; 1788 1789 substream = (struct snd_pcm_substream *)kcontrol->private_value; 1790 spin_lock_irqsave(&chip->voice_lock, flags); 1791 if (substream->runtime && substream->runtime->private_data) { 1792 struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data; 1793 if (!ypcm->use_441_slot) 1794 ypcm->update_pcm_vol = 2; 1795 } 1796 spin_unlock_irqrestore(&chip->voice_lock, flags); 1797 return 1; 1798 } 1799 return 0; 1800 } 1801 1802 static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = { 1803 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1804 .name = "PCM Playback Volume", 1805 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | 1806 SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1807 .info = snd_ymfpci_pcm_vol_info, 1808 .get = snd_ymfpci_pcm_vol_get, 1809 .put = snd_ymfpci_pcm_vol_put, 1810 }; 1811 1812 1813 /* 1814 * Mixer routines 1815 */ 1816 1817 static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus) 1818 { 1819 struct snd_ymfpci *chip = bus->private_data; 1820 chip->ac97_bus = NULL; 1821 } 1822 1823 static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97) 1824 { 1825 struct snd_ymfpci *chip = ac97->private_data; 1826 chip->ac97 = NULL; 1827 } 1828 1829 int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch) 1830 { 1831 struct snd_ac97_template ac97; 1832 struct snd_kcontrol *kctl; 1833 struct snd_pcm_substream *substream; 1834 unsigned int idx; 1835 int err; 1836 static struct snd_ac97_bus_ops ops = { 1837 .write = snd_ymfpci_codec_write, 1838 .read = snd_ymfpci_codec_read, 1839 }; 1840 1841 if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0) 1842 return err; 1843 chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus; 1844 chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */ 1845 1846 memset(&ac97, 0, sizeof(ac97)); 1847 ac97.private_data = chip; 1848 ac97.private_free = snd_ymfpci_mixer_free_ac97; 1849 if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0) 1850 return err; 1851 1852 /* to be sure */ 1853 snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS, 1854 AC97_EA_VRA|AC97_EA_VRM, 0); 1855 1856 for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) { 1857 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0) 1858 return err; 1859 } 1860 if (chip->ac97->ext_id & AC97_EI_SDAC) { 1861 kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip); 1862 err = snd_ctl_add(chip->card, kctl); 1863 if (err < 0) 1864 return err; 1865 } 1866 1867 /* add S/PDIF control */ 1868 if (snd_BUG_ON(!chip->pcm_spdif)) 1869 return -ENXIO; 1870 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0) 1871 return err; 1872 kctl->id.device = chip->pcm_spdif->device; 1873 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0) 1874 return err; 1875 kctl->id.device = chip->pcm_spdif->device; 1876 if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0) 1877 return err; 1878 kctl->id.device = chip->pcm_spdif->device; 1879 chip->spdif_pcm_ctl = kctl; 1880 1881 /* direct recording source */ 1882 if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 && 1883 (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0) 1884 return err; 1885 1886 /* 1887 * shared rear/line-in 1888 */ 1889 if (rear_switch) { 1890 if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0) 1891 return err; 1892 } 1893 1894 /* per-voice volume */ 1895 substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; 1896 for (idx = 0; idx < 32; ++idx) { 1897 kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip); 1898 if (!kctl) 1899 return -ENOMEM; 1900 kctl->id.device = chip->pcm->device; 1901 kctl->id.subdevice = idx; 1902 kctl->private_value = (unsigned long)substream; 1903 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 1904 return err; 1905 chip->pcm_mixer[idx].left = 0x8000; 1906 chip->pcm_mixer[idx].right = 0x8000; 1907 chip->pcm_mixer[idx].ctl = kctl; 1908 substream = substream->next; 1909 } 1910 1911 return 0; 1912 } 1913 1914 1915 /* 1916 * timer 1917 */ 1918 1919 static int snd_ymfpci_timer_start(struct snd_timer *timer) 1920 { 1921 struct snd_ymfpci *chip; 1922 unsigned long flags; 1923 unsigned int count; 1924 1925 chip = snd_timer_chip(timer); 1926 spin_lock_irqsave(&chip->reg_lock, flags); 1927 if (timer->sticks > 1) { 1928 chip->timer_ticks = timer->sticks; 1929 count = timer->sticks - 1; 1930 } else { 1931 /* 1932 * Divisor 1 is not allowed; fake it by using divisor 2 and 1933 * counting two ticks for each interrupt. 1934 */ 1935 chip->timer_ticks = 2; 1936 count = 2 - 1; 1937 } 1938 snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count); 1939 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03); 1940 spin_unlock_irqrestore(&chip->reg_lock, flags); 1941 return 0; 1942 } 1943 1944 static int snd_ymfpci_timer_stop(struct snd_timer *timer) 1945 { 1946 struct snd_ymfpci *chip; 1947 unsigned long flags; 1948 1949 chip = snd_timer_chip(timer); 1950 spin_lock_irqsave(&chip->reg_lock, flags); 1951 snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00); 1952 spin_unlock_irqrestore(&chip->reg_lock, flags); 1953 return 0; 1954 } 1955 1956 static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer, 1957 unsigned long *num, unsigned long *den) 1958 { 1959 *num = 1; 1960 *den = 96000; 1961 return 0; 1962 } 1963 1964 static struct snd_timer_hardware snd_ymfpci_timer_hw = { 1965 .flags = SNDRV_TIMER_HW_AUTO, 1966 .resolution = 10417, /* 1 / 96 kHz = 10.41666...us */ 1967 .ticks = 0x10000, 1968 .start = snd_ymfpci_timer_start, 1969 .stop = snd_ymfpci_timer_stop, 1970 .precise_resolution = snd_ymfpci_timer_precise_resolution, 1971 }; 1972 1973 int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device) 1974 { 1975 struct snd_timer *timer = NULL; 1976 struct snd_timer_id tid; 1977 int err; 1978 1979 tid.dev_class = SNDRV_TIMER_CLASS_CARD; 1980 tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE; 1981 tid.card = chip->card->number; 1982 tid.device = device; 1983 tid.subdevice = 0; 1984 if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) { 1985 strcpy(timer->name, "YMFPCI timer"); 1986 timer->private_data = chip; 1987 timer->hw = snd_ymfpci_timer_hw; 1988 } 1989 chip->timer = timer; 1990 return err; 1991 } 1992 1993 1994 /* 1995 * proc interface 1996 */ 1997 1998 static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 1999 struct snd_info_buffer *buffer) 2000 { 2001 struct snd_ymfpci *chip = entry->private_data; 2002 int i; 2003 2004 snd_iprintf(buffer, "YMFPCI\n\n"); 2005 for (i = 0; i <= YDSXGR_WORKBASE; i += 4) 2006 snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i)); 2007 } 2008 2009 static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip) 2010 { 2011 struct snd_info_entry *entry; 2012 2013 if (! snd_card_proc_new(card, "ymfpci", &entry)) 2014 snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read); 2015 return 0; 2016 } 2017 2018 /* 2019 * initialization routines 2020 */ 2021 2022 static void snd_ymfpci_aclink_reset(struct pci_dev * pci) 2023 { 2024 u8 cmd; 2025 2026 pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd); 2027 #if 0 // force to reset 2028 if (cmd & 0x03) { 2029 #endif 2030 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 2031 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03); 2032 pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc); 2033 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0); 2034 pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0); 2035 #if 0 2036 } 2037 #endif 2038 } 2039 2040 static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip) 2041 { 2042 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001); 2043 } 2044 2045 static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip) 2046 { 2047 u32 val; 2048 int timeout = 1000; 2049 2050 val = snd_ymfpci_readl(chip, YDSXGR_CONFIG); 2051 if (val) 2052 snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000); 2053 while (timeout-- > 0) { 2054 val = snd_ymfpci_readl(chip, YDSXGR_STATUS); 2055 if ((val & 0x00000002) == 0) 2056 break; 2057 } 2058 } 2059 2060 static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip) 2061 { 2062 int err, is_1e; 2063 const char *name; 2064 2065 err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw", 2066 &chip->pci->dev); 2067 if (err >= 0) { 2068 if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) { 2069 snd_printk(KERN_ERR "DSP microcode has wrong size\n"); 2070 err = -EINVAL; 2071 } 2072 } 2073 if (err < 0) 2074 return err; 2075 is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F || 2076 chip->device_id == PCI_DEVICE_ID_YAMAHA_740C || 2077 chip->device_id == PCI_DEVICE_ID_YAMAHA_744 || 2078 chip->device_id == PCI_DEVICE_ID_YAMAHA_754; 2079 name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw"; 2080 err = request_firmware(&chip->controller_microcode, name, 2081 &chip->pci->dev); 2082 if (err >= 0) { 2083 if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) { 2084 snd_printk(KERN_ERR "controller microcode" 2085 " has wrong size\n"); 2086 err = -EINVAL; 2087 } 2088 } 2089 if (err < 0) 2090 return err; 2091 return 0; 2092 } 2093 2094 MODULE_FIRMWARE("yamaha/ds1_dsp.fw"); 2095 MODULE_FIRMWARE("yamaha/ds1_ctrl.fw"); 2096 MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw"); 2097 2098 static void snd_ymfpci_download_image(struct snd_ymfpci *chip) 2099 { 2100 int i; 2101 u16 ctrl; 2102 const __le32 *inst; 2103 2104 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000); 2105 snd_ymfpci_disable_dsp(chip); 2106 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000); 2107 snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000); 2108 snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000); 2109 snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000); 2110 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000); 2111 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000); 2112 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000); 2113 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2114 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2115 2116 /* setup DSP instruction code */ 2117 inst = (const __le32 *)chip->dsp_microcode->data; 2118 for (i = 0; i < YDSXG_DSPLENGTH / 4; i++) 2119 snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2), 2120 le32_to_cpu(inst[i])); 2121 2122 /* setup control instruction code */ 2123 inst = (const __le32 *)chip->controller_microcode->data; 2124 for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++) 2125 snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2), 2126 le32_to_cpu(inst[i])); 2127 2128 snd_ymfpci_enable_dsp(chip); 2129 } 2130 2131 static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip) 2132 { 2133 long size, playback_ctrl_size; 2134 int voice, bank, reg; 2135 u8 *ptr; 2136 dma_addr_t ptr_addr; 2137 2138 playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES; 2139 chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2; 2140 chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2; 2141 chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2; 2142 chip->work_size = YDSXG_DEFAULT_WORK_SIZE; 2143 2144 size = ALIGN(playback_ctrl_size, 0x100) + 2145 ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) + 2146 ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) + 2147 ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) + 2148 chip->work_size; 2149 /* work_ptr must be aligned to 256 bytes, but it's already 2150 covered with the kernel page allocation mechanism */ 2151 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci), 2152 size, &chip->work_ptr) < 0) 2153 return -ENOMEM; 2154 ptr = chip->work_ptr.area; 2155 ptr_addr = chip->work_ptr.addr; 2156 memset(ptr, 0, size); /* for sure */ 2157 2158 chip->bank_base_playback = ptr; 2159 chip->bank_base_playback_addr = ptr_addr; 2160 chip->ctrl_playback = (u32 *)ptr; 2161 chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES); 2162 ptr += ALIGN(playback_ctrl_size, 0x100); 2163 ptr_addr += ALIGN(playback_ctrl_size, 0x100); 2164 for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) { 2165 chip->voices[voice].number = voice; 2166 chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr; 2167 chip->voices[voice].bank_addr = ptr_addr; 2168 for (bank = 0; bank < 2; bank++) { 2169 chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr; 2170 ptr += chip->bank_size_playback; 2171 ptr_addr += chip->bank_size_playback; 2172 } 2173 } 2174 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2175 ptr_addr = ALIGN(ptr_addr, 0x100); 2176 chip->bank_base_capture = ptr; 2177 chip->bank_base_capture_addr = ptr_addr; 2178 for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++) 2179 for (bank = 0; bank < 2; bank++) { 2180 chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr; 2181 ptr += chip->bank_size_capture; 2182 ptr_addr += chip->bank_size_capture; 2183 } 2184 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2185 ptr_addr = ALIGN(ptr_addr, 0x100); 2186 chip->bank_base_effect = ptr; 2187 chip->bank_base_effect_addr = ptr_addr; 2188 for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++) 2189 for (bank = 0; bank < 2; bank++) { 2190 chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr; 2191 ptr += chip->bank_size_effect; 2192 ptr_addr += chip->bank_size_effect; 2193 } 2194 ptr = (char *)ALIGN((unsigned long)ptr, 0x100); 2195 ptr_addr = ALIGN(ptr_addr, 0x100); 2196 chip->work_base = ptr; 2197 chip->work_base_addr = ptr_addr; 2198 2199 snd_BUG_ON(ptr + chip->work_size != 2200 chip->work_ptr.area + chip->work_ptr.bytes); 2201 2202 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr); 2203 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr); 2204 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr); 2205 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr); 2206 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2); 2207 2208 /* S/PDIF output initialization */ 2209 chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff; 2210 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0); 2211 snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits); 2212 2213 /* S/PDIF input initialization */ 2214 snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0); 2215 2216 /* digital mixer setup */ 2217 for (reg = 0x80; reg < 0xc0; reg += 4) 2218 snd_ymfpci_writel(chip, reg, 0); 2219 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff); 2220 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff); 2221 snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff); 2222 snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff); 2223 snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff); 2224 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff); 2225 snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff); 2226 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff); 2227 2228 return 0; 2229 } 2230 2231 static int snd_ymfpci_free(struct snd_ymfpci *chip) 2232 { 2233 u16 ctrl; 2234 2235 if (snd_BUG_ON(!chip)) 2236 return -EINVAL; 2237 2238 if (chip->res_reg_area) { /* don't touch busy hardware */ 2239 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2240 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2241 snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0); 2242 snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0); 2243 snd_ymfpci_disable_dsp(chip); 2244 snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0); 2245 snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0); 2246 snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0); 2247 snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0); 2248 snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0); 2249 ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL); 2250 snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007); 2251 } 2252 2253 snd_ymfpci_ac3_done(chip); 2254 2255 /* Set PCI device to D3 state */ 2256 #if 0 2257 /* FIXME: temporarily disabled, otherwise we cannot fire up 2258 * the chip again unless reboot. ACPI bug? 2259 */ 2260 pci_set_power_state(chip->pci, 3); 2261 #endif 2262 2263 #ifdef CONFIG_PM_SLEEP 2264 vfree(chip->saved_regs); 2265 #endif 2266 if (chip->irq >= 0) 2267 free_irq(chip->irq, chip); 2268 release_and_free_resource(chip->mpu_res); 2269 release_and_free_resource(chip->fm_res); 2270 snd_ymfpci_free_gameport(chip); 2271 if (chip->reg_area_virt) 2272 iounmap(chip->reg_area_virt); 2273 if (chip->work_ptr.area) 2274 snd_dma_free_pages(&chip->work_ptr); 2275 2276 release_and_free_resource(chip->res_reg_area); 2277 2278 pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl); 2279 2280 pci_disable_device(chip->pci); 2281 release_firmware(chip->dsp_microcode); 2282 release_firmware(chip->controller_microcode); 2283 kfree(chip); 2284 return 0; 2285 } 2286 2287 static int snd_ymfpci_dev_free(struct snd_device *device) 2288 { 2289 struct snd_ymfpci *chip = device->device_data; 2290 return snd_ymfpci_free(chip); 2291 } 2292 2293 #ifdef CONFIG_PM_SLEEP 2294 static int saved_regs_index[] = { 2295 /* spdif */ 2296 YDSXGR_SPDIFOUTCTRL, 2297 YDSXGR_SPDIFOUTSTATUS, 2298 YDSXGR_SPDIFINCTRL, 2299 /* volumes */ 2300 YDSXGR_PRIADCLOOPVOL, 2301 YDSXGR_NATIVEDACINVOL, 2302 YDSXGR_NATIVEDACOUTVOL, 2303 YDSXGR_BUF441OUTVOL, 2304 YDSXGR_NATIVEADCINVOL, 2305 YDSXGR_SPDIFLOOPVOL, 2306 YDSXGR_SPDIFOUTVOL, 2307 YDSXGR_ZVOUTVOL, 2308 YDSXGR_LEGACYOUTVOL, 2309 /* address bases */ 2310 YDSXGR_PLAYCTRLBASE, 2311 YDSXGR_RECCTRLBASE, 2312 YDSXGR_EFFCTRLBASE, 2313 YDSXGR_WORKBASE, 2314 /* capture set up */ 2315 YDSXGR_MAPOFREC, 2316 YDSXGR_RECFORMAT, 2317 YDSXGR_RECSLOTSR, 2318 YDSXGR_ADCFORMAT, 2319 YDSXGR_ADCSLOTSR, 2320 }; 2321 #define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index) 2322 2323 static int snd_ymfpci_suspend(struct device *dev) 2324 { 2325 struct pci_dev *pci = to_pci_dev(dev); 2326 struct snd_card *card = dev_get_drvdata(dev); 2327 struct snd_ymfpci *chip = card->private_data; 2328 unsigned int i; 2329 2330 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2331 snd_pcm_suspend_all(chip->pcm); 2332 snd_pcm_suspend_all(chip->pcm2); 2333 snd_pcm_suspend_all(chip->pcm_spdif); 2334 snd_pcm_suspend_all(chip->pcm_4ch); 2335 snd_ac97_suspend(chip->ac97); 2336 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2337 chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]); 2338 chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE); 2339 pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY, 2340 &chip->saved_dsxg_legacy); 2341 pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY, 2342 &chip->saved_dsxg_elegacy); 2343 snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0); 2344 snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0); 2345 snd_ymfpci_disable_dsp(chip); 2346 pci_disable_device(pci); 2347 pci_save_state(pci); 2348 pci_set_power_state(pci, PCI_D3hot); 2349 return 0; 2350 } 2351 2352 static int snd_ymfpci_resume(struct device *dev) 2353 { 2354 struct pci_dev *pci = to_pci_dev(dev); 2355 struct snd_card *card = dev_get_drvdata(dev); 2356 struct snd_ymfpci *chip = card->private_data; 2357 unsigned int i; 2358 2359 pci_set_power_state(pci, PCI_D0); 2360 pci_restore_state(pci); 2361 if (pci_enable_device(pci) < 0) { 2362 printk(KERN_ERR "ymfpci: pci_enable_device failed, " 2363 "disabling device\n"); 2364 snd_card_disconnect(card); 2365 return -EIO; 2366 } 2367 pci_set_master(pci); 2368 snd_ymfpci_aclink_reset(pci); 2369 snd_ymfpci_codec_ready(chip, 0); 2370 snd_ymfpci_download_image(chip); 2371 udelay(100); 2372 2373 for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++) 2374 snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]); 2375 2376 snd_ac97_resume(chip->ac97); 2377 2378 pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY, 2379 chip->saved_dsxg_legacy); 2380 pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY, 2381 chip->saved_dsxg_elegacy); 2382 2383 /* start hw again */ 2384 if (chip->start_count > 0) { 2385 spin_lock_irq(&chip->reg_lock); 2386 snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode); 2387 chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT); 2388 spin_unlock_irq(&chip->reg_lock); 2389 } 2390 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2391 return 0; 2392 } 2393 2394 SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume); 2395 #endif /* CONFIG_PM_SLEEP */ 2396 2397 int __devinit snd_ymfpci_create(struct snd_card *card, 2398 struct pci_dev * pci, 2399 unsigned short old_legacy_ctrl, 2400 struct snd_ymfpci ** rchip) 2401 { 2402 struct snd_ymfpci *chip; 2403 int err; 2404 static struct snd_device_ops ops = { 2405 .dev_free = snd_ymfpci_dev_free, 2406 }; 2407 2408 *rchip = NULL; 2409 2410 /* enable PCI device */ 2411 if ((err = pci_enable_device(pci)) < 0) 2412 return err; 2413 2414 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 2415 if (chip == NULL) { 2416 pci_disable_device(pci); 2417 return -ENOMEM; 2418 } 2419 chip->old_legacy_ctrl = old_legacy_ctrl; 2420 spin_lock_init(&chip->reg_lock); 2421 spin_lock_init(&chip->voice_lock); 2422 init_waitqueue_head(&chip->interrupt_sleep); 2423 atomic_set(&chip->interrupt_sleep_count, 0); 2424 chip->card = card; 2425 chip->pci = pci; 2426 chip->irq = -1; 2427 chip->device_id = pci->device; 2428 chip->rev = pci->revision; 2429 chip->reg_area_phys = pci_resource_start(pci, 0); 2430 chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000); 2431 pci_set_master(pci); 2432 chip->src441_used = -1; 2433 2434 if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) { 2435 snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1); 2436 snd_ymfpci_free(chip); 2437 return -EBUSY; 2438 } 2439 if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED, 2440 KBUILD_MODNAME, chip)) { 2441 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2442 snd_ymfpci_free(chip); 2443 return -EBUSY; 2444 } 2445 chip->irq = pci->irq; 2446 2447 snd_ymfpci_aclink_reset(pci); 2448 if (snd_ymfpci_codec_ready(chip, 0) < 0) { 2449 snd_ymfpci_free(chip); 2450 return -EIO; 2451 } 2452 2453 err = snd_ymfpci_request_firmware(chip); 2454 if (err < 0) { 2455 snd_printk(KERN_ERR "firmware request failed: %d\n", err); 2456 snd_ymfpci_free(chip); 2457 return err; 2458 } 2459 snd_ymfpci_download_image(chip); 2460 2461 udelay(100); /* seems we need a delay after downloading image.. */ 2462 2463 if (snd_ymfpci_memalloc(chip) < 0) { 2464 snd_ymfpci_free(chip); 2465 return -EIO; 2466 } 2467 2468 if ((err = snd_ymfpci_ac3_init(chip)) < 0) { 2469 snd_ymfpci_free(chip); 2470 return err; 2471 } 2472 2473 #ifdef CONFIG_PM_SLEEP 2474 chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32)); 2475 if (chip->saved_regs == NULL) { 2476 snd_ymfpci_free(chip); 2477 return -ENOMEM; 2478 } 2479 #endif 2480 2481 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) { 2482 snd_ymfpci_free(chip); 2483 return err; 2484 } 2485 2486 snd_ymfpci_proc_init(card, chip); 2487 2488 snd_card_set_dev(card, &pci->dev); 2489 2490 *rchip = chip; 2491 return 0; 2492 } 2493