xref: /linux/sound/pci/vx222/vx222_ops.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for Digigram VX222 V2/Mic soundcards
4  *
5  * VX222-specific low-level routines
6  *
7  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/firmware.h>
13 #include <linux/mutex.h>
14 #include <linux/io.h>
15 
16 #include <sound/core.h>
17 #include <sound/control.h>
18 #include <sound/tlv.h>
19 #include "vx222.h"
20 
21 
22 static const int vx2_reg_offset[VX_REG_MAX] = {
23 	[VX_ICR]    = 0x00,
24 	[VX_CVR]    = 0x04,
25 	[VX_ISR]    = 0x08,
26 	[VX_IVR]    = 0x0c,
27 	[VX_RXH]    = 0x14,
28 	[VX_RXM]    = 0x18,
29 	[VX_RXL]    = 0x1c,
30 	[VX_DMA]    = 0x10,
31 	[VX_CDSP]   = 0x20,
32 	[VX_CFG]    = 0x24,
33 	[VX_RUER]   = 0x28,
34 	[VX_DATA]   = 0x2c,
35 	[VX_STATUS] = 0x30,
36 	[VX_LOFREQ] = 0x34,
37 	[VX_HIFREQ] = 0x38,
38 	[VX_CSUER]  = 0x3c,
39 	[VX_SELMIC] = 0x40,
40 	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
41 	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
42 	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
43 	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
44 	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
45 	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
46 };
47 
48 static const int vx2_reg_index[VX_REG_MAX] = {
49 	[VX_ICR]	= 1,
50 	[VX_CVR]	= 1,
51 	[VX_ISR]	= 1,
52 	[VX_IVR]	= 1,
53 	[VX_RXH]	= 1,
54 	[VX_RXM]	= 1,
55 	[VX_RXL]	= 1,
56 	[VX_DMA]	= 1,
57 	[VX_CDSP]	= 1,
58 	[VX_CFG]	= 1,
59 	[VX_RUER]	= 1,
60 	[VX_DATA]	= 1,
61 	[VX_STATUS]	= 1,
62 	[VX_LOFREQ]	= 1,
63 	[VX_HIFREQ]	= 1,
64 	[VX_CSUER]	= 1,
65 	[VX_SELMIC]	= 1,
66 	[VX_COMPOT]	= 1,
67 	[VX_SCOMPR]	= 1,
68 	[VX_GLIMIT]	= 1,
69 	[VX_INTCSR]	= 0,	/* on the PLX */
70 	[VX_CNTRL]	= 0,	/* on the PLX */
71 	[VX_GPIOC]	= 0,	/* on the PLX */
72 };
73 
74 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
75 {
76 	struct snd_vx222 *chip = to_vx222(_chip);
77 	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
78 }
79 
80 /**
81  * vx2_inb - read a byte from the register
82  * @chip: VX core instance
83  * @offset: register enum
84  */
85 static unsigned char vx2_inb(struct vx_core *chip, int offset)
86 {
87 	return inb(vx2_reg_addr(chip, offset));
88 }
89 
90 /**
91  * vx2_outb - write a byte on the register
92  * @chip: VX core instance
93  * @offset: the register offset
94  * @val: the value to write
95  */
96 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
97 {
98 	outb(val, vx2_reg_addr(chip, offset));
99 	/*
100 	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
101 	*/
102 }
103 
104 /**
105  * vx2_inl - read a 32bit word from the register
106  * @chip: VX core instance
107  * @offset: register enum
108  */
109 static unsigned int vx2_inl(struct vx_core *chip, int offset)
110 {
111 	return inl(vx2_reg_addr(chip, offset));
112 }
113 
114 /**
115  * vx2_outl - write a 32bit word on the register
116  * @chip: VX core instance
117  * @offset: the register enum
118  * @val: the value to write
119  */
120 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
121 {
122 	/*
123 	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
124 	*/
125 	outl(val, vx2_reg_addr(chip, offset));
126 }
127 
128 /*
129  * redefine macros to call directly
130  */
131 #undef vx_inb
132 #define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
133 #undef vx_outb
134 #define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
135 #undef vx_inl
136 #define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
137 #undef vx_outl
138 #define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
139 
140 
141 /*
142  * vx_reset_dsp - reset the DSP
143  */
144 
145 #define XX_DSP_RESET_WAIT_TIME		2	/* ms */
146 
147 static void vx2_reset_dsp(struct vx_core *_chip)
148 {
149 	struct snd_vx222 *chip = to_vx222(_chip);
150 
151 	/* set the reset dsp bit to 0 */
152 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
153 
154 	mdelay(XX_DSP_RESET_WAIT_TIME);
155 
156 	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
157 	/* set the reset dsp bit to 1 */
158 	vx_outl(chip, CDSP, chip->regCDSP);
159 }
160 
161 
162 static int vx2_test_xilinx(struct vx_core *_chip)
163 {
164 	struct snd_vx222 *chip = to_vx222(_chip);
165 	unsigned int data;
166 
167 	dev_dbg(_chip->card->dev, "testing xilinx...\n");
168 	/* This test uses several write/read sequences on TEST0 and TEST1 bits
169 	 * to figure out whever or not the xilinx was correctly loaded
170 	 */
171 
172 	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
173 	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
174 	vx_inl(chip, ISR);
175 	data = vx_inl(chip, STATUS);
176 	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
177 		dev_dbg(_chip->card->dev, "bad!\n");
178 		return -ENODEV;
179 	}
180 
181 	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
182 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
183 	vx_inl(chip, ISR);
184 	data = vx_inl(chip, STATUS);
185 	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
186 		dev_dbg(_chip->card->dev, "bad! #2\n");
187 		return -ENODEV;
188 	}
189 
190 	if (_chip->type == VX_TYPE_BOARD) {
191 		/* not implemented on VX_2_BOARDS */
192 		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
193 		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
194 		vx_inl(chip, ISR);
195 		data = vx_inl(chip, STATUS);
196 		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
197 			dev_dbg(_chip->card->dev, "bad! #3\n");
198 			return -ENODEV;
199 		}
200 
201 		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
202 		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
203 		vx_inl(chip, ISR);
204 		data = vx_inl(chip, STATUS);
205 		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
206 			dev_dbg(_chip->card->dev, "bad! #4\n");
207 			return -ENODEV;
208 		}
209 	}
210 	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
211 	return 0;
212 }
213 
214 
215 /**
216  * vx2_setup_pseudo_dma - set up the pseudo dma read/write mode.
217  * @chip: VX core instance
218  * @do_write: 0 = read, 1 = set up for DMA write
219  */
220 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
221 {
222 	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
223 	 * (in case of the use of the pseudo-dma facility).
224 	 */
225 	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
226 
227 	/* Reset the pseudo-dma register (in case of the use of the
228 	 * pseudo-dma facility).
229 	 */
230 	vx_outl(chip, RESET_DMA, 0);
231 }
232 
233 /*
234  * vx_release_pseudo_dma - disable the pseudo-DMA mode
235  */
236 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
237 {
238 	/* HREQ pin disabled. */
239 	vx_outl(chip, ICR, 0);
240 }
241 
242 
243 
244 /* pseudo-dma write */
245 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
246 			  struct vx_pipe *pipe, int count)
247 {
248 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
249 	int offset = pipe->hw_ptr;
250 	u32 *addr = (u32 *)(runtime->dma_area + offset);
251 
252 	if (snd_BUG_ON(count % 4))
253 		return;
254 
255 	vx2_setup_pseudo_dma(chip, 1);
256 
257 	/* Transfer using pseudo-dma.
258 	 */
259 	if (offset + count >= pipe->buffer_bytes) {
260 		int length = pipe->buffer_bytes - offset;
261 		count -= length;
262 		length >>= 2; /* in 32bit words */
263 		/* Transfer using pseudo-dma. */
264 		for (; length > 0; length--) {
265 			outl(*addr, port);
266 			addr++;
267 		}
268 		addr = (u32 *)runtime->dma_area;
269 		pipe->hw_ptr = 0;
270 	}
271 	pipe->hw_ptr += count;
272 	count >>= 2; /* in 32bit words */
273 	/* Transfer using pseudo-dma. */
274 	for (; count > 0; count--) {
275 		outl(*addr, port);
276 		addr++;
277 	}
278 
279 	vx2_release_pseudo_dma(chip);
280 }
281 
282 
283 /* pseudo dma read */
284 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
285 			 struct vx_pipe *pipe, int count)
286 {
287 	int offset = pipe->hw_ptr;
288 	u32 *addr = (u32 *)(runtime->dma_area + offset);
289 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
290 
291 	if (snd_BUG_ON(count % 4))
292 		return;
293 
294 	vx2_setup_pseudo_dma(chip, 0);
295 	/* Transfer using pseudo-dma.
296 	 */
297 	if (offset + count >= pipe->buffer_bytes) {
298 		int length = pipe->buffer_bytes - offset;
299 		count -= length;
300 		length >>= 2; /* in 32bit words */
301 		/* Transfer using pseudo-dma. */
302 		for (; length > 0; length--)
303 			*addr++ = inl(port);
304 		addr = (u32 *)runtime->dma_area;
305 		pipe->hw_ptr = 0;
306 	}
307 	pipe->hw_ptr += count;
308 	count >>= 2; /* in 32bit words */
309 	/* Transfer using pseudo-dma. */
310 	for (; count > 0; count--)
311 		*addr++ = inl(port);
312 
313 	vx2_release_pseudo_dma(chip);
314 }
315 
316 #define VX_XILINX_RESET_MASK        0x40000000
317 #define VX_USERBIT0_MASK            0x00000004
318 #define VX_USERBIT1_MASK            0x00000020
319 #define VX_CNTRL_REGISTER_VALUE     0x00172012
320 
321 /*
322  * transfer counts bits to PLX
323  */
324 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
325 {
326 	unsigned int i;
327 
328 	for (i = 0; i < counts; i++) {
329 		unsigned int val;
330 
331 		/* set the clock bit to 0. */
332 		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
333 		vx2_outl(chip, port, val);
334 		vx2_inl(chip, port);
335 		udelay(1);
336 
337 		if (data & (1 << i))
338 			val |= VX_USERBIT1_MASK;
339 		else
340 			val &= ~VX_USERBIT1_MASK;
341 		vx2_outl(chip, port, val);
342 		vx2_inl(chip, port);
343 
344 		/* set the clock bit to 1. */
345 		val |= VX_USERBIT0_MASK;
346 		vx2_outl(chip, port, val);
347 		vx2_inl(chip, port);
348 		udelay(1);
349 	}
350 	return 0;
351 }
352 
353 /*
354  * load the xilinx image
355  */
356 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
357 {
358 	unsigned int i;
359 	unsigned int port;
360 	const unsigned char *image;
361 
362 	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
363 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
364 	vx_inl(chip, CNTRL);
365 	msleep(10);
366 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
367 	vx_inl(chip, CNTRL);
368 	msleep(10);
369 
370 	if (chip->type == VX_TYPE_BOARD)
371 		port = VX_CNTRL;
372 	else
373 		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
374 
375 	image = xilinx->data;
376 	for (i = 0; i < xilinx->size; i++, image++) {
377 		if (put_xilinx_data(chip, port, 8, *image) < 0)
378 			return -EINVAL;
379 		/* don't take too much time in this loop... */
380 		cond_resched();
381 	}
382 	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
383 
384 	msleep(200);
385 
386 	/* test after loading (is buggy with VX222) */
387 	if (chip->type != VX_TYPE_BOARD) {
388 		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
389 		i = vx_inl(chip, GPIOC);
390 		if (i & 0x0100)
391 			return 0;
392 		dev_err(chip->card->dev,
393 			"xilinx test failed after load, GPIOC=0x%x\n", i);
394 		return -EINVAL;
395 	}
396 
397 	return 0;
398 }
399 
400 
401 /*
402  * load the boot/dsp images
403  */
404 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
405 {
406 	int err;
407 
408 	switch (index) {
409 	case 1:
410 		/* xilinx image */
411 		err = vx2_load_xilinx_binary(vx, dsp);
412 		if (err < 0)
413 			return err;
414 		err = vx2_test_xilinx(vx);
415 		if (err < 0)
416 			return err;
417 		return 0;
418 	case 2:
419 		/* DSP boot */
420 		return snd_vx_dsp_boot(vx, dsp);
421 	case 3:
422 		/* DSP image */
423 		return snd_vx_dsp_load(vx, dsp);
424 	default:
425 		snd_BUG();
426 		return -EINVAL;
427 	}
428 }
429 
430 
431 /*
432  * vx_test_and_ack - test and acknowledge interrupt
433  *
434  * called from irq hander, too
435  *
436  * spinlock held!
437  */
438 static int vx2_test_and_ack(struct vx_core *chip)
439 {
440 	/* not booted yet? */
441 	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
442 		return -ENXIO;
443 
444 	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
445 		return -EIO;
446 
447 	/* ok, interrupts generated, now ack it */
448 	/* set ACQUIT bit up and down */
449 	vx_outl(chip, STATUS, 0);
450 	/* useless read just to spend some time and maintain
451 	 * the ACQUIT signal up for a while ( a bus cycle )
452 	 */
453 	vx_inl(chip, STATUS);
454 	/* ack */
455 	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
456 	/* useless read just to spend some time and maintain
457 	 * the ACQUIT signal up for a while ( a bus cycle ) */
458 	vx_inl(chip, STATUS);
459 	/* clear */
460 	vx_outl(chip, STATUS, 0);
461 
462 	return 0;
463 }
464 
465 
466 /*
467  * vx_validate_irq - enable/disable IRQ
468  */
469 static void vx2_validate_irq(struct vx_core *_chip, int enable)
470 {
471 	struct snd_vx222 *chip = to_vx222(_chip);
472 
473 	/* Set the interrupt enable bit to 1 in CDSP register */
474 	if (enable) {
475 		/* Set the PCI interrupt enable bit to 1.*/
476 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
477 		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
478 	} else {
479 		/* Set the PCI interrupt enable bit to 0. */
480 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
481 		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
482 	}
483 	vx_outl(chip, CDSP, chip->regCDSP);
484 }
485 
486 
487 /*
488  * write an AKM codec data (24bit)
489  */
490 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
491 {
492 	unsigned int i;
493 
494 	vx_inl(chip, HIFREQ);
495 
496 	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
497 	for (i = 0; i < 24; i++, data <<= 1)
498 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
499 	/* Terminate access to codec registers */
500 	vx_inl(chip, RUER);
501 }
502 
503 
504 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
505 #define AKM_CODEC_RESET_ON_CMD      0xA100
506 #define AKM_CODEC_RESET_OFF_CMD     0xA103
507 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
508 #define AKM_CODEC_MUTE_CMD          0xA38D
509 #define AKM_CODEC_UNMUTE_CMD        0xA30D
510 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
511 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
512 
513 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
514     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
515     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
516     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
517     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
518     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
519     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
520     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
521     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
522     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
523     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
524     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
525     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
526     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
527     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
528     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
529     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
530     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
531     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
532     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
533     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
534     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
535     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
536     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
537     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
538     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
539     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
540     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
541     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
542     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
543     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
544     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
545     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
546     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
547     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
548     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
549     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
550     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
551     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
552     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
553     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
554     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
555     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
556     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
557     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
558     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
559     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
560     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
561     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
562     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
563     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
564     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
565     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
566     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
567     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
568     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
569     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
570     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
571     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
572     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
573     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
574     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
575     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
576     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
577     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
578     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
579     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
580     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
581     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
582     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
583     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
584     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
585     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
586     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
587     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
588     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
589     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
590     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
591     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
592     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
593     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
594     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
595     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
596     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
597     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
598     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
599     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
600     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
601     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
602     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
603     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
604     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
605     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
606     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
607     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
608     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
609     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
610     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
611     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
612     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
613     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
614     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
615     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
616     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
617     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
618     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
619     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
620     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
621     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
622     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
623     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
624     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
625     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
626     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
627     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
628     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
629     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
630     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
631     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
632     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
633     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
634     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
635     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
636     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
637     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
638     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
639     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
640     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
641     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
642     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
643     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
644     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
645     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
646     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
647     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
648     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
649     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
650     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
651     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
652     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
653     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
654     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
655     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
656     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
657     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
658     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
659     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
660     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
661     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
662 
663 /*
664  * pseudo-codec write entry
665  */
666 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
667 {
668 	unsigned int val;
669 
670 	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
671 		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
672 		return;
673 	}
674 
675 	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
676 	   a look up table, as there is no linear matching between the driver codec values
677 	   and the real dBu value
678 	*/
679 	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
680 		return;
681 
682 	switch (reg) {
683 	case XX_CODEC_LEVEL_LEFT_REGISTER:
684 		val = AKM_CODEC_LEFT_LEVEL_CMD;
685 		break;
686 	case XX_CODEC_LEVEL_RIGHT_REGISTER:
687 		val = AKM_CODEC_RIGHT_LEVEL_CMD;
688 		break;
689 	default:
690 		snd_BUG();
691 		return;
692 	}
693 	val |= vx2_akm_gains_lut[data];
694 
695 	vx2_write_codec_reg(chip, val);
696 }
697 
698 
699 /*
700  * write codec bit for old VX222 board
701  */
702 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
703 {
704 	int i;
705 
706 	/* activate access to codec registers */
707 	vx_inl(chip, HIFREQ);
708 
709 	for (i = 0; i < 24; i++, data <<= 1)
710 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
711 
712 	/* Terminate access to codec registers */
713 	vx_inl(chip, RUER);
714 }
715 
716 
717 /*
718  * reset codec bit
719  */
720 static void vx2_reset_codec(struct vx_core *_chip)
721 {
722 	struct snd_vx222 *chip = to_vx222(_chip);
723 
724 	/* Set the reset CODEC bit to 0. */
725 	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
726 	vx_inl(chip, CDSP);
727 	msleep(10);
728 	/* Set the reset CODEC bit to 1. */
729 	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
730 	vx_outl(chip, CDSP, chip->regCDSP);
731 	vx_inl(chip, CDSP);
732 	if (_chip->type == VX_TYPE_BOARD) {
733 		msleep(1);
734 		return;
735 	}
736 
737 	msleep(5);  /* additionnel wait time for AKM's */
738 
739 	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
740 
741 	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
742 	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
743 	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
744 
745 	if (_chip->type == VX_TYPE_MIC) {
746 		/* set up the micro input selector */
747 		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
748 			MICRO_SELECT_PREAMPLI_G_0 |
749 			MICRO_SELECT_NOISE_T_52DB;
750 
751 		/* reset phantom power supply */
752 		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
753 
754 		vx_outl(_chip, SELMIC, chip->regSELMIC);
755 	}
756 }
757 
758 
759 /*
760  * change the audio source
761  */
762 static void vx2_change_audio_source(struct vx_core *_chip, int src)
763 {
764 	struct snd_vx222 *chip = to_vx222(_chip);
765 
766 	switch (src) {
767 	case VX_AUDIO_SRC_DIGITAL:
768 		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
769 		break;
770 	default:
771 		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
772 		break;
773 	}
774 	vx_outl(chip, CFG, chip->regCFG);
775 }
776 
777 
778 /*
779  * set the clock source
780  */
781 static void vx2_set_clock_source(struct vx_core *_chip, int source)
782 {
783 	struct snd_vx222 *chip = to_vx222(_chip);
784 
785 	if (source == INTERNAL_QUARTZ)
786 		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
787 	else
788 		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
789 	vx_outl(chip, CFG, chip->regCFG);
790 }
791 
792 /*
793  * reset the board
794  */
795 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
796 {
797 	struct snd_vx222 *chip = to_vx222(_chip);
798 
799 	/* initialize the register values */
800 	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
801 	chip->regCFG = 0;
802 }
803 
804 
805 
806 /*
807  * input level controls for VX222 Mic
808  */
809 
810 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
811  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
812  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
813  */
814 #define V2_MICRO_LEVEL_RANGE        (318 - 255)
815 
816 static void vx2_set_input_level(struct snd_vx222 *chip)
817 {
818 	int i, miclevel, preamp;
819 	unsigned int data;
820 
821 	miclevel = chip->mic_level;
822 	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
823 	preamp = 0;
824         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
825 		preamp++;	/* raise pre ampli + 18dB */
826 		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
827         }
828 	if (snd_BUG_ON(preamp >= 4))
829 		return;
830 
831 	/* set pre-amp level */
832 	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
833 	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
834 	vx_outl(chip, SELMIC, chip->regSELMIC);
835 
836 	data = (unsigned int)miclevel << 16 |
837 		(unsigned int)chip->input_level[1] << 8 |
838 		(unsigned int)chip->input_level[0];
839 	vx_inl(chip, DATA); /* Activate input level programming */
840 
841 	/* We have to send 32 bits (4 x 8 bits) */
842 	for (i = 0; i < 32; i++, data <<= 1)
843 		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
844 
845 	vx_inl(chip, RUER); /* Terminate input level programming */
846 }
847 
848 
849 #define MIC_LEVEL_MAX	0xff
850 
851 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
852 
853 /*
854  * controls API for input levels
855  */
856 
857 /* input levels */
858 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
859 {
860 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
861 	uinfo->count = 2;
862 	uinfo->value.integer.min = 0;
863 	uinfo->value.integer.max = MIC_LEVEL_MAX;
864 	return 0;
865 }
866 
867 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
868 {
869 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
870 	struct snd_vx222 *chip = to_vx222(_chip);
871 	mutex_lock(&_chip->mixer_mutex);
872 	ucontrol->value.integer.value[0] = chip->input_level[0];
873 	ucontrol->value.integer.value[1] = chip->input_level[1];
874 	mutex_unlock(&_chip->mixer_mutex);
875 	return 0;
876 }
877 
878 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 {
880 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
881 	struct snd_vx222 *chip = to_vx222(_chip);
882 	if (ucontrol->value.integer.value[0] < 0 ||
883 	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
884 		return -EINVAL;
885 	if (ucontrol->value.integer.value[1] < 0 ||
886 	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
887 		return -EINVAL;
888 	mutex_lock(&_chip->mixer_mutex);
889 	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
890 	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
891 		chip->input_level[0] = ucontrol->value.integer.value[0];
892 		chip->input_level[1] = ucontrol->value.integer.value[1];
893 		vx2_set_input_level(chip);
894 		mutex_unlock(&_chip->mixer_mutex);
895 		return 1;
896 	}
897 	mutex_unlock(&_chip->mixer_mutex);
898 	return 0;
899 }
900 
901 /* mic level */
902 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
903 {
904 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
905 	uinfo->count = 1;
906 	uinfo->value.integer.min = 0;
907 	uinfo->value.integer.max = MIC_LEVEL_MAX;
908 	return 0;
909 }
910 
911 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
912 {
913 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
914 	struct snd_vx222 *chip = to_vx222(_chip);
915 	ucontrol->value.integer.value[0] = chip->mic_level;
916 	return 0;
917 }
918 
919 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
920 {
921 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
922 	struct snd_vx222 *chip = to_vx222(_chip);
923 	if (ucontrol->value.integer.value[0] < 0 ||
924 	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
925 		return -EINVAL;
926 	mutex_lock(&_chip->mixer_mutex);
927 	if (chip->mic_level != ucontrol->value.integer.value[0]) {
928 		chip->mic_level = ucontrol->value.integer.value[0];
929 		vx2_set_input_level(chip);
930 		mutex_unlock(&_chip->mixer_mutex);
931 		return 1;
932 	}
933 	mutex_unlock(&_chip->mixer_mutex);
934 	return 0;
935 }
936 
937 static const struct snd_kcontrol_new vx_control_input_level = {
938 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
939 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
940 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
941 	.name =		"Capture Volume",
942 	.info =		vx_input_level_info,
943 	.get =		vx_input_level_get,
944 	.put =		vx_input_level_put,
945 	.tlv = { .p = db_scale_mic },
946 };
947 
948 static const struct snd_kcontrol_new vx_control_mic_level = {
949 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
950 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
951 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
952 	.name =		"Mic Capture Volume",
953 	.info =		vx_mic_level_info,
954 	.get =		vx_mic_level_get,
955 	.put =		vx_mic_level_put,
956 	.tlv = { .p = db_scale_mic },
957 };
958 
959 /*
960  * FIXME: compressor/limiter implementation is missing yet...
961  */
962 
963 static int vx2_add_mic_controls(struct vx_core *_chip)
964 {
965 	struct snd_vx222 *chip = to_vx222(_chip);
966 	int err;
967 
968 	if (_chip->type != VX_TYPE_MIC)
969 		return 0;
970 
971 	/* mute input levels */
972 	chip->input_level[0] = chip->input_level[1] = 0;
973 	chip->mic_level = 0;
974 	vx2_set_input_level(chip);
975 
976 	/* controls */
977 	err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip));
978 	if (err < 0)
979 		return err;
980 	err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip));
981 	if (err < 0)
982 		return err;
983 
984 	return 0;
985 }
986 
987 
988 /*
989  * callbacks
990  */
991 const struct snd_vx_ops vx222_ops = {
992 	.in8 = vx2_inb,
993 	.in32 = vx2_inl,
994 	.out8 = vx2_outb,
995 	.out32 = vx2_outl,
996 	.test_and_ack = vx2_test_and_ack,
997 	.validate_irq = vx2_validate_irq,
998 	.akm_write = vx2_write_akm,
999 	.reset_codec = vx2_reset_codec,
1000 	.change_audio_source = vx2_change_audio_source,
1001 	.set_clock_source = vx2_set_clock_source,
1002 	.load_dsp = vx2_load_dsp,
1003 	.reset_dsp = vx2_reset_dsp,
1004 	.reset_board = vx2_reset_board,
1005 	.dma_write = vx2_dma_write,
1006 	.dma_read = vx2_dma_read,
1007 	.add_controls = vx2_add_mic_controls,
1008 };
1009 
1010 /* for old VX222 board */
1011 const struct snd_vx_ops vx222_old_ops = {
1012 	.in8 = vx2_inb,
1013 	.in32 = vx2_inl,
1014 	.out8 = vx2_outb,
1015 	.out32 = vx2_outl,
1016 	.test_and_ack = vx2_test_and_ack,
1017 	.validate_irq = vx2_validate_irq,
1018 	.write_codec = vx2_old_write_codec_bit,
1019 	.reset_codec = vx2_reset_codec,
1020 	.change_audio_source = vx2_change_audio_source,
1021 	.set_clock_source = vx2_set_clock_source,
1022 	.load_dsp = vx2_load_dsp,
1023 	.reset_dsp = vx2_reset_dsp,
1024 	.reset_board = vx2_reset_board,
1025 	.dma_write = vx2_dma_write,
1026 	.dma_read = vx2_dma_read,
1027 };
1028 
1029