xref: /linux/sound/pci/vx222/vx222_ops.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Driver for Digigram VX222 V2/Mic soundcards
3  *
4  * VX222-specific low-level routines
5  *
6  * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/firmware.h>
26 #include <linux/mutex.h>
27 #include <linux/io.h>
28 
29 #include <sound/core.h>
30 #include <sound/control.h>
31 #include <sound/tlv.h>
32 #include "vx222.h"
33 
34 
35 static int vx2_reg_offset[VX_REG_MAX] = {
36 	[VX_ICR]    = 0x00,
37 	[VX_CVR]    = 0x04,
38 	[VX_ISR]    = 0x08,
39 	[VX_IVR]    = 0x0c,
40 	[VX_RXH]    = 0x14,
41 	[VX_RXM]    = 0x18,
42 	[VX_RXL]    = 0x1c,
43 	[VX_DMA]    = 0x10,
44 	[VX_CDSP]   = 0x20,
45 	[VX_CFG]    = 0x24,
46 	[VX_RUER]   = 0x28,
47 	[VX_DATA]   = 0x2c,
48 	[VX_STATUS] = 0x30,
49 	[VX_LOFREQ] = 0x34,
50 	[VX_HIFREQ] = 0x38,
51 	[VX_CSUER]  = 0x3c,
52 	[VX_SELMIC] = 0x40,
53 	[VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54 	[VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
55 	[VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
56 	[VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57 	[VX_CNTRL]  = 0x50,		// VX_CNTRL_REGISTER_OFFSET
58 	[VX_GPIOC]  = 0x54,		// VX_GPIOC (new with PLX9030)
59 };
60 
61 static int vx2_reg_index[VX_REG_MAX] = {
62 	[VX_ICR]	= 1,
63 	[VX_CVR]	= 1,
64 	[VX_ISR]	= 1,
65 	[VX_IVR]	= 1,
66 	[VX_RXH]	= 1,
67 	[VX_RXM]	= 1,
68 	[VX_RXL]	= 1,
69 	[VX_DMA]	= 1,
70 	[VX_CDSP]	= 1,
71 	[VX_CFG]	= 1,
72 	[VX_RUER]	= 1,
73 	[VX_DATA]	= 1,
74 	[VX_STATUS]	= 1,
75 	[VX_LOFREQ]	= 1,
76 	[VX_HIFREQ]	= 1,
77 	[VX_CSUER]	= 1,
78 	[VX_SELMIC]	= 1,
79 	[VX_COMPOT]	= 1,
80 	[VX_SCOMPR]	= 1,
81 	[VX_GLIMIT]	= 1,
82 	[VX_INTCSR]	= 0,	/* on the PLX */
83 	[VX_CNTRL]	= 0,	/* on the PLX */
84 	[VX_GPIOC]	= 0,	/* on the PLX */
85 };
86 
87 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
88 {
89 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
90 	return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
91 }
92 
93 /**
94  * snd_vx_inb - read a byte from the register
95  * @chip: VX core instance
96  * @offset: register enum
97  */
98 static unsigned char vx2_inb(struct vx_core *chip, int offset)
99 {
100 	return inb(vx2_reg_addr(chip, offset));
101 }
102 
103 /**
104  * snd_vx_outb - write a byte on the register
105  * @chip: VX core instance
106  * @offset: the register offset
107  * @val: the value to write
108  */
109 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
110 {
111 	outb(val, vx2_reg_addr(chip, offset));
112 	/*
113 	dev_dbg(chip->card->dev, "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
114 	*/
115 }
116 
117 /**
118  * snd_vx_inl - read a 32bit word from the register
119  * @chip: VX core instance
120  * @offset: register enum
121  */
122 static unsigned int vx2_inl(struct vx_core *chip, int offset)
123 {
124 	return inl(vx2_reg_addr(chip, offset));
125 }
126 
127 /**
128  * snd_vx_outl - write a 32bit word on the register
129  * @chip: VX core instance
130  * @offset: the register enum
131  * @val: the value to write
132  */
133 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
134 {
135 	/*
136 	dev_dbg(chip->card->dev, "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
137 	*/
138 	outl(val, vx2_reg_addr(chip, offset));
139 }
140 
141 /*
142  * redefine macros to call directly
143  */
144 #undef vx_inb
145 #define vx_inb(chip,reg)	vx2_inb((struct vx_core*)(chip), VX_##reg)
146 #undef vx_outb
147 #define vx_outb(chip,reg,val)	vx2_outb((struct vx_core*)(chip), VX_##reg, val)
148 #undef vx_inl
149 #define vx_inl(chip,reg)	vx2_inl((struct vx_core*)(chip), VX_##reg)
150 #undef vx_outl
151 #define vx_outl(chip,reg,val)	vx2_outl((struct vx_core*)(chip), VX_##reg, val)
152 
153 
154 /*
155  * vx_reset_dsp - reset the DSP
156  */
157 
158 #define XX_DSP_RESET_WAIT_TIME		2	/* ms */
159 
160 static void vx2_reset_dsp(struct vx_core *_chip)
161 {
162 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
163 
164 	/* set the reset dsp bit to 0 */
165 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
166 
167 	mdelay(XX_DSP_RESET_WAIT_TIME);
168 
169 	chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
170 	/* set the reset dsp bit to 1 */
171 	vx_outl(chip, CDSP, chip->regCDSP);
172 }
173 
174 
175 static int vx2_test_xilinx(struct vx_core *_chip)
176 {
177 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
178 	unsigned int data;
179 
180 	dev_dbg(_chip->card->dev, "testing xilinx...\n");
181 	/* This test uses several write/read sequences on TEST0 and TEST1 bits
182 	 * to figure out whever or not the xilinx was correctly loaded
183 	 */
184 
185 	/* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
186 	vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
187 	vx_inl(chip, ISR);
188 	data = vx_inl(chip, STATUS);
189 	if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
190 		dev_dbg(_chip->card->dev, "bad!\n");
191 		return -ENODEV;
192 	}
193 
194 	/* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
195 	vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
196 	vx_inl(chip, ISR);
197 	data = vx_inl(chip, STATUS);
198 	if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
199 		dev_dbg(_chip->card->dev, "bad! #2\n");
200 		return -ENODEV;
201 	}
202 
203 	if (_chip->type == VX_TYPE_BOARD) {
204 		/* not implemented on VX_2_BOARDS */
205 		/* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
206 		vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
207 		vx_inl(chip, ISR);
208 		data = vx_inl(chip, STATUS);
209 		if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
210 			dev_dbg(_chip->card->dev, "bad! #3\n");
211 			return -ENODEV;
212 		}
213 
214 		/* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
215 		vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
216 		vx_inl(chip, ISR);
217 		data = vx_inl(chip, STATUS);
218 		if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
219 			dev_dbg(_chip->card->dev, "bad! #4\n");
220 			return -ENODEV;
221 		}
222 	}
223 	dev_dbg(_chip->card->dev, "ok, xilinx fine.\n");
224 	return 0;
225 }
226 
227 
228 /**
229  * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
230  * @chip: VX core instance
231  * @do_write: 0 = read, 1 = set up for DMA write
232  */
233 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
234 {
235 	/* Interrupt mode and HREQ pin enabled for host transmit data transfers
236 	 * (in case of the use of the pseudo-dma facility).
237 	 */
238 	vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
239 
240 	/* Reset the pseudo-dma register (in case of the use of the
241 	 * pseudo-dma facility).
242 	 */
243 	vx_outl(chip, RESET_DMA, 0);
244 }
245 
246 /*
247  * vx_release_pseudo_dma - disable the pseudo-DMA mode
248  */
249 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
250 {
251 	/* HREQ pin disabled. */
252 	vx_outl(chip, ICR, 0);
253 }
254 
255 
256 
257 /* pseudo-dma write */
258 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
259 			  struct vx_pipe *pipe, int count)
260 {
261 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
262 	int offset = pipe->hw_ptr;
263 	u32 *addr = (u32 *)(runtime->dma_area + offset);
264 
265 	if (snd_BUG_ON(count % 4))
266 		return;
267 
268 	vx2_setup_pseudo_dma(chip, 1);
269 
270 	/* Transfer using pseudo-dma.
271 	 */
272 	if (offset + count > pipe->buffer_bytes) {
273 		int length = pipe->buffer_bytes - offset;
274 		count -= length;
275 		length >>= 2; /* in 32bit words */
276 		/* Transfer using pseudo-dma. */
277 		while (length-- > 0) {
278 			outl(cpu_to_le32(*addr), port);
279 			addr++;
280 		}
281 		addr = (u32 *)runtime->dma_area;
282 		pipe->hw_ptr = 0;
283 	}
284 	pipe->hw_ptr += count;
285 	count >>= 2; /* in 32bit words */
286 	/* Transfer using pseudo-dma. */
287 	while (count-- > 0) {
288 		outl(cpu_to_le32(*addr), port);
289 		addr++;
290 	}
291 
292 	vx2_release_pseudo_dma(chip);
293 }
294 
295 
296 /* pseudo dma read */
297 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
298 			 struct vx_pipe *pipe, int count)
299 {
300 	int offset = pipe->hw_ptr;
301 	u32 *addr = (u32 *)(runtime->dma_area + offset);
302 	unsigned long port = vx2_reg_addr(chip, VX_DMA);
303 
304 	if (snd_BUG_ON(count % 4))
305 		return;
306 
307 	vx2_setup_pseudo_dma(chip, 0);
308 	/* Transfer using pseudo-dma.
309 	 */
310 	if (offset + count > pipe->buffer_bytes) {
311 		int length = pipe->buffer_bytes - offset;
312 		count -= length;
313 		length >>= 2; /* in 32bit words */
314 		/* Transfer using pseudo-dma. */
315 		while (length-- > 0)
316 			*addr++ = le32_to_cpu(inl(port));
317 		addr = (u32 *)runtime->dma_area;
318 		pipe->hw_ptr = 0;
319 	}
320 	pipe->hw_ptr += count;
321 	count >>= 2; /* in 32bit words */
322 	/* Transfer using pseudo-dma. */
323 	while (count-- > 0)
324 		*addr++ = le32_to_cpu(inl(port));
325 
326 	vx2_release_pseudo_dma(chip);
327 }
328 
329 #define VX_XILINX_RESET_MASK        0x40000000
330 #define VX_USERBIT0_MASK            0x00000004
331 #define VX_USERBIT1_MASK            0x00000020
332 #define VX_CNTRL_REGISTER_VALUE     0x00172012
333 
334 /*
335  * transfer counts bits to PLX
336  */
337 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
338 {
339 	unsigned int i;
340 
341 	for (i = 0; i < counts; i++) {
342 		unsigned int val;
343 
344 		/* set the clock bit to 0. */
345 		val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
346 		vx2_outl(chip, port, val);
347 		vx2_inl(chip, port);
348 		udelay(1);
349 
350 		if (data & (1 << i))
351 			val |= VX_USERBIT1_MASK;
352 		else
353 			val &= ~VX_USERBIT1_MASK;
354 		vx2_outl(chip, port, val);
355 		vx2_inl(chip, port);
356 
357 		/* set the clock bit to 1. */
358 		val |= VX_USERBIT0_MASK;
359 		vx2_outl(chip, port, val);
360 		vx2_inl(chip, port);
361 		udelay(1);
362 	}
363 	return 0;
364 }
365 
366 /*
367  * load the xilinx image
368  */
369 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
370 {
371 	unsigned int i;
372 	unsigned int port;
373 	const unsigned char *image;
374 
375 	/* XILINX reset (wait at least 1 millisecond between reset on and off). */
376 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
377 	vx_inl(chip, CNTRL);
378 	msleep(10);
379 	vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
380 	vx_inl(chip, CNTRL);
381 	msleep(10);
382 
383 	if (chip->type == VX_TYPE_BOARD)
384 		port = VX_CNTRL;
385 	else
386 		port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
387 
388 	image = xilinx->data;
389 	for (i = 0; i < xilinx->size; i++, image++) {
390 		if (put_xilinx_data(chip, port, 8, *image) < 0)
391 			return -EINVAL;
392 		/* don't take too much time in this loop... */
393 		cond_resched();
394 	}
395 	put_xilinx_data(chip, port, 4, 0xff); /* end signature */
396 
397 	msleep(200);
398 
399 	/* test after loading (is buggy with VX222) */
400 	if (chip->type != VX_TYPE_BOARD) {
401 		/* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
402 		i = vx_inl(chip, GPIOC);
403 		if (i & 0x0100)
404 			return 0;
405 		dev_err(chip->card->dev,
406 			"xilinx test failed after load, GPIOC=0x%x\n", i);
407 		return -EINVAL;
408 	}
409 
410 	return 0;
411 }
412 
413 
414 /*
415  * load the boot/dsp images
416  */
417 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
418 {
419 	int err;
420 
421 	switch (index) {
422 	case 1:
423 		/* xilinx image */
424 		if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
425 			return err;
426 		if ((err = vx2_test_xilinx(vx)) < 0)
427 			return err;
428 		return 0;
429 	case 2:
430 		/* DSP boot */
431 		return snd_vx_dsp_boot(vx, dsp);
432 	case 3:
433 		/* DSP image */
434 		return snd_vx_dsp_load(vx, dsp);
435 	default:
436 		snd_BUG();
437 		return -EINVAL;
438 	}
439 }
440 
441 
442 /*
443  * vx_test_and_ack - test and acknowledge interrupt
444  *
445  * called from irq hander, too
446  *
447  * spinlock held!
448  */
449 static int vx2_test_and_ack(struct vx_core *chip)
450 {
451 	/* not booted yet? */
452 	if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
453 		return -ENXIO;
454 
455 	if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
456 		return -EIO;
457 
458 	/* ok, interrupts generated, now ack it */
459 	/* set ACQUIT bit up and down */
460 	vx_outl(chip, STATUS, 0);
461 	/* useless read just to spend some time and maintain
462 	 * the ACQUIT signal up for a while ( a bus cycle )
463 	 */
464 	vx_inl(chip, STATUS);
465 	/* ack */
466 	vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
467 	/* useless read just to spend some time and maintain
468 	 * the ACQUIT signal up for a while ( a bus cycle ) */
469 	vx_inl(chip, STATUS);
470 	/* clear */
471 	vx_outl(chip, STATUS, 0);
472 
473 	return 0;
474 }
475 
476 
477 /*
478  * vx_validate_irq - enable/disable IRQ
479  */
480 static void vx2_validate_irq(struct vx_core *_chip, int enable)
481 {
482 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
483 
484 	/* Set the interrupt enable bit to 1 in CDSP register */
485 	if (enable) {
486 		/* Set the PCI interrupt enable bit to 1.*/
487 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
488 		chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
489 	} else {
490 		/* Set the PCI interrupt enable bit to 0. */
491 		vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
492 		chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
493 	}
494 	vx_outl(chip, CDSP, chip->regCDSP);
495 }
496 
497 
498 /*
499  * write an AKM codec data (24bit)
500  */
501 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
502 {
503 	unsigned int i;
504 
505 	vx_inl(chip, HIFREQ);
506 
507 	/* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
508 	for (i = 0; i < 24; i++, data <<= 1)
509 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
510 	/* Terminate access to codec registers */
511 	vx_inl(chip, RUER);
512 }
513 
514 
515 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
516 #define AKM_CODEC_RESET_ON_CMD      0xA100
517 #define AKM_CODEC_RESET_OFF_CMD     0xA103
518 #define AKM_CODEC_CLOCK_FORMAT_CMD  0xA240
519 #define AKM_CODEC_MUTE_CMD          0xA38D
520 #define AKM_CODEC_UNMUTE_CMD        0xA30D
521 #define AKM_CODEC_LEFT_LEVEL_CMD    0xA400
522 #define AKM_CODEC_RIGHT_LEVEL_CMD   0xA500
523 
524 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
525     0x7f,       // [000] =  +0.000 dB  ->  AKM(0x7f) =  +0.000 dB  error(+0.000 dB)
526     0x7d,       // [001] =  -0.500 dB  ->  AKM(0x7d) =  -0.572 dB  error(-0.072 dB)
527     0x7c,       // [002] =  -1.000 dB  ->  AKM(0x7c) =  -0.873 dB  error(+0.127 dB)
528     0x7a,       // [003] =  -1.500 dB  ->  AKM(0x7a) =  -1.508 dB  error(-0.008 dB)
529     0x79,       // [004] =  -2.000 dB  ->  AKM(0x79) =  -1.844 dB  error(+0.156 dB)
530     0x77,       // [005] =  -2.500 dB  ->  AKM(0x77) =  -2.557 dB  error(-0.057 dB)
531     0x76,       // [006] =  -3.000 dB  ->  AKM(0x76) =  -2.937 dB  error(+0.063 dB)
532     0x75,       // [007] =  -3.500 dB  ->  AKM(0x75) =  -3.334 dB  error(+0.166 dB)
533     0x73,       // [008] =  -4.000 dB  ->  AKM(0x73) =  -4.188 dB  error(-0.188 dB)
534     0x72,       // [009] =  -4.500 dB  ->  AKM(0x72) =  -4.648 dB  error(-0.148 dB)
535     0x71,       // [010] =  -5.000 dB  ->  AKM(0x71) =  -5.134 dB  error(-0.134 dB)
536     0x70,       // [011] =  -5.500 dB  ->  AKM(0x70) =  -5.649 dB  error(-0.149 dB)
537     0x6f,       // [012] =  -6.000 dB  ->  AKM(0x6f) =  -6.056 dB  error(-0.056 dB)
538     0x6d,       // [013] =  -6.500 dB  ->  AKM(0x6d) =  -6.631 dB  error(-0.131 dB)
539     0x6c,       // [014] =  -7.000 dB  ->  AKM(0x6c) =  -6.933 dB  error(+0.067 dB)
540     0x6a,       // [015] =  -7.500 dB  ->  AKM(0x6a) =  -7.571 dB  error(-0.071 dB)
541     0x69,       // [016] =  -8.000 dB  ->  AKM(0x69) =  -7.909 dB  error(+0.091 dB)
542     0x67,       // [017] =  -8.500 dB  ->  AKM(0x67) =  -8.626 dB  error(-0.126 dB)
543     0x66,       // [018] =  -9.000 dB  ->  AKM(0x66) =  -9.008 dB  error(-0.008 dB)
544     0x65,       // [019] =  -9.500 dB  ->  AKM(0x65) =  -9.407 dB  error(+0.093 dB)
545     0x64,       // [020] = -10.000 dB  ->  AKM(0x64) =  -9.826 dB  error(+0.174 dB)
546     0x62,       // [021] = -10.500 dB  ->  AKM(0x62) = -10.730 dB  error(-0.230 dB)
547     0x61,       // [022] = -11.000 dB  ->  AKM(0x61) = -11.219 dB  error(-0.219 dB)
548     0x60,       // [023] = -11.500 dB  ->  AKM(0x60) = -11.738 dB  error(-0.238 dB)
549     0x5f,       // [024] = -12.000 dB  ->  AKM(0x5f) = -12.149 dB  error(-0.149 dB)
550     0x5e,       // [025] = -12.500 dB  ->  AKM(0x5e) = -12.434 dB  error(+0.066 dB)
551     0x5c,       // [026] = -13.000 dB  ->  AKM(0x5c) = -13.033 dB  error(-0.033 dB)
552     0x5b,       // [027] = -13.500 dB  ->  AKM(0x5b) = -13.350 dB  error(+0.150 dB)
553     0x59,       // [028] = -14.000 dB  ->  AKM(0x59) = -14.018 dB  error(-0.018 dB)
554     0x58,       // [029] = -14.500 dB  ->  AKM(0x58) = -14.373 dB  error(+0.127 dB)
555     0x56,       // [030] = -15.000 dB  ->  AKM(0x56) = -15.130 dB  error(-0.130 dB)
556     0x55,       // [031] = -15.500 dB  ->  AKM(0x55) = -15.534 dB  error(-0.034 dB)
557     0x54,       // [032] = -16.000 dB  ->  AKM(0x54) = -15.958 dB  error(+0.042 dB)
558     0x53,       // [033] = -16.500 dB  ->  AKM(0x53) = -16.404 dB  error(+0.096 dB)
559     0x52,       // [034] = -17.000 dB  ->  AKM(0x52) = -16.874 dB  error(+0.126 dB)
560     0x51,       // [035] = -17.500 dB  ->  AKM(0x51) = -17.371 dB  error(+0.129 dB)
561     0x50,       // [036] = -18.000 dB  ->  AKM(0x50) = -17.898 dB  error(+0.102 dB)
562     0x4e,       // [037] = -18.500 dB  ->  AKM(0x4e) = -18.605 dB  error(-0.105 dB)
563     0x4d,       // [038] = -19.000 dB  ->  AKM(0x4d) = -18.905 dB  error(+0.095 dB)
564     0x4b,       // [039] = -19.500 dB  ->  AKM(0x4b) = -19.538 dB  error(-0.038 dB)
565     0x4a,       // [040] = -20.000 dB  ->  AKM(0x4a) = -19.872 dB  error(+0.128 dB)
566     0x48,       // [041] = -20.500 dB  ->  AKM(0x48) = -20.583 dB  error(-0.083 dB)
567     0x47,       // [042] = -21.000 dB  ->  AKM(0x47) = -20.961 dB  error(+0.039 dB)
568     0x46,       // [043] = -21.500 dB  ->  AKM(0x46) = -21.356 dB  error(+0.144 dB)
569     0x44,       // [044] = -22.000 dB  ->  AKM(0x44) = -22.206 dB  error(-0.206 dB)
570     0x43,       // [045] = -22.500 dB  ->  AKM(0x43) = -22.664 dB  error(-0.164 dB)
571     0x42,       // [046] = -23.000 dB  ->  AKM(0x42) = -23.147 dB  error(-0.147 dB)
572     0x41,       // [047] = -23.500 dB  ->  AKM(0x41) = -23.659 dB  error(-0.159 dB)
573     0x40,       // [048] = -24.000 dB  ->  AKM(0x40) = -24.203 dB  error(-0.203 dB)
574     0x3f,       // [049] = -24.500 dB  ->  AKM(0x3f) = -24.635 dB  error(-0.135 dB)
575     0x3e,       // [050] = -25.000 dB  ->  AKM(0x3e) = -24.935 dB  error(+0.065 dB)
576     0x3c,       // [051] = -25.500 dB  ->  AKM(0x3c) = -25.569 dB  error(-0.069 dB)
577     0x3b,       // [052] = -26.000 dB  ->  AKM(0x3b) = -25.904 dB  error(+0.096 dB)
578     0x39,       // [053] = -26.500 dB  ->  AKM(0x39) = -26.615 dB  error(-0.115 dB)
579     0x38,       // [054] = -27.000 dB  ->  AKM(0x38) = -26.994 dB  error(+0.006 dB)
580     0x37,       // [055] = -27.500 dB  ->  AKM(0x37) = -27.390 dB  error(+0.110 dB)
581     0x36,       // [056] = -28.000 dB  ->  AKM(0x36) = -27.804 dB  error(+0.196 dB)
582     0x34,       // [057] = -28.500 dB  ->  AKM(0x34) = -28.699 dB  error(-0.199 dB)
583     0x33,       // [058] = -29.000 dB  ->  AKM(0x33) = -29.183 dB  error(-0.183 dB)
584     0x32,       // [059] = -29.500 dB  ->  AKM(0x32) = -29.696 dB  error(-0.196 dB)
585     0x31,       // [060] = -30.000 dB  ->  AKM(0x31) = -30.241 dB  error(-0.241 dB)
586     0x31,       // [061] = -30.500 dB  ->  AKM(0x31) = -30.241 dB  error(+0.259 dB)
587     0x30,       // [062] = -31.000 dB  ->  AKM(0x30) = -30.823 dB  error(+0.177 dB)
588     0x2e,       // [063] = -31.500 dB  ->  AKM(0x2e) = -31.610 dB  error(-0.110 dB)
589     0x2d,       // [064] = -32.000 dB  ->  AKM(0x2d) = -31.945 dB  error(+0.055 dB)
590     0x2b,       // [065] = -32.500 dB  ->  AKM(0x2b) = -32.659 dB  error(-0.159 dB)
591     0x2a,       // [066] = -33.000 dB  ->  AKM(0x2a) = -33.038 dB  error(-0.038 dB)
592     0x29,       // [067] = -33.500 dB  ->  AKM(0x29) = -33.435 dB  error(+0.065 dB)
593     0x28,       // [068] = -34.000 dB  ->  AKM(0x28) = -33.852 dB  error(+0.148 dB)
594     0x27,       // [069] = -34.500 dB  ->  AKM(0x27) = -34.289 dB  error(+0.211 dB)
595     0x25,       // [070] = -35.000 dB  ->  AKM(0x25) = -35.235 dB  error(-0.235 dB)
596     0x24,       // [071] = -35.500 dB  ->  AKM(0x24) = -35.750 dB  error(-0.250 dB)
597     0x24,       // [072] = -36.000 dB  ->  AKM(0x24) = -35.750 dB  error(+0.250 dB)
598     0x23,       // [073] = -36.500 dB  ->  AKM(0x23) = -36.297 dB  error(+0.203 dB)
599     0x22,       // [074] = -37.000 dB  ->  AKM(0x22) = -36.881 dB  error(+0.119 dB)
600     0x21,       // [075] = -37.500 dB  ->  AKM(0x21) = -37.508 dB  error(-0.008 dB)
601     0x20,       // [076] = -38.000 dB  ->  AKM(0x20) = -38.183 dB  error(-0.183 dB)
602     0x1f,       // [077] = -38.500 dB  ->  AKM(0x1f) = -38.726 dB  error(-0.226 dB)
603     0x1e,       // [078] = -39.000 dB  ->  AKM(0x1e) = -39.108 dB  error(-0.108 dB)
604     0x1d,       // [079] = -39.500 dB  ->  AKM(0x1d) = -39.507 dB  error(-0.007 dB)
605     0x1c,       // [080] = -40.000 dB  ->  AKM(0x1c) = -39.926 dB  error(+0.074 dB)
606     0x1b,       // [081] = -40.500 dB  ->  AKM(0x1b) = -40.366 dB  error(+0.134 dB)
607     0x1a,       // [082] = -41.000 dB  ->  AKM(0x1a) = -40.829 dB  error(+0.171 dB)
608     0x19,       // [083] = -41.500 dB  ->  AKM(0x19) = -41.318 dB  error(+0.182 dB)
609     0x18,       // [084] = -42.000 dB  ->  AKM(0x18) = -41.837 dB  error(+0.163 dB)
610     0x17,       // [085] = -42.500 dB  ->  AKM(0x17) = -42.389 dB  error(+0.111 dB)
611     0x16,       // [086] = -43.000 dB  ->  AKM(0x16) = -42.978 dB  error(+0.022 dB)
612     0x15,       // [087] = -43.500 dB  ->  AKM(0x15) = -43.610 dB  error(-0.110 dB)
613     0x14,       // [088] = -44.000 dB  ->  AKM(0x14) = -44.291 dB  error(-0.291 dB)
614     0x14,       // [089] = -44.500 dB  ->  AKM(0x14) = -44.291 dB  error(+0.209 dB)
615     0x13,       // [090] = -45.000 dB  ->  AKM(0x13) = -45.031 dB  error(-0.031 dB)
616     0x12,       // [091] = -45.500 dB  ->  AKM(0x12) = -45.840 dB  error(-0.340 dB)
617     0x12,       // [092] = -46.000 dB  ->  AKM(0x12) = -45.840 dB  error(+0.160 dB)
618     0x11,       // [093] = -46.500 dB  ->  AKM(0x11) = -46.731 dB  error(-0.231 dB)
619     0x11,       // [094] = -47.000 dB  ->  AKM(0x11) = -46.731 dB  error(+0.269 dB)
620     0x10,       // [095] = -47.500 dB  ->  AKM(0x10) = -47.725 dB  error(-0.225 dB)
621     0x10,       // [096] = -48.000 dB  ->  AKM(0x10) = -47.725 dB  error(+0.275 dB)
622     0x0f,       // [097] = -48.500 dB  ->  AKM(0x0f) = -48.553 dB  error(-0.053 dB)
623     0x0e,       // [098] = -49.000 dB  ->  AKM(0x0e) = -49.152 dB  error(-0.152 dB)
624     0x0d,       // [099] = -49.500 dB  ->  AKM(0x0d) = -49.796 dB  error(-0.296 dB)
625     0x0d,       // [100] = -50.000 dB  ->  AKM(0x0d) = -49.796 dB  error(+0.204 dB)
626     0x0c,       // [101] = -50.500 dB  ->  AKM(0x0c) = -50.491 dB  error(+0.009 dB)
627     0x0b,       // [102] = -51.000 dB  ->  AKM(0x0b) = -51.247 dB  error(-0.247 dB)
628     0x0b,       // [103] = -51.500 dB  ->  AKM(0x0b) = -51.247 dB  error(+0.253 dB)
629     0x0a,       // [104] = -52.000 dB  ->  AKM(0x0a) = -52.075 dB  error(-0.075 dB)
630     0x0a,       // [105] = -52.500 dB  ->  AKM(0x0a) = -52.075 dB  error(+0.425 dB)
631     0x09,       // [106] = -53.000 dB  ->  AKM(0x09) = -52.990 dB  error(+0.010 dB)
632     0x09,       // [107] = -53.500 dB  ->  AKM(0x09) = -52.990 dB  error(+0.510 dB)
633     0x08,       // [108] = -54.000 dB  ->  AKM(0x08) = -54.013 dB  error(-0.013 dB)
634     0x08,       // [109] = -54.500 dB  ->  AKM(0x08) = -54.013 dB  error(+0.487 dB)
635     0x07,       // [110] = -55.000 dB  ->  AKM(0x07) = -55.173 dB  error(-0.173 dB)
636     0x07,       // [111] = -55.500 dB  ->  AKM(0x07) = -55.173 dB  error(+0.327 dB)
637     0x06,       // [112] = -56.000 dB  ->  AKM(0x06) = -56.512 dB  error(-0.512 dB)
638     0x06,       // [113] = -56.500 dB  ->  AKM(0x06) = -56.512 dB  error(-0.012 dB)
639     0x06,       // [114] = -57.000 dB  ->  AKM(0x06) = -56.512 dB  error(+0.488 dB)
640     0x05,       // [115] = -57.500 dB  ->  AKM(0x05) = -58.095 dB  error(-0.595 dB)
641     0x05,       // [116] = -58.000 dB  ->  AKM(0x05) = -58.095 dB  error(-0.095 dB)
642     0x05,       // [117] = -58.500 dB  ->  AKM(0x05) = -58.095 dB  error(+0.405 dB)
643     0x05,       // [118] = -59.000 dB  ->  AKM(0x05) = -58.095 dB  error(+0.905 dB)
644     0x04,       // [119] = -59.500 dB  ->  AKM(0x04) = -60.034 dB  error(-0.534 dB)
645     0x04,       // [120] = -60.000 dB  ->  AKM(0x04) = -60.034 dB  error(-0.034 dB)
646     0x04,       // [121] = -60.500 dB  ->  AKM(0x04) = -60.034 dB  error(+0.466 dB)
647     0x04,       // [122] = -61.000 dB  ->  AKM(0x04) = -60.034 dB  error(+0.966 dB)
648     0x03,       // [123] = -61.500 dB  ->  AKM(0x03) = -62.532 dB  error(-1.032 dB)
649     0x03,       // [124] = -62.000 dB  ->  AKM(0x03) = -62.532 dB  error(-0.532 dB)
650     0x03,       // [125] = -62.500 dB  ->  AKM(0x03) = -62.532 dB  error(-0.032 dB)
651     0x03,       // [126] = -63.000 dB  ->  AKM(0x03) = -62.532 dB  error(+0.468 dB)
652     0x03,       // [127] = -63.500 dB  ->  AKM(0x03) = -62.532 dB  error(+0.968 dB)
653     0x03,       // [128] = -64.000 dB  ->  AKM(0x03) = -62.532 dB  error(+1.468 dB)
654     0x02,       // [129] = -64.500 dB  ->  AKM(0x02) = -66.054 dB  error(-1.554 dB)
655     0x02,       // [130] = -65.000 dB  ->  AKM(0x02) = -66.054 dB  error(-1.054 dB)
656     0x02,       // [131] = -65.500 dB  ->  AKM(0x02) = -66.054 dB  error(-0.554 dB)
657     0x02,       // [132] = -66.000 dB  ->  AKM(0x02) = -66.054 dB  error(-0.054 dB)
658     0x02,       // [133] = -66.500 dB  ->  AKM(0x02) = -66.054 dB  error(+0.446 dB)
659     0x02,       // [134] = -67.000 dB  ->  AKM(0x02) = -66.054 dB  error(+0.946 dB)
660     0x02,       // [135] = -67.500 dB  ->  AKM(0x02) = -66.054 dB  error(+1.446 dB)
661     0x02,       // [136] = -68.000 dB  ->  AKM(0x02) = -66.054 dB  error(+1.946 dB)
662     0x02,       // [137] = -68.500 dB  ->  AKM(0x02) = -66.054 dB  error(+2.446 dB)
663     0x02,       // [138] = -69.000 dB  ->  AKM(0x02) = -66.054 dB  error(+2.946 dB)
664     0x01,       // [139] = -69.500 dB  ->  AKM(0x01) = -72.075 dB  error(-2.575 dB)
665     0x01,       // [140] = -70.000 dB  ->  AKM(0x01) = -72.075 dB  error(-2.075 dB)
666     0x01,       // [141] = -70.500 dB  ->  AKM(0x01) = -72.075 dB  error(-1.575 dB)
667     0x01,       // [142] = -71.000 dB  ->  AKM(0x01) = -72.075 dB  error(-1.075 dB)
668     0x01,       // [143] = -71.500 dB  ->  AKM(0x01) = -72.075 dB  error(-0.575 dB)
669     0x01,       // [144] = -72.000 dB  ->  AKM(0x01) = -72.075 dB  error(-0.075 dB)
670     0x01,       // [145] = -72.500 dB  ->  AKM(0x01) = -72.075 dB  error(+0.425 dB)
671     0x01,       // [146] = -73.000 dB  ->  AKM(0x01) = -72.075 dB  error(+0.925 dB)
672     0x00};      // [147] = -73.500 dB  ->  AKM(0x00) =  mute       error(+infini)
673 
674 /*
675  * pseudo-codec write entry
676  */
677 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
678 {
679 	unsigned int val;
680 
681 	if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
682 		vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
683 		return;
684 	}
685 
686 	/* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
687 	   a look up table, as there is no linear matching between the driver codec values
688 	   and the real dBu value
689 	*/
690 	if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
691 		return;
692 
693 	switch (reg) {
694 	case XX_CODEC_LEVEL_LEFT_REGISTER:
695 		val = AKM_CODEC_LEFT_LEVEL_CMD;
696 		break;
697 	case XX_CODEC_LEVEL_RIGHT_REGISTER:
698 		val = AKM_CODEC_RIGHT_LEVEL_CMD;
699 		break;
700 	default:
701 		snd_BUG();
702 		return;
703 	}
704 	val |= vx2_akm_gains_lut[data];
705 
706 	vx2_write_codec_reg(chip, val);
707 }
708 
709 
710 /*
711  * write codec bit for old VX222 board
712  */
713 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
714 {
715 	int i;
716 
717 	/* activate access to codec registers */
718 	vx_inl(chip, HIFREQ);
719 
720 	for (i = 0; i < 24; i++, data <<= 1)
721 		vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
722 
723 	/* Terminate access to codec registers */
724 	vx_inl(chip, RUER);
725 }
726 
727 
728 /*
729  * reset codec bit
730  */
731 static void vx2_reset_codec(struct vx_core *_chip)
732 {
733 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
734 
735 	/* Set the reset CODEC bit to 0. */
736 	vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
737 	vx_inl(chip, CDSP);
738 	msleep(10);
739 	/* Set the reset CODEC bit to 1. */
740 	chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
741 	vx_outl(chip, CDSP, chip->regCDSP);
742 	vx_inl(chip, CDSP);
743 	if (_chip->type == VX_TYPE_BOARD) {
744 		msleep(1);
745 		return;
746 	}
747 
748 	msleep(5);  /* additionnel wait time for AKM's */
749 
750 	vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
751 
752 	vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
753 	vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
754 	vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
755 
756 	if (_chip->type == VX_TYPE_MIC) {
757 		/* set up the micro input selector */
758 		chip->regSELMIC =  MICRO_SELECT_INPUT_NORM |
759 			MICRO_SELECT_PREAMPLI_G_0 |
760 			MICRO_SELECT_NOISE_T_52DB;
761 
762 		/* reset phantom power supply */
763 		chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
764 
765 		vx_outl(_chip, SELMIC, chip->regSELMIC);
766 	}
767 }
768 
769 
770 /*
771  * change the audio source
772  */
773 static void vx2_change_audio_source(struct vx_core *_chip, int src)
774 {
775 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
776 
777 	switch (src) {
778 	case VX_AUDIO_SRC_DIGITAL:
779 		chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
780 		break;
781 	default:
782 		chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
783 		break;
784 	}
785 	vx_outl(chip, CFG, chip->regCFG);
786 }
787 
788 
789 /*
790  * set the clock source
791  */
792 static void vx2_set_clock_source(struct vx_core *_chip, int source)
793 {
794 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
795 
796 	if (source == INTERNAL_QUARTZ)
797 		chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
798 	else
799 		chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
800 	vx_outl(chip, CFG, chip->regCFG);
801 }
802 
803 /*
804  * reset the board
805  */
806 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
807 {
808 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
809 
810 	/* initialize the register values */
811 	chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
812 	chip->regCFG = 0;
813 }
814 
815 
816 
817 /*
818  * input level controls for VX222 Mic
819  */
820 
821 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
822  * 318 = 210 + 36 + 36 + 36   (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
823  * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
824  */
825 #define V2_MICRO_LEVEL_RANGE        (318 - 255)
826 
827 static void vx2_set_input_level(struct snd_vx222 *chip)
828 {
829 	int i, miclevel, preamp;
830 	unsigned int data;
831 
832 	miclevel = chip->mic_level;
833 	miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
834 	preamp = 0;
835         while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
836 		preamp++;	/* raise pre ampli + 18dB */
837 		miclevel -= (18 * 2);   /* lower level 18 dB (*2 because of 0.5 dB steps !) */
838         }
839 	if (snd_BUG_ON(preamp >= 4))
840 		return;
841 
842 	/* set pre-amp level */
843 	chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
844 	chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
845 	vx_outl(chip, SELMIC, chip->regSELMIC);
846 
847 	data = (unsigned int)miclevel << 16 |
848 		(unsigned int)chip->input_level[1] << 8 |
849 		(unsigned int)chip->input_level[0];
850 	vx_inl(chip, DATA); /* Activate input level programming */
851 
852 	/* We have to send 32 bits (4 x 8 bits) */
853 	for (i = 0; i < 32; i++, data <<= 1)
854 		vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
855 
856 	vx_inl(chip, RUER); /* Terminate input level programming */
857 }
858 
859 
860 #define MIC_LEVEL_MAX	0xff
861 
862 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
863 
864 /*
865  * controls API for input levels
866  */
867 
868 /* input levels */
869 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
870 {
871 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
872 	uinfo->count = 2;
873 	uinfo->value.integer.min = 0;
874 	uinfo->value.integer.max = MIC_LEVEL_MAX;
875 	return 0;
876 }
877 
878 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 {
880 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
881 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
882 	mutex_lock(&_chip->mixer_mutex);
883 	ucontrol->value.integer.value[0] = chip->input_level[0];
884 	ucontrol->value.integer.value[1] = chip->input_level[1];
885 	mutex_unlock(&_chip->mixer_mutex);
886 	return 0;
887 }
888 
889 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
890 {
891 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
892 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
893 	if (ucontrol->value.integer.value[0] < 0 ||
894 	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
895 		return -EINVAL;
896 	if (ucontrol->value.integer.value[1] < 0 ||
897 	    ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
898 		return -EINVAL;
899 	mutex_lock(&_chip->mixer_mutex);
900 	if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
901 	    chip->input_level[1] != ucontrol->value.integer.value[1]) {
902 		chip->input_level[0] = ucontrol->value.integer.value[0];
903 		chip->input_level[1] = ucontrol->value.integer.value[1];
904 		vx2_set_input_level(chip);
905 		mutex_unlock(&_chip->mixer_mutex);
906 		return 1;
907 	}
908 	mutex_unlock(&_chip->mixer_mutex);
909 	return 0;
910 }
911 
912 /* mic level */
913 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
914 {
915 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
916 	uinfo->count = 1;
917 	uinfo->value.integer.min = 0;
918 	uinfo->value.integer.max = MIC_LEVEL_MAX;
919 	return 0;
920 }
921 
922 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
923 {
924 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
925 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
926 	ucontrol->value.integer.value[0] = chip->mic_level;
927 	return 0;
928 }
929 
930 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
931 {
932 	struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
933 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
934 	if (ucontrol->value.integer.value[0] < 0 ||
935 	    ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
936 		return -EINVAL;
937 	mutex_lock(&_chip->mixer_mutex);
938 	if (chip->mic_level != ucontrol->value.integer.value[0]) {
939 		chip->mic_level = ucontrol->value.integer.value[0];
940 		vx2_set_input_level(chip);
941 		mutex_unlock(&_chip->mixer_mutex);
942 		return 1;
943 	}
944 	mutex_unlock(&_chip->mixer_mutex);
945 	return 0;
946 }
947 
948 static struct snd_kcontrol_new vx_control_input_level = {
949 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
950 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
951 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
952 	.name =		"Capture Volume",
953 	.info =		vx_input_level_info,
954 	.get =		vx_input_level_get,
955 	.put =		vx_input_level_put,
956 	.tlv = { .p = db_scale_mic },
957 };
958 
959 static struct snd_kcontrol_new vx_control_mic_level = {
960 	.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
961 	.access =	(SNDRV_CTL_ELEM_ACCESS_READWRITE |
962 			 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
963 	.name =		"Mic Capture Volume",
964 	.info =		vx_mic_level_info,
965 	.get =		vx_mic_level_get,
966 	.put =		vx_mic_level_put,
967 	.tlv = { .p = db_scale_mic },
968 };
969 
970 /*
971  * FIXME: compressor/limiter implementation is missing yet...
972  */
973 
974 static int vx2_add_mic_controls(struct vx_core *_chip)
975 {
976 	struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
977 	int err;
978 
979 	if (_chip->type != VX_TYPE_MIC)
980 		return 0;
981 
982 	/* mute input levels */
983 	chip->input_level[0] = chip->input_level[1] = 0;
984 	chip->mic_level = 0;
985 	vx2_set_input_level(chip);
986 
987 	/* controls */
988 	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
989 		return err;
990 	if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
991 		return err;
992 
993 	return 0;
994 }
995 
996 
997 /*
998  * callbacks
999  */
1000 struct snd_vx_ops vx222_ops = {
1001 	.in8 = vx2_inb,
1002 	.in32 = vx2_inl,
1003 	.out8 = vx2_outb,
1004 	.out32 = vx2_outl,
1005 	.test_and_ack = vx2_test_and_ack,
1006 	.validate_irq = vx2_validate_irq,
1007 	.akm_write = vx2_write_akm,
1008 	.reset_codec = vx2_reset_codec,
1009 	.change_audio_source = vx2_change_audio_source,
1010 	.set_clock_source = vx2_set_clock_source,
1011 	.load_dsp = vx2_load_dsp,
1012 	.reset_dsp = vx2_reset_dsp,
1013 	.reset_board = vx2_reset_board,
1014 	.dma_write = vx2_dma_write,
1015 	.dma_read = vx2_dma_read,
1016 	.add_controls = vx2_add_mic_controls,
1017 };
1018 
1019 /* for old VX222 board */
1020 struct snd_vx_ops vx222_old_ops = {
1021 	.in8 = vx2_inb,
1022 	.in32 = vx2_inl,
1023 	.out8 = vx2_outb,
1024 	.out32 = vx2_outl,
1025 	.test_and_ack = vx2_test_and_ack,
1026 	.validate_irq = vx2_validate_irq,
1027 	.write_codec = vx2_old_write_codec_bit,
1028 	.reset_codec = vx2_reset_codec,
1029 	.change_audio_source = vx2_change_audio_source,
1030 	.set_clock_source = vx2_set_clock_source,
1031 	.load_dsp = vx2_load_dsp,
1032 	.reset_dsp = vx2_reset_dsp,
1033 	.reset_board = vx2_reset_board,
1034 	.dma_write = vx2_dma_write,
1035 	.dma_read = vx2_dma_read,
1036 };
1037 
1038