1 /* 2 * Driver for SiS7019 Audio Accelerator 3 * 4 * Copyright (C) 2004-2007, David Dillow 5 * Written by David Dillow <dave@thedillows.org> 6 * Inspired by the Trident 4D-WaveDX/NX driver. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, version 2. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 */ 23 24 #include <linux/init.h> 25 #include <linux/pci.h> 26 #include <linux/time.h> 27 #include <linux/moduleparam.h> 28 #include <linux/interrupt.h> 29 #include <linux/delay.h> 30 #include <sound/core.h> 31 #include <sound/ac97_codec.h> 32 #include <sound/initval.h> 33 #include "sis7019.h" 34 35 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 36 MODULE_DESCRIPTION("SiS7019"); 37 MODULE_LICENSE("GPL"); 38 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); 39 40 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 41 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 42 static int enable = 1; 43 44 module_param(index, int, 0444); 45 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 46 module_param(id, charp, 0444); 47 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 48 module_param(enable, bool, 0444); 49 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 50 51 static struct pci_device_id snd_sis7019_ids[] = { 52 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 53 { 0, } 54 }; 55 56 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 57 58 /* There are three timing modes for the voices. 59 * 60 * For both playback and capture, when the buffer is one or two periods long, 61 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 62 * to let us know when the periods have ended. 63 * 64 * When performing playback with more than two periods per buffer, we set 65 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 66 * reach it. We then update the offset and continue on until we are 67 * interrupted for the next period. 68 * 69 * Capture channels do not have a SSO, so we allocate a playback channel to 70 * use as a timer for the capture periods. We use the SSO on the playback 71 * channel to clock out virtual periods, and adjust the virtual period length 72 * to maintain synchronization. This algorithm came from the Trident driver. 73 * 74 * FIXME: It'd be nice to make use of some of the synth features in the 75 * hardware, but a woeful lack of documentation is a significant roadblock. 76 */ 77 struct voice { 78 u16 flags; 79 #define VOICE_IN_USE 1 80 #define VOICE_CAPTURE 2 81 #define VOICE_SSO_TIMING 4 82 #define VOICE_SYNC_TIMING 8 83 u16 sync_cso; 84 u16 period_size; 85 u16 buffer_size; 86 u16 sync_period_size; 87 u16 sync_buffer_size; 88 u32 sso; 89 u32 vperiod; 90 struct snd_pcm_substream *substream; 91 struct voice *timing; 92 void __iomem *ctrl_base; 93 void __iomem *wave_base; 94 void __iomem *sync_base; 95 int num; 96 }; 97 98 /* We need four pages to store our wave parameters during a suspend. If 99 * we're not doing power management, we still need to allocate a page 100 * for the silence buffer. 101 */ 102 #ifdef CONFIG_PM 103 #define SIS_SUSPEND_PAGES 4 104 #else 105 #define SIS_SUSPEND_PAGES 1 106 #endif 107 108 struct sis7019 { 109 unsigned long ioport; 110 void __iomem *ioaddr; 111 int irq; 112 int codecs_present; 113 114 struct pci_dev *pci; 115 struct snd_pcm *pcm; 116 struct snd_card *card; 117 struct snd_ac97 *ac97[3]; 118 119 /* Protect against more than one thread hitting the AC97 120 * registers (in a more polite manner than pounding the hardware 121 * semaphore) 122 */ 123 struct mutex ac97_mutex; 124 125 /* voice_lock protects allocation/freeing of the voice descriptions 126 */ 127 spinlock_t voice_lock; 128 129 struct voice voices[64]; 130 struct voice capture_voice; 131 132 /* Allocate pages to store the internal wave state during 133 * suspends. When we're operating, this can be used as a silence 134 * buffer for a timing channel. 135 */ 136 void *suspend_state[SIS_SUSPEND_PAGES]; 137 138 int silence_users; 139 dma_addr_t silence_dma_addr; 140 }; 141 142 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 143 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 144 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 145 146 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 147 * documented range of 8-0xfff8 samples. Given that they are 0-based, 148 * that places our period/buffer range at 9-0xfff9 samples. That makes the 149 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 150 * max samples / min samples gives us the max periods in a buffer. 151 * 152 * We'll add a constraint upon open that limits the period and buffer sample 153 * size to values that are legal for the hardware. 154 */ 155 static struct snd_pcm_hardware sis_playback_hw_info = { 156 .info = (SNDRV_PCM_INFO_MMAP | 157 SNDRV_PCM_INFO_MMAP_VALID | 158 SNDRV_PCM_INFO_INTERLEAVED | 159 SNDRV_PCM_INFO_BLOCK_TRANSFER | 160 SNDRV_PCM_INFO_SYNC_START | 161 SNDRV_PCM_INFO_RESUME), 162 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 163 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 164 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 165 .rate_min = 4000, 166 .rate_max = 48000, 167 .channels_min = 1, 168 .channels_max = 2, 169 .buffer_bytes_max = (0xfff9 * 4), 170 .period_bytes_min = 9, 171 .period_bytes_max = (0xfff9 * 4), 172 .periods_min = 1, 173 .periods_max = (0xfff9 / 9), 174 }; 175 176 static struct snd_pcm_hardware sis_capture_hw_info = { 177 .info = (SNDRV_PCM_INFO_MMAP | 178 SNDRV_PCM_INFO_MMAP_VALID | 179 SNDRV_PCM_INFO_INTERLEAVED | 180 SNDRV_PCM_INFO_BLOCK_TRANSFER | 181 SNDRV_PCM_INFO_SYNC_START | 182 SNDRV_PCM_INFO_RESUME), 183 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 184 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 185 .rates = SNDRV_PCM_RATE_48000, 186 .rate_min = 4000, 187 .rate_max = 48000, 188 .channels_min = 1, 189 .channels_max = 2, 190 .buffer_bytes_max = (0xfff9 * 4), 191 .period_bytes_min = 9, 192 .period_bytes_max = (0xfff9 * 4), 193 .periods_min = 1, 194 .periods_max = (0xfff9 / 9), 195 }; 196 197 static void sis_update_sso(struct voice *voice, u16 period) 198 { 199 void __iomem *base = voice->ctrl_base; 200 201 voice->sso += period; 202 if (voice->sso >= voice->buffer_size) 203 voice->sso -= voice->buffer_size; 204 205 /* Enforce the documented hardware minimum offset */ 206 if (voice->sso < 8) 207 voice->sso = 8; 208 209 /* The SSO is in the upper 16 bits of the register. */ 210 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 211 } 212 213 static void sis_update_voice(struct voice *voice) 214 { 215 if (voice->flags & VOICE_SSO_TIMING) { 216 sis_update_sso(voice, voice->period_size); 217 } else if (voice->flags & VOICE_SYNC_TIMING) { 218 int sync; 219 220 /* If we've not hit the end of the virtual period, update 221 * our records and keep going. 222 */ 223 if (voice->vperiod > voice->period_size) { 224 voice->vperiod -= voice->period_size; 225 if (voice->vperiod < voice->period_size) 226 sis_update_sso(voice, voice->vperiod); 227 else 228 sis_update_sso(voice, voice->period_size); 229 return; 230 } 231 232 /* Calculate our relative offset between the target and 233 * the actual CSO value. Since we're operating in a loop, 234 * if the value is more than half way around, we can 235 * consider ourselves wrapped. 236 */ 237 sync = voice->sync_cso; 238 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 239 if (sync > (voice->sync_buffer_size / 2)) 240 sync -= voice->sync_buffer_size; 241 242 /* If sync is positive, then we interrupted too early, and 243 * we'll need to come back in a few samples and try again. 244 * There's a minimum wait, as it takes some time for the DMA 245 * engine to startup, etc... 246 */ 247 if (sync > 0) { 248 if (sync < 16) 249 sync = 16; 250 sis_update_sso(voice, sync); 251 return; 252 } 253 254 /* Ok, we interrupted right on time, or (hopefully) just 255 * a bit late. We'll adjst our next waiting period based 256 * on how close we got. 257 * 258 * We need to stay just behind the actual channel to ensure 259 * it really is past a period when we get our interrupt -- 260 * otherwise we'll fall into the early code above and have 261 * a minimum wait time, which makes us quite late here, 262 * eating into the user's time to refresh the buffer, esp. 263 * if using small periods. 264 * 265 * If we're less than 9 samples behind, we're on target. 266 */ 267 if (sync > -9) 268 voice->vperiod = voice->sync_period_size + 1; 269 else 270 voice->vperiod = voice->sync_period_size - 4; 271 272 if (voice->vperiod < voice->buffer_size) { 273 sis_update_sso(voice, voice->vperiod); 274 voice->vperiod = 0; 275 } else 276 sis_update_sso(voice, voice->period_size); 277 278 sync = voice->sync_cso + voice->sync_period_size; 279 if (sync >= voice->sync_buffer_size) 280 sync -= voice->sync_buffer_size; 281 voice->sync_cso = sync; 282 } 283 284 snd_pcm_period_elapsed(voice->substream); 285 } 286 287 static void sis_voice_irq(u32 status, struct voice *voice) 288 { 289 int bit; 290 291 while (status) { 292 bit = __ffs(status); 293 status >>= bit + 1; 294 voice += bit; 295 sis_update_voice(voice); 296 voice++; 297 } 298 } 299 300 static irqreturn_t sis_interrupt(int irq, void *dev) 301 { 302 struct sis7019 *sis = dev; 303 unsigned long io = sis->ioport; 304 struct voice *voice; 305 u32 intr, status; 306 307 /* We only use the DMA interrupts, and we don't enable any other 308 * source of interrupts. But, it is possible to see an interupt 309 * status that didn't actually interrupt us, so eliminate anything 310 * we're not expecting to avoid falsely claiming an IRQ, and an 311 * ensuing endless loop. 312 */ 313 intr = inl(io + SIS_GISR); 314 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 315 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 316 if (!intr) 317 return IRQ_NONE; 318 319 do { 320 status = inl(io + SIS_PISR_A); 321 if (status) { 322 sis_voice_irq(status, sis->voices); 323 outl(status, io + SIS_PISR_A); 324 } 325 326 status = inl(io + SIS_PISR_B); 327 if (status) { 328 sis_voice_irq(status, &sis->voices[32]); 329 outl(status, io + SIS_PISR_B); 330 } 331 332 status = inl(io + SIS_RISR); 333 if (status) { 334 voice = &sis->capture_voice; 335 if (!voice->timing) 336 snd_pcm_period_elapsed(voice->substream); 337 338 outl(status, io + SIS_RISR); 339 } 340 341 outl(intr, io + SIS_GISR); 342 intr = inl(io + SIS_GISR); 343 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 344 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 345 } while (intr); 346 347 return IRQ_HANDLED; 348 } 349 350 static u32 sis_rate_to_delta(unsigned int rate) 351 { 352 u32 delta; 353 354 /* This was copied from the trident driver, but it seems its gotten 355 * around a bit... nevertheless, it works well. 356 * 357 * We special case 44100 and 8000 since rounding with the equation 358 * does not give us an accurate enough value. For 11025 and 22050 359 * the equation gives us the best answer. All other frequencies will 360 * also use the equation. JDW 361 */ 362 if (rate == 44100) 363 delta = 0xeb3; 364 else if (rate == 8000) 365 delta = 0x2ab; 366 else if (rate == 48000) 367 delta = 0x1000; 368 else 369 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; 370 return delta; 371 } 372 373 static void __sis_map_silence(struct sis7019 *sis) 374 { 375 /* Helper function: must hold sis->voice_lock on entry */ 376 if (!sis->silence_users) 377 sis->silence_dma_addr = pci_map_single(sis->pci, 378 sis->suspend_state[0], 379 4096, PCI_DMA_TODEVICE); 380 sis->silence_users++; 381 } 382 383 static void __sis_unmap_silence(struct sis7019 *sis) 384 { 385 /* Helper function: must hold sis->voice_lock on entry */ 386 sis->silence_users--; 387 if (!sis->silence_users) 388 pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, 389 PCI_DMA_TODEVICE); 390 } 391 392 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 393 { 394 unsigned long flags; 395 396 spin_lock_irqsave(&sis->voice_lock, flags); 397 if (voice->timing) { 398 __sis_unmap_silence(sis); 399 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 400 VOICE_SYNC_TIMING); 401 voice->timing = NULL; 402 } 403 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 404 spin_unlock_irqrestore(&sis->voice_lock, flags); 405 } 406 407 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 408 { 409 /* Must hold the voice_lock on entry */ 410 struct voice *voice; 411 int i; 412 413 for (i = 0; i < 64; i++) { 414 voice = &sis->voices[i]; 415 if (voice->flags & VOICE_IN_USE) 416 continue; 417 voice->flags |= VOICE_IN_USE; 418 goto found_one; 419 } 420 voice = NULL; 421 422 found_one: 423 return voice; 424 } 425 426 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 427 { 428 struct voice *voice; 429 unsigned long flags; 430 431 spin_lock_irqsave(&sis->voice_lock, flags); 432 voice = __sis_alloc_playback_voice(sis); 433 spin_unlock_irqrestore(&sis->voice_lock, flags); 434 435 return voice; 436 } 437 438 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 439 struct snd_pcm_hw_params *hw_params) 440 { 441 struct sis7019 *sis = snd_pcm_substream_chip(substream); 442 struct snd_pcm_runtime *runtime = substream->runtime; 443 struct voice *voice = runtime->private_data; 444 unsigned int period_size, buffer_size; 445 unsigned long flags; 446 int needed; 447 448 /* If there are one or two periods per buffer, we don't need a 449 * timing voice, as we can use the capture channel's interrupts 450 * to clock out the periods. 451 */ 452 period_size = params_period_size(hw_params); 453 buffer_size = params_buffer_size(hw_params); 454 needed = (period_size != buffer_size && 455 period_size != (buffer_size / 2)); 456 457 if (needed && !voice->timing) { 458 spin_lock_irqsave(&sis->voice_lock, flags); 459 voice->timing = __sis_alloc_playback_voice(sis); 460 if (voice->timing) 461 __sis_map_silence(sis); 462 spin_unlock_irqrestore(&sis->voice_lock, flags); 463 if (!voice->timing) 464 return -ENOMEM; 465 voice->timing->substream = substream; 466 } else if (!needed && voice->timing) { 467 sis_free_voice(sis, voice); 468 voice->timing = NULL; 469 } 470 471 return 0; 472 } 473 474 static int sis_playback_open(struct snd_pcm_substream *substream) 475 { 476 struct sis7019 *sis = snd_pcm_substream_chip(substream); 477 struct snd_pcm_runtime *runtime = substream->runtime; 478 struct voice *voice; 479 480 voice = sis_alloc_playback_voice(sis); 481 if (!voice) 482 return -EAGAIN; 483 484 voice->substream = substream; 485 runtime->private_data = voice; 486 runtime->hw = sis_playback_hw_info; 487 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 488 9, 0xfff9); 489 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 490 9, 0xfff9); 491 snd_pcm_set_sync(substream); 492 return 0; 493 } 494 495 static int sis_substream_close(struct snd_pcm_substream *substream) 496 { 497 struct sis7019 *sis = snd_pcm_substream_chip(substream); 498 struct snd_pcm_runtime *runtime = substream->runtime; 499 struct voice *voice = runtime->private_data; 500 501 sis_free_voice(sis, voice); 502 return 0; 503 } 504 505 static int sis_playback_hw_params(struct snd_pcm_substream *substream, 506 struct snd_pcm_hw_params *hw_params) 507 { 508 return snd_pcm_lib_malloc_pages(substream, 509 params_buffer_bytes(hw_params)); 510 } 511 512 static int sis_hw_free(struct snd_pcm_substream *substream) 513 { 514 return snd_pcm_lib_free_pages(substream); 515 } 516 517 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 518 { 519 struct snd_pcm_runtime *runtime = substream->runtime; 520 struct voice *voice = runtime->private_data; 521 void __iomem *ctrl_base = voice->ctrl_base; 522 void __iomem *wave_base = voice->wave_base; 523 u32 format, dma_addr, control, sso_eso, delta, reg; 524 u16 leo; 525 526 /* We rely on the PCM core to ensure that the parameters for this 527 * substream do not change on us while we're programming the HW. 528 */ 529 format = 0; 530 if (snd_pcm_format_width(runtime->format) == 8) 531 format |= SIS_PLAY_DMA_FORMAT_8BIT; 532 if (!snd_pcm_format_signed(runtime->format)) 533 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 534 if (runtime->channels == 1) 535 format |= SIS_PLAY_DMA_FORMAT_MONO; 536 537 /* The baseline setup is for a single period per buffer, and 538 * we add bells and whistles as needed from there. 539 */ 540 dma_addr = runtime->dma_addr; 541 leo = runtime->buffer_size - 1; 542 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 543 sso_eso = leo; 544 545 if (runtime->period_size == (runtime->buffer_size / 2)) { 546 control |= SIS_PLAY_DMA_INTR_AT_MLP; 547 } else if (runtime->period_size != runtime->buffer_size) { 548 voice->flags |= VOICE_SSO_TIMING; 549 voice->sso = runtime->period_size - 1; 550 voice->period_size = runtime->period_size; 551 voice->buffer_size = runtime->buffer_size; 552 553 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 554 control |= SIS_PLAY_DMA_INTR_AT_SSO; 555 sso_eso |= (runtime->period_size - 1) << 16; 556 } 557 558 delta = sis_rate_to_delta(runtime->rate); 559 560 /* Ok, we're ready to go, set up the channel. 561 */ 562 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 563 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 564 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 565 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 566 567 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 568 writel(0, wave_base + reg); 569 570 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 571 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 572 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 573 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 574 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 575 wave_base + SIS_WAVE_CHANNEL_CONTROL); 576 577 /* Force PCI writes to post. */ 578 readl(ctrl_base); 579 580 return 0; 581 } 582 583 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 584 { 585 struct sis7019 *sis = snd_pcm_substream_chip(substream); 586 unsigned long io = sis->ioport; 587 struct snd_pcm_substream *s; 588 struct voice *voice; 589 void *chip; 590 int starting; 591 u32 record = 0; 592 u32 play[2] = { 0, 0 }; 593 594 /* No locks needed, as the PCM core will hold the locks on the 595 * substreams, and the HW will only start/stop the indicated voices 596 * without changing the state of the others. 597 */ 598 switch (cmd) { 599 case SNDRV_PCM_TRIGGER_START: 600 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 601 case SNDRV_PCM_TRIGGER_RESUME: 602 starting = 1; 603 break; 604 case SNDRV_PCM_TRIGGER_STOP: 605 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 606 case SNDRV_PCM_TRIGGER_SUSPEND: 607 starting = 0; 608 break; 609 default: 610 return -EINVAL; 611 } 612 613 snd_pcm_group_for_each_entry(s, substream) { 614 /* Make sure it is for us... */ 615 chip = snd_pcm_substream_chip(s); 616 if (chip != sis) 617 continue; 618 619 voice = s->runtime->private_data; 620 if (voice->flags & VOICE_CAPTURE) { 621 record |= 1 << voice->num; 622 voice = voice->timing; 623 } 624 625 /* voice could be NULL if this a recording stream, and it 626 * doesn't have an external timing channel. 627 */ 628 if (voice) 629 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 630 631 snd_pcm_trigger_done(s, substream); 632 } 633 634 if (starting) { 635 if (record) 636 outl(record, io + SIS_RECORD_START_REG); 637 if (play[0]) 638 outl(play[0], io + SIS_PLAY_START_A_REG); 639 if (play[1]) 640 outl(play[1], io + SIS_PLAY_START_B_REG); 641 } else { 642 if (record) 643 outl(record, io + SIS_RECORD_STOP_REG); 644 if (play[0]) 645 outl(play[0], io + SIS_PLAY_STOP_A_REG); 646 if (play[1]) 647 outl(play[1], io + SIS_PLAY_STOP_B_REG); 648 } 649 return 0; 650 } 651 652 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 653 { 654 struct snd_pcm_runtime *runtime = substream->runtime; 655 struct voice *voice = runtime->private_data; 656 u32 cso; 657 658 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 659 cso &= 0xffff; 660 return cso; 661 } 662 663 static int sis_capture_open(struct snd_pcm_substream *substream) 664 { 665 struct sis7019 *sis = snd_pcm_substream_chip(substream); 666 struct snd_pcm_runtime *runtime = substream->runtime; 667 struct voice *voice = &sis->capture_voice; 668 unsigned long flags; 669 670 /* FIXME: The driver only supports recording from one channel 671 * at the moment, but it could support more. 672 */ 673 spin_lock_irqsave(&sis->voice_lock, flags); 674 if (voice->flags & VOICE_IN_USE) 675 voice = NULL; 676 else 677 voice->flags |= VOICE_IN_USE; 678 spin_unlock_irqrestore(&sis->voice_lock, flags); 679 680 if (!voice) 681 return -EAGAIN; 682 683 voice->substream = substream; 684 runtime->private_data = voice; 685 runtime->hw = sis_capture_hw_info; 686 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 687 snd_pcm_limit_hw_rates(runtime); 688 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 689 9, 0xfff9); 690 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 691 9, 0xfff9); 692 snd_pcm_set_sync(substream); 693 return 0; 694 } 695 696 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 697 struct snd_pcm_hw_params *hw_params) 698 { 699 struct sis7019 *sis = snd_pcm_substream_chip(substream); 700 int rc; 701 702 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 703 params_rate(hw_params)); 704 if (rc) 705 goto out; 706 707 rc = snd_pcm_lib_malloc_pages(substream, 708 params_buffer_bytes(hw_params)); 709 if (rc < 0) 710 goto out; 711 712 rc = sis_alloc_timing_voice(substream, hw_params); 713 714 out: 715 return rc; 716 } 717 718 static void sis_prepare_timing_voice(struct voice *voice, 719 struct snd_pcm_substream *substream) 720 { 721 struct sis7019 *sis = snd_pcm_substream_chip(substream); 722 struct snd_pcm_runtime *runtime = substream->runtime; 723 struct voice *timing = voice->timing; 724 void __iomem *play_base = timing->ctrl_base; 725 void __iomem *wave_base = timing->wave_base; 726 u16 buffer_size, period_size; 727 u32 format, control, sso_eso, delta; 728 u32 vperiod, sso, reg; 729 730 /* Set our initial buffer and period as large as we can given a 731 * single page of silence. 732 */ 733 buffer_size = 4096 / runtime->channels; 734 buffer_size /= snd_pcm_format_size(runtime->format, 1); 735 period_size = buffer_size; 736 737 /* Initially, we want to interrupt just a bit behind the end of 738 * the period we're clocking out. 10 samples seems to give a good 739 * delay. 740 * 741 * We want to spread our interrupts throughout the virtual period, 742 * so that we don't end up with two interrupts back to back at the 743 * end -- this helps minimize the effects of any jitter. Adjust our 744 * clocking period size so that the last period is at least a fourth 745 * of a full period. 746 * 747 * This is all moot if we don't need to use virtual periods. 748 */ 749 vperiod = runtime->period_size + 10; 750 if (vperiod > period_size) { 751 u16 tail = vperiod % period_size; 752 u16 quarter_period = period_size / 4; 753 754 if (tail && tail < quarter_period) { 755 u16 loops = vperiod / period_size; 756 757 tail = quarter_period - tail; 758 tail += loops - 1; 759 tail /= loops; 760 period_size -= tail; 761 } 762 763 sso = period_size - 1; 764 } else { 765 /* The initial period will fit inside the buffer, so we 766 * don't need to use virtual periods -- disable them. 767 */ 768 period_size = runtime->period_size; 769 sso = vperiod - 1; 770 vperiod = 0; 771 } 772 773 /* The interrupt handler implements the timing syncronization, so 774 * setup its state. 775 */ 776 timing->flags |= VOICE_SYNC_TIMING; 777 timing->sync_base = voice->ctrl_base; 778 timing->sync_cso = runtime->period_size - 1; 779 timing->sync_period_size = runtime->period_size; 780 timing->sync_buffer_size = runtime->buffer_size; 781 timing->period_size = period_size; 782 timing->buffer_size = buffer_size; 783 timing->sso = sso; 784 timing->vperiod = vperiod; 785 786 /* Using unsigned samples with the all-zero silence buffer 787 * forces the output to the lower rail, killing playback. 788 * So ignore unsigned vs signed -- it doesn't change the timing. 789 */ 790 format = 0; 791 if (snd_pcm_format_width(runtime->format) == 8) 792 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 793 if (runtime->channels == 1) 794 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 795 796 control = timing->buffer_size - 1; 797 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 798 sso_eso = timing->buffer_size - 1; 799 sso_eso |= timing->sso << 16; 800 801 delta = sis_rate_to_delta(runtime->rate); 802 803 /* We've done the math, now configure the channel. 804 */ 805 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 806 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 807 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 808 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 809 810 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 811 writel(0, wave_base + reg); 812 813 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 814 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 815 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 816 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 817 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 818 wave_base + SIS_WAVE_CHANNEL_CONTROL); 819 } 820 821 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 822 { 823 struct snd_pcm_runtime *runtime = substream->runtime; 824 struct voice *voice = runtime->private_data; 825 void __iomem *rec_base = voice->ctrl_base; 826 u32 format, dma_addr, control; 827 u16 leo; 828 829 /* We rely on the PCM core to ensure that the parameters for this 830 * substream do not change on us while we're programming the HW. 831 */ 832 format = 0; 833 if (snd_pcm_format_width(runtime->format) == 8) 834 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 835 if (!snd_pcm_format_signed(runtime->format)) 836 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 837 if (runtime->channels == 1) 838 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 839 840 dma_addr = runtime->dma_addr; 841 leo = runtime->buffer_size - 1; 842 control = leo | SIS_CAPTURE_DMA_LOOP; 843 844 /* If we've got more than two periods per buffer, then we have 845 * use a timing voice to clock out the periods. Otherwise, we can 846 * use the capture channel's interrupts. 847 */ 848 if (voice->timing) { 849 sis_prepare_timing_voice(voice, substream); 850 } else { 851 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 852 if (runtime->period_size != runtime->buffer_size) 853 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 854 } 855 856 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 857 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 858 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 859 860 /* Force the writes to post. */ 861 readl(rec_base); 862 863 return 0; 864 } 865 866 static struct snd_pcm_ops sis_playback_ops = { 867 .open = sis_playback_open, 868 .close = sis_substream_close, 869 .ioctl = snd_pcm_lib_ioctl, 870 .hw_params = sis_playback_hw_params, 871 .hw_free = sis_hw_free, 872 .prepare = sis_pcm_playback_prepare, 873 .trigger = sis_pcm_trigger, 874 .pointer = sis_pcm_pointer, 875 }; 876 877 static struct snd_pcm_ops sis_capture_ops = { 878 .open = sis_capture_open, 879 .close = sis_substream_close, 880 .ioctl = snd_pcm_lib_ioctl, 881 .hw_params = sis_capture_hw_params, 882 .hw_free = sis_hw_free, 883 .prepare = sis_pcm_capture_prepare, 884 .trigger = sis_pcm_trigger, 885 .pointer = sis_pcm_pointer, 886 }; 887 888 static int __devinit sis_pcm_create(struct sis7019 *sis) 889 { 890 struct snd_pcm *pcm; 891 int rc; 892 893 /* We have 64 voices, and the driver currently records from 894 * only one channel, though that could change in the future. 895 */ 896 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 897 if (rc) 898 return rc; 899 900 pcm->private_data = sis; 901 strcpy(pcm->name, "SiS7019"); 902 sis->pcm = pcm; 903 904 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 905 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 906 907 /* Try to preallocate some memory, but it's not the end of the 908 * world if this fails. 909 */ 910 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 911 snd_dma_pci_data(sis->pci), 64*1024, 128*1024); 912 913 return 0; 914 } 915 916 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 917 { 918 unsigned long io = sis->ioport; 919 unsigned short val = 0xffff; 920 u16 status; 921 u16 rdy; 922 int count; 923 static const u16 codec_ready[3] = { 924 SIS_AC97_STATUS_CODEC_READY, 925 SIS_AC97_STATUS_CODEC2_READY, 926 SIS_AC97_STATUS_CODEC3_READY, 927 }; 928 929 rdy = codec_ready[codec]; 930 931 932 /* Get the AC97 semaphore -- software first, so we don't spin 933 * pounding out IO reads on the hardware semaphore... 934 */ 935 mutex_lock(&sis->ac97_mutex); 936 937 count = 0xffff; 938 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 939 udelay(1); 940 941 if (!count) 942 goto timeout; 943 944 /* ... and wait for any outstanding commands to complete ... 945 */ 946 count = 0xffff; 947 do { 948 status = inw(io + SIS_AC97_STATUS); 949 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 950 break; 951 952 udelay(1); 953 } while (--count); 954 955 if (!count) 956 goto timeout_sema; 957 958 /* ... before sending our command and waiting for it to finish ... 959 */ 960 outl(cmd, io + SIS_AC97_CMD); 961 udelay(10); 962 963 count = 0xffff; 964 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 965 udelay(1); 966 967 /* ... and reading the results (if any). 968 */ 969 val = inl(io + SIS_AC97_CMD) >> 16; 970 971 timeout_sema: 972 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 973 timeout: 974 mutex_unlock(&sis->ac97_mutex); 975 976 if (!count) { 977 printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n", 978 codec, cmd); 979 } 980 981 return val; 982 } 983 984 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 985 unsigned short val) 986 { 987 static const u32 cmd[3] = { 988 SIS_AC97_CMD_CODEC_WRITE, 989 SIS_AC97_CMD_CODEC2_WRITE, 990 SIS_AC97_CMD_CODEC3_WRITE, 991 }; 992 sis_ac97_rw(ac97->private_data, ac97->num, 993 (val << 16) | (reg << 8) | cmd[ac97->num]); 994 } 995 996 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 997 { 998 static const u32 cmd[3] = { 999 SIS_AC97_CMD_CODEC_READ, 1000 SIS_AC97_CMD_CODEC2_READ, 1001 SIS_AC97_CMD_CODEC3_READ, 1002 }; 1003 return sis_ac97_rw(ac97->private_data, ac97->num, 1004 (reg << 8) | cmd[ac97->num]); 1005 } 1006 1007 static int __devinit sis_mixer_create(struct sis7019 *sis) 1008 { 1009 struct snd_ac97_bus *bus; 1010 struct snd_ac97_template ac97; 1011 static struct snd_ac97_bus_ops ops = { 1012 .write = sis_ac97_write, 1013 .read = sis_ac97_read, 1014 }; 1015 int rc; 1016 1017 memset(&ac97, 0, sizeof(ac97)); 1018 ac97.private_data = sis; 1019 1020 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 1021 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1022 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 1023 ac97.num = 1; 1024 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 1025 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1026 ac97.num = 2; 1027 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1028 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1029 1030 /* If we return an error here, then snd_card_free() should 1031 * free up any ac97 codecs that got created, as well as the bus. 1032 */ 1033 return rc; 1034 } 1035 1036 static void sis_free_suspend(struct sis7019 *sis) 1037 { 1038 int i; 1039 1040 for (i = 0; i < SIS_SUSPEND_PAGES; i++) 1041 kfree(sis->suspend_state[i]); 1042 } 1043 1044 static int sis_chip_free(struct sis7019 *sis) 1045 { 1046 /* Reset the chip, and disable all interrputs. 1047 */ 1048 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1049 udelay(10); 1050 outl(0, sis->ioport + SIS_GCR); 1051 outl(0, sis->ioport + SIS_GIER); 1052 1053 /* Now, free everything we allocated. 1054 */ 1055 if (sis->irq >= 0) 1056 free_irq(sis->irq, sis); 1057 1058 if (sis->ioaddr) 1059 iounmap(sis->ioaddr); 1060 1061 pci_release_regions(sis->pci); 1062 pci_disable_device(sis->pci); 1063 1064 sis_free_suspend(sis); 1065 return 0; 1066 } 1067 1068 static int sis_dev_free(struct snd_device *dev) 1069 { 1070 struct sis7019 *sis = dev->device_data; 1071 return sis_chip_free(sis); 1072 } 1073 1074 static int sis_chip_init(struct sis7019 *sis) 1075 { 1076 unsigned long io = sis->ioport; 1077 void __iomem *ioaddr = sis->ioaddr; 1078 u16 status; 1079 int count; 1080 int i; 1081 1082 /* Reset the audio controller 1083 */ 1084 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1085 udelay(10); 1086 outl(0, io + SIS_GCR); 1087 1088 /* Get the AC-link semaphore, and reset the codecs 1089 */ 1090 count = 0xffff; 1091 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1092 udelay(1); 1093 1094 if (!count) 1095 return -EIO; 1096 1097 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1098 udelay(10); 1099 1100 count = 0xffff; 1101 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1102 udelay(1); 1103 1104 /* Now that we've finished the reset, find out what's attached. 1105 */ 1106 status = inl(io + SIS_AC97_STATUS); 1107 if (status & SIS_AC97_STATUS_CODEC_READY) 1108 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1109 if (status & SIS_AC97_STATUS_CODEC2_READY) 1110 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1111 if (status & SIS_AC97_STATUS_CODEC3_READY) 1112 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1113 1114 /* All done, let go of the semaphore, and check for errors 1115 */ 1116 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1117 if (!sis->codecs_present || !count) 1118 return -EIO; 1119 1120 /* Let the hardware know that the audio driver is alive, 1121 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1122 * record channels. We're going to want to use Variable Rate Audio 1123 * for recording, to avoid needlessly resampling from 48kHZ. 1124 */ 1125 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1126 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1127 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1128 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1129 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1130 1131 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1132 */ 1133 outl(0, io + SIS_AC97_PSR); 1134 1135 /* There is only one valid DMA setup for a PCI environment. 1136 */ 1137 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1138 1139 /* Reset the syncronization groups for all of the channels 1140 * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. 1141 * we'll need to change how we handle these. Until then, we just 1142 * assign sub-mixer 0 to all playback channels, and avoid any 1143 * attenuation on the audio. 1144 */ 1145 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1146 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1147 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1148 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1149 outl(0, io + SIS_MIXER_SYNC_GROUP); 1150 1151 for (i = 0; i < 64; i++) { 1152 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1153 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1154 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1155 } 1156 1157 /* Don't attenuate any audio set for the wave amplifier. 1158 * 1159 * FIXME: Maximum attenuation is set for the music amp, which will 1160 * need to change if we start using the synth engine. 1161 */ 1162 outl(0xffff0000, io + SIS_WEVCR); 1163 1164 /* Ensure that the wave engine is in normal operating mode. 1165 */ 1166 outl(0, io + SIS_WECCR); 1167 1168 /* Go ahead and enable the DMA interrupts. They won't go live 1169 * until we start a channel. 1170 */ 1171 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1172 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1173 1174 return 0; 1175 } 1176 1177 #ifdef CONFIG_PM 1178 static int sis_suspend(struct pci_dev *pci, pm_message_t state) 1179 { 1180 struct snd_card *card = pci_get_drvdata(pci); 1181 struct sis7019 *sis = card->private_data; 1182 void __iomem *ioaddr = sis->ioaddr; 1183 int i; 1184 1185 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1186 snd_pcm_suspend_all(sis->pcm); 1187 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1188 snd_ac97_suspend(sis->ac97[0]); 1189 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1190 snd_ac97_suspend(sis->ac97[1]); 1191 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1192 snd_ac97_suspend(sis->ac97[2]); 1193 1194 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1195 */ 1196 if (sis->irq >= 0) { 1197 free_irq(sis->irq, sis); 1198 sis->irq = -1; 1199 } 1200 1201 /* Save the internal state away 1202 */ 1203 for (i = 0; i < 4; i++) { 1204 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1205 ioaddr += 4096; 1206 } 1207 1208 pci_disable_device(pci); 1209 pci_save_state(pci); 1210 pci_set_power_state(pci, pci_choose_state(pci, state)); 1211 return 0; 1212 } 1213 1214 static int sis_resume(struct pci_dev *pci) 1215 { 1216 struct snd_card *card = pci_get_drvdata(pci); 1217 struct sis7019 *sis = card->private_data; 1218 void __iomem *ioaddr = sis->ioaddr; 1219 int i; 1220 1221 pci_set_power_state(pci, PCI_D0); 1222 pci_restore_state(pci); 1223 1224 if (pci_enable_device(pci) < 0) { 1225 printk(KERN_ERR "sis7019: unable to re-enable device\n"); 1226 goto error; 1227 } 1228 1229 if (sis_chip_init(sis)) { 1230 printk(KERN_ERR "sis7019: unable to re-init controller\n"); 1231 goto error; 1232 } 1233 1234 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, 1235 card->shortname, sis)) { 1236 printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq); 1237 goto error; 1238 } 1239 1240 /* Restore saved state, then clear out the page we use for the 1241 * silence buffer. 1242 */ 1243 for (i = 0; i < 4; i++) { 1244 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1245 ioaddr += 4096; 1246 } 1247 1248 memset(sis->suspend_state[0], 0, 4096); 1249 1250 sis->irq = pci->irq; 1251 pci_set_master(pci); 1252 1253 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1254 snd_ac97_resume(sis->ac97[0]); 1255 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1256 snd_ac97_resume(sis->ac97[1]); 1257 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1258 snd_ac97_resume(sis->ac97[2]); 1259 1260 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1261 return 0; 1262 1263 error: 1264 snd_card_disconnect(card); 1265 return -EIO; 1266 } 1267 #endif /* CONFIG_PM */ 1268 1269 static int sis_alloc_suspend(struct sis7019 *sis) 1270 { 1271 int i; 1272 1273 /* We need 16K to store the internal wave engine state during a 1274 * suspend, but we don't need it to be contiguous, so play nice 1275 * with the memory system. We'll also use this area for a silence 1276 * buffer. 1277 */ 1278 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1279 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); 1280 if (!sis->suspend_state[i]) 1281 return -ENOMEM; 1282 } 1283 memset(sis->suspend_state[0], 0, 4096); 1284 1285 return 0; 1286 } 1287 1288 static int __devinit sis_chip_create(struct snd_card *card, 1289 struct pci_dev *pci) 1290 { 1291 struct sis7019 *sis = card->private_data; 1292 struct voice *voice; 1293 static struct snd_device_ops ops = { 1294 .dev_free = sis_dev_free, 1295 }; 1296 int rc; 1297 int i; 1298 1299 rc = pci_enable_device(pci); 1300 if (rc) 1301 goto error_out; 1302 1303 if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) { 1304 printk(KERN_ERR "sis7019: architecture does not support " 1305 "30-bit PCI busmaster DMA"); 1306 goto error_out_enabled; 1307 } 1308 1309 memset(sis, 0, sizeof(*sis)); 1310 mutex_init(&sis->ac97_mutex); 1311 spin_lock_init(&sis->voice_lock); 1312 sis->card = card; 1313 sis->pci = pci; 1314 sis->irq = -1; 1315 sis->ioport = pci_resource_start(pci, 0); 1316 1317 rc = pci_request_regions(pci, "SiS7019"); 1318 if (rc) { 1319 printk(KERN_ERR "sis7019: unable request regions\n"); 1320 goto error_out_enabled; 1321 } 1322 1323 rc = -EIO; 1324 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); 1325 if (!sis->ioaddr) { 1326 printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n"); 1327 goto error_out_cleanup; 1328 } 1329 1330 rc = sis_alloc_suspend(sis); 1331 if (rc < 0) { 1332 printk(KERN_ERR "sis7019: unable to allocate state storage\n"); 1333 goto error_out_cleanup; 1334 } 1335 1336 rc = sis_chip_init(sis); 1337 if (rc) 1338 goto error_out_cleanup; 1339 1340 if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, 1341 card->shortname, sis)) { 1342 printk(KERN_ERR "unable to allocate irq %d\n", sis->irq); 1343 goto error_out_cleanup; 1344 } 1345 1346 sis->irq = pci->irq; 1347 pci_set_master(pci); 1348 1349 for (i = 0; i < 64; i++) { 1350 voice = &sis->voices[i]; 1351 voice->num = i; 1352 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1353 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1354 } 1355 1356 voice = &sis->capture_voice; 1357 voice->flags = VOICE_CAPTURE; 1358 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1359 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1360 1361 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); 1362 if (rc) 1363 goto error_out_cleanup; 1364 1365 snd_card_set_dev(card, &pci->dev); 1366 1367 return 0; 1368 1369 error_out_cleanup: 1370 sis_chip_free(sis); 1371 1372 error_out_enabled: 1373 pci_disable_device(pci); 1374 1375 error_out: 1376 return rc; 1377 } 1378 1379 static int __devinit snd_sis7019_probe(struct pci_dev *pci, 1380 const struct pci_device_id *pci_id) 1381 { 1382 struct snd_card *card; 1383 struct sis7019 *sis; 1384 int rc; 1385 1386 rc = -ENOENT; 1387 if (!enable) 1388 goto error_out; 1389 1390 rc = -ENOMEM; 1391 card = snd_card_new(index, id, THIS_MODULE, sizeof(*sis)); 1392 if (!card) 1393 goto error_out; 1394 1395 strcpy(card->driver, "SiS7019"); 1396 strcpy(card->shortname, "SiS7019"); 1397 rc = sis_chip_create(card, pci); 1398 if (rc) 1399 goto card_error_out; 1400 1401 sis = card->private_data; 1402 1403 rc = sis_mixer_create(sis); 1404 if (rc) 1405 goto card_error_out; 1406 1407 rc = sis_pcm_create(sis); 1408 if (rc) 1409 goto card_error_out; 1410 1411 snprintf(card->longname, sizeof(card->longname), 1412 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1413 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1414 sis->ioport, sis->irq); 1415 1416 rc = snd_card_register(card); 1417 if (rc) 1418 goto card_error_out; 1419 1420 pci_set_drvdata(pci, card); 1421 return 0; 1422 1423 card_error_out: 1424 snd_card_free(card); 1425 1426 error_out: 1427 return rc; 1428 } 1429 1430 static void __devexit snd_sis7019_remove(struct pci_dev *pci) 1431 { 1432 snd_card_free(pci_get_drvdata(pci)); 1433 pci_set_drvdata(pci, NULL); 1434 } 1435 1436 static struct pci_driver sis7019_driver = { 1437 .name = "SiS7019", 1438 .id_table = snd_sis7019_ids, 1439 .probe = snd_sis7019_probe, 1440 .remove = __devexit_p(snd_sis7019_remove), 1441 1442 #ifdef CONFIG_PM 1443 .suspend = sis_suspend, 1444 .resume = sis_resume, 1445 #endif 1446 }; 1447 1448 static int __init sis7019_init(void) 1449 { 1450 return pci_register_driver(&sis7019_driver); 1451 } 1452 1453 static void __exit sis7019_exit(void) 1454 { 1455 pci_unregister_driver(&sis7019_driver); 1456 } 1457 1458 module_init(sis7019_init); 1459 module_exit(sis7019_exit); 1460