1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for SiS7019 Audio Accelerator 4 * 5 * Copyright (C) 2004-2007, David Dillow 6 * Written by David Dillow <dave@thedillows.org> 7 * Inspired by the Trident 4D-WaveDX/NX driver. 8 * 9 * All rights reserved. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/time.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/interrupt.h> 18 #include <linux/delay.h> 19 #include <sound/core.h> 20 #include <sound/ac97_codec.h> 21 #include <sound/initval.h> 22 #include "sis7019.h" 23 24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 25 MODULE_DESCRIPTION("SiS7019"); 26 MODULE_LICENSE("GPL"); 27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); 28 29 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 30 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 31 static bool enable = 1; 32 static int codecs = 1; 33 34 module_param(index, int, 0444); 35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 36 module_param(id, charp, 0444); 37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 38 module_param(enable, bool, 0444); 39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 40 module_param(codecs, int, 0444); 41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); 42 43 static const struct pci_device_id snd_sis7019_ids[] = { 44 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 45 { 0, } 46 }; 47 48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 49 50 /* There are three timing modes for the voices. 51 * 52 * For both playback and capture, when the buffer is one or two periods long, 53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 54 * to let us know when the periods have ended. 55 * 56 * When performing playback with more than two periods per buffer, we set 57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 58 * reach it. We then update the offset and continue on until we are 59 * interrupted for the next period. 60 * 61 * Capture channels do not have a SSO, so we allocate a playback channel to 62 * use as a timer for the capture periods. We use the SSO on the playback 63 * channel to clock out virtual periods, and adjust the virtual period length 64 * to maintain synchronization. This algorithm came from the Trident driver. 65 * 66 * FIXME: It'd be nice to make use of some of the synth features in the 67 * hardware, but a woeful lack of documentation is a significant roadblock. 68 */ 69 struct voice { 70 u16 flags; 71 #define VOICE_IN_USE 1 72 #define VOICE_CAPTURE 2 73 #define VOICE_SSO_TIMING 4 74 #define VOICE_SYNC_TIMING 8 75 u16 sync_cso; 76 u16 period_size; 77 u16 buffer_size; 78 u16 sync_period_size; 79 u16 sync_buffer_size; 80 u32 sso; 81 u32 vperiod; 82 struct snd_pcm_substream *substream; 83 struct voice *timing; 84 void __iomem *ctrl_base; 85 void __iomem *wave_base; 86 void __iomem *sync_base; 87 int num; 88 }; 89 90 /* We need four pages to store our wave parameters during a suspend. If 91 * we're not doing power management, we still need to allocate a page 92 * for the silence buffer. 93 */ 94 #ifdef CONFIG_PM_SLEEP 95 #define SIS_SUSPEND_PAGES 4 96 #else 97 #define SIS_SUSPEND_PAGES 1 98 #endif 99 100 struct sis7019 { 101 unsigned long ioport; 102 void __iomem *ioaddr; 103 int irq; 104 int codecs_present; 105 106 struct pci_dev *pci; 107 struct snd_pcm *pcm; 108 struct snd_card *card; 109 struct snd_ac97 *ac97[3]; 110 111 /* Protect against more than one thread hitting the AC97 112 * registers (in a more polite manner than pounding the hardware 113 * semaphore) 114 */ 115 struct mutex ac97_mutex; 116 117 /* voice_lock protects allocation/freeing of the voice descriptions 118 */ 119 spinlock_t voice_lock; 120 121 struct voice voices[64]; 122 struct voice capture_voice; 123 124 /* Allocate pages to store the internal wave state during 125 * suspends. When we're operating, this can be used as a silence 126 * buffer for a timing channel. 127 */ 128 void *suspend_state[SIS_SUSPEND_PAGES]; 129 130 int silence_users; 131 dma_addr_t silence_dma_addr; 132 }; 133 134 /* These values are also used by the module param 'codecs' to indicate 135 * which codecs should be present. 136 */ 137 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 138 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 139 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 140 141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 142 * documented range of 8-0xfff8 samples. Given that they are 0-based, 143 * that places our period/buffer range at 9-0xfff9 samples. That makes the 144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 145 * max samples / min samples gives us the max periods in a buffer. 146 * 147 * We'll add a constraint upon open that limits the period and buffer sample 148 * size to values that are legal for the hardware. 149 */ 150 static const struct snd_pcm_hardware sis_playback_hw_info = { 151 .info = (SNDRV_PCM_INFO_MMAP | 152 SNDRV_PCM_INFO_MMAP_VALID | 153 SNDRV_PCM_INFO_INTERLEAVED | 154 SNDRV_PCM_INFO_BLOCK_TRANSFER | 155 SNDRV_PCM_INFO_SYNC_START | 156 SNDRV_PCM_INFO_RESUME), 157 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 158 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 159 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 160 .rate_min = 4000, 161 .rate_max = 48000, 162 .channels_min = 1, 163 .channels_max = 2, 164 .buffer_bytes_max = (0xfff9 * 4), 165 .period_bytes_min = 9, 166 .period_bytes_max = (0xfff9 * 4), 167 .periods_min = 1, 168 .periods_max = (0xfff9 / 9), 169 }; 170 171 static const struct snd_pcm_hardware sis_capture_hw_info = { 172 .info = (SNDRV_PCM_INFO_MMAP | 173 SNDRV_PCM_INFO_MMAP_VALID | 174 SNDRV_PCM_INFO_INTERLEAVED | 175 SNDRV_PCM_INFO_BLOCK_TRANSFER | 176 SNDRV_PCM_INFO_SYNC_START | 177 SNDRV_PCM_INFO_RESUME), 178 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 179 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 180 .rates = SNDRV_PCM_RATE_48000, 181 .rate_min = 4000, 182 .rate_max = 48000, 183 .channels_min = 1, 184 .channels_max = 2, 185 .buffer_bytes_max = (0xfff9 * 4), 186 .period_bytes_min = 9, 187 .period_bytes_max = (0xfff9 * 4), 188 .periods_min = 1, 189 .periods_max = (0xfff9 / 9), 190 }; 191 192 static void sis_update_sso(struct voice *voice, u16 period) 193 { 194 void __iomem *base = voice->ctrl_base; 195 196 voice->sso += period; 197 if (voice->sso >= voice->buffer_size) 198 voice->sso -= voice->buffer_size; 199 200 /* Enforce the documented hardware minimum offset */ 201 if (voice->sso < 8) 202 voice->sso = 8; 203 204 /* The SSO is in the upper 16 bits of the register. */ 205 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 206 } 207 208 static void sis_update_voice(struct voice *voice) 209 { 210 if (voice->flags & VOICE_SSO_TIMING) { 211 sis_update_sso(voice, voice->period_size); 212 } else if (voice->flags & VOICE_SYNC_TIMING) { 213 int sync; 214 215 /* If we've not hit the end of the virtual period, update 216 * our records and keep going. 217 */ 218 if (voice->vperiod > voice->period_size) { 219 voice->vperiod -= voice->period_size; 220 if (voice->vperiod < voice->period_size) 221 sis_update_sso(voice, voice->vperiod); 222 else 223 sis_update_sso(voice, voice->period_size); 224 return; 225 } 226 227 /* Calculate our relative offset between the target and 228 * the actual CSO value. Since we're operating in a loop, 229 * if the value is more than half way around, we can 230 * consider ourselves wrapped. 231 */ 232 sync = voice->sync_cso; 233 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 234 if (sync > (voice->sync_buffer_size / 2)) 235 sync -= voice->sync_buffer_size; 236 237 /* If sync is positive, then we interrupted too early, and 238 * we'll need to come back in a few samples and try again. 239 * There's a minimum wait, as it takes some time for the DMA 240 * engine to startup, etc... 241 */ 242 if (sync > 0) { 243 if (sync < 16) 244 sync = 16; 245 sis_update_sso(voice, sync); 246 return; 247 } 248 249 /* Ok, we interrupted right on time, or (hopefully) just 250 * a bit late. We'll adjst our next waiting period based 251 * on how close we got. 252 * 253 * We need to stay just behind the actual channel to ensure 254 * it really is past a period when we get our interrupt -- 255 * otherwise we'll fall into the early code above and have 256 * a minimum wait time, which makes us quite late here, 257 * eating into the user's time to refresh the buffer, esp. 258 * if using small periods. 259 * 260 * If we're less than 9 samples behind, we're on target. 261 * Otherwise, shorten the next vperiod by the amount we've 262 * been delayed. 263 */ 264 if (sync > -9) 265 voice->vperiod = voice->sync_period_size + 1; 266 else 267 voice->vperiod = voice->sync_period_size + sync + 10; 268 269 if (voice->vperiod < voice->buffer_size) { 270 sis_update_sso(voice, voice->vperiod); 271 voice->vperiod = 0; 272 } else 273 sis_update_sso(voice, voice->period_size); 274 275 sync = voice->sync_cso + voice->sync_period_size; 276 if (sync >= voice->sync_buffer_size) 277 sync -= voice->sync_buffer_size; 278 voice->sync_cso = sync; 279 } 280 281 snd_pcm_period_elapsed(voice->substream); 282 } 283 284 static void sis_voice_irq(u32 status, struct voice *voice) 285 { 286 int bit; 287 288 while (status) { 289 bit = __ffs(status); 290 status >>= bit + 1; 291 voice += bit; 292 sis_update_voice(voice); 293 voice++; 294 } 295 } 296 297 static irqreturn_t sis_interrupt(int irq, void *dev) 298 { 299 struct sis7019 *sis = dev; 300 unsigned long io = sis->ioport; 301 struct voice *voice; 302 u32 intr, status; 303 304 /* We only use the DMA interrupts, and we don't enable any other 305 * source of interrupts. But, it is possible to see an interrupt 306 * status that didn't actually interrupt us, so eliminate anything 307 * we're not expecting to avoid falsely claiming an IRQ, and an 308 * ensuing endless loop. 309 */ 310 intr = inl(io + SIS_GISR); 311 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 312 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 313 if (!intr) 314 return IRQ_NONE; 315 316 do { 317 status = inl(io + SIS_PISR_A); 318 if (status) { 319 sis_voice_irq(status, sis->voices); 320 outl(status, io + SIS_PISR_A); 321 } 322 323 status = inl(io + SIS_PISR_B); 324 if (status) { 325 sis_voice_irq(status, &sis->voices[32]); 326 outl(status, io + SIS_PISR_B); 327 } 328 329 status = inl(io + SIS_RISR); 330 if (status) { 331 voice = &sis->capture_voice; 332 if (!voice->timing) 333 snd_pcm_period_elapsed(voice->substream); 334 335 outl(status, io + SIS_RISR); 336 } 337 338 outl(intr, io + SIS_GISR); 339 intr = inl(io + SIS_GISR); 340 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 341 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 342 } while (intr); 343 344 return IRQ_HANDLED; 345 } 346 347 static u32 sis_rate_to_delta(unsigned int rate) 348 { 349 u32 delta; 350 351 /* This was copied from the trident driver, but it seems its gotten 352 * around a bit... nevertheless, it works well. 353 * 354 * We special case 44100 and 8000 since rounding with the equation 355 * does not give us an accurate enough value. For 11025 and 22050 356 * the equation gives us the best answer. All other frequencies will 357 * also use the equation. JDW 358 */ 359 if (rate == 44100) 360 delta = 0xeb3; 361 else if (rate == 8000) 362 delta = 0x2ab; 363 else if (rate == 48000) 364 delta = 0x1000; 365 else 366 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; 367 return delta; 368 } 369 370 static void __sis_map_silence(struct sis7019 *sis) 371 { 372 /* Helper function: must hold sis->voice_lock on entry */ 373 if (!sis->silence_users) 374 sis->silence_dma_addr = dma_map_single(&sis->pci->dev, 375 sis->suspend_state[0], 376 4096, DMA_TO_DEVICE); 377 sis->silence_users++; 378 } 379 380 static void __sis_unmap_silence(struct sis7019 *sis) 381 { 382 /* Helper function: must hold sis->voice_lock on entry */ 383 sis->silence_users--; 384 if (!sis->silence_users) 385 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096, 386 DMA_TO_DEVICE); 387 } 388 389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 390 { 391 unsigned long flags; 392 393 spin_lock_irqsave(&sis->voice_lock, flags); 394 if (voice->timing) { 395 __sis_unmap_silence(sis); 396 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 397 VOICE_SYNC_TIMING); 398 voice->timing = NULL; 399 } 400 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 401 spin_unlock_irqrestore(&sis->voice_lock, flags); 402 } 403 404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 405 { 406 /* Must hold the voice_lock on entry */ 407 struct voice *voice; 408 int i; 409 410 for (i = 0; i < 64; i++) { 411 voice = &sis->voices[i]; 412 if (voice->flags & VOICE_IN_USE) 413 continue; 414 voice->flags |= VOICE_IN_USE; 415 goto found_one; 416 } 417 voice = NULL; 418 419 found_one: 420 return voice; 421 } 422 423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 424 { 425 struct voice *voice; 426 unsigned long flags; 427 428 spin_lock_irqsave(&sis->voice_lock, flags); 429 voice = __sis_alloc_playback_voice(sis); 430 spin_unlock_irqrestore(&sis->voice_lock, flags); 431 432 return voice; 433 } 434 435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 436 struct snd_pcm_hw_params *hw_params) 437 { 438 struct sis7019 *sis = snd_pcm_substream_chip(substream); 439 struct snd_pcm_runtime *runtime = substream->runtime; 440 struct voice *voice = runtime->private_data; 441 unsigned int period_size, buffer_size; 442 unsigned long flags; 443 int needed; 444 445 /* If there are one or two periods per buffer, we don't need a 446 * timing voice, as we can use the capture channel's interrupts 447 * to clock out the periods. 448 */ 449 period_size = params_period_size(hw_params); 450 buffer_size = params_buffer_size(hw_params); 451 needed = (period_size != buffer_size && 452 period_size != (buffer_size / 2)); 453 454 if (needed && !voice->timing) { 455 spin_lock_irqsave(&sis->voice_lock, flags); 456 voice->timing = __sis_alloc_playback_voice(sis); 457 if (voice->timing) 458 __sis_map_silence(sis); 459 spin_unlock_irqrestore(&sis->voice_lock, flags); 460 if (!voice->timing) 461 return -ENOMEM; 462 voice->timing->substream = substream; 463 } else if (!needed && voice->timing) { 464 sis_free_voice(sis, voice); 465 voice->timing = NULL; 466 } 467 468 return 0; 469 } 470 471 static int sis_playback_open(struct snd_pcm_substream *substream) 472 { 473 struct sis7019 *sis = snd_pcm_substream_chip(substream); 474 struct snd_pcm_runtime *runtime = substream->runtime; 475 struct voice *voice; 476 477 voice = sis_alloc_playback_voice(sis); 478 if (!voice) 479 return -EAGAIN; 480 481 voice->substream = substream; 482 runtime->private_data = voice; 483 runtime->hw = sis_playback_hw_info; 484 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 485 9, 0xfff9); 486 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 487 9, 0xfff9); 488 snd_pcm_set_sync(substream); 489 return 0; 490 } 491 492 static int sis_substream_close(struct snd_pcm_substream *substream) 493 { 494 struct sis7019 *sis = snd_pcm_substream_chip(substream); 495 struct snd_pcm_runtime *runtime = substream->runtime; 496 struct voice *voice = runtime->private_data; 497 498 sis_free_voice(sis, voice); 499 return 0; 500 } 501 502 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 503 { 504 struct snd_pcm_runtime *runtime = substream->runtime; 505 struct voice *voice = runtime->private_data; 506 void __iomem *ctrl_base = voice->ctrl_base; 507 void __iomem *wave_base = voice->wave_base; 508 u32 format, dma_addr, control, sso_eso, delta, reg; 509 u16 leo; 510 511 /* We rely on the PCM core to ensure that the parameters for this 512 * substream do not change on us while we're programming the HW. 513 */ 514 format = 0; 515 if (snd_pcm_format_width(runtime->format) == 8) 516 format |= SIS_PLAY_DMA_FORMAT_8BIT; 517 if (!snd_pcm_format_signed(runtime->format)) 518 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 519 if (runtime->channels == 1) 520 format |= SIS_PLAY_DMA_FORMAT_MONO; 521 522 /* The baseline setup is for a single period per buffer, and 523 * we add bells and whistles as needed from there. 524 */ 525 dma_addr = runtime->dma_addr; 526 leo = runtime->buffer_size - 1; 527 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 528 sso_eso = leo; 529 530 if (runtime->period_size == (runtime->buffer_size / 2)) { 531 control |= SIS_PLAY_DMA_INTR_AT_MLP; 532 } else if (runtime->period_size != runtime->buffer_size) { 533 voice->flags |= VOICE_SSO_TIMING; 534 voice->sso = runtime->period_size - 1; 535 voice->period_size = runtime->period_size; 536 voice->buffer_size = runtime->buffer_size; 537 538 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 539 control |= SIS_PLAY_DMA_INTR_AT_SSO; 540 sso_eso |= (runtime->period_size - 1) << 16; 541 } 542 543 delta = sis_rate_to_delta(runtime->rate); 544 545 /* Ok, we're ready to go, set up the channel. 546 */ 547 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 548 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 549 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 550 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 551 552 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 553 writel(0, wave_base + reg); 554 555 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 556 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 557 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 558 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 559 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 560 wave_base + SIS_WAVE_CHANNEL_CONTROL); 561 562 /* Force PCI writes to post. */ 563 readl(ctrl_base); 564 565 return 0; 566 } 567 568 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 569 { 570 struct sis7019 *sis = snd_pcm_substream_chip(substream); 571 unsigned long io = sis->ioport; 572 struct snd_pcm_substream *s; 573 struct voice *voice; 574 void *chip; 575 int starting; 576 u32 record = 0; 577 u32 play[2] = { 0, 0 }; 578 579 /* No locks needed, as the PCM core will hold the locks on the 580 * substreams, and the HW will only start/stop the indicated voices 581 * without changing the state of the others. 582 */ 583 switch (cmd) { 584 case SNDRV_PCM_TRIGGER_START: 585 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 586 case SNDRV_PCM_TRIGGER_RESUME: 587 starting = 1; 588 break; 589 case SNDRV_PCM_TRIGGER_STOP: 590 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 591 case SNDRV_PCM_TRIGGER_SUSPEND: 592 starting = 0; 593 break; 594 default: 595 return -EINVAL; 596 } 597 598 snd_pcm_group_for_each_entry(s, substream) { 599 /* Make sure it is for us... */ 600 chip = snd_pcm_substream_chip(s); 601 if (chip != sis) 602 continue; 603 604 voice = s->runtime->private_data; 605 if (voice->flags & VOICE_CAPTURE) { 606 record |= 1 << voice->num; 607 voice = voice->timing; 608 } 609 610 /* voice could be NULL if this a recording stream, and it 611 * doesn't have an external timing channel. 612 */ 613 if (voice) 614 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 615 616 snd_pcm_trigger_done(s, substream); 617 } 618 619 if (starting) { 620 if (record) 621 outl(record, io + SIS_RECORD_START_REG); 622 if (play[0]) 623 outl(play[0], io + SIS_PLAY_START_A_REG); 624 if (play[1]) 625 outl(play[1], io + SIS_PLAY_START_B_REG); 626 } else { 627 if (record) 628 outl(record, io + SIS_RECORD_STOP_REG); 629 if (play[0]) 630 outl(play[0], io + SIS_PLAY_STOP_A_REG); 631 if (play[1]) 632 outl(play[1], io + SIS_PLAY_STOP_B_REG); 633 } 634 return 0; 635 } 636 637 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 638 { 639 struct snd_pcm_runtime *runtime = substream->runtime; 640 struct voice *voice = runtime->private_data; 641 u32 cso; 642 643 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 644 cso &= 0xffff; 645 return cso; 646 } 647 648 static int sis_capture_open(struct snd_pcm_substream *substream) 649 { 650 struct sis7019 *sis = snd_pcm_substream_chip(substream); 651 struct snd_pcm_runtime *runtime = substream->runtime; 652 struct voice *voice = &sis->capture_voice; 653 unsigned long flags; 654 655 /* FIXME: The driver only supports recording from one channel 656 * at the moment, but it could support more. 657 */ 658 spin_lock_irqsave(&sis->voice_lock, flags); 659 if (voice->flags & VOICE_IN_USE) 660 voice = NULL; 661 else 662 voice->flags |= VOICE_IN_USE; 663 spin_unlock_irqrestore(&sis->voice_lock, flags); 664 665 if (!voice) 666 return -EAGAIN; 667 668 voice->substream = substream; 669 runtime->private_data = voice; 670 runtime->hw = sis_capture_hw_info; 671 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 672 snd_pcm_limit_hw_rates(runtime); 673 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 674 9, 0xfff9); 675 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 676 9, 0xfff9); 677 snd_pcm_set_sync(substream); 678 return 0; 679 } 680 681 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 682 struct snd_pcm_hw_params *hw_params) 683 { 684 struct sis7019 *sis = snd_pcm_substream_chip(substream); 685 int rc; 686 687 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 688 params_rate(hw_params)); 689 if (rc) 690 goto out; 691 692 rc = sis_alloc_timing_voice(substream, hw_params); 693 694 out: 695 return rc; 696 } 697 698 static void sis_prepare_timing_voice(struct voice *voice, 699 struct snd_pcm_substream *substream) 700 { 701 struct sis7019 *sis = snd_pcm_substream_chip(substream); 702 struct snd_pcm_runtime *runtime = substream->runtime; 703 struct voice *timing = voice->timing; 704 void __iomem *play_base = timing->ctrl_base; 705 void __iomem *wave_base = timing->wave_base; 706 u16 buffer_size, period_size; 707 u32 format, control, sso_eso, delta; 708 u32 vperiod, sso, reg; 709 710 /* Set our initial buffer and period as large as we can given a 711 * single page of silence. 712 */ 713 buffer_size = 4096 / runtime->channels; 714 buffer_size /= snd_pcm_format_size(runtime->format, 1); 715 period_size = buffer_size; 716 717 /* Initially, we want to interrupt just a bit behind the end of 718 * the period we're clocking out. 12 samples seems to give a good 719 * delay. 720 * 721 * We want to spread our interrupts throughout the virtual period, 722 * so that we don't end up with two interrupts back to back at the 723 * end -- this helps minimize the effects of any jitter. Adjust our 724 * clocking period size so that the last period is at least a fourth 725 * of a full period. 726 * 727 * This is all moot if we don't need to use virtual periods. 728 */ 729 vperiod = runtime->period_size + 12; 730 if (vperiod > period_size) { 731 u16 tail = vperiod % period_size; 732 u16 quarter_period = period_size / 4; 733 734 if (tail && tail < quarter_period) { 735 u16 loops = vperiod / period_size; 736 737 tail = quarter_period - tail; 738 tail += loops - 1; 739 tail /= loops; 740 period_size -= tail; 741 } 742 743 sso = period_size - 1; 744 } else { 745 /* The initial period will fit inside the buffer, so we 746 * don't need to use virtual periods -- disable them. 747 */ 748 period_size = runtime->period_size; 749 sso = vperiod - 1; 750 vperiod = 0; 751 } 752 753 /* The interrupt handler implements the timing synchronization, so 754 * setup its state. 755 */ 756 timing->flags |= VOICE_SYNC_TIMING; 757 timing->sync_base = voice->ctrl_base; 758 timing->sync_cso = runtime->period_size; 759 timing->sync_period_size = runtime->period_size; 760 timing->sync_buffer_size = runtime->buffer_size; 761 timing->period_size = period_size; 762 timing->buffer_size = buffer_size; 763 timing->sso = sso; 764 timing->vperiod = vperiod; 765 766 /* Using unsigned samples with the all-zero silence buffer 767 * forces the output to the lower rail, killing playback. 768 * So ignore unsigned vs signed -- it doesn't change the timing. 769 */ 770 format = 0; 771 if (snd_pcm_format_width(runtime->format) == 8) 772 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 773 if (runtime->channels == 1) 774 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 775 776 control = timing->buffer_size - 1; 777 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 778 sso_eso = timing->buffer_size - 1; 779 sso_eso |= timing->sso << 16; 780 781 delta = sis_rate_to_delta(runtime->rate); 782 783 /* We've done the math, now configure the channel. 784 */ 785 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 786 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 787 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 788 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 789 790 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 791 writel(0, wave_base + reg); 792 793 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 794 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 795 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 796 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 797 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 798 wave_base + SIS_WAVE_CHANNEL_CONTROL); 799 } 800 801 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 802 { 803 struct snd_pcm_runtime *runtime = substream->runtime; 804 struct voice *voice = runtime->private_data; 805 void __iomem *rec_base = voice->ctrl_base; 806 u32 format, dma_addr, control; 807 u16 leo; 808 809 /* We rely on the PCM core to ensure that the parameters for this 810 * substream do not change on us while we're programming the HW. 811 */ 812 format = 0; 813 if (snd_pcm_format_width(runtime->format) == 8) 814 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 815 if (!snd_pcm_format_signed(runtime->format)) 816 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 817 if (runtime->channels == 1) 818 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 819 820 dma_addr = runtime->dma_addr; 821 leo = runtime->buffer_size - 1; 822 control = leo | SIS_CAPTURE_DMA_LOOP; 823 824 /* If we've got more than two periods per buffer, then we have 825 * use a timing voice to clock out the periods. Otherwise, we can 826 * use the capture channel's interrupts. 827 */ 828 if (voice->timing) { 829 sis_prepare_timing_voice(voice, substream); 830 } else { 831 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 832 if (runtime->period_size != runtime->buffer_size) 833 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 834 } 835 836 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 837 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 838 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 839 840 /* Force the writes to post. */ 841 readl(rec_base); 842 843 return 0; 844 } 845 846 static const struct snd_pcm_ops sis_playback_ops = { 847 .open = sis_playback_open, 848 .close = sis_substream_close, 849 .prepare = sis_pcm_playback_prepare, 850 .trigger = sis_pcm_trigger, 851 .pointer = sis_pcm_pointer, 852 }; 853 854 static const struct snd_pcm_ops sis_capture_ops = { 855 .open = sis_capture_open, 856 .close = sis_substream_close, 857 .hw_params = sis_capture_hw_params, 858 .prepare = sis_pcm_capture_prepare, 859 .trigger = sis_pcm_trigger, 860 .pointer = sis_pcm_pointer, 861 }; 862 863 static int sis_pcm_create(struct sis7019 *sis) 864 { 865 struct snd_pcm *pcm; 866 int rc; 867 868 /* We have 64 voices, and the driver currently records from 869 * only one channel, though that could change in the future. 870 */ 871 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 872 if (rc) 873 return rc; 874 875 pcm->private_data = sis; 876 strcpy(pcm->name, "SiS7019"); 877 sis->pcm = pcm; 878 879 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 880 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 881 882 /* Try to preallocate some memory, but it's not the end of the 883 * world if this fails. 884 */ 885 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 886 &sis->pci->dev, 64*1024, 128*1024); 887 888 return 0; 889 } 890 891 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 892 { 893 unsigned long io = sis->ioport; 894 unsigned short val = 0xffff; 895 u16 status; 896 u16 rdy; 897 int count; 898 static const u16 codec_ready[3] = { 899 SIS_AC97_STATUS_CODEC_READY, 900 SIS_AC97_STATUS_CODEC2_READY, 901 SIS_AC97_STATUS_CODEC3_READY, 902 }; 903 904 rdy = codec_ready[codec]; 905 906 907 /* Get the AC97 semaphore -- software first, so we don't spin 908 * pounding out IO reads on the hardware semaphore... 909 */ 910 mutex_lock(&sis->ac97_mutex); 911 912 count = 0xffff; 913 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 914 udelay(1); 915 916 if (!count) 917 goto timeout; 918 919 /* ... and wait for any outstanding commands to complete ... 920 */ 921 count = 0xffff; 922 do { 923 status = inw(io + SIS_AC97_STATUS); 924 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 925 break; 926 927 udelay(1); 928 } while (--count); 929 930 if (!count) 931 goto timeout_sema; 932 933 /* ... before sending our command and waiting for it to finish ... 934 */ 935 outl(cmd, io + SIS_AC97_CMD); 936 udelay(10); 937 938 count = 0xffff; 939 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 940 udelay(1); 941 942 /* ... and reading the results (if any). 943 */ 944 val = inl(io + SIS_AC97_CMD) >> 16; 945 946 timeout_sema: 947 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 948 timeout: 949 mutex_unlock(&sis->ac97_mutex); 950 951 if (!count) { 952 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", 953 codec, cmd); 954 } 955 956 return val; 957 } 958 959 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 960 unsigned short val) 961 { 962 static const u32 cmd[3] = { 963 SIS_AC97_CMD_CODEC_WRITE, 964 SIS_AC97_CMD_CODEC2_WRITE, 965 SIS_AC97_CMD_CODEC3_WRITE, 966 }; 967 sis_ac97_rw(ac97->private_data, ac97->num, 968 (val << 16) | (reg << 8) | cmd[ac97->num]); 969 } 970 971 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 972 { 973 static const u32 cmd[3] = { 974 SIS_AC97_CMD_CODEC_READ, 975 SIS_AC97_CMD_CODEC2_READ, 976 SIS_AC97_CMD_CODEC3_READ, 977 }; 978 return sis_ac97_rw(ac97->private_data, ac97->num, 979 (reg << 8) | cmd[ac97->num]); 980 } 981 982 static int sis_mixer_create(struct sis7019 *sis) 983 { 984 struct snd_ac97_bus *bus; 985 struct snd_ac97_template ac97; 986 static const struct snd_ac97_bus_ops ops = { 987 .write = sis_ac97_write, 988 .read = sis_ac97_read, 989 }; 990 int rc; 991 992 memset(&ac97, 0, sizeof(ac97)); 993 ac97.private_data = sis; 994 995 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 996 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 997 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 998 ac97.num = 1; 999 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 1000 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1001 ac97.num = 2; 1002 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1003 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1004 1005 /* If we return an error here, then snd_card_free() should 1006 * free up any ac97 codecs that got created, as well as the bus. 1007 */ 1008 return rc; 1009 } 1010 1011 static void sis_free_suspend(struct sis7019 *sis) 1012 { 1013 int i; 1014 1015 for (i = 0; i < SIS_SUSPEND_PAGES; i++) 1016 kfree(sis->suspend_state[i]); 1017 } 1018 1019 static int sis_chip_free(struct sis7019 *sis) 1020 { 1021 /* Reset the chip, and disable all interrputs. 1022 */ 1023 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1024 udelay(25); 1025 outl(0, sis->ioport + SIS_GCR); 1026 outl(0, sis->ioport + SIS_GIER); 1027 1028 /* Now, free everything we allocated. 1029 */ 1030 if (sis->irq >= 0) 1031 free_irq(sis->irq, sis); 1032 1033 iounmap(sis->ioaddr); 1034 pci_release_regions(sis->pci); 1035 pci_disable_device(sis->pci); 1036 sis_free_suspend(sis); 1037 return 0; 1038 } 1039 1040 static int sis_dev_free(struct snd_device *dev) 1041 { 1042 struct sis7019 *sis = dev->device_data; 1043 return sis_chip_free(sis); 1044 } 1045 1046 static int sis_chip_init(struct sis7019 *sis) 1047 { 1048 unsigned long io = sis->ioport; 1049 void __iomem *ioaddr = sis->ioaddr; 1050 unsigned long timeout; 1051 u16 status; 1052 int count; 1053 int i; 1054 1055 /* Reset the audio controller 1056 */ 1057 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1058 udelay(25); 1059 outl(0, io + SIS_GCR); 1060 1061 /* Get the AC-link semaphore, and reset the codecs 1062 */ 1063 count = 0xffff; 1064 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1065 udelay(1); 1066 1067 if (!count) 1068 return -EIO; 1069 1070 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1071 udelay(250); 1072 1073 count = 0xffff; 1074 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1075 udelay(1); 1076 1077 /* Command complete, we can let go of the semaphore now. 1078 */ 1079 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1080 if (!count) 1081 return -EIO; 1082 1083 /* Now that we've finished the reset, find out what's attached. 1084 * There are some codec/board combinations that take an extremely 1085 * long time to come up. 350+ ms has been observed in the field, 1086 * so we'll give them up to 500ms. 1087 */ 1088 sis->codecs_present = 0; 1089 timeout = msecs_to_jiffies(500) + jiffies; 1090 while (time_before_eq(jiffies, timeout)) { 1091 status = inl(io + SIS_AC97_STATUS); 1092 if (status & SIS_AC97_STATUS_CODEC_READY) 1093 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1094 if (status & SIS_AC97_STATUS_CODEC2_READY) 1095 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1096 if (status & SIS_AC97_STATUS_CODEC3_READY) 1097 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1098 1099 if (sis->codecs_present == codecs) 1100 break; 1101 1102 msleep(1); 1103 } 1104 1105 /* All done, check for errors. 1106 */ 1107 if (!sis->codecs_present) { 1108 dev_err(&sis->pci->dev, "could not find any codecs\n"); 1109 return -EIO; 1110 } 1111 1112 if (sis->codecs_present != codecs) { 1113 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", 1114 sis->codecs_present, codecs); 1115 } 1116 1117 /* Let the hardware know that the audio driver is alive, 1118 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1119 * record channels. We're going to want to use Variable Rate Audio 1120 * for recording, to avoid needlessly resampling from 48kHZ. 1121 */ 1122 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1123 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1124 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1125 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1126 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1127 1128 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1129 */ 1130 outl(0, io + SIS_AC97_PSR); 1131 1132 /* There is only one valid DMA setup for a PCI environment. 1133 */ 1134 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1135 1136 /* Reset the synchronization groups for all of the channels 1137 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. 1138 * we'll need to change how we handle these. Until then, we just 1139 * assign sub-mixer 0 to all playback channels, and avoid any 1140 * attenuation on the audio. 1141 */ 1142 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1143 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1144 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1145 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1146 outl(0, io + SIS_MIXER_SYNC_GROUP); 1147 1148 for (i = 0; i < 64; i++) { 1149 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1150 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1151 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1152 } 1153 1154 /* Don't attenuate any audio set for the wave amplifier. 1155 * 1156 * FIXME: Maximum attenuation is set for the music amp, which will 1157 * need to change if we start using the synth engine. 1158 */ 1159 outl(0xffff0000, io + SIS_WEVCR); 1160 1161 /* Ensure that the wave engine is in normal operating mode. 1162 */ 1163 outl(0, io + SIS_WECCR); 1164 1165 /* Go ahead and enable the DMA interrupts. They won't go live 1166 * until we start a channel. 1167 */ 1168 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1169 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1170 1171 return 0; 1172 } 1173 1174 #ifdef CONFIG_PM_SLEEP 1175 static int sis_suspend(struct device *dev) 1176 { 1177 struct snd_card *card = dev_get_drvdata(dev); 1178 struct sis7019 *sis = card->private_data; 1179 void __iomem *ioaddr = sis->ioaddr; 1180 int i; 1181 1182 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1183 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1184 snd_ac97_suspend(sis->ac97[0]); 1185 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1186 snd_ac97_suspend(sis->ac97[1]); 1187 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1188 snd_ac97_suspend(sis->ac97[2]); 1189 1190 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1191 */ 1192 if (sis->irq >= 0) { 1193 free_irq(sis->irq, sis); 1194 sis->irq = -1; 1195 } 1196 1197 /* Save the internal state away 1198 */ 1199 for (i = 0; i < 4; i++) { 1200 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1201 ioaddr += 4096; 1202 } 1203 1204 return 0; 1205 } 1206 1207 static int sis_resume(struct device *dev) 1208 { 1209 struct pci_dev *pci = to_pci_dev(dev); 1210 struct snd_card *card = dev_get_drvdata(dev); 1211 struct sis7019 *sis = card->private_data; 1212 void __iomem *ioaddr = sis->ioaddr; 1213 int i; 1214 1215 if (sis_chip_init(sis)) { 1216 dev_err(&pci->dev, "unable to re-init controller\n"); 1217 goto error; 1218 } 1219 1220 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, 1221 KBUILD_MODNAME, sis)) { 1222 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); 1223 goto error; 1224 } 1225 1226 /* Restore saved state, then clear out the page we use for the 1227 * silence buffer. 1228 */ 1229 for (i = 0; i < 4; i++) { 1230 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1231 ioaddr += 4096; 1232 } 1233 1234 memset(sis->suspend_state[0], 0, 4096); 1235 1236 sis->irq = pci->irq; 1237 1238 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1239 snd_ac97_resume(sis->ac97[0]); 1240 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1241 snd_ac97_resume(sis->ac97[1]); 1242 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1243 snd_ac97_resume(sis->ac97[2]); 1244 1245 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1246 return 0; 1247 1248 error: 1249 snd_card_disconnect(card); 1250 return -EIO; 1251 } 1252 1253 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); 1254 #define SIS_PM_OPS &sis_pm 1255 #else 1256 #define SIS_PM_OPS NULL 1257 #endif /* CONFIG_PM_SLEEP */ 1258 1259 static int sis_alloc_suspend(struct sis7019 *sis) 1260 { 1261 int i; 1262 1263 /* We need 16K to store the internal wave engine state during a 1264 * suspend, but we don't need it to be contiguous, so play nice 1265 * with the memory system. We'll also use this area for a silence 1266 * buffer. 1267 */ 1268 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1269 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); 1270 if (!sis->suspend_state[i]) 1271 return -ENOMEM; 1272 } 1273 memset(sis->suspend_state[0], 0, 4096); 1274 1275 return 0; 1276 } 1277 1278 static int sis_chip_create(struct snd_card *card, 1279 struct pci_dev *pci) 1280 { 1281 struct sis7019 *sis = card->private_data; 1282 struct voice *voice; 1283 static const struct snd_device_ops ops = { 1284 .dev_free = sis_dev_free, 1285 }; 1286 int rc; 1287 int i; 1288 1289 rc = pci_enable_device(pci); 1290 if (rc) 1291 goto error_out; 1292 1293 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30)); 1294 if (rc < 0) { 1295 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); 1296 goto error_out_enabled; 1297 } 1298 1299 memset(sis, 0, sizeof(*sis)); 1300 mutex_init(&sis->ac97_mutex); 1301 spin_lock_init(&sis->voice_lock); 1302 sis->card = card; 1303 sis->pci = pci; 1304 sis->irq = -1; 1305 sis->ioport = pci_resource_start(pci, 0); 1306 1307 rc = pci_request_regions(pci, "SiS7019"); 1308 if (rc) { 1309 dev_err(&pci->dev, "unable request regions\n"); 1310 goto error_out_enabled; 1311 } 1312 1313 rc = -EIO; 1314 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); 1315 if (!sis->ioaddr) { 1316 dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); 1317 goto error_out_cleanup; 1318 } 1319 1320 rc = sis_alloc_suspend(sis); 1321 if (rc < 0) { 1322 dev_err(&pci->dev, "unable to allocate state storage\n"); 1323 goto error_out_cleanup; 1324 } 1325 1326 rc = sis_chip_init(sis); 1327 if (rc) 1328 goto error_out_cleanup; 1329 1330 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, 1331 sis); 1332 if (rc) { 1333 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); 1334 goto error_out_cleanup; 1335 } 1336 1337 sis->irq = pci->irq; 1338 card->sync_irq = sis->irq; 1339 pci_set_master(pci); 1340 1341 for (i = 0; i < 64; i++) { 1342 voice = &sis->voices[i]; 1343 voice->num = i; 1344 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1345 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1346 } 1347 1348 voice = &sis->capture_voice; 1349 voice->flags = VOICE_CAPTURE; 1350 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1351 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1352 1353 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); 1354 if (rc) 1355 goto error_out_cleanup; 1356 1357 return 0; 1358 1359 error_out_cleanup: 1360 sis_chip_free(sis); 1361 1362 error_out_enabled: 1363 pci_disable_device(pci); 1364 1365 error_out: 1366 return rc; 1367 } 1368 1369 static int snd_sis7019_probe(struct pci_dev *pci, 1370 const struct pci_device_id *pci_id) 1371 { 1372 struct snd_card *card; 1373 struct sis7019 *sis; 1374 int rc; 1375 1376 rc = -ENOENT; 1377 if (!enable) 1378 goto error_out; 1379 1380 /* The user can specify which codecs should be present so that we 1381 * can wait for them to show up if they are slow to recover from 1382 * the AC97 cold reset. We default to a single codec, the primary. 1383 * 1384 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. 1385 */ 1386 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | 1387 SIS_TERTIARY_CODEC_PRESENT; 1388 if (!codecs) 1389 codecs = SIS_PRIMARY_CODEC_PRESENT; 1390 1391 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE, 1392 sizeof(*sis), &card); 1393 if (rc < 0) 1394 goto error_out; 1395 1396 strcpy(card->driver, "SiS7019"); 1397 strcpy(card->shortname, "SiS7019"); 1398 rc = sis_chip_create(card, pci); 1399 if (rc) 1400 goto card_error_out; 1401 1402 sis = card->private_data; 1403 1404 rc = sis_mixer_create(sis); 1405 if (rc) 1406 goto card_error_out; 1407 1408 rc = sis_pcm_create(sis); 1409 if (rc) 1410 goto card_error_out; 1411 1412 snprintf(card->longname, sizeof(card->longname), 1413 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1414 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1415 sis->ioport, sis->irq); 1416 1417 rc = snd_card_register(card); 1418 if (rc) 1419 goto card_error_out; 1420 1421 pci_set_drvdata(pci, card); 1422 return 0; 1423 1424 card_error_out: 1425 snd_card_free(card); 1426 1427 error_out: 1428 return rc; 1429 } 1430 1431 static void snd_sis7019_remove(struct pci_dev *pci) 1432 { 1433 snd_card_free(pci_get_drvdata(pci)); 1434 } 1435 1436 static struct pci_driver sis7019_driver = { 1437 .name = KBUILD_MODNAME, 1438 .id_table = snd_sis7019_ids, 1439 .probe = snd_sis7019_probe, 1440 .remove = snd_sis7019_remove, 1441 .driver = { 1442 .pm = SIS_PM_OPS, 1443 }, 1444 }; 1445 1446 module_pci_driver(sis7019_driver); 1447