1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for SiS7019 Audio Accelerator 4 * 5 * Copyright (C) 2004-2007, David Dillow 6 * Written by David Dillow <dave@thedillows.org> 7 * Inspired by the Trident 4D-WaveDX/NX driver. 8 * 9 * All rights reserved. 10 */ 11 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/time.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/interrupt.h> 18 #include <linux/delay.h> 19 #include <sound/core.h> 20 #include <sound/ac97_codec.h> 21 #include <sound/initval.h> 22 #include "sis7019.h" 23 24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); 25 MODULE_DESCRIPTION("SiS7019"); 26 MODULE_LICENSE("GPL"); 27 MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); 28 29 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 30 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 31 static bool enable = 1; 32 static int codecs = 1; 33 34 module_param(index, int, 0444); 35 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); 36 module_param(id, charp, 0444); 37 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); 38 module_param(enable, bool, 0444); 39 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); 40 module_param(codecs, int, 0444); 41 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)"); 42 43 static const struct pci_device_id snd_sis7019_ids[] = { 44 { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, 45 { 0, } 46 }; 47 48 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); 49 50 /* There are three timing modes for the voices. 51 * 52 * For both playback and capture, when the buffer is one or two periods long, 53 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt 54 * to let us know when the periods have ended. 55 * 56 * When performing playback with more than two periods per buffer, we set 57 * the "Stop Sample Offset" and tell the hardware to interrupt us when we 58 * reach it. We then update the offset and continue on until we are 59 * interrupted for the next period. 60 * 61 * Capture channels do not have a SSO, so we allocate a playback channel to 62 * use as a timer for the capture periods. We use the SSO on the playback 63 * channel to clock out virtual periods, and adjust the virtual period length 64 * to maintain synchronization. This algorithm came from the Trident driver. 65 * 66 * FIXME: It'd be nice to make use of some of the synth features in the 67 * hardware, but a woeful lack of documentation is a significant roadblock. 68 */ 69 struct voice { 70 u16 flags; 71 #define VOICE_IN_USE 1 72 #define VOICE_CAPTURE 2 73 #define VOICE_SSO_TIMING 4 74 #define VOICE_SYNC_TIMING 8 75 u16 sync_cso; 76 u16 period_size; 77 u16 buffer_size; 78 u16 sync_period_size; 79 u16 sync_buffer_size; 80 u32 sso; 81 u32 vperiod; 82 struct snd_pcm_substream *substream; 83 struct voice *timing; 84 void __iomem *ctrl_base; 85 void __iomem *wave_base; 86 void __iomem *sync_base; 87 int num; 88 }; 89 90 /* We need four pages to store our wave parameters during a suspend. If 91 * we're not doing power management, we still need to allocate a page 92 * for the silence buffer. 93 */ 94 #ifdef CONFIG_PM_SLEEP 95 #define SIS_SUSPEND_PAGES 4 96 #else 97 #define SIS_SUSPEND_PAGES 1 98 #endif 99 100 struct sis7019 { 101 unsigned long ioport; 102 void __iomem *ioaddr; 103 int irq; 104 int codecs_present; 105 106 struct pci_dev *pci; 107 struct snd_pcm *pcm; 108 struct snd_card *card; 109 struct snd_ac97 *ac97[3]; 110 111 /* Protect against more than one thread hitting the AC97 112 * registers (in a more polite manner than pounding the hardware 113 * semaphore) 114 */ 115 struct mutex ac97_mutex; 116 117 /* voice_lock protects allocation/freeing of the voice descriptions 118 */ 119 spinlock_t voice_lock; 120 121 struct voice voices[64]; 122 struct voice capture_voice; 123 124 /* Allocate pages to store the internal wave state during 125 * suspends. When we're operating, this can be used as a silence 126 * buffer for a timing channel. 127 */ 128 void *suspend_state[SIS_SUSPEND_PAGES]; 129 130 int silence_users; 131 dma_addr_t silence_dma_addr; 132 }; 133 134 /* These values are also used by the module param 'codecs' to indicate 135 * which codecs should be present. 136 */ 137 #define SIS_PRIMARY_CODEC_PRESENT 0x0001 138 #define SIS_SECONDARY_CODEC_PRESENT 0x0002 139 #define SIS_TERTIARY_CODEC_PRESENT 0x0004 140 141 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a 142 * documented range of 8-0xfff8 samples. Given that they are 0-based, 143 * that places our period/buffer range at 9-0xfff9 samples. That makes the 144 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and 145 * max samples / min samples gives us the max periods in a buffer. 146 * 147 * We'll add a constraint upon open that limits the period and buffer sample 148 * size to values that are legal for the hardware. 149 */ 150 static const struct snd_pcm_hardware sis_playback_hw_info = { 151 .info = (SNDRV_PCM_INFO_MMAP | 152 SNDRV_PCM_INFO_MMAP_VALID | 153 SNDRV_PCM_INFO_INTERLEAVED | 154 SNDRV_PCM_INFO_BLOCK_TRANSFER | 155 SNDRV_PCM_INFO_SYNC_START | 156 SNDRV_PCM_INFO_RESUME), 157 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 158 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 159 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, 160 .rate_min = 4000, 161 .rate_max = 48000, 162 .channels_min = 1, 163 .channels_max = 2, 164 .buffer_bytes_max = (0xfff9 * 4), 165 .period_bytes_min = 9, 166 .period_bytes_max = (0xfff9 * 4), 167 .periods_min = 1, 168 .periods_max = (0xfff9 / 9), 169 }; 170 171 static const struct snd_pcm_hardware sis_capture_hw_info = { 172 .info = (SNDRV_PCM_INFO_MMAP | 173 SNDRV_PCM_INFO_MMAP_VALID | 174 SNDRV_PCM_INFO_INTERLEAVED | 175 SNDRV_PCM_INFO_BLOCK_TRANSFER | 176 SNDRV_PCM_INFO_SYNC_START | 177 SNDRV_PCM_INFO_RESUME), 178 .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | 179 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), 180 .rates = SNDRV_PCM_RATE_48000, 181 .rate_min = 4000, 182 .rate_max = 48000, 183 .channels_min = 1, 184 .channels_max = 2, 185 .buffer_bytes_max = (0xfff9 * 4), 186 .period_bytes_min = 9, 187 .period_bytes_max = (0xfff9 * 4), 188 .periods_min = 1, 189 .periods_max = (0xfff9 / 9), 190 }; 191 192 static void sis_update_sso(struct voice *voice, u16 period) 193 { 194 void __iomem *base = voice->ctrl_base; 195 196 voice->sso += period; 197 if (voice->sso >= voice->buffer_size) 198 voice->sso -= voice->buffer_size; 199 200 /* Enforce the documented hardware minimum offset */ 201 if (voice->sso < 8) 202 voice->sso = 8; 203 204 /* The SSO is in the upper 16 bits of the register. */ 205 writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); 206 } 207 208 static void sis_update_voice(struct voice *voice) 209 { 210 if (voice->flags & VOICE_SSO_TIMING) { 211 sis_update_sso(voice, voice->period_size); 212 } else if (voice->flags & VOICE_SYNC_TIMING) { 213 int sync; 214 215 /* If we've not hit the end of the virtual period, update 216 * our records and keep going. 217 */ 218 if (voice->vperiod > voice->period_size) { 219 voice->vperiod -= voice->period_size; 220 if (voice->vperiod < voice->period_size) 221 sis_update_sso(voice, voice->vperiod); 222 else 223 sis_update_sso(voice, voice->period_size); 224 return; 225 } 226 227 /* Calculate our relative offset between the target and 228 * the actual CSO value. Since we're operating in a loop, 229 * if the value is more than half way around, we can 230 * consider ourselves wrapped. 231 */ 232 sync = voice->sync_cso; 233 sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); 234 if (sync > (voice->sync_buffer_size / 2)) 235 sync -= voice->sync_buffer_size; 236 237 /* If sync is positive, then we interrupted too early, and 238 * we'll need to come back in a few samples and try again. 239 * There's a minimum wait, as it takes some time for the DMA 240 * engine to startup, etc... 241 */ 242 if (sync > 0) { 243 if (sync < 16) 244 sync = 16; 245 sis_update_sso(voice, sync); 246 return; 247 } 248 249 /* Ok, we interrupted right on time, or (hopefully) just 250 * a bit late. We'll adjst our next waiting period based 251 * on how close we got. 252 * 253 * We need to stay just behind the actual channel to ensure 254 * it really is past a period when we get our interrupt -- 255 * otherwise we'll fall into the early code above and have 256 * a minimum wait time, which makes us quite late here, 257 * eating into the user's time to refresh the buffer, esp. 258 * if using small periods. 259 * 260 * If we're less than 9 samples behind, we're on target. 261 * Otherwise, shorten the next vperiod by the amount we've 262 * been delayed. 263 */ 264 if (sync > -9) 265 voice->vperiod = voice->sync_period_size + 1; 266 else 267 voice->vperiod = voice->sync_period_size + sync + 10; 268 269 if (voice->vperiod < voice->buffer_size) { 270 sis_update_sso(voice, voice->vperiod); 271 voice->vperiod = 0; 272 } else 273 sis_update_sso(voice, voice->period_size); 274 275 sync = voice->sync_cso + voice->sync_period_size; 276 if (sync >= voice->sync_buffer_size) 277 sync -= voice->sync_buffer_size; 278 voice->sync_cso = sync; 279 } 280 281 snd_pcm_period_elapsed(voice->substream); 282 } 283 284 static void sis_voice_irq(u32 status, struct voice *voice) 285 { 286 int bit; 287 288 while (status) { 289 bit = __ffs(status); 290 status >>= bit + 1; 291 voice += bit; 292 sis_update_voice(voice); 293 voice++; 294 } 295 } 296 297 static irqreturn_t sis_interrupt(int irq, void *dev) 298 { 299 struct sis7019 *sis = dev; 300 unsigned long io = sis->ioport; 301 struct voice *voice; 302 u32 intr, status; 303 304 /* We only use the DMA interrupts, and we don't enable any other 305 * source of interrupts. But, it is possible to see an interrupt 306 * status that didn't actually interrupt us, so eliminate anything 307 * we're not expecting to avoid falsely claiming an IRQ, and an 308 * ensuing endless loop. 309 */ 310 intr = inl(io + SIS_GISR); 311 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 312 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 313 if (!intr) 314 return IRQ_NONE; 315 316 do { 317 status = inl(io + SIS_PISR_A); 318 if (status) { 319 sis_voice_irq(status, sis->voices); 320 outl(status, io + SIS_PISR_A); 321 } 322 323 status = inl(io + SIS_PISR_B); 324 if (status) { 325 sis_voice_irq(status, &sis->voices[32]); 326 outl(status, io + SIS_PISR_B); 327 } 328 329 status = inl(io + SIS_RISR); 330 if (status) { 331 voice = &sis->capture_voice; 332 if (!voice->timing) 333 snd_pcm_period_elapsed(voice->substream); 334 335 outl(status, io + SIS_RISR); 336 } 337 338 outl(intr, io + SIS_GISR); 339 intr = inl(io + SIS_GISR); 340 intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | 341 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; 342 } while (intr); 343 344 return IRQ_HANDLED; 345 } 346 347 static u32 sis_rate_to_delta(unsigned int rate) 348 { 349 u32 delta; 350 351 /* This was copied from the trident driver, but it seems its gotten 352 * around a bit... nevertheless, it works well. 353 * 354 * We special case 44100 and 8000 since rounding with the equation 355 * does not give us an accurate enough value. For 11025 and 22050 356 * the equation gives us the best answer. All other frequencies will 357 * also use the equation. JDW 358 */ 359 if (rate == 44100) 360 delta = 0xeb3; 361 else if (rate == 8000) 362 delta = 0x2ab; 363 else if (rate == 48000) 364 delta = 0x1000; 365 else 366 delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; 367 return delta; 368 } 369 370 static void __sis_map_silence(struct sis7019 *sis) 371 { 372 /* Helper function: must hold sis->voice_lock on entry */ 373 if (!sis->silence_users) 374 sis->silence_dma_addr = dma_map_single(&sis->pci->dev, 375 sis->suspend_state[0], 376 4096, DMA_TO_DEVICE); 377 sis->silence_users++; 378 } 379 380 static void __sis_unmap_silence(struct sis7019 *sis) 381 { 382 /* Helper function: must hold sis->voice_lock on entry */ 383 sis->silence_users--; 384 if (!sis->silence_users) 385 dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096, 386 DMA_TO_DEVICE); 387 } 388 389 static void sis_free_voice(struct sis7019 *sis, struct voice *voice) 390 { 391 unsigned long flags; 392 393 spin_lock_irqsave(&sis->voice_lock, flags); 394 if (voice->timing) { 395 __sis_unmap_silence(sis); 396 voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | 397 VOICE_SYNC_TIMING); 398 voice->timing = NULL; 399 } 400 voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); 401 spin_unlock_irqrestore(&sis->voice_lock, flags); 402 } 403 404 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) 405 { 406 /* Must hold the voice_lock on entry */ 407 struct voice *voice; 408 int i; 409 410 for (i = 0; i < 64; i++) { 411 voice = &sis->voices[i]; 412 if (voice->flags & VOICE_IN_USE) 413 continue; 414 voice->flags |= VOICE_IN_USE; 415 goto found_one; 416 } 417 voice = NULL; 418 419 found_one: 420 return voice; 421 } 422 423 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) 424 { 425 struct voice *voice; 426 unsigned long flags; 427 428 spin_lock_irqsave(&sis->voice_lock, flags); 429 voice = __sis_alloc_playback_voice(sis); 430 spin_unlock_irqrestore(&sis->voice_lock, flags); 431 432 return voice; 433 } 434 435 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, 436 struct snd_pcm_hw_params *hw_params) 437 { 438 struct sis7019 *sis = snd_pcm_substream_chip(substream); 439 struct snd_pcm_runtime *runtime = substream->runtime; 440 struct voice *voice = runtime->private_data; 441 unsigned int period_size, buffer_size; 442 unsigned long flags; 443 int needed; 444 445 /* If there are one or two periods per buffer, we don't need a 446 * timing voice, as we can use the capture channel's interrupts 447 * to clock out the periods. 448 */ 449 period_size = params_period_size(hw_params); 450 buffer_size = params_buffer_size(hw_params); 451 needed = (period_size != buffer_size && 452 period_size != (buffer_size / 2)); 453 454 if (needed && !voice->timing) { 455 spin_lock_irqsave(&sis->voice_lock, flags); 456 voice->timing = __sis_alloc_playback_voice(sis); 457 if (voice->timing) 458 __sis_map_silence(sis); 459 spin_unlock_irqrestore(&sis->voice_lock, flags); 460 if (!voice->timing) 461 return -ENOMEM; 462 voice->timing->substream = substream; 463 } else if (!needed && voice->timing) { 464 sis_free_voice(sis, voice); 465 voice->timing = NULL; 466 } 467 468 return 0; 469 } 470 471 static int sis_playback_open(struct snd_pcm_substream *substream) 472 { 473 struct sis7019 *sis = snd_pcm_substream_chip(substream); 474 struct snd_pcm_runtime *runtime = substream->runtime; 475 struct voice *voice; 476 477 voice = sis_alloc_playback_voice(sis); 478 if (!voice) 479 return -EAGAIN; 480 481 voice->substream = substream; 482 runtime->private_data = voice; 483 runtime->hw = sis_playback_hw_info; 484 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 485 9, 0xfff9); 486 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 487 9, 0xfff9); 488 snd_pcm_set_sync(substream); 489 return 0; 490 } 491 492 static int sis_substream_close(struct snd_pcm_substream *substream) 493 { 494 struct sis7019 *sis = snd_pcm_substream_chip(substream); 495 struct snd_pcm_runtime *runtime = substream->runtime; 496 struct voice *voice = runtime->private_data; 497 498 sis_free_voice(sis, voice); 499 return 0; 500 } 501 502 static int sis_playback_hw_params(struct snd_pcm_substream *substream, 503 struct snd_pcm_hw_params *hw_params) 504 { 505 return snd_pcm_lib_malloc_pages(substream, 506 params_buffer_bytes(hw_params)); 507 } 508 509 static int sis_hw_free(struct snd_pcm_substream *substream) 510 { 511 return snd_pcm_lib_free_pages(substream); 512 } 513 514 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) 515 { 516 struct snd_pcm_runtime *runtime = substream->runtime; 517 struct voice *voice = runtime->private_data; 518 void __iomem *ctrl_base = voice->ctrl_base; 519 void __iomem *wave_base = voice->wave_base; 520 u32 format, dma_addr, control, sso_eso, delta, reg; 521 u16 leo; 522 523 /* We rely on the PCM core to ensure that the parameters for this 524 * substream do not change on us while we're programming the HW. 525 */ 526 format = 0; 527 if (snd_pcm_format_width(runtime->format) == 8) 528 format |= SIS_PLAY_DMA_FORMAT_8BIT; 529 if (!snd_pcm_format_signed(runtime->format)) 530 format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; 531 if (runtime->channels == 1) 532 format |= SIS_PLAY_DMA_FORMAT_MONO; 533 534 /* The baseline setup is for a single period per buffer, and 535 * we add bells and whistles as needed from there. 536 */ 537 dma_addr = runtime->dma_addr; 538 leo = runtime->buffer_size - 1; 539 control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; 540 sso_eso = leo; 541 542 if (runtime->period_size == (runtime->buffer_size / 2)) { 543 control |= SIS_PLAY_DMA_INTR_AT_MLP; 544 } else if (runtime->period_size != runtime->buffer_size) { 545 voice->flags |= VOICE_SSO_TIMING; 546 voice->sso = runtime->period_size - 1; 547 voice->period_size = runtime->period_size; 548 voice->buffer_size = runtime->buffer_size; 549 550 control &= ~SIS_PLAY_DMA_INTR_AT_LEO; 551 control |= SIS_PLAY_DMA_INTR_AT_SSO; 552 sso_eso |= (runtime->period_size - 1) << 16; 553 } 554 555 delta = sis_rate_to_delta(runtime->rate); 556 557 /* Ok, we're ready to go, set up the channel. 558 */ 559 writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 560 writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); 561 writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); 562 writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); 563 564 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 565 writel(0, wave_base + reg); 566 567 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 568 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 569 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 570 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 571 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 572 wave_base + SIS_WAVE_CHANNEL_CONTROL); 573 574 /* Force PCI writes to post. */ 575 readl(ctrl_base); 576 577 return 0; 578 } 579 580 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 581 { 582 struct sis7019 *sis = snd_pcm_substream_chip(substream); 583 unsigned long io = sis->ioport; 584 struct snd_pcm_substream *s; 585 struct voice *voice; 586 void *chip; 587 int starting; 588 u32 record = 0; 589 u32 play[2] = { 0, 0 }; 590 591 /* No locks needed, as the PCM core will hold the locks on the 592 * substreams, and the HW will only start/stop the indicated voices 593 * without changing the state of the others. 594 */ 595 switch (cmd) { 596 case SNDRV_PCM_TRIGGER_START: 597 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 598 case SNDRV_PCM_TRIGGER_RESUME: 599 starting = 1; 600 break; 601 case SNDRV_PCM_TRIGGER_STOP: 602 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 603 case SNDRV_PCM_TRIGGER_SUSPEND: 604 starting = 0; 605 break; 606 default: 607 return -EINVAL; 608 } 609 610 snd_pcm_group_for_each_entry(s, substream) { 611 /* Make sure it is for us... */ 612 chip = snd_pcm_substream_chip(s); 613 if (chip != sis) 614 continue; 615 616 voice = s->runtime->private_data; 617 if (voice->flags & VOICE_CAPTURE) { 618 record |= 1 << voice->num; 619 voice = voice->timing; 620 } 621 622 /* voice could be NULL if this a recording stream, and it 623 * doesn't have an external timing channel. 624 */ 625 if (voice) 626 play[voice->num / 32] |= 1 << (voice->num & 0x1f); 627 628 snd_pcm_trigger_done(s, substream); 629 } 630 631 if (starting) { 632 if (record) 633 outl(record, io + SIS_RECORD_START_REG); 634 if (play[0]) 635 outl(play[0], io + SIS_PLAY_START_A_REG); 636 if (play[1]) 637 outl(play[1], io + SIS_PLAY_START_B_REG); 638 } else { 639 if (record) 640 outl(record, io + SIS_RECORD_STOP_REG); 641 if (play[0]) 642 outl(play[0], io + SIS_PLAY_STOP_A_REG); 643 if (play[1]) 644 outl(play[1], io + SIS_PLAY_STOP_B_REG); 645 } 646 return 0; 647 } 648 649 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) 650 { 651 struct snd_pcm_runtime *runtime = substream->runtime; 652 struct voice *voice = runtime->private_data; 653 u32 cso; 654 655 cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); 656 cso &= 0xffff; 657 return cso; 658 } 659 660 static int sis_capture_open(struct snd_pcm_substream *substream) 661 { 662 struct sis7019 *sis = snd_pcm_substream_chip(substream); 663 struct snd_pcm_runtime *runtime = substream->runtime; 664 struct voice *voice = &sis->capture_voice; 665 unsigned long flags; 666 667 /* FIXME: The driver only supports recording from one channel 668 * at the moment, but it could support more. 669 */ 670 spin_lock_irqsave(&sis->voice_lock, flags); 671 if (voice->flags & VOICE_IN_USE) 672 voice = NULL; 673 else 674 voice->flags |= VOICE_IN_USE; 675 spin_unlock_irqrestore(&sis->voice_lock, flags); 676 677 if (!voice) 678 return -EAGAIN; 679 680 voice->substream = substream; 681 runtime->private_data = voice; 682 runtime->hw = sis_capture_hw_info; 683 runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; 684 snd_pcm_limit_hw_rates(runtime); 685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 686 9, 0xfff9); 687 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 688 9, 0xfff9); 689 snd_pcm_set_sync(substream); 690 return 0; 691 } 692 693 static int sis_capture_hw_params(struct snd_pcm_substream *substream, 694 struct snd_pcm_hw_params *hw_params) 695 { 696 struct sis7019 *sis = snd_pcm_substream_chip(substream); 697 int rc; 698 699 rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, 700 params_rate(hw_params)); 701 if (rc) 702 goto out; 703 704 rc = snd_pcm_lib_malloc_pages(substream, 705 params_buffer_bytes(hw_params)); 706 if (rc < 0) 707 goto out; 708 709 rc = sis_alloc_timing_voice(substream, hw_params); 710 711 out: 712 return rc; 713 } 714 715 static void sis_prepare_timing_voice(struct voice *voice, 716 struct snd_pcm_substream *substream) 717 { 718 struct sis7019 *sis = snd_pcm_substream_chip(substream); 719 struct snd_pcm_runtime *runtime = substream->runtime; 720 struct voice *timing = voice->timing; 721 void __iomem *play_base = timing->ctrl_base; 722 void __iomem *wave_base = timing->wave_base; 723 u16 buffer_size, period_size; 724 u32 format, control, sso_eso, delta; 725 u32 vperiod, sso, reg; 726 727 /* Set our initial buffer and period as large as we can given a 728 * single page of silence. 729 */ 730 buffer_size = 4096 / runtime->channels; 731 buffer_size /= snd_pcm_format_size(runtime->format, 1); 732 period_size = buffer_size; 733 734 /* Initially, we want to interrupt just a bit behind the end of 735 * the period we're clocking out. 12 samples seems to give a good 736 * delay. 737 * 738 * We want to spread our interrupts throughout the virtual period, 739 * so that we don't end up with two interrupts back to back at the 740 * end -- this helps minimize the effects of any jitter. Adjust our 741 * clocking period size so that the last period is at least a fourth 742 * of a full period. 743 * 744 * This is all moot if we don't need to use virtual periods. 745 */ 746 vperiod = runtime->period_size + 12; 747 if (vperiod > period_size) { 748 u16 tail = vperiod % period_size; 749 u16 quarter_period = period_size / 4; 750 751 if (tail && tail < quarter_period) { 752 u16 loops = vperiod / period_size; 753 754 tail = quarter_period - tail; 755 tail += loops - 1; 756 tail /= loops; 757 period_size -= tail; 758 } 759 760 sso = period_size - 1; 761 } else { 762 /* The initial period will fit inside the buffer, so we 763 * don't need to use virtual periods -- disable them. 764 */ 765 period_size = runtime->period_size; 766 sso = vperiod - 1; 767 vperiod = 0; 768 } 769 770 /* The interrupt handler implements the timing synchronization, so 771 * setup its state. 772 */ 773 timing->flags |= VOICE_SYNC_TIMING; 774 timing->sync_base = voice->ctrl_base; 775 timing->sync_cso = runtime->period_size; 776 timing->sync_period_size = runtime->period_size; 777 timing->sync_buffer_size = runtime->buffer_size; 778 timing->period_size = period_size; 779 timing->buffer_size = buffer_size; 780 timing->sso = sso; 781 timing->vperiod = vperiod; 782 783 /* Using unsigned samples with the all-zero silence buffer 784 * forces the output to the lower rail, killing playback. 785 * So ignore unsigned vs signed -- it doesn't change the timing. 786 */ 787 format = 0; 788 if (snd_pcm_format_width(runtime->format) == 8) 789 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 790 if (runtime->channels == 1) 791 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 792 793 control = timing->buffer_size - 1; 794 control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; 795 sso_eso = timing->buffer_size - 1; 796 sso_eso |= timing->sso << 16; 797 798 delta = sis_rate_to_delta(runtime->rate); 799 800 /* We've done the math, now configure the channel. 801 */ 802 writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); 803 writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); 804 writel(control, play_base + SIS_PLAY_DMA_CONTROL); 805 writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); 806 807 for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) 808 writel(0, wave_base + reg); 809 810 writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); 811 writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); 812 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | 813 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | 814 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, 815 wave_base + SIS_WAVE_CHANNEL_CONTROL); 816 } 817 818 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) 819 { 820 struct snd_pcm_runtime *runtime = substream->runtime; 821 struct voice *voice = runtime->private_data; 822 void __iomem *rec_base = voice->ctrl_base; 823 u32 format, dma_addr, control; 824 u16 leo; 825 826 /* We rely on the PCM core to ensure that the parameters for this 827 * substream do not change on us while we're programming the HW. 828 */ 829 format = 0; 830 if (snd_pcm_format_width(runtime->format) == 8) 831 format = SIS_CAPTURE_DMA_FORMAT_8BIT; 832 if (!snd_pcm_format_signed(runtime->format)) 833 format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; 834 if (runtime->channels == 1) 835 format |= SIS_CAPTURE_DMA_FORMAT_MONO; 836 837 dma_addr = runtime->dma_addr; 838 leo = runtime->buffer_size - 1; 839 control = leo | SIS_CAPTURE_DMA_LOOP; 840 841 /* If we've got more than two periods per buffer, then we have 842 * use a timing voice to clock out the periods. Otherwise, we can 843 * use the capture channel's interrupts. 844 */ 845 if (voice->timing) { 846 sis_prepare_timing_voice(voice, substream); 847 } else { 848 control |= SIS_CAPTURE_DMA_INTR_AT_LEO; 849 if (runtime->period_size != runtime->buffer_size) 850 control |= SIS_CAPTURE_DMA_INTR_AT_MLP; 851 } 852 853 writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); 854 writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); 855 writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); 856 857 /* Force the writes to post. */ 858 readl(rec_base); 859 860 return 0; 861 } 862 863 static const struct snd_pcm_ops sis_playback_ops = { 864 .open = sis_playback_open, 865 .close = sis_substream_close, 866 .ioctl = snd_pcm_lib_ioctl, 867 .hw_params = sis_playback_hw_params, 868 .hw_free = sis_hw_free, 869 .prepare = sis_pcm_playback_prepare, 870 .trigger = sis_pcm_trigger, 871 .pointer = sis_pcm_pointer, 872 }; 873 874 static const struct snd_pcm_ops sis_capture_ops = { 875 .open = sis_capture_open, 876 .close = sis_substream_close, 877 .ioctl = snd_pcm_lib_ioctl, 878 .hw_params = sis_capture_hw_params, 879 .hw_free = sis_hw_free, 880 .prepare = sis_pcm_capture_prepare, 881 .trigger = sis_pcm_trigger, 882 .pointer = sis_pcm_pointer, 883 }; 884 885 static int sis_pcm_create(struct sis7019 *sis) 886 { 887 struct snd_pcm *pcm; 888 int rc; 889 890 /* We have 64 voices, and the driver currently records from 891 * only one channel, though that could change in the future. 892 */ 893 rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); 894 if (rc) 895 return rc; 896 897 pcm->private_data = sis; 898 strcpy(pcm->name, "SiS7019"); 899 sis->pcm = pcm; 900 901 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); 902 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); 903 904 /* Try to preallocate some memory, but it's not the end of the 905 * world if this fails. 906 */ 907 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 908 &sis->pci->dev, 909 64*1024, 128*1024); 910 911 return 0; 912 } 913 914 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) 915 { 916 unsigned long io = sis->ioport; 917 unsigned short val = 0xffff; 918 u16 status; 919 u16 rdy; 920 int count; 921 static const u16 codec_ready[3] = { 922 SIS_AC97_STATUS_CODEC_READY, 923 SIS_AC97_STATUS_CODEC2_READY, 924 SIS_AC97_STATUS_CODEC3_READY, 925 }; 926 927 rdy = codec_ready[codec]; 928 929 930 /* Get the AC97 semaphore -- software first, so we don't spin 931 * pounding out IO reads on the hardware semaphore... 932 */ 933 mutex_lock(&sis->ac97_mutex); 934 935 count = 0xffff; 936 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 937 udelay(1); 938 939 if (!count) 940 goto timeout; 941 942 /* ... and wait for any outstanding commands to complete ... 943 */ 944 count = 0xffff; 945 do { 946 status = inw(io + SIS_AC97_STATUS); 947 if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) 948 break; 949 950 udelay(1); 951 } while (--count); 952 953 if (!count) 954 goto timeout_sema; 955 956 /* ... before sending our command and waiting for it to finish ... 957 */ 958 outl(cmd, io + SIS_AC97_CMD); 959 udelay(10); 960 961 count = 0xffff; 962 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 963 udelay(1); 964 965 /* ... and reading the results (if any). 966 */ 967 val = inl(io + SIS_AC97_CMD) >> 16; 968 969 timeout_sema: 970 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 971 timeout: 972 mutex_unlock(&sis->ac97_mutex); 973 974 if (!count) { 975 dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n", 976 codec, cmd); 977 } 978 979 return val; 980 } 981 982 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, 983 unsigned short val) 984 { 985 static const u32 cmd[3] = { 986 SIS_AC97_CMD_CODEC_WRITE, 987 SIS_AC97_CMD_CODEC2_WRITE, 988 SIS_AC97_CMD_CODEC3_WRITE, 989 }; 990 sis_ac97_rw(ac97->private_data, ac97->num, 991 (val << 16) | (reg << 8) | cmd[ac97->num]); 992 } 993 994 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 995 { 996 static const u32 cmd[3] = { 997 SIS_AC97_CMD_CODEC_READ, 998 SIS_AC97_CMD_CODEC2_READ, 999 SIS_AC97_CMD_CODEC3_READ, 1000 }; 1001 return sis_ac97_rw(ac97->private_data, ac97->num, 1002 (reg << 8) | cmd[ac97->num]); 1003 } 1004 1005 static int sis_mixer_create(struct sis7019 *sis) 1006 { 1007 struct snd_ac97_bus *bus; 1008 struct snd_ac97_template ac97; 1009 static struct snd_ac97_bus_ops ops = { 1010 .write = sis_ac97_write, 1011 .read = sis_ac97_read, 1012 }; 1013 int rc; 1014 1015 memset(&ac97, 0, sizeof(ac97)); 1016 ac97.private_data = sis; 1017 1018 rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); 1019 if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1020 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); 1021 ac97.num = 1; 1022 if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) 1023 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); 1024 ac97.num = 2; 1025 if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) 1026 rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); 1027 1028 /* If we return an error here, then snd_card_free() should 1029 * free up any ac97 codecs that got created, as well as the bus. 1030 */ 1031 return rc; 1032 } 1033 1034 static void sis_free_suspend(struct sis7019 *sis) 1035 { 1036 int i; 1037 1038 for (i = 0; i < SIS_SUSPEND_PAGES; i++) 1039 kfree(sis->suspend_state[i]); 1040 } 1041 1042 static int sis_chip_free(struct sis7019 *sis) 1043 { 1044 /* Reset the chip, and disable all interrputs. 1045 */ 1046 outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); 1047 udelay(25); 1048 outl(0, sis->ioport + SIS_GCR); 1049 outl(0, sis->ioport + SIS_GIER); 1050 1051 /* Now, free everything we allocated. 1052 */ 1053 if (sis->irq >= 0) 1054 free_irq(sis->irq, sis); 1055 1056 iounmap(sis->ioaddr); 1057 pci_release_regions(sis->pci); 1058 pci_disable_device(sis->pci); 1059 sis_free_suspend(sis); 1060 return 0; 1061 } 1062 1063 static int sis_dev_free(struct snd_device *dev) 1064 { 1065 struct sis7019 *sis = dev->device_data; 1066 return sis_chip_free(sis); 1067 } 1068 1069 static int sis_chip_init(struct sis7019 *sis) 1070 { 1071 unsigned long io = sis->ioport; 1072 void __iomem *ioaddr = sis->ioaddr; 1073 unsigned long timeout; 1074 u16 status; 1075 int count; 1076 int i; 1077 1078 /* Reset the audio controller 1079 */ 1080 outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); 1081 udelay(25); 1082 outl(0, io + SIS_GCR); 1083 1084 /* Get the AC-link semaphore, and reset the codecs 1085 */ 1086 count = 0xffff; 1087 while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) 1088 udelay(1); 1089 1090 if (!count) 1091 return -EIO; 1092 1093 outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); 1094 udelay(250); 1095 1096 count = 0xffff; 1097 while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) 1098 udelay(1); 1099 1100 /* Command complete, we can let go of the semaphore now. 1101 */ 1102 outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); 1103 if (!count) 1104 return -EIO; 1105 1106 /* Now that we've finished the reset, find out what's attached. 1107 * There are some codec/board combinations that take an extremely 1108 * long time to come up. 350+ ms has been observed in the field, 1109 * so we'll give them up to 500ms. 1110 */ 1111 sis->codecs_present = 0; 1112 timeout = msecs_to_jiffies(500) + jiffies; 1113 while (time_before_eq(jiffies, timeout)) { 1114 status = inl(io + SIS_AC97_STATUS); 1115 if (status & SIS_AC97_STATUS_CODEC_READY) 1116 sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; 1117 if (status & SIS_AC97_STATUS_CODEC2_READY) 1118 sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; 1119 if (status & SIS_AC97_STATUS_CODEC3_READY) 1120 sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; 1121 1122 if (sis->codecs_present == codecs) 1123 break; 1124 1125 msleep(1); 1126 } 1127 1128 /* All done, check for errors. 1129 */ 1130 if (!sis->codecs_present) { 1131 dev_err(&sis->pci->dev, "could not find any codecs\n"); 1132 return -EIO; 1133 } 1134 1135 if (sis->codecs_present != codecs) { 1136 dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n", 1137 sis->codecs_present, codecs); 1138 } 1139 1140 /* Let the hardware know that the audio driver is alive, 1141 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and 1142 * record channels. We're going to want to use Variable Rate Audio 1143 * for recording, to avoid needlessly resampling from 48kHZ. 1144 */ 1145 outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); 1146 outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | 1147 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | 1148 SIS_AC97_CONF_PCM_CAP_LR_ENABLE | 1149 SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); 1150 1151 /* All AC97 PCM slots should be sourced from sub-mixer 0. 1152 */ 1153 outl(0, io + SIS_AC97_PSR); 1154 1155 /* There is only one valid DMA setup for a PCI environment. 1156 */ 1157 outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); 1158 1159 /* Reset the synchronization groups for all of the channels 1160 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc. 1161 * we'll need to change how we handle these. Until then, we just 1162 * assign sub-mixer 0 to all playback channels, and avoid any 1163 * attenuation on the audio. 1164 */ 1165 outl(0, io + SIS_PLAY_SYNC_GROUP_A); 1166 outl(0, io + SIS_PLAY_SYNC_GROUP_B); 1167 outl(0, io + SIS_PLAY_SYNC_GROUP_C); 1168 outl(0, io + SIS_PLAY_SYNC_GROUP_D); 1169 outl(0, io + SIS_MIXER_SYNC_GROUP); 1170 1171 for (i = 0; i < 64; i++) { 1172 writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); 1173 writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | 1174 SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); 1175 } 1176 1177 /* Don't attenuate any audio set for the wave amplifier. 1178 * 1179 * FIXME: Maximum attenuation is set for the music amp, which will 1180 * need to change if we start using the synth engine. 1181 */ 1182 outl(0xffff0000, io + SIS_WEVCR); 1183 1184 /* Ensure that the wave engine is in normal operating mode. 1185 */ 1186 outl(0, io + SIS_WECCR); 1187 1188 /* Go ahead and enable the DMA interrupts. They won't go live 1189 * until we start a channel. 1190 */ 1191 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | 1192 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); 1193 1194 return 0; 1195 } 1196 1197 #ifdef CONFIG_PM_SLEEP 1198 static int sis_suspend(struct device *dev) 1199 { 1200 struct snd_card *card = dev_get_drvdata(dev); 1201 struct sis7019 *sis = card->private_data; 1202 void __iomem *ioaddr = sis->ioaddr; 1203 int i; 1204 1205 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1206 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1207 snd_ac97_suspend(sis->ac97[0]); 1208 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1209 snd_ac97_suspend(sis->ac97[1]); 1210 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1211 snd_ac97_suspend(sis->ac97[2]); 1212 1213 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. 1214 */ 1215 if (sis->irq >= 0) { 1216 free_irq(sis->irq, sis); 1217 sis->irq = -1; 1218 } 1219 1220 /* Save the internal state away 1221 */ 1222 for (i = 0; i < 4; i++) { 1223 memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); 1224 ioaddr += 4096; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int sis_resume(struct device *dev) 1231 { 1232 struct pci_dev *pci = to_pci_dev(dev); 1233 struct snd_card *card = dev_get_drvdata(dev); 1234 struct sis7019 *sis = card->private_data; 1235 void __iomem *ioaddr = sis->ioaddr; 1236 int i; 1237 1238 if (sis_chip_init(sis)) { 1239 dev_err(&pci->dev, "unable to re-init controller\n"); 1240 goto error; 1241 } 1242 1243 if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, 1244 KBUILD_MODNAME, sis)) { 1245 dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq); 1246 goto error; 1247 } 1248 1249 /* Restore saved state, then clear out the page we use for the 1250 * silence buffer. 1251 */ 1252 for (i = 0; i < 4; i++) { 1253 memcpy_toio(ioaddr, sis->suspend_state[i], 4096); 1254 ioaddr += 4096; 1255 } 1256 1257 memset(sis->suspend_state[0], 0, 4096); 1258 1259 sis->irq = pci->irq; 1260 1261 if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) 1262 snd_ac97_resume(sis->ac97[0]); 1263 if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) 1264 snd_ac97_resume(sis->ac97[1]); 1265 if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) 1266 snd_ac97_resume(sis->ac97[2]); 1267 1268 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1269 return 0; 1270 1271 error: 1272 snd_card_disconnect(card); 1273 return -EIO; 1274 } 1275 1276 static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume); 1277 #define SIS_PM_OPS &sis_pm 1278 #else 1279 #define SIS_PM_OPS NULL 1280 #endif /* CONFIG_PM_SLEEP */ 1281 1282 static int sis_alloc_suspend(struct sis7019 *sis) 1283 { 1284 int i; 1285 1286 /* We need 16K to store the internal wave engine state during a 1287 * suspend, but we don't need it to be contiguous, so play nice 1288 * with the memory system. We'll also use this area for a silence 1289 * buffer. 1290 */ 1291 for (i = 0; i < SIS_SUSPEND_PAGES; i++) { 1292 sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); 1293 if (!sis->suspend_state[i]) 1294 return -ENOMEM; 1295 } 1296 memset(sis->suspend_state[0], 0, 4096); 1297 1298 return 0; 1299 } 1300 1301 static int sis_chip_create(struct snd_card *card, 1302 struct pci_dev *pci) 1303 { 1304 struct sis7019 *sis = card->private_data; 1305 struct voice *voice; 1306 static struct snd_device_ops ops = { 1307 .dev_free = sis_dev_free, 1308 }; 1309 int rc; 1310 int i; 1311 1312 rc = pci_enable_device(pci); 1313 if (rc) 1314 goto error_out; 1315 1316 rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30)); 1317 if (rc < 0) { 1318 dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA"); 1319 goto error_out_enabled; 1320 } 1321 1322 memset(sis, 0, sizeof(*sis)); 1323 mutex_init(&sis->ac97_mutex); 1324 spin_lock_init(&sis->voice_lock); 1325 sis->card = card; 1326 sis->pci = pci; 1327 sis->irq = -1; 1328 sis->ioport = pci_resource_start(pci, 0); 1329 1330 rc = pci_request_regions(pci, "SiS7019"); 1331 if (rc) { 1332 dev_err(&pci->dev, "unable request regions\n"); 1333 goto error_out_enabled; 1334 } 1335 1336 rc = -EIO; 1337 sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); 1338 if (!sis->ioaddr) { 1339 dev_err(&pci->dev, "unable to remap MMIO, aborting\n"); 1340 goto error_out_cleanup; 1341 } 1342 1343 rc = sis_alloc_suspend(sis); 1344 if (rc < 0) { 1345 dev_err(&pci->dev, "unable to allocate state storage\n"); 1346 goto error_out_cleanup; 1347 } 1348 1349 rc = sis_chip_init(sis); 1350 if (rc) 1351 goto error_out_cleanup; 1352 1353 rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME, 1354 sis); 1355 if (rc) { 1356 dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq); 1357 goto error_out_cleanup; 1358 } 1359 1360 sis->irq = pci->irq; 1361 pci_set_master(pci); 1362 1363 for (i = 0; i < 64; i++) { 1364 voice = &sis->voices[i]; 1365 voice->num = i; 1366 voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); 1367 voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); 1368 } 1369 1370 voice = &sis->capture_voice; 1371 voice->flags = VOICE_CAPTURE; 1372 voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; 1373 voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); 1374 1375 rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); 1376 if (rc) 1377 goto error_out_cleanup; 1378 1379 return 0; 1380 1381 error_out_cleanup: 1382 sis_chip_free(sis); 1383 1384 error_out_enabled: 1385 pci_disable_device(pci); 1386 1387 error_out: 1388 return rc; 1389 } 1390 1391 static int snd_sis7019_probe(struct pci_dev *pci, 1392 const struct pci_device_id *pci_id) 1393 { 1394 struct snd_card *card; 1395 struct sis7019 *sis; 1396 int rc; 1397 1398 rc = -ENOENT; 1399 if (!enable) 1400 goto error_out; 1401 1402 /* The user can specify which codecs should be present so that we 1403 * can wait for them to show up if they are slow to recover from 1404 * the AC97 cold reset. We default to a single codec, the primary. 1405 * 1406 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2. 1407 */ 1408 codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT | 1409 SIS_TERTIARY_CODEC_PRESENT; 1410 if (!codecs) 1411 codecs = SIS_PRIMARY_CODEC_PRESENT; 1412 1413 rc = snd_card_new(&pci->dev, index, id, THIS_MODULE, 1414 sizeof(*sis), &card); 1415 if (rc < 0) 1416 goto error_out; 1417 1418 strcpy(card->driver, "SiS7019"); 1419 strcpy(card->shortname, "SiS7019"); 1420 rc = sis_chip_create(card, pci); 1421 if (rc) 1422 goto card_error_out; 1423 1424 sis = card->private_data; 1425 1426 rc = sis_mixer_create(sis); 1427 if (rc) 1428 goto card_error_out; 1429 1430 rc = sis_pcm_create(sis); 1431 if (rc) 1432 goto card_error_out; 1433 1434 snprintf(card->longname, sizeof(card->longname), 1435 "%s Audio Accelerator with %s at 0x%lx, irq %d", 1436 card->shortname, snd_ac97_get_short_name(sis->ac97[0]), 1437 sis->ioport, sis->irq); 1438 1439 rc = snd_card_register(card); 1440 if (rc) 1441 goto card_error_out; 1442 1443 pci_set_drvdata(pci, card); 1444 return 0; 1445 1446 card_error_out: 1447 snd_card_free(card); 1448 1449 error_out: 1450 return rc; 1451 } 1452 1453 static void snd_sis7019_remove(struct pci_dev *pci) 1454 { 1455 snd_card_free(pci_get_drvdata(pci)); 1456 } 1457 1458 static struct pci_driver sis7019_driver = { 1459 .name = KBUILD_MODNAME, 1460 .id_table = snd_sis7019_ids, 1461 .probe = snd_sis7019_probe, 1462 .remove = snd_sis7019_remove, 1463 .driver = { 1464 .pm = SIS_PM_OPS, 1465 }, 1466 }; 1467 1468 module_pci_driver(sis7019_driver); 1469