xref: /linux/sound/pci/sis7019.c (revision 4f77c3462308c62ffe7129cc18b9ac937f44b5a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for SiS7019 Audio Accelerator
4  *
5  *  Copyright (C) 2004-2007, David Dillow
6  *  Written by David Dillow <dave@thedillows.org>
7  *  Inspired by the Trident 4D-WaveDX/NX driver.
8  *
9  *  All rights reserved.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
22 #include "sis7019.h"
23 
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
27 
28 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
29 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
30 static bool enable = 1;
31 static int codecs = 1;
32 
33 module_param(index, int, 0444);
34 MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id, charp, 0444);
36 MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable, bool, 0444);
38 MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs, int, 0444);
40 MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
41 
42 static const struct pci_device_id snd_sis7019_ids[] = {
43 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
44 	{ 0, }
45 };
46 
47 MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
48 
49 /* There are three timing modes for the voices.
50  *
51  * For both playback and capture, when the buffer is one or two periods long,
52  * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53  * to let us know when the periods have ended.
54  *
55  * When performing playback with more than two periods per buffer, we set
56  * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57  * reach it. We then update the offset and continue on until we are
58  * interrupted for the next period.
59  *
60  * Capture channels do not have a SSO, so we allocate a playback channel to
61  * use as a timer for the capture periods. We use the SSO on the playback
62  * channel to clock out virtual periods, and adjust the virtual period length
63  * to maintain synchronization. This algorithm came from the Trident driver.
64  *
65  * FIXME: It'd be nice to make use of some of the synth features in the
66  * hardware, but a woeful lack of documentation is a significant roadblock.
67  */
68 struct voice {
69 	u16 flags;
70 #define 	VOICE_IN_USE		1
71 #define 	VOICE_CAPTURE		2
72 #define 	VOICE_SSO_TIMING	4
73 #define 	VOICE_SYNC_TIMING	8
74 	u16 sync_cso;
75 	u16 period_size;
76 	u16 buffer_size;
77 	u16 sync_period_size;
78 	u16 sync_buffer_size;
79 	u32 sso;
80 	u32 vperiod;
81 	struct snd_pcm_substream *substream;
82 	struct voice *timing;
83 	void __iomem *ctrl_base;
84 	void __iomem *wave_base;
85 	void __iomem *sync_base;
86 	int num;
87 };
88 
89 /* We need four pages to store our wave parameters during a suspend. If
90  * we're not doing power management, we still need to allocate a page
91  * for the silence buffer.
92  */
93 #define SIS_SUSPEND_PAGES	4
94 
95 struct sis7019 {
96 	unsigned long ioport;
97 	void __iomem *ioaddr;
98 	int irq;
99 	int codecs_present;
100 
101 	struct pci_dev *pci;
102 	struct snd_pcm *pcm;
103 	struct snd_card *card;
104 	struct snd_ac97 *ac97[3];
105 
106 	/* Protect against more than one thread hitting the AC97
107 	 * registers (in a more polite manner than pounding the hardware
108 	 * semaphore)
109 	 */
110 	struct mutex ac97_mutex;
111 
112 	/* voice_lock protects allocation/freeing of the voice descriptions
113 	 */
114 	spinlock_t voice_lock;
115 
116 	struct voice voices[64];
117 	struct voice capture_voice;
118 
119 	/* Allocate pages to store the internal wave state during
120 	 * suspends. When we're operating, this can be used as a silence
121 	 * buffer for a timing channel.
122 	 */
123 	void *suspend_state[SIS_SUSPEND_PAGES];
124 
125 	int silence_users;
126 	dma_addr_t silence_dma_addr;
127 };
128 
129 /* These values are also used by the module param 'codecs' to indicate
130  * which codecs should be present.
131  */
132 #define SIS_PRIMARY_CODEC_PRESENT	0x0001
133 #define SIS_SECONDARY_CODEC_PRESENT	0x0002
134 #define SIS_TERTIARY_CODEC_PRESENT	0x0004
135 
136 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
137  * documented range of 8-0xfff8 samples. Given that they are 0-based,
138  * that places our period/buffer range at 9-0xfff9 samples. That makes the
139  * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
140  * max samples / min samples gives us the max periods in a buffer.
141  *
142  * We'll add a constraint upon open that limits the period and buffer sample
143  * size to values that are legal for the hardware.
144  */
145 static const struct snd_pcm_hardware sis_playback_hw_info = {
146 	.info = (SNDRV_PCM_INFO_MMAP |
147 		 SNDRV_PCM_INFO_MMAP_VALID |
148 		 SNDRV_PCM_INFO_INTERLEAVED |
149 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
150 		 SNDRV_PCM_INFO_SYNC_START |
151 		 SNDRV_PCM_INFO_RESUME),
152 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
153 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
154 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
155 	.rate_min = 4000,
156 	.rate_max = 48000,
157 	.channels_min = 1,
158 	.channels_max = 2,
159 	.buffer_bytes_max = (0xfff9 * 4),
160 	.period_bytes_min = 9,
161 	.period_bytes_max = (0xfff9 * 4),
162 	.periods_min = 1,
163 	.periods_max = (0xfff9 / 9),
164 };
165 
166 static const struct snd_pcm_hardware sis_capture_hw_info = {
167 	.info = (SNDRV_PCM_INFO_MMAP |
168 		 SNDRV_PCM_INFO_MMAP_VALID |
169 		 SNDRV_PCM_INFO_INTERLEAVED |
170 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
171 		 SNDRV_PCM_INFO_SYNC_START |
172 		 SNDRV_PCM_INFO_RESUME),
173 	.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
174 		    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
175 	.rates = SNDRV_PCM_RATE_48000,
176 	.rate_min = 4000,
177 	.rate_max = 48000,
178 	.channels_min = 1,
179 	.channels_max = 2,
180 	.buffer_bytes_max = (0xfff9 * 4),
181 	.period_bytes_min = 9,
182 	.period_bytes_max = (0xfff9 * 4),
183 	.periods_min = 1,
184 	.periods_max = (0xfff9 / 9),
185 };
186 
187 static void sis_update_sso(struct voice *voice, u16 period)
188 {
189 	void __iomem *base = voice->ctrl_base;
190 
191 	voice->sso += period;
192 	if (voice->sso >= voice->buffer_size)
193 		voice->sso -= voice->buffer_size;
194 
195 	/* Enforce the documented hardware minimum offset */
196 	if (voice->sso < 8)
197 		voice->sso = 8;
198 
199 	/* The SSO is in the upper 16 bits of the register. */
200 	writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
201 }
202 
203 static void sis_update_voice(struct voice *voice)
204 {
205 	if (voice->flags & VOICE_SSO_TIMING) {
206 		sis_update_sso(voice, voice->period_size);
207 	} else if (voice->flags & VOICE_SYNC_TIMING) {
208 		int sync;
209 
210 		/* If we've not hit the end of the virtual period, update
211 		 * our records and keep going.
212 		 */
213 		if (voice->vperiod > voice->period_size) {
214 			voice->vperiod -= voice->period_size;
215 			if (voice->vperiod < voice->period_size)
216 				sis_update_sso(voice, voice->vperiod);
217 			else
218 				sis_update_sso(voice, voice->period_size);
219 			return;
220 		}
221 
222 		/* Calculate our relative offset between the target and
223 		 * the actual CSO value. Since we're operating in a loop,
224 		 * if the value is more than half way around, we can
225 		 * consider ourselves wrapped.
226 		 */
227 		sync = voice->sync_cso;
228 		sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
229 		if (sync > (voice->sync_buffer_size / 2))
230 			sync -= voice->sync_buffer_size;
231 
232 		/* If sync is positive, then we interrupted too early, and
233 		 * we'll need to come back in a few samples and try again.
234 		 * There's a minimum wait, as it takes some time for the DMA
235 		 * engine to startup, etc...
236 		 */
237 		if (sync > 0) {
238 			if (sync < 16)
239 				sync = 16;
240 			sis_update_sso(voice, sync);
241 			return;
242 		}
243 
244 		/* Ok, we interrupted right on time, or (hopefully) just
245 		 * a bit late. We'll adjst our next waiting period based
246 		 * on how close we got.
247 		 *
248 		 * We need to stay just behind the actual channel to ensure
249 		 * it really is past a period when we get our interrupt --
250 		 * otherwise we'll fall into the early code above and have
251 		 * a minimum wait time, which makes us quite late here,
252 		 * eating into the user's time to refresh the buffer, esp.
253 		 * if using small periods.
254 		 *
255 		 * If we're less than 9 samples behind, we're on target.
256 		 * Otherwise, shorten the next vperiod by the amount we've
257 		 * been delayed.
258 		 */
259 		if (sync > -9)
260 			voice->vperiod = voice->sync_period_size + 1;
261 		else
262 			voice->vperiod = voice->sync_period_size + sync + 10;
263 
264 		if (voice->vperiod < voice->buffer_size) {
265 			sis_update_sso(voice, voice->vperiod);
266 			voice->vperiod = 0;
267 		} else
268 			sis_update_sso(voice, voice->period_size);
269 
270 		sync = voice->sync_cso + voice->sync_period_size;
271 		if (sync >= voice->sync_buffer_size)
272 			sync -= voice->sync_buffer_size;
273 		voice->sync_cso = sync;
274 	}
275 
276 	snd_pcm_period_elapsed(voice->substream);
277 }
278 
279 static void sis_voice_irq(u32 status, struct voice *voice)
280 {
281 	int bit;
282 
283 	while (status) {
284 		bit = __ffs(status);
285 		status >>= bit + 1;
286 		voice += bit;
287 		sis_update_voice(voice);
288 		voice++;
289 	}
290 }
291 
292 static irqreturn_t sis_interrupt(int irq, void *dev)
293 {
294 	struct sis7019 *sis = dev;
295 	unsigned long io = sis->ioport;
296 	struct voice *voice;
297 	u32 intr, status;
298 
299 	/* We only use the DMA interrupts, and we don't enable any other
300 	 * source of interrupts. But, it is possible to see an interrupt
301 	 * status that didn't actually interrupt us, so eliminate anything
302 	 * we're not expecting to avoid falsely claiming an IRQ, and an
303 	 * ensuing endless loop.
304 	 */
305 	intr = inl(io + SIS_GISR);
306 	intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
307 		SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
308 	if (!intr)
309 		return IRQ_NONE;
310 
311 	do {
312 		status = inl(io + SIS_PISR_A);
313 		if (status) {
314 			sis_voice_irq(status, sis->voices);
315 			outl(status, io + SIS_PISR_A);
316 		}
317 
318 		status = inl(io + SIS_PISR_B);
319 		if (status) {
320 			sis_voice_irq(status, &sis->voices[32]);
321 			outl(status, io + SIS_PISR_B);
322 		}
323 
324 		status = inl(io + SIS_RISR);
325 		if (status) {
326 			voice = &sis->capture_voice;
327 			if (!voice->timing)
328 				snd_pcm_period_elapsed(voice->substream);
329 
330 			outl(status, io + SIS_RISR);
331 		}
332 
333 		outl(intr, io + SIS_GISR);
334 		intr = inl(io + SIS_GISR);
335 		intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
336 			SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
337 	} while (intr);
338 
339 	return IRQ_HANDLED;
340 }
341 
342 static u32 sis_rate_to_delta(unsigned int rate)
343 {
344 	u32 delta;
345 
346 	/* This was copied from the trident driver, but it seems its gotten
347 	 * around a bit... nevertheless, it works well.
348 	 *
349 	 * We special case 44100 and 8000 since rounding with the equation
350 	 * does not give us an accurate enough value. For 11025 and 22050
351 	 * the equation gives us the best answer. All other frequencies will
352 	 * also use the equation. JDW
353 	 */
354 	if (rate == 44100)
355 		delta = 0xeb3;
356 	else if (rate == 8000)
357 		delta = 0x2ab;
358 	else if (rate == 48000)
359 		delta = 0x1000;
360 	else
361 		delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
362 	return delta;
363 }
364 
365 static void __sis_map_silence(struct sis7019 *sis)
366 {
367 	/* Helper function: must hold sis->voice_lock on entry */
368 	if (!sis->silence_users)
369 		sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
370 						sis->suspend_state[0],
371 						4096, DMA_TO_DEVICE);
372 	sis->silence_users++;
373 }
374 
375 static void __sis_unmap_silence(struct sis7019 *sis)
376 {
377 	/* Helper function: must hold sis->voice_lock on entry */
378 	sis->silence_users--;
379 	if (!sis->silence_users)
380 		dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
381 					DMA_TO_DEVICE);
382 }
383 
384 static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
385 {
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&sis->voice_lock, flags);
389 	if (voice->timing) {
390 		__sis_unmap_silence(sis);
391 		voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
392 						VOICE_SYNC_TIMING);
393 		voice->timing = NULL;
394 	}
395 	voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
396 	spin_unlock_irqrestore(&sis->voice_lock, flags);
397 }
398 
399 static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
400 {
401 	/* Must hold the voice_lock on entry */
402 	struct voice *voice;
403 	int i;
404 
405 	for (i = 0; i < 64; i++) {
406 		voice = &sis->voices[i];
407 		if (voice->flags & VOICE_IN_USE)
408 			continue;
409 		voice->flags |= VOICE_IN_USE;
410 		goto found_one;
411 	}
412 	voice = NULL;
413 
414 found_one:
415 	return voice;
416 }
417 
418 static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
419 {
420 	struct voice *voice;
421 	unsigned long flags;
422 
423 	spin_lock_irqsave(&sis->voice_lock, flags);
424 	voice = __sis_alloc_playback_voice(sis);
425 	spin_unlock_irqrestore(&sis->voice_lock, flags);
426 
427 	return voice;
428 }
429 
430 static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
431 					struct snd_pcm_hw_params *hw_params)
432 {
433 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
434 	struct snd_pcm_runtime *runtime = substream->runtime;
435 	struct voice *voice = runtime->private_data;
436 	unsigned int period_size, buffer_size;
437 	unsigned long flags;
438 	int needed;
439 
440 	/* If there are one or two periods per buffer, we don't need a
441 	 * timing voice, as we can use the capture channel's interrupts
442 	 * to clock out the periods.
443 	 */
444 	period_size = params_period_size(hw_params);
445 	buffer_size = params_buffer_size(hw_params);
446 	needed = (period_size != buffer_size &&
447 			period_size != (buffer_size / 2));
448 
449 	if (needed && !voice->timing) {
450 		spin_lock_irqsave(&sis->voice_lock, flags);
451 		voice->timing = __sis_alloc_playback_voice(sis);
452 		if (voice->timing)
453 			__sis_map_silence(sis);
454 		spin_unlock_irqrestore(&sis->voice_lock, flags);
455 		if (!voice->timing)
456 			return -ENOMEM;
457 		voice->timing->substream = substream;
458 	} else if (!needed && voice->timing) {
459 		sis_free_voice(sis, voice);
460 		voice->timing = NULL;
461 	}
462 
463 	return 0;
464 }
465 
466 static int sis_playback_open(struct snd_pcm_substream *substream)
467 {
468 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
469 	struct snd_pcm_runtime *runtime = substream->runtime;
470 	struct voice *voice;
471 
472 	voice = sis_alloc_playback_voice(sis);
473 	if (!voice)
474 		return -EAGAIN;
475 
476 	voice->substream = substream;
477 	runtime->private_data = voice;
478 	runtime->hw = sis_playback_hw_info;
479 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
480 						9, 0xfff9);
481 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
482 						9, 0xfff9);
483 	snd_pcm_set_sync(substream);
484 	return 0;
485 }
486 
487 static int sis_substream_close(struct snd_pcm_substream *substream)
488 {
489 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
490 	struct snd_pcm_runtime *runtime = substream->runtime;
491 	struct voice *voice = runtime->private_data;
492 
493 	sis_free_voice(sis, voice);
494 	return 0;
495 }
496 
497 static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
498 {
499 	struct snd_pcm_runtime *runtime = substream->runtime;
500 	struct voice *voice = runtime->private_data;
501 	void __iomem *ctrl_base = voice->ctrl_base;
502 	void __iomem *wave_base = voice->wave_base;
503 	u32 format, dma_addr, control, sso_eso, delta, reg;
504 	u16 leo;
505 
506 	/* We rely on the PCM core to ensure that the parameters for this
507 	 * substream do not change on us while we're programming the HW.
508 	 */
509 	format = 0;
510 	if (snd_pcm_format_width(runtime->format) == 8)
511 		format |= SIS_PLAY_DMA_FORMAT_8BIT;
512 	if (!snd_pcm_format_signed(runtime->format))
513 		format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
514 	if (runtime->channels == 1)
515 		format |= SIS_PLAY_DMA_FORMAT_MONO;
516 
517 	/* The baseline setup is for a single period per buffer, and
518 	 * we add bells and whistles as needed from there.
519 	 */
520 	dma_addr = runtime->dma_addr;
521 	leo = runtime->buffer_size - 1;
522 	control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
523 	sso_eso = leo;
524 
525 	if (runtime->period_size == (runtime->buffer_size / 2)) {
526 		control |= SIS_PLAY_DMA_INTR_AT_MLP;
527 	} else if (runtime->period_size != runtime->buffer_size) {
528 		voice->flags |= VOICE_SSO_TIMING;
529 		voice->sso = runtime->period_size - 1;
530 		voice->period_size = runtime->period_size;
531 		voice->buffer_size = runtime->buffer_size;
532 
533 		control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
534 		control |= SIS_PLAY_DMA_INTR_AT_SSO;
535 		sso_eso |= (runtime->period_size - 1) << 16;
536 	}
537 
538 	delta = sis_rate_to_delta(runtime->rate);
539 
540 	/* Ok, we're ready to go, set up the channel.
541 	 */
542 	writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
543 	writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
544 	writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
545 	writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
546 
547 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
548 		writel(0, wave_base + reg);
549 
550 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
551 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
552 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
553 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
554 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
555 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
556 
557 	/* Force PCI writes to post. */
558 	readl(ctrl_base);
559 
560 	return 0;
561 }
562 
563 static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
564 {
565 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
566 	unsigned long io = sis->ioport;
567 	struct snd_pcm_substream *s;
568 	struct voice *voice;
569 	void *chip;
570 	int starting;
571 	u32 record = 0;
572 	u32 play[2] = { 0, 0 };
573 
574 	/* No locks needed, as the PCM core will hold the locks on the
575 	 * substreams, and the HW will only start/stop the indicated voices
576 	 * without changing the state of the others.
577 	 */
578 	switch (cmd) {
579 	case SNDRV_PCM_TRIGGER_START:
580 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
581 	case SNDRV_PCM_TRIGGER_RESUME:
582 		starting = 1;
583 		break;
584 	case SNDRV_PCM_TRIGGER_STOP:
585 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
586 	case SNDRV_PCM_TRIGGER_SUSPEND:
587 		starting = 0;
588 		break;
589 	default:
590 		return -EINVAL;
591 	}
592 
593 	snd_pcm_group_for_each_entry(s, substream) {
594 		/* Make sure it is for us... */
595 		chip = snd_pcm_substream_chip(s);
596 		if (chip != sis)
597 			continue;
598 
599 		voice = s->runtime->private_data;
600 		if (voice->flags & VOICE_CAPTURE) {
601 			record |= 1 << voice->num;
602 			voice = voice->timing;
603 		}
604 
605 		/* voice could be NULL if this a recording stream, and it
606 		 * doesn't have an external timing channel.
607 		 */
608 		if (voice)
609 			play[voice->num / 32] |= 1 << (voice->num & 0x1f);
610 
611 		snd_pcm_trigger_done(s, substream);
612 	}
613 
614 	if (starting) {
615 		if (record)
616 			outl(record, io + SIS_RECORD_START_REG);
617 		if (play[0])
618 			outl(play[0], io + SIS_PLAY_START_A_REG);
619 		if (play[1])
620 			outl(play[1], io + SIS_PLAY_START_B_REG);
621 	} else {
622 		if (record)
623 			outl(record, io + SIS_RECORD_STOP_REG);
624 		if (play[0])
625 			outl(play[0], io + SIS_PLAY_STOP_A_REG);
626 		if (play[1])
627 			outl(play[1], io + SIS_PLAY_STOP_B_REG);
628 	}
629 	return 0;
630 }
631 
632 static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
633 {
634 	struct snd_pcm_runtime *runtime = substream->runtime;
635 	struct voice *voice = runtime->private_data;
636 	u32 cso;
637 
638 	cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
639 	cso &= 0xffff;
640 	return cso;
641 }
642 
643 static int sis_capture_open(struct snd_pcm_substream *substream)
644 {
645 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
646 	struct snd_pcm_runtime *runtime = substream->runtime;
647 	struct voice *voice = &sis->capture_voice;
648 	unsigned long flags;
649 
650 	/* FIXME: The driver only supports recording from one channel
651 	 * at the moment, but it could support more.
652 	 */
653 	spin_lock_irqsave(&sis->voice_lock, flags);
654 	if (voice->flags & VOICE_IN_USE)
655 		voice = NULL;
656 	else
657 		voice->flags |= VOICE_IN_USE;
658 	spin_unlock_irqrestore(&sis->voice_lock, flags);
659 
660 	if (!voice)
661 		return -EAGAIN;
662 
663 	voice->substream = substream;
664 	runtime->private_data = voice;
665 	runtime->hw = sis_capture_hw_info;
666 	runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
667 	snd_pcm_limit_hw_rates(runtime);
668 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
669 						9, 0xfff9);
670 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
671 						9, 0xfff9);
672 	snd_pcm_set_sync(substream);
673 	return 0;
674 }
675 
676 static int sis_capture_hw_params(struct snd_pcm_substream *substream,
677 					struct snd_pcm_hw_params *hw_params)
678 {
679 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
680 	int rc;
681 
682 	rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
683 						params_rate(hw_params));
684 	if (rc)
685 		goto out;
686 
687 	rc = sis_alloc_timing_voice(substream, hw_params);
688 
689 out:
690 	return rc;
691 }
692 
693 static void sis_prepare_timing_voice(struct voice *voice,
694 					struct snd_pcm_substream *substream)
695 {
696 	struct sis7019 *sis = snd_pcm_substream_chip(substream);
697 	struct snd_pcm_runtime *runtime = substream->runtime;
698 	struct voice *timing = voice->timing;
699 	void __iomem *play_base = timing->ctrl_base;
700 	void __iomem *wave_base = timing->wave_base;
701 	u16 buffer_size, period_size;
702 	u32 format, control, sso_eso, delta;
703 	u32 vperiod, sso, reg;
704 
705 	/* Set our initial buffer and period as large as we can given a
706 	 * single page of silence.
707 	 */
708 	buffer_size = 4096 / runtime->channels;
709 	buffer_size /= snd_pcm_format_size(runtime->format, 1);
710 	period_size = buffer_size;
711 
712 	/* Initially, we want to interrupt just a bit behind the end of
713 	 * the period we're clocking out. 12 samples seems to give a good
714 	 * delay.
715 	 *
716 	 * We want to spread our interrupts throughout the virtual period,
717 	 * so that we don't end up with two interrupts back to back at the
718 	 * end -- this helps minimize the effects of any jitter. Adjust our
719 	 * clocking period size so that the last period is at least a fourth
720 	 * of a full period.
721 	 *
722 	 * This is all moot if we don't need to use virtual periods.
723 	 */
724 	vperiod = runtime->period_size + 12;
725 	if (vperiod > period_size) {
726 		u16 tail = vperiod % period_size;
727 		u16 quarter_period = period_size / 4;
728 
729 		if (tail && tail < quarter_period) {
730 			u16 loops = vperiod / period_size;
731 
732 			tail = quarter_period - tail;
733 			tail += loops - 1;
734 			tail /= loops;
735 			period_size -= tail;
736 		}
737 
738 		sso = period_size - 1;
739 	} else {
740 		/* The initial period will fit inside the buffer, so we
741 		 * don't need to use virtual periods -- disable them.
742 		 */
743 		period_size = runtime->period_size;
744 		sso = vperiod - 1;
745 		vperiod = 0;
746 	}
747 
748 	/* The interrupt handler implements the timing synchronization, so
749 	 * setup its state.
750 	 */
751 	timing->flags |= VOICE_SYNC_TIMING;
752 	timing->sync_base = voice->ctrl_base;
753 	timing->sync_cso = runtime->period_size;
754 	timing->sync_period_size = runtime->period_size;
755 	timing->sync_buffer_size = runtime->buffer_size;
756 	timing->period_size = period_size;
757 	timing->buffer_size = buffer_size;
758 	timing->sso = sso;
759 	timing->vperiod = vperiod;
760 
761 	/* Using unsigned samples with the all-zero silence buffer
762 	 * forces the output to the lower rail, killing playback.
763 	 * So ignore unsigned vs signed -- it doesn't change the timing.
764 	 */
765 	format = 0;
766 	if (snd_pcm_format_width(runtime->format) == 8)
767 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
768 	if (runtime->channels == 1)
769 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
770 
771 	control = timing->buffer_size - 1;
772 	control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
773 	sso_eso = timing->buffer_size - 1;
774 	sso_eso |= timing->sso << 16;
775 
776 	delta = sis_rate_to_delta(runtime->rate);
777 
778 	/* We've done the math, now configure the channel.
779 	 */
780 	writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
781 	writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
782 	writel(control, play_base + SIS_PLAY_DMA_CONTROL);
783 	writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
784 
785 	for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
786 		writel(0, wave_base + reg);
787 
788 	writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
789 	writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
790 	writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
791 			SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
792 			SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
793 			wave_base + SIS_WAVE_CHANNEL_CONTROL);
794 }
795 
796 static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
797 {
798 	struct snd_pcm_runtime *runtime = substream->runtime;
799 	struct voice *voice = runtime->private_data;
800 	void __iomem *rec_base = voice->ctrl_base;
801 	u32 format, dma_addr, control;
802 	u16 leo;
803 
804 	/* We rely on the PCM core to ensure that the parameters for this
805 	 * substream do not change on us while we're programming the HW.
806 	 */
807 	format = 0;
808 	if (snd_pcm_format_width(runtime->format) == 8)
809 		format = SIS_CAPTURE_DMA_FORMAT_8BIT;
810 	if (!snd_pcm_format_signed(runtime->format))
811 		format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
812 	if (runtime->channels == 1)
813 		format |= SIS_CAPTURE_DMA_FORMAT_MONO;
814 
815 	dma_addr = runtime->dma_addr;
816 	leo = runtime->buffer_size - 1;
817 	control = leo | SIS_CAPTURE_DMA_LOOP;
818 
819 	/* If we've got more than two periods per buffer, then we have
820 	 * use a timing voice to clock out the periods. Otherwise, we can
821 	 * use the capture channel's interrupts.
822 	 */
823 	if (voice->timing) {
824 		sis_prepare_timing_voice(voice, substream);
825 	} else {
826 		control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
827 		if (runtime->period_size != runtime->buffer_size)
828 			control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
829 	}
830 
831 	writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
832 	writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
833 	writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
834 
835 	/* Force the writes to post. */
836 	readl(rec_base);
837 
838 	return 0;
839 }
840 
841 static const struct snd_pcm_ops sis_playback_ops = {
842 	.open = sis_playback_open,
843 	.close = sis_substream_close,
844 	.prepare = sis_pcm_playback_prepare,
845 	.trigger = sis_pcm_trigger,
846 	.pointer = sis_pcm_pointer,
847 };
848 
849 static const struct snd_pcm_ops sis_capture_ops = {
850 	.open = sis_capture_open,
851 	.close = sis_substream_close,
852 	.hw_params = sis_capture_hw_params,
853 	.prepare = sis_pcm_capture_prepare,
854 	.trigger = sis_pcm_trigger,
855 	.pointer = sis_pcm_pointer,
856 };
857 
858 static int sis_pcm_create(struct sis7019 *sis)
859 {
860 	struct snd_pcm *pcm;
861 	int rc;
862 
863 	/* We have 64 voices, and the driver currently records from
864 	 * only one channel, though that could change in the future.
865 	 */
866 	rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
867 	if (rc)
868 		return rc;
869 
870 	pcm->private_data = sis;
871 	strcpy(pcm->name, "SiS7019");
872 	sis->pcm = pcm;
873 
874 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
875 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
876 
877 	/* Try to preallocate some memory, but it's not the end of the
878 	 * world if this fails.
879 	 */
880 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
881 				       &sis->pci->dev, 64*1024, 128*1024);
882 
883 	return 0;
884 }
885 
886 static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
887 {
888 	unsigned long io = sis->ioport;
889 	unsigned short val = 0xffff;
890 	u16 status;
891 	u16 rdy;
892 	int count;
893 	static const u16 codec_ready[3] = {
894 		SIS_AC97_STATUS_CODEC_READY,
895 		SIS_AC97_STATUS_CODEC2_READY,
896 		SIS_AC97_STATUS_CODEC3_READY,
897 	};
898 
899 	rdy = codec_ready[codec];
900 
901 
902 	/* Get the AC97 semaphore -- software first, so we don't spin
903 	 * pounding out IO reads on the hardware semaphore...
904 	 */
905 	mutex_lock(&sis->ac97_mutex);
906 
907 	count = 0xffff;
908 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
909 		udelay(1);
910 
911 	if (!count)
912 		goto timeout;
913 
914 	/* ... and wait for any outstanding commands to complete ...
915 	 */
916 	count = 0xffff;
917 	do {
918 		status = inw(io + SIS_AC97_STATUS);
919 		if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
920 			break;
921 
922 		udelay(1);
923 	} while (--count);
924 
925 	if (!count)
926 		goto timeout_sema;
927 
928 	/* ... before sending our command and waiting for it to finish ...
929 	 */
930 	outl(cmd, io + SIS_AC97_CMD);
931 	udelay(10);
932 
933 	count = 0xffff;
934 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
935 		udelay(1);
936 
937 	/* ... and reading the results (if any).
938 	 */
939 	val = inl(io + SIS_AC97_CMD) >> 16;
940 
941 timeout_sema:
942 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
943 timeout:
944 	mutex_unlock(&sis->ac97_mutex);
945 
946 	if (!count) {
947 		dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
948 					codec, cmd);
949 	}
950 
951 	return val;
952 }
953 
954 static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
955 				unsigned short val)
956 {
957 	static const u32 cmd[3] = {
958 		SIS_AC97_CMD_CODEC_WRITE,
959 		SIS_AC97_CMD_CODEC2_WRITE,
960 		SIS_AC97_CMD_CODEC3_WRITE,
961 	};
962 	sis_ac97_rw(ac97->private_data, ac97->num,
963 			(val << 16) | (reg << 8) | cmd[ac97->num]);
964 }
965 
966 static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
967 {
968 	static const u32 cmd[3] = {
969 		SIS_AC97_CMD_CODEC_READ,
970 		SIS_AC97_CMD_CODEC2_READ,
971 		SIS_AC97_CMD_CODEC3_READ,
972 	};
973 	return sis_ac97_rw(ac97->private_data, ac97->num,
974 					(reg << 8) | cmd[ac97->num]);
975 }
976 
977 static int sis_mixer_create(struct sis7019 *sis)
978 {
979 	struct snd_ac97_bus *bus;
980 	struct snd_ac97_template ac97;
981 	static const struct snd_ac97_bus_ops ops = {
982 		.write = sis_ac97_write,
983 		.read = sis_ac97_read,
984 	};
985 	int rc;
986 
987 	memset(&ac97, 0, sizeof(ac97));
988 	ac97.private_data = sis;
989 
990 	rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
991 	if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
992 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
993 	ac97.num = 1;
994 	if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
995 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
996 	ac97.num = 2;
997 	if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
998 		rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
999 
1000 	/* If we return an error here, then snd_card_free() should
1001 	 * free up any ac97 codecs that got created, as well as the bus.
1002 	 */
1003 	return rc;
1004 }
1005 
1006 static void sis_chip_free(struct snd_card *card)
1007 {
1008 	struct sis7019 *sis = card->private_data;
1009 
1010 	/* Reset the chip, and disable all interrputs.
1011 	 */
1012 	outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
1013 	udelay(25);
1014 	outl(0, sis->ioport + SIS_GCR);
1015 	outl(0, sis->ioport + SIS_GIER);
1016 
1017 	/* Now, free everything we allocated.
1018 	 */
1019 	if (sis->irq >= 0)
1020 		free_irq(sis->irq, sis);
1021 }
1022 
1023 static int sis_chip_init(struct sis7019 *sis)
1024 {
1025 	unsigned long io = sis->ioport;
1026 	void __iomem *ioaddr = sis->ioaddr;
1027 	unsigned long timeout;
1028 	u16 status;
1029 	int count;
1030 	int i;
1031 
1032 	/* Reset the audio controller
1033 	 */
1034 	outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
1035 	udelay(25);
1036 	outl(0, io + SIS_GCR);
1037 
1038 	/* Get the AC-link semaphore, and reset the codecs
1039 	 */
1040 	count = 0xffff;
1041 	while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
1042 		udelay(1);
1043 
1044 	if (!count)
1045 		return -EIO;
1046 
1047 	outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
1048 	udelay(250);
1049 
1050 	count = 0xffff;
1051 	while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
1052 		udelay(1);
1053 
1054 	/* Command complete, we can let go of the semaphore now.
1055 	 */
1056 	outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
1057 	if (!count)
1058 		return -EIO;
1059 
1060 	/* Now that we've finished the reset, find out what's attached.
1061 	 * There are some codec/board combinations that take an extremely
1062 	 * long time to come up. 350+ ms has been observed in the field,
1063 	 * so we'll give them up to 500ms.
1064 	 */
1065 	sis->codecs_present = 0;
1066 	timeout = msecs_to_jiffies(500) + jiffies;
1067 	while (time_before_eq(jiffies, timeout)) {
1068 		status = inl(io + SIS_AC97_STATUS);
1069 		if (status & SIS_AC97_STATUS_CODEC_READY)
1070 			sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
1071 		if (status & SIS_AC97_STATUS_CODEC2_READY)
1072 			sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
1073 		if (status & SIS_AC97_STATUS_CODEC3_READY)
1074 			sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
1075 
1076 		if (sis->codecs_present == codecs)
1077 			break;
1078 
1079 		msleep(1);
1080 	}
1081 
1082 	/* All done, check for errors.
1083 	 */
1084 	if (!sis->codecs_present) {
1085 		dev_err(&sis->pci->dev, "could not find any codecs\n");
1086 		return -EIO;
1087 	}
1088 
1089 	if (sis->codecs_present != codecs) {
1090 		dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
1091 					 sis->codecs_present, codecs);
1092 	}
1093 
1094 	/* Let the hardware know that the audio driver is alive,
1095 	 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1096 	 * record channels. We're going to want to use Variable Rate Audio
1097 	 * for recording, to avoid needlessly resampling from 48kHZ.
1098 	 */
1099 	outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
1100 	outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
1101 		SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
1102 		SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
1103 		SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
1104 
1105 	/* All AC97 PCM slots should be sourced from sub-mixer 0.
1106 	 */
1107 	outl(0, io + SIS_AC97_PSR);
1108 
1109 	/* There is only one valid DMA setup for a PCI environment.
1110 	 */
1111 	outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
1112 
1113 	/* Reset the synchronization groups for all of the channels
1114 	 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1115 	 * we'll need to change how we handle these. Until then, we just
1116 	 * assign sub-mixer 0 to all playback channels, and avoid any
1117 	 * attenuation on the audio.
1118 	 */
1119 	outl(0, io + SIS_PLAY_SYNC_GROUP_A);
1120 	outl(0, io + SIS_PLAY_SYNC_GROUP_B);
1121 	outl(0, io + SIS_PLAY_SYNC_GROUP_C);
1122 	outl(0, io + SIS_PLAY_SYNC_GROUP_D);
1123 	outl(0, io + SIS_MIXER_SYNC_GROUP);
1124 
1125 	for (i = 0; i < 64; i++) {
1126 		writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
1127 		writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
1128 				SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
1129 	}
1130 
1131 	/* Don't attenuate any audio set for the wave amplifier.
1132 	 *
1133 	 * FIXME: Maximum attenuation is set for the music amp, which will
1134 	 * need to change if we start using the synth engine.
1135 	 */
1136 	outl(0xffff0000, io + SIS_WEVCR);
1137 
1138 	/* Ensure that the wave engine is in normal operating mode.
1139 	 */
1140 	outl(0, io + SIS_WECCR);
1141 
1142 	/* Go ahead and enable the DMA interrupts. They won't go live
1143 	 * until we start a channel.
1144 	 */
1145 	outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
1146 		SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
1147 
1148 	return 0;
1149 }
1150 
1151 static int sis_suspend(struct device *dev)
1152 {
1153 	struct snd_card *card = dev_get_drvdata(dev);
1154 	struct sis7019 *sis = card->private_data;
1155 	void __iomem *ioaddr = sis->ioaddr;
1156 	int i;
1157 
1158 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1159 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1160 		snd_ac97_suspend(sis->ac97[0]);
1161 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1162 		snd_ac97_suspend(sis->ac97[1]);
1163 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1164 		snd_ac97_suspend(sis->ac97[2]);
1165 
1166 	/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1167 	 */
1168 	if (sis->irq >= 0) {
1169 		free_irq(sis->irq, sis);
1170 		sis->irq = -1;
1171 	}
1172 
1173 	/* Save the internal state away
1174 	 */
1175 	for (i = 0; i < 4; i++) {
1176 		memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
1177 		ioaddr += 4096;
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static int sis_resume(struct device *dev)
1184 {
1185 	struct pci_dev *pci = to_pci_dev(dev);
1186 	struct snd_card *card = dev_get_drvdata(dev);
1187 	struct sis7019 *sis = card->private_data;
1188 	void __iomem *ioaddr = sis->ioaddr;
1189 	int i;
1190 
1191 	if (sis_chip_init(sis)) {
1192 		dev_err(&pci->dev, "unable to re-init controller\n");
1193 		goto error;
1194 	}
1195 
1196 	if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
1197 			KBUILD_MODNAME, sis)) {
1198 		dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
1199 		goto error;
1200 	}
1201 
1202 	/* Restore saved state, then clear out the page we use for the
1203 	 * silence buffer.
1204 	 */
1205 	for (i = 0; i < 4; i++) {
1206 		memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
1207 		ioaddr += 4096;
1208 	}
1209 
1210 	memset(sis->suspend_state[0], 0, 4096);
1211 
1212 	sis->irq = pci->irq;
1213 
1214 	if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
1215 		snd_ac97_resume(sis->ac97[0]);
1216 	if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
1217 		snd_ac97_resume(sis->ac97[1]);
1218 	if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
1219 		snd_ac97_resume(sis->ac97[2]);
1220 
1221 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1222 	return 0;
1223 
1224 error:
1225 	snd_card_disconnect(card);
1226 	return -EIO;
1227 }
1228 
1229 static DEFINE_SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
1230 
1231 static int sis_alloc_suspend(struct sis7019 *sis)
1232 {
1233 	int i;
1234 
1235 	/* We need 16K to store the internal wave engine state during a
1236 	 * suspend, but we don't need it to be contiguous, so play nice
1237 	 * with the memory system. We'll also use this area for a silence
1238 	 * buffer.
1239 	 */
1240 	for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
1241 		sis->suspend_state[i] = devm_kmalloc(&sis->pci->dev, 4096,
1242 						     GFP_KERNEL);
1243 		if (!sis->suspend_state[i])
1244 			return -ENOMEM;
1245 	}
1246 	memset(sis->suspend_state[0], 0, 4096);
1247 
1248 	return 0;
1249 }
1250 
1251 static int sis_chip_create(struct snd_card *card,
1252 			   struct pci_dev *pci)
1253 {
1254 	struct sis7019 *sis = card->private_data;
1255 	struct voice *voice;
1256 	int rc;
1257 	int i;
1258 
1259 	rc = pcim_enable_device(pci);
1260 	if (rc)
1261 		return rc;
1262 
1263 	rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
1264 	if (rc < 0) {
1265 		dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
1266 		return -ENXIO;
1267 	}
1268 
1269 	mutex_init(&sis->ac97_mutex);
1270 	spin_lock_init(&sis->voice_lock);
1271 	sis->card = card;
1272 	sis->pci = pci;
1273 	sis->irq = -1;
1274 	sis->ioport = pci_resource_start(pci, 0);
1275 
1276 	rc = pci_request_regions(pci, "SiS7019");
1277 	if (rc) {
1278 		dev_err(&pci->dev, "unable request regions\n");
1279 		return rc;
1280 	}
1281 
1282 	sis->ioaddr = devm_ioremap(&pci->dev, pci_resource_start(pci, 1), 0x4000);
1283 	if (!sis->ioaddr) {
1284 		dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
1285 		return -EIO;
1286 	}
1287 
1288 	rc = sis_alloc_suspend(sis);
1289 	if (rc < 0) {
1290 		dev_err(&pci->dev, "unable to allocate state storage\n");
1291 		return rc;
1292 	}
1293 
1294 	rc = sis_chip_init(sis);
1295 	if (rc)
1296 		return rc;
1297 	card->private_free = sis_chip_free;
1298 
1299 	rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
1300 			 sis);
1301 	if (rc) {
1302 		dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
1303 		return rc;
1304 	}
1305 
1306 	sis->irq = pci->irq;
1307 	card->sync_irq = sis->irq;
1308 	pci_set_master(pci);
1309 
1310 	for (i = 0; i < 64; i++) {
1311 		voice = &sis->voices[i];
1312 		voice->num = i;
1313 		voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
1314 		voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
1315 	}
1316 
1317 	voice = &sis->capture_voice;
1318 	voice->flags = VOICE_CAPTURE;
1319 	voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
1320 	voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
1321 
1322 	return 0;
1323 }
1324 
1325 static int __snd_sis7019_probe(struct pci_dev *pci,
1326 			       const struct pci_device_id *pci_id)
1327 {
1328 	struct snd_card *card;
1329 	struct sis7019 *sis;
1330 	int rc;
1331 
1332 	if (!enable)
1333 		return -ENOENT;
1334 
1335 	/* The user can specify which codecs should be present so that we
1336 	 * can wait for them to show up if they are slow to recover from
1337 	 * the AC97 cold reset. We default to a single codec, the primary.
1338 	 *
1339 	 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1340 	 */
1341 	codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
1342 		  SIS_TERTIARY_CODEC_PRESENT;
1343 	if (!codecs)
1344 		codecs = SIS_PRIMARY_CODEC_PRESENT;
1345 
1346 	rc = snd_devm_card_new(&pci->dev, index, id, THIS_MODULE,
1347 			       sizeof(*sis), &card);
1348 	if (rc < 0)
1349 		return rc;
1350 
1351 	strcpy(card->driver, "SiS7019");
1352 	strcpy(card->shortname, "SiS7019");
1353 	rc = sis_chip_create(card, pci);
1354 	if (rc)
1355 		return rc;
1356 
1357 	sis = card->private_data;
1358 
1359 	rc = sis_mixer_create(sis);
1360 	if (rc)
1361 		return rc;
1362 
1363 	rc = sis_pcm_create(sis);
1364 	if (rc)
1365 		return rc;
1366 
1367 	snprintf(card->longname, sizeof(card->longname),
1368 			"%s Audio Accelerator with %s at 0x%lx, irq %d",
1369 			card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
1370 			sis->ioport, sis->irq);
1371 
1372 	rc = snd_card_register(card);
1373 	if (rc)
1374 		return rc;
1375 
1376 	pci_set_drvdata(pci, card);
1377 	return 0;
1378 }
1379 
1380 static int snd_sis7019_probe(struct pci_dev *pci,
1381 			     const struct pci_device_id *pci_id)
1382 {
1383 	return snd_card_free_on_error(&pci->dev, __snd_sis7019_probe(pci, pci_id));
1384 }
1385 
1386 static struct pci_driver sis7019_driver = {
1387 	.name = KBUILD_MODNAME,
1388 	.id_table = snd_sis7019_ids,
1389 	.probe = snd_sis7019_probe,
1390 	.driver = {
1391 		.pm = &sis_pm,
1392 	},
1393 };
1394 
1395 module_pci_driver(sis7019_driver);
1396