1 /* 2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s) 3 * 4 * Copyright (c) 2003 Winfried Ritsch (IEM) 5 * code based on hdsp.c Paul Davis 6 * Marcus Andersson 7 * Thomas Charbonnel 8 * Modified 2006-06-01 for AES32 support by Remy Bruno 9 * <remy.bruno@trinnov.com> 10 * 11 * Modified 2009-04-13 for proper metering by Florian Faber 12 * <faber@faberman.de> 13 * 14 * Modified 2009-04-14 for native float support by Florian Faber 15 * <faber@faberman.de> 16 * 17 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber 18 * <faber@faberman.de> 19 * 20 * Modified 2009-04-30 added hw serial number support by Florian Faber 21 * 22 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth 23 * 24 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth 25 * 26 * This program is free software; you can redistribute it and/or modify 27 * it under the terms of the GNU General Public License as published by 28 * the Free Software Foundation; either version 2 of the License, or 29 * (at your option) any later version. 30 * 31 * This program is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 34 * GNU General Public License for more details. 35 * 36 * You should have received a copy of the GNU General Public License 37 * along with this program; if not, write to the Free Software 38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 39 * 40 */ 41 #include <linux/init.h> 42 #include <linux/delay.h> 43 #include <linux/interrupt.h> 44 #include <linux/module.h> 45 #include <linux/slab.h> 46 #include <linux/pci.h> 47 #include <linux/math64.h> 48 #include <asm/io.h> 49 50 #include <sound/core.h> 51 #include <sound/control.h> 52 #include <sound/pcm.h> 53 #include <sound/pcm_params.h> 54 #include <sound/info.h> 55 #include <sound/asoundef.h> 56 #include <sound/rawmidi.h> 57 #include <sound/hwdep.h> 58 #include <sound/initval.h> 59 60 #include <sound/hdspm.h> 61 62 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 63 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 64 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */ 65 66 module_param_array(index, int, NULL, 0444); 67 MODULE_PARM_DESC(index, "Index value for RME HDSPM interface."); 68 69 module_param_array(id, charp, NULL, 0444); 70 MODULE_PARM_DESC(id, "ID string for RME HDSPM interface."); 71 72 module_param_array(enable, bool, NULL, 0444); 73 MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards."); 74 75 76 MODULE_AUTHOR 77 ( 78 "Winfried Ritsch <ritsch_AT_iem.at>, " 79 "Paul Davis <paul@linuxaudiosystems.com>, " 80 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, " 81 "Remy Bruno <remy.bruno@trinnov.com>, " 82 "Florian Faber <faberman@linuxproaudio.org>, " 83 "Adrian Knoth <adi@drcomp.erfurt.thur.de>" 84 ); 85 MODULE_DESCRIPTION("RME HDSPM"); 86 MODULE_LICENSE("GPL"); 87 MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}"); 88 89 /* --- Write registers. --- 90 These are defined as byte-offsets from the iobase value. */ 91 92 #define HDSPM_WR_SETTINGS 0 93 #define HDSPM_outputBufferAddress 32 94 #define HDSPM_inputBufferAddress 36 95 #define HDSPM_controlRegister 64 96 #define HDSPM_interruptConfirmation 96 97 #define HDSPM_control2Reg 256 /* not in specs ???????? */ 98 #define HDSPM_freqReg 256 /* for AES32 */ 99 #define HDSPM_midiDataOut0 352 /* just believe in old code */ 100 #define HDSPM_midiDataOut1 356 101 #define HDSPM_eeprom_wr 384 /* for AES32 */ 102 103 /* DMA enable for 64 channels, only Bit 0 is relevant */ 104 #define HDSPM_outputEnableBase 512 /* 512-767 input DMA */ 105 #define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */ 106 107 /* 16 page addresses for each of the 64 channels DMA buffer in and out 108 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */ 109 #define HDSPM_pageAddressBufferOut 8192 110 #define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4) 111 112 #define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */ 113 114 #define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */ 115 116 /* --- Read registers. --- 117 These are defined as byte-offsets from the iobase value */ 118 #define HDSPM_statusRegister 0 119 /*#define HDSPM_statusRegister2 96 */ 120 /* after RME Windows driver sources, status2 is 4-byte word # 48 = word at 121 * offset 192, for AES32 *and* MADI 122 * => need to check that offset 192 is working on MADI */ 123 #define HDSPM_statusRegister2 192 124 #define HDSPM_timecodeRegister 128 125 126 /* AIO, RayDAT */ 127 #define HDSPM_RD_STATUS_0 0 128 #define HDSPM_RD_STATUS_1 64 129 #define HDSPM_RD_STATUS_2 128 130 #define HDSPM_RD_STATUS_3 192 131 132 #define HDSPM_RD_TCO 256 133 #define HDSPM_RD_PLL_FREQ 512 134 #define HDSPM_WR_TCO 128 135 136 #define HDSPM_TCO1_TCO_lock 0x00000001 137 #define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002 138 #define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004 139 #define HDSPM_TCO1_LTC_Input_valid 0x00000008 140 #define HDSPM_TCO1_WCK_Input_valid 0x00000010 141 #define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020 142 #define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040 143 144 #define HDSPM_TCO1_set_TC 0x00000100 145 #define HDSPM_TCO1_set_drop_frame_flag 0x00000200 146 #define HDSPM_TCO1_LTC_Format_LSB 0x00000400 147 #define HDSPM_TCO1_LTC_Format_MSB 0x00000800 148 149 #define HDSPM_TCO2_TC_run 0x00010000 150 #define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000 151 #define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000 152 #define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000 153 #define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000 154 #define HDSPM_TCO2_set_jam_sync 0x00200000 155 #define HDSPM_TCO2_set_flywheel 0x00400000 156 157 #define HDSPM_TCO2_set_01_4 0x01000000 158 #define HDSPM_TCO2_set_pull_down 0x02000000 159 #define HDSPM_TCO2_set_pull_up 0x04000000 160 #define HDSPM_TCO2_set_freq 0x08000000 161 #define HDSPM_TCO2_set_term_75R 0x10000000 162 #define HDSPM_TCO2_set_input_LSB 0x20000000 163 #define HDSPM_TCO2_set_input_MSB 0x40000000 164 #define HDSPM_TCO2_set_freq_from_app 0x80000000 165 166 167 #define HDSPM_midiDataOut0 352 168 #define HDSPM_midiDataOut1 356 169 #define HDSPM_midiDataOut2 368 170 171 #define HDSPM_midiDataIn0 360 172 #define HDSPM_midiDataIn1 364 173 #define HDSPM_midiDataIn2 372 174 #define HDSPM_midiDataIn3 376 175 176 /* status is data bytes in MIDI-FIFO (0-128) */ 177 #define HDSPM_midiStatusOut0 384 178 #define HDSPM_midiStatusOut1 388 179 #define HDSPM_midiStatusOut2 400 180 181 #define HDSPM_midiStatusIn0 392 182 #define HDSPM_midiStatusIn1 396 183 #define HDSPM_midiStatusIn2 404 184 #define HDSPM_midiStatusIn3 408 185 186 187 /* the meters are regular i/o-mapped registers, but offset 188 considerably from the rest. the peak registers are reset 189 when read; the least-significant 4 bits are full-scale counters; 190 the actual peak value is in the most-significant 24 bits. 191 */ 192 193 #define HDSPM_MADI_INPUT_PEAK 4096 194 #define HDSPM_MADI_PLAYBACK_PEAK 4352 195 #define HDSPM_MADI_OUTPUT_PEAK 4608 196 197 #define HDSPM_MADI_INPUT_RMS_L 6144 198 #define HDSPM_MADI_PLAYBACK_RMS_L 6400 199 #define HDSPM_MADI_OUTPUT_RMS_L 6656 200 201 #define HDSPM_MADI_INPUT_RMS_H 7168 202 #define HDSPM_MADI_PLAYBACK_RMS_H 7424 203 #define HDSPM_MADI_OUTPUT_RMS_H 7680 204 205 /* --- Control Register bits --------- */ 206 #define HDSPM_Start (1<<0) /* start engine */ 207 208 #define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */ 209 #define HDSPM_Latency1 (1<<2) /* where n is defined */ 210 #define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */ 211 212 #define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */ 213 #define HDSPM_c0Master 0x1 /* Master clock bit in settings 214 register [RayDAT, AIO] */ 215 216 #define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */ 217 218 #define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */ 219 #define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */ 220 #define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */ 221 #define HDSPM_QuadSpeed (1<<31) /* quad speed bit */ 222 223 #define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */ 224 #define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1, 225 56channelMODE=0 */ /* MADI ONLY*/ 226 #define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */ 227 228 #define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode, 229 0=off, 1=on */ /* MADI ONLY */ 230 #define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */ 231 232 #define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax 233 * -- MADI ONLY 234 */ 235 #define HDSPM_InputSelect1 (1<<15) /* should be 0 */ 236 237 #define HDSPM_SyncRef2 (1<<13) 238 #define HDSPM_SyncRef3 (1<<25) 239 240 #define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */ 241 #define HDSPM_clr_tms (1<<19) /* clear track marker, do not use 242 AES additional bits in 243 lower 5 Audiodatabits ??? */ 244 #define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */ 245 #define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */ 246 247 #define HDSPM_Midi0InterruptEnable 0x0400000 248 #define HDSPM_Midi1InterruptEnable 0x0800000 249 #define HDSPM_Midi2InterruptEnable 0x0200000 250 #define HDSPM_Midi3InterruptEnable 0x4000000 251 252 #define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */ 253 #define HDSPe_FLOAT_FORMAT 0x2000000 254 255 #define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */ 256 #define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */ 257 #define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */ 258 259 #define HDSPM_wclk_sel (1<<30) 260 261 /* --- bit helper defines */ 262 #define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2) 263 #define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\ 264 HDSPM_DoubleSpeed|HDSPM_QuadSpeed) 265 #define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1) 266 #define HDSPM_InputOptical 0 267 #define HDSPM_InputCoaxial (HDSPM_InputSelect0) 268 #define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\ 269 HDSPM_SyncRef2|HDSPM_SyncRef3) 270 271 #define HDSPM_c0_SyncRef0 0x2 272 #define HDSPM_c0_SyncRef1 0x4 273 #define HDSPM_c0_SyncRef2 0x8 274 #define HDSPM_c0_SyncRef3 0x10 275 #define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\ 276 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3) 277 278 #define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */ 279 #define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */ 280 #define HDSPM_SYNC_FROM_TCO 2 281 #define HDSPM_SYNC_FROM_SYNC_IN 3 282 283 #define HDSPM_Frequency32KHz HDSPM_Frequency0 284 #define HDSPM_Frequency44_1KHz HDSPM_Frequency1 285 #define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0) 286 #define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0) 287 #define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1) 288 #define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\ 289 HDSPM_Frequency0) 290 #define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0) 291 #define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1) 292 #define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\ 293 HDSPM_Frequency0) 294 295 296 /* Synccheck Status */ 297 #define HDSPM_SYNC_CHECK_NO_LOCK 0 298 #define HDSPM_SYNC_CHECK_LOCK 1 299 #define HDSPM_SYNC_CHECK_SYNC 2 300 301 /* AutoSync References - used by "autosync_ref" control switch */ 302 #define HDSPM_AUTOSYNC_FROM_WORD 0 303 #define HDSPM_AUTOSYNC_FROM_MADI 1 304 #define HDSPM_AUTOSYNC_FROM_TCO 2 305 #define HDSPM_AUTOSYNC_FROM_SYNC_IN 3 306 #define HDSPM_AUTOSYNC_FROM_NONE 4 307 308 /* Possible sources of MADI input */ 309 #define HDSPM_OPTICAL 0 /* optical */ 310 #define HDSPM_COAXIAL 1 /* BNC */ 311 312 #define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask) 313 #define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1)) 314 315 #define hdspm_encode_in(x) (((x)&0x3)<<14) 316 #define hdspm_decode_in(x) (((x)>>14)&0x3) 317 318 /* --- control2 register bits --- */ 319 #define HDSPM_TMS (1<<0) 320 #define HDSPM_TCK (1<<1) 321 #define HDSPM_TDI (1<<2) 322 #define HDSPM_JTAG (1<<3) 323 #define HDSPM_PWDN (1<<4) 324 #define HDSPM_PROGRAM (1<<5) 325 #define HDSPM_CONFIG_MODE_0 (1<<6) 326 #define HDSPM_CONFIG_MODE_1 (1<<7) 327 /*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/ 328 #define HDSPM_BIGENDIAN_MODE (1<<9) 329 #define HDSPM_RD_MULTIPLE (1<<10) 330 331 /* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and 332 that do not conflict with specific bits for AES32 seem to be valid also 333 for the AES32 334 */ 335 #define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */ 336 #define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */ 337 #define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1 338 * (like inp0) 339 */ 340 341 #define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */ 342 #define HDSPM_madiSync (1<<18) /* MADI is in sync */ 343 344 #define HDSPM_tcoLock 0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */ 345 #define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status */ 346 347 #define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */ 348 #define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */ 349 350 #define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */ 351 /* since 64byte accurate, last 6 bits are not used */ 352 353 354 355 #define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */ 356 357 #define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */ 358 #define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */ 359 #define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */ 360 #define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */ 361 362 #define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with 363 * Interrupt 364 */ 365 #define HDSPM_tco_detect 0x08000000 366 #define HDSPM_tco_lock 0x20000000 367 368 #define HDSPM_s2_tco_detect 0x00000040 369 #define HDSPM_s2_AEBO_D 0x00000080 370 #define HDSPM_s2_AEBI_D 0x00000100 371 372 373 #define HDSPM_midi0IRQPending 0x40000000 374 #define HDSPM_midi1IRQPending 0x80000000 375 #define HDSPM_midi2IRQPending 0x20000000 376 #define HDSPM_midi2IRQPendingAES 0x00000020 377 #define HDSPM_midi3IRQPending 0x00200000 378 379 /* --- status bit helpers */ 380 #define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\ 381 HDSPM_madiFreq2|HDSPM_madiFreq3) 382 #define HDSPM_madiFreq32 (HDSPM_madiFreq0) 383 #define HDSPM_madiFreq44_1 (HDSPM_madiFreq1) 384 #define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1) 385 #define HDSPM_madiFreq64 (HDSPM_madiFreq2) 386 #define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2) 387 #define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2) 388 #define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2) 389 #define HDSPM_madiFreq176_4 (HDSPM_madiFreq3) 390 #define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0) 391 392 /* Status2 Register bits */ /* MADI ONLY */ 393 394 #define HDSPM_version0 (1<<0) /* not really defined but I guess */ 395 #define HDSPM_version1 (1<<1) /* in former cards it was ??? */ 396 #define HDSPM_version2 (1<<2) 397 398 #define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */ 399 #define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */ 400 401 #define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */ 402 #define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */ 403 #define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, */ 404 /* missing Bit for 111=128, 1000=176.4, 1001=192 */ 405 406 #define HDSPM_SyncRef0 0x10000 /* Sync Reference */ 407 #define HDSPM_SyncRef1 0x20000 408 409 #define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */ 410 #define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */ 411 #define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */ 412 413 #define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync) 414 415 #define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2) 416 #define HDSPM_wcFreq32 (HDSPM_wc_freq0) 417 #define HDSPM_wcFreq44_1 (HDSPM_wc_freq1) 418 #define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1) 419 #define HDSPM_wcFreq64 (HDSPM_wc_freq2) 420 #define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2) 421 #define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2) 422 423 #define HDSPM_status1_F_0 0x0400000 424 #define HDSPM_status1_F_1 0x0800000 425 #define HDSPM_status1_F_2 0x1000000 426 #define HDSPM_status1_F_3 0x2000000 427 #define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3) 428 429 430 #define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 431 HDSPM_SelSyncRef2) 432 #define HDSPM_SelSyncRef_WORD 0 433 #define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0) 434 #define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1) 435 #define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1) 436 #define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\ 437 HDSPM_SelSyncRef2) 438 439 /* 440 For AES32, bits for status, status2 and timecode are different 441 */ 442 /* status */ 443 #define HDSPM_AES32_wcLock 0x0200000 444 #define HDSPM_AES32_wcFreq_bit 22 445 /* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function 446 HDSPM_bit2freq */ 447 #define HDSPM_AES32_syncref_bit 16 448 /* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */ 449 450 #define HDSPM_AES32_AUTOSYNC_FROM_WORD 0 451 #define HDSPM_AES32_AUTOSYNC_FROM_AES1 1 452 #define HDSPM_AES32_AUTOSYNC_FROM_AES2 2 453 #define HDSPM_AES32_AUTOSYNC_FROM_AES3 3 454 #define HDSPM_AES32_AUTOSYNC_FROM_AES4 4 455 #define HDSPM_AES32_AUTOSYNC_FROM_AES5 5 456 #define HDSPM_AES32_AUTOSYNC_FROM_AES6 6 457 #define HDSPM_AES32_AUTOSYNC_FROM_AES7 7 458 #define HDSPM_AES32_AUTOSYNC_FROM_AES8 8 459 #define HDSPM_AES32_AUTOSYNC_FROM_NONE 9 460 461 /* status2 */ 462 /* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */ 463 #define HDSPM_LockAES 0x80 464 #define HDSPM_LockAES1 0x80 465 #define HDSPM_LockAES2 0x40 466 #define HDSPM_LockAES3 0x20 467 #define HDSPM_LockAES4 0x10 468 #define HDSPM_LockAES5 0x8 469 #define HDSPM_LockAES6 0x4 470 #define HDSPM_LockAES7 0x2 471 #define HDSPM_LockAES8 0x1 472 /* 473 Timecode 474 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on 475 AES i+1 476 bits 3210 477 0001 32kHz 478 0010 44.1kHz 479 0011 48kHz 480 0100 64kHz 481 0101 88.2kHz 482 0110 96kHz 483 0111 128kHz 484 1000 176.4kHz 485 1001 192kHz 486 NB: Timecode register doesn't seem to work on AES32 card revision 230 487 */ 488 489 /* Mixer Values */ 490 #define UNITY_GAIN 32768 /* = 65536/2 */ 491 #define MINUS_INFINITY_GAIN 0 492 493 /* Number of channels for different Speed Modes */ 494 #define MADI_SS_CHANNELS 64 495 #define MADI_DS_CHANNELS 32 496 #define MADI_QS_CHANNELS 16 497 498 #define RAYDAT_SS_CHANNELS 36 499 #define RAYDAT_DS_CHANNELS 20 500 #define RAYDAT_QS_CHANNELS 12 501 502 #define AIO_IN_SS_CHANNELS 14 503 #define AIO_IN_DS_CHANNELS 10 504 #define AIO_IN_QS_CHANNELS 8 505 #define AIO_OUT_SS_CHANNELS 16 506 #define AIO_OUT_DS_CHANNELS 12 507 #define AIO_OUT_QS_CHANNELS 10 508 509 #define AES32_CHANNELS 16 510 511 /* the size of a substream (1 mono data stream) */ 512 #define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024) 513 #define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES) 514 515 /* the size of the area we need to allocate for DMA transfers. the 516 size is the same regardless of the number of channels, and 517 also the latency to use. 518 for one direction !!! 519 */ 520 #define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES) 521 #define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024) 522 523 #define HDSPM_RAYDAT_REV 211 524 #define HDSPM_AIO_REV 212 525 #define HDSPM_MADIFACE_REV 213 526 527 /* speed factor modes */ 528 #define HDSPM_SPEED_SINGLE 0 529 #define HDSPM_SPEED_DOUBLE 1 530 #define HDSPM_SPEED_QUAD 2 531 532 /* names for speed modes */ 533 static char *hdspm_speed_names[] = { "single", "double", "quad" }; 534 535 static char *texts_autosync_aes_tco[] = { "Word Clock", 536 "AES1", "AES2", "AES3", "AES4", 537 "AES5", "AES6", "AES7", "AES8", 538 "TCO" }; 539 static char *texts_autosync_aes[] = { "Word Clock", 540 "AES1", "AES2", "AES3", "AES4", 541 "AES5", "AES6", "AES7", "AES8" }; 542 static char *texts_autosync_madi_tco[] = { "Word Clock", 543 "MADI", "TCO", "Sync In" }; 544 static char *texts_autosync_madi[] = { "Word Clock", 545 "MADI", "Sync In" }; 546 547 static char *texts_autosync_raydat_tco[] = { 548 "Word Clock", 549 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 550 "AES", "SPDIF", "TCO", "Sync In" 551 }; 552 static char *texts_autosync_raydat[] = { 553 "Word Clock", 554 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4", 555 "AES", "SPDIF", "Sync In" 556 }; 557 static char *texts_autosync_aio_tco[] = { 558 "Word Clock", 559 "ADAT", "AES", "SPDIF", "TCO", "Sync In" 560 }; 561 static char *texts_autosync_aio[] = { "Word Clock", 562 "ADAT", "AES", "SPDIF", "Sync In" }; 563 564 static char *texts_freq[] = { 565 "No Lock", 566 "32 kHz", 567 "44.1 kHz", 568 "48 kHz", 569 "64 kHz", 570 "88.2 kHz", 571 "96 kHz", 572 "128 kHz", 573 "176.4 kHz", 574 "192 kHz" 575 }; 576 577 static char *texts_ports_madi[] = { 578 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6", 579 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12", 580 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18", 581 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24", 582 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30", 583 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36", 584 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42", 585 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48", 586 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54", 587 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60", 588 "MADI.61", "MADI.62", "MADI.63", "MADI.64", 589 }; 590 591 592 static char *texts_ports_raydat_ss[] = { 593 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6", 594 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 595 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2", 596 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8", 597 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6", 598 "ADAT4.7", "ADAT4.8", 599 "AES.L", "AES.R", 600 "SPDIF.L", "SPDIF.R" 601 }; 602 603 static char *texts_ports_raydat_ds[] = { 604 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", 605 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4", 606 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4", 607 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", 608 "AES.L", "AES.R", 609 "SPDIF.L", "SPDIF.R" 610 }; 611 612 static char *texts_ports_raydat_qs[] = { 613 "ADAT1.1", "ADAT1.2", 614 "ADAT2.1", "ADAT2.2", 615 "ADAT3.1", "ADAT3.2", 616 "ADAT4.1", "ADAT4.2", 617 "AES.L", "AES.R", 618 "SPDIF.L", "SPDIF.R" 619 }; 620 621 622 static char *texts_ports_aio_in_ss[] = { 623 "Analogue.L", "Analogue.R", 624 "AES.L", "AES.R", 625 "SPDIF.L", "SPDIF.R", 626 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 627 "ADAT.7", "ADAT.8" 628 }; 629 630 static char *texts_ports_aio_out_ss[] = { 631 "Analogue.L", "Analogue.R", 632 "AES.L", "AES.R", 633 "SPDIF.L", "SPDIF.R", 634 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6", 635 "ADAT.7", "ADAT.8", 636 "Phone.L", "Phone.R" 637 }; 638 639 static char *texts_ports_aio_in_ds[] = { 640 "Analogue.L", "Analogue.R", 641 "AES.L", "AES.R", 642 "SPDIF.L", "SPDIF.R", 643 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4" 644 }; 645 646 static char *texts_ports_aio_out_ds[] = { 647 "Analogue.L", "Analogue.R", 648 "AES.L", "AES.R", 649 "SPDIF.L", "SPDIF.R", 650 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 651 "Phone.L", "Phone.R" 652 }; 653 654 static char *texts_ports_aio_in_qs[] = { 655 "Analogue.L", "Analogue.R", 656 "AES.L", "AES.R", 657 "SPDIF.L", "SPDIF.R", 658 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4" 659 }; 660 661 static char *texts_ports_aio_out_qs[] = { 662 "Analogue.L", "Analogue.R", 663 "AES.L", "AES.R", 664 "SPDIF.L", "SPDIF.R", 665 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", 666 "Phone.L", "Phone.R" 667 }; 668 669 static char *texts_ports_aes32[] = { 670 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7", 671 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14", 672 "AES.15", "AES.16" 673 }; 674 675 /* These tables map the ALSA channels 1..N to the channels that we 676 need to use in order to find the relevant channel buffer. RME 677 refers to this kind of mapping as between "the ADAT channel and 678 the DMA channel." We index it using the logical audio channel, 679 and the value is the DMA channel (i.e. channel buffer number) 680 where the data for that channel can be read/written from/to. 681 */ 682 683 static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = { 684 0, 1, 2, 3, 4, 5, 6, 7, 685 8, 9, 10, 11, 12, 13, 14, 15, 686 16, 17, 18, 19, 20, 21, 22, 23, 687 24, 25, 26, 27, 28, 29, 30, 31, 688 32, 33, 34, 35, 36, 37, 38, 39, 689 40, 41, 42, 43, 44, 45, 46, 47, 690 48, 49, 50, 51, 52, 53, 54, 55, 691 56, 57, 58, 59, 60, 61, 62, 63 692 }; 693 694 static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = { 695 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */ 696 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */ 697 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */ 698 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */ 699 0, 1, /* AES */ 700 2, 3, /* SPDIF */ 701 -1, -1, -1, -1, 702 -1, -1, -1, -1, -1, -1, -1, -1, 703 -1, -1, -1, -1, -1, -1, -1, -1, 704 -1, -1, -1, -1, -1, -1, -1, -1, 705 }; 706 707 static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = { 708 4, 5, 6, 7, /* ADAT 1 */ 709 8, 9, 10, 11, /* ADAT 2 */ 710 12, 13, 14, 15, /* ADAT 3 */ 711 16, 17, 18, 19, /* ADAT 4 */ 712 0, 1, /* AES */ 713 2, 3, /* SPDIF */ 714 -1, -1, -1, -1, 715 -1, -1, -1, -1, -1, -1, -1, -1, 716 -1, -1, -1, -1, -1, -1, -1, -1, 717 -1, -1, -1, -1, -1, -1, -1, -1, 718 -1, -1, -1, -1, -1, -1, -1, -1, 719 -1, -1, -1, -1, -1, -1, -1, -1, 720 }; 721 722 static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = { 723 4, 5, /* ADAT 1 */ 724 6, 7, /* ADAT 2 */ 725 8, 9, /* ADAT 3 */ 726 10, 11, /* ADAT 4 */ 727 0, 1, /* AES */ 728 2, 3, /* SPDIF */ 729 -1, -1, -1, -1, 730 -1, -1, -1, -1, -1, -1, -1, -1, 731 -1, -1, -1, -1, -1, -1, -1, -1, 732 -1, -1, -1, -1, -1, -1, -1, -1, 733 -1, -1, -1, -1, -1, -1, -1, -1, 734 -1, -1, -1, -1, -1, -1, -1, -1, 735 -1, -1, -1, -1, -1, -1, -1, -1, 736 }; 737 738 static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = { 739 0, 1, /* line in */ 740 8, 9, /* aes in, */ 741 10, 11, /* spdif in */ 742 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */ 743 -1, -1, 744 -1, -1, -1, -1, -1, -1, -1, -1, 745 -1, -1, -1, -1, -1, -1, -1, -1, 746 -1, -1, -1, -1, -1, -1, -1, -1, 747 -1, -1, -1, -1, -1, -1, -1, -1, 748 -1, -1, -1, -1, -1, -1, -1, -1, 749 -1, -1, -1, -1, -1, -1, -1, -1, 750 }; 751 752 static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = { 753 0, 1, /* line out */ 754 8, 9, /* aes out */ 755 10, 11, /* spdif out */ 756 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */ 757 6, 7, /* phone out */ 758 -1, -1, -1, -1, -1, -1, -1, -1, 759 -1, -1, -1, -1, -1, -1, -1, -1, 760 -1, -1, -1, -1, -1, -1, -1, -1, 761 -1, -1, -1, -1, -1, -1, -1, -1, 762 -1, -1, -1, -1, -1, -1, -1, -1, 763 -1, -1, -1, -1, -1, -1, -1, -1, 764 }; 765 766 static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = { 767 0, 1, /* line in */ 768 8, 9, /* aes in */ 769 10, 11, /* spdif in */ 770 12, 14, 16, 18, /* adat in */ 771 -1, -1, -1, -1, -1, -1, 772 -1, -1, -1, -1, -1, -1, -1, -1, 773 -1, -1, -1, -1, -1, -1, -1, -1, 774 -1, -1, -1, -1, -1, -1, -1, -1, 775 -1, -1, -1, -1, -1, -1, -1, -1, 776 -1, -1, -1, -1, -1, -1, -1, -1, 777 -1, -1, -1, -1, -1, -1, -1, -1 778 }; 779 780 static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = { 781 0, 1, /* line out */ 782 8, 9, /* aes out */ 783 10, 11, /* spdif out */ 784 12, 14, 16, 18, /* adat out */ 785 6, 7, /* phone out */ 786 -1, -1, -1, -1, 787 -1, -1, -1, -1, -1, -1, -1, -1, 788 -1, -1, -1, -1, -1, -1, -1, -1, 789 -1, -1, -1, -1, -1, -1, -1, -1, 790 -1, -1, -1, -1, -1, -1, -1, -1, 791 -1, -1, -1, -1, -1, -1, -1, -1, 792 -1, -1, -1, -1, -1, -1, -1, -1 793 }; 794 795 static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = { 796 0, 1, /* line in */ 797 8, 9, /* aes in */ 798 10, 11, /* spdif in */ 799 12, 16, /* adat in */ 800 -1, -1, -1, -1, -1, -1, -1, -1, 801 -1, -1, -1, -1, -1, -1, -1, -1, 802 -1, -1, -1, -1, -1, -1, -1, -1, 803 -1, -1, -1, -1, -1, -1, -1, -1, 804 -1, -1, -1, -1, -1, -1, -1, -1, 805 -1, -1, -1, -1, -1, -1, -1, -1, 806 -1, -1, -1, -1, -1, -1, -1, -1 807 }; 808 809 static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = { 810 0, 1, /* line out */ 811 8, 9, /* aes out */ 812 10, 11, /* spdif out */ 813 12, 16, /* adat out */ 814 6, 7, /* phone out */ 815 -1, -1, -1, -1, -1, -1, 816 -1, -1, -1, -1, -1, -1, -1, -1, 817 -1, -1, -1, -1, -1, -1, -1, -1, 818 -1, -1, -1, -1, -1, -1, -1, -1, 819 -1, -1, -1, -1, -1, -1, -1, -1, 820 -1, -1, -1, -1, -1, -1, -1, -1, 821 -1, -1, -1, -1, -1, -1, -1, -1 822 }; 823 824 static char channel_map_aes32[HDSPM_MAX_CHANNELS] = { 825 0, 1, 2, 3, 4, 5, 6, 7, 826 8, 9, 10, 11, 12, 13, 14, 15, 827 -1, -1, -1, -1, -1, -1, -1, -1, 828 -1, -1, -1, -1, -1, -1, -1, -1, 829 -1, -1, -1, -1, -1, -1, -1, -1, 830 -1, -1, -1, -1, -1, -1, -1, -1, 831 -1, -1, -1, -1, -1, -1, -1, -1, 832 -1, -1, -1, -1, -1, -1, -1, -1 833 }; 834 835 struct hdspm_midi { 836 struct hdspm *hdspm; 837 int id; 838 struct snd_rawmidi *rmidi; 839 struct snd_rawmidi_substream *input; 840 struct snd_rawmidi_substream *output; 841 char istimer; /* timer in use */ 842 struct timer_list timer; 843 spinlock_t lock; 844 int pending; 845 int dataIn; 846 int statusIn; 847 int dataOut; 848 int statusOut; 849 int ie; 850 int irq; 851 }; 852 853 struct hdspm_tco { 854 int input; 855 int framerate; 856 int wordclock; 857 int samplerate; 858 int pull; 859 int term; /* 0 = off, 1 = on */ 860 }; 861 862 struct hdspm { 863 spinlock_t lock; 864 /* only one playback and/or capture stream */ 865 struct snd_pcm_substream *capture_substream; 866 struct snd_pcm_substream *playback_substream; 867 868 char *card_name; /* for procinfo */ 869 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/ 870 871 uint8_t io_type; 872 873 int monitor_outs; /* set up monitoring outs init flag */ 874 875 u32 control_register; /* cached value */ 876 u32 control2_register; /* cached value */ 877 u32 settings_register; 878 879 struct hdspm_midi midi[4]; 880 struct tasklet_struct midi_tasklet; 881 882 size_t period_bytes; 883 unsigned char ss_in_channels; 884 unsigned char ds_in_channels; 885 unsigned char qs_in_channels; 886 unsigned char ss_out_channels; 887 unsigned char ds_out_channels; 888 unsigned char qs_out_channels; 889 890 unsigned char max_channels_in; 891 unsigned char max_channels_out; 892 893 signed char *channel_map_in; 894 signed char *channel_map_out; 895 896 signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs; 897 signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs; 898 899 char **port_names_in; 900 char **port_names_out; 901 902 char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs; 903 char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs; 904 905 unsigned char *playback_buffer; /* suitably aligned address */ 906 unsigned char *capture_buffer; /* suitably aligned address */ 907 908 pid_t capture_pid; /* process id which uses capture */ 909 pid_t playback_pid; /* process id which uses capture */ 910 int running; /* running status */ 911 912 int last_external_sample_rate; /* samplerate mystic ... */ 913 int last_internal_sample_rate; 914 int system_sample_rate; 915 916 int dev; /* Hardware vars... */ 917 int irq; 918 unsigned long port; 919 void __iomem *iobase; 920 921 int irq_count; /* for debug */ 922 int midiPorts; 923 924 struct snd_card *card; /* one card */ 925 struct snd_pcm *pcm; /* has one pcm */ 926 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */ 927 struct pci_dev *pci; /* and an pci info */ 928 929 /* Mixer vars */ 930 /* fast alsa mixer */ 931 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS]; 932 /* but input to much, so not used */ 933 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS]; 934 /* full mixer accessible over mixer ioctl or hwdep-device */ 935 struct hdspm_mixer *mixer; 936 937 struct hdspm_tco *tco; /* NULL if no TCO detected */ 938 939 char **texts_autosync; 940 int texts_autosync_items; 941 942 cycles_t last_interrupt; 943 944 unsigned int serial; 945 946 struct hdspm_peak_rms peak_rms; 947 }; 948 949 950 static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = { 951 { 952 .vendor = PCI_VENDOR_ID_XILINX, 953 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI, 954 .subvendor = PCI_ANY_ID, 955 .subdevice = PCI_ANY_ID, 956 .class = 0, 957 .class_mask = 0, 958 .driver_data = 0}, 959 {0,} 960 }; 961 962 MODULE_DEVICE_TABLE(pci, snd_hdspm_ids); 963 964 /* prototypes */ 965 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card, 966 struct hdspm * hdspm); 967 static int __devinit snd_hdspm_create_pcm(struct snd_card *card, 968 struct hdspm * hdspm); 969 970 static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm); 971 static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm); 972 static int hdspm_autosync_ref(struct hdspm *hdspm); 973 static int snd_hdspm_set_defaults(struct hdspm *hdspm); 974 static int hdspm_system_clock_mode(struct hdspm *hdspm); 975 static void hdspm_set_sgbuf(struct hdspm *hdspm, 976 struct snd_pcm_substream *substream, 977 unsigned int reg, int channels); 978 979 static inline int HDSPM_bit2freq(int n) 980 { 981 static const int bit2freq_tab[] = { 982 0, 32000, 44100, 48000, 64000, 88200, 983 96000, 128000, 176400, 192000 }; 984 if (n < 1 || n > 9) 985 return 0; 986 return bit2freq_tab[n]; 987 } 988 989 /* Write/read to/from HDSPM with Adresses in Bytes 990 not words but only 32Bit writes are allowed */ 991 992 static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg, 993 unsigned int val) 994 { 995 writel(val, hdspm->iobase + reg); 996 } 997 998 static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg) 999 { 1000 return readl(hdspm->iobase + reg); 1001 } 1002 1003 /* for each output channel (chan) I have an Input (in) and Playback (pb) Fader 1004 mixer is write only on hardware so we have to cache him for read 1005 each fader is a u32, but uses only the first 16 bit */ 1006 1007 static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan, 1008 unsigned int in) 1009 { 1010 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1011 return 0; 1012 1013 return hdspm->mixer->ch[chan].in[in]; 1014 } 1015 1016 static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan, 1017 unsigned int pb) 1018 { 1019 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1020 return 0; 1021 return hdspm->mixer->ch[chan].pb[pb]; 1022 } 1023 1024 static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan, 1025 unsigned int in, unsigned short data) 1026 { 1027 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS) 1028 return -1; 1029 1030 hdspm_write(hdspm, 1031 HDSPM_MADI_mixerBase + 1032 ((in + 128 * chan) * sizeof(u32)), 1033 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF)); 1034 return 0; 1035 } 1036 1037 static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan, 1038 unsigned int pb, unsigned short data) 1039 { 1040 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS) 1041 return -1; 1042 1043 hdspm_write(hdspm, 1044 HDSPM_MADI_mixerBase + 1045 ((64 + pb + 128 * chan) * sizeof(u32)), 1046 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF)); 1047 return 0; 1048 } 1049 1050 1051 /* enable DMA for specific channels, now available for DSP-MADI */ 1052 static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v) 1053 { 1054 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v); 1055 } 1056 1057 static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v) 1058 { 1059 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v); 1060 } 1061 1062 /* check if same process is writing and reading */ 1063 static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm) 1064 { 1065 unsigned long flags; 1066 int ret = 1; 1067 1068 spin_lock_irqsave(&hdspm->lock, flags); 1069 if ((hdspm->playback_pid != hdspm->capture_pid) && 1070 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) { 1071 ret = 0; 1072 } 1073 spin_unlock_irqrestore(&hdspm->lock, flags); 1074 return ret; 1075 } 1076 1077 /* check for external sample rate */ 1078 static int hdspm_external_sample_rate(struct hdspm *hdspm) 1079 { 1080 unsigned int status, status2, timecode; 1081 int syncref, rate = 0, rate_bits; 1082 1083 switch (hdspm->io_type) { 1084 case AES32: 1085 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1086 status = hdspm_read(hdspm, HDSPM_statusRegister); 1087 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 1088 1089 syncref = hdspm_autosync_ref(hdspm); 1090 1091 if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD && 1092 status & HDSPM_AES32_wcLock) 1093 return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF); 1094 1095 if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 && 1096 syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 && 1097 status2 & (HDSPM_LockAES >> 1098 (syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1))) 1099 return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF); 1100 return 0; 1101 break; 1102 1103 case MADIface: 1104 status = hdspm_read(hdspm, HDSPM_statusRegister); 1105 1106 if (!(status & HDSPM_madiLock)) { 1107 rate = 0; /* no lock */ 1108 } else { 1109 switch (status & (HDSPM_status1_freqMask)) { 1110 case HDSPM_status1_F_0*1: 1111 rate = 32000; break; 1112 case HDSPM_status1_F_0*2: 1113 rate = 44100; break; 1114 case HDSPM_status1_F_0*3: 1115 rate = 48000; break; 1116 case HDSPM_status1_F_0*4: 1117 rate = 64000; break; 1118 case HDSPM_status1_F_0*5: 1119 rate = 88200; break; 1120 case HDSPM_status1_F_0*6: 1121 rate = 96000; break; 1122 case HDSPM_status1_F_0*7: 1123 rate = 128000; break; 1124 case HDSPM_status1_F_0*8: 1125 rate = 176400; break; 1126 case HDSPM_status1_F_0*9: 1127 rate = 192000; break; 1128 default: 1129 rate = 0; break; 1130 } 1131 } 1132 1133 break; 1134 1135 case MADI: 1136 case AIO: 1137 case RayDAT: 1138 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 1139 status = hdspm_read(hdspm, HDSPM_statusRegister); 1140 rate = 0; 1141 1142 /* if wordclock has synced freq and wordclock is valid */ 1143 if ((status2 & HDSPM_wcLock) != 0 && 1144 (status2 & HDSPM_SelSyncRef0) == 0) { 1145 1146 rate_bits = status2 & HDSPM_wcFreqMask; 1147 1148 1149 switch (rate_bits) { 1150 case HDSPM_wcFreq32: 1151 rate = 32000; 1152 break; 1153 case HDSPM_wcFreq44_1: 1154 rate = 44100; 1155 break; 1156 case HDSPM_wcFreq48: 1157 rate = 48000; 1158 break; 1159 case HDSPM_wcFreq64: 1160 rate = 64000; 1161 break; 1162 case HDSPM_wcFreq88_2: 1163 rate = 88200; 1164 break; 1165 case HDSPM_wcFreq96: 1166 rate = 96000; 1167 break; 1168 default: 1169 rate = 0; 1170 break; 1171 } 1172 } 1173 1174 /* if rate detected and Syncref is Word than have it, 1175 * word has priority to MADI 1176 */ 1177 if (rate != 0 && 1178 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD) 1179 return rate; 1180 1181 /* maybe a madi input (which is taken if sel sync is madi) */ 1182 if (status & HDSPM_madiLock) { 1183 rate_bits = status & HDSPM_madiFreqMask; 1184 1185 switch (rate_bits) { 1186 case HDSPM_madiFreq32: 1187 rate = 32000; 1188 break; 1189 case HDSPM_madiFreq44_1: 1190 rate = 44100; 1191 break; 1192 case HDSPM_madiFreq48: 1193 rate = 48000; 1194 break; 1195 case HDSPM_madiFreq64: 1196 rate = 64000; 1197 break; 1198 case HDSPM_madiFreq88_2: 1199 rate = 88200; 1200 break; 1201 case HDSPM_madiFreq96: 1202 rate = 96000; 1203 break; 1204 case HDSPM_madiFreq128: 1205 rate = 128000; 1206 break; 1207 case HDSPM_madiFreq176_4: 1208 rate = 176400; 1209 break; 1210 case HDSPM_madiFreq192: 1211 rate = 192000; 1212 break; 1213 default: 1214 rate = 0; 1215 break; 1216 } 1217 1218 /* QS and DS rates normally can not be detected 1219 * automatically by the card. Only exception is MADI 1220 * in 96k frame mode. 1221 * 1222 * So if we read SS values (32 .. 48k), check for 1223 * user-provided DS/QS bits in the control register 1224 * and multiply the base frequency accordingly. 1225 */ 1226 if (rate <= 48000) { 1227 if (hdspm->control_register & HDSPM_QuadSpeed) 1228 rate *= 4; 1229 else if (hdspm->control_register & 1230 HDSPM_DoubleSpeed) 1231 rate *= 2; 1232 } 1233 } 1234 break; 1235 } 1236 1237 return rate; 1238 } 1239 1240 /* return latency in samples per period */ 1241 static int hdspm_get_latency(struct hdspm *hdspm) 1242 { 1243 int n; 1244 1245 n = hdspm_decode_latency(hdspm->control_register); 1246 1247 /* Special case for new RME cards with 32 samples period size. 1248 * The three latency bits in the control register 1249 * (HDSP_LatencyMask) encode latency values of 64 samples as 1250 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7 1251 * denotes 8192 samples, but on new cards like RayDAT or AIO, 1252 * it corresponds to 32 samples. 1253 */ 1254 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type)) 1255 n = -1; 1256 1257 return 1 << (n + 6); 1258 } 1259 1260 /* Latency function */ 1261 static inline void hdspm_compute_period_size(struct hdspm *hdspm) 1262 { 1263 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm); 1264 } 1265 1266 1267 static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm) 1268 { 1269 int position; 1270 1271 position = hdspm_read(hdspm, HDSPM_statusRegister); 1272 1273 switch (hdspm->io_type) { 1274 case RayDAT: 1275 case AIO: 1276 position &= HDSPM_BufferPositionMask; 1277 position /= 4; /* Bytes per sample */ 1278 break; 1279 default: 1280 position = (position & HDSPM_BufferID) ? 1281 (hdspm->period_bytes / 4) : 0; 1282 } 1283 1284 return position; 1285 } 1286 1287 1288 static inline void hdspm_start_audio(struct hdspm * s) 1289 { 1290 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start); 1291 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1292 } 1293 1294 static inline void hdspm_stop_audio(struct hdspm * s) 1295 { 1296 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable); 1297 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1298 } 1299 1300 /* should I silence all or only opened ones ? doit all for first even is 4MB*/ 1301 static void hdspm_silence_playback(struct hdspm *hdspm) 1302 { 1303 int i; 1304 int n = hdspm->period_bytes; 1305 void *buf = hdspm->playback_buffer; 1306 1307 if (buf == NULL) 1308 return; 1309 1310 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 1311 memset(buf, 0, n); 1312 buf += HDSPM_CHANNEL_BUFFER_BYTES; 1313 } 1314 } 1315 1316 static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames) 1317 { 1318 int n; 1319 1320 spin_lock_irq(&s->lock); 1321 1322 if (32 == frames) { 1323 /* Special case for new RME cards like RayDAT/AIO which 1324 * support period sizes of 32 samples. Since latency is 1325 * encoded in the three bits of HDSP_LatencyMask, we can only 1326 * have values from 0 .. 7. While 0 still means 64 samples and 1327 * 6 represents 4096 samples on all cards, 7 represents 8192 1328 * on older cards and 32 samples on new cards. 1329 * 1330 * In other words, period size in samples is calculated by 1331 * 2^(n+6) with n ranging from 0 .. 7. 1332 */ 1333 n = 7; 1334 } else { 1335 frames >>= 7; 1336 n = 0; 1337 while (frames) { 1338 n++; 1339 frames >>= 1; 1340 } 1341 } 1342 1343 s->control_register &= ~HDSPM_LatencyMask; 1344 s->control_register |= hdspm_encode_latency(n); 1345 1346 hdspm_write(s, HDSPM_controlRegister, s->control_register); 1347 1348 hdspm_compute_period_size(s); 1349 1350 spin_unlock_irq(&s->lock); 1351 1352 return 0; 1353 } 1354 1355 static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period) 1356 { 1357 u64 freq_const; 1358 1359 if (period == 0) 1360 return 0; 1361 1362 switch (hdspm->io_type) { 1363 case MADI: 1364 case AES32: 1365 freq_const = 110069313433624ULL; 1366 break; 1367 case RayDAT: 1368 case AIO: 1369 freq_const = 104857600000000ULL; 1370 break; 1371 case MADIface: 1372 freq_const = 131072000000000ULL; 1373 break; 1374 default: 1375 snd_BUG(); 1376 return 0; 1377 } 1378 1379 return div_u64(freq_const, period); 1380 } 1381 1382 1383 static void hdspm_set_dds_value(struct hdspm *hdspm, int rate) 1384 { 1385 u64 n; 1386 1387 if (rate >= 112000) 1388 rate /= 4; 1389 else if (rate >= 56000) 1390 rate /= 2; 1391 1392 switch (hdspm->io_type) { 1393 case MADIface: 1394 n = 131072000000000ULL; /* 125 MHz */ 1395 break; 1396 case MADI: 1397 case AES32: 1398 n = 110069313433624ULL; /* 105 MHz */ 1399 break; 1400 case RayDAT: 1401 case AIO: 1402 n = 104857600000000ULL; /* 100 MHz */ 1403 break; 1404 default: 1405 snd_BUG(); 1406 return; 1407 } 1408 1409 n = div_u64(n, rate); 1410 /* n should be less than 2^32 for being written to FREQ register */ 1411 snd_BUG_ON(n >> 32); 1412 hdspm_write(hdspm, HDSPM_freqReg, (u32)n); 1413 } 1414 1415 /* dummy set rate lets see what happens */ 1416 static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally) 1417 { 1418 int current_rate; 1419 int rate_bits; 1420 int not_set = 0; 1421 int current_speed, target_speed; 1422 1423 /* ASSUMPTION: hdspm->lock is either set, or there is no need for 1424 it (e.g. during module initialization). 1425 */ 1426 1427 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) { 1428 1429 /* SLAVE --- */ 1430 if (called_internally) { 1431 1432 /* request from ctl or card initialization 1433 just make a warning an remember setting 1434 for future master mode switching */ 1435 1436 snd_printk(KERN_WARNING "HDSPM: " 1437 "Warning: device is not running " 1438 "as a clock master.\n"); 1439 not_set = 1; 1440 } else { 1441 1442 /* hw_param request while in AutoSync mode */ 1443 int external_freq = 1444 hdspm_external_sample_rate(hdspm); 1445 1446 if (hdspm_autosync_ref(hdspm) == 1447 HDSPM_AUTOSYNC_FROM_NONE) { 1448 1449 snd_printk(KERN_WARNING "HDSPM: " 1450 "Detected no Externel Sync \n"); 1451 not_set = 1; 1452 1453 } else if (rate != external_freq) { 1454 1455 snd_printk(KERN_WARNING "HDSPM: " 1456 "Warning: No AutoSync source for " 1457 "requested rate\n"); 1458 not_set = 1; 1459 } 1460 } 1461 } 1462 1463 current_rate = hdspm->system_sample_rate; 1464 1465 /* Changing between Singe, Double and Quad speed is not 1466 allowed if any substreams are open. This is because such a change 1467 causes a shift in the location of the DMA buffers and a reduction 1468 in the number of available buffers. 1469 1470 Note that a similar but essentially insoluble problem exists for 1471 externally-driven rate changes. All we can do is to flag rate 1472 changes in the read/write routines. 1473 */ 1474 1475 if (current_rate <= 48000) 1476 current_speed = HDSPM_SPEED_SINGLE; 1477 else if (current_rate <= 96000) 1478 current_speed = HDSPM_SPEED_DOUBLE; 1479 else 1480 current_speed = HDSPM_SPEED_QUAD; 1481 1482 if (rate <= 48000) 1483 target_speed = HDSPM_SPEED_SINGLE; 1484 else if (rate <= 96000) 1485 target_speed = HDSPM_SPEED_DOUBLE; 1486 else 1487 target_speed = HDSPM_SPEED_QUAD; 1488 1489 switch (rate) { 1490 case 32000: 1491 rate_bits = HDSPM_Frequency32KHz; 1492 break; 1493 case 44100: 1494 rate_bits = HDSPM_Frequency44_1KHz; 1495 break; 1496 case 48000: 1497 rate_bits = HDSPM_Frequency48KHz; 1498 break; 1499 case 64000: 1500 rate_bits = HDSPM_Frequency64KHz; 1501 break; 1502 case 88200: 1503 rate_bits = HDSPM_Frequency88_2KHz; 1504 break; 1505 case 96000: 1506 rate_bits = HDSPM_Frequency96KHz; 1507 break; 1508 case 128000: 1509 rate_bits = HDSPM_Frequency128KHz; 1510 break; 1511 case 176400: 1512 rate_bits = HDSPM_Frequency176_4KHz; 1513 break; 1514 case 192000: 1515 rate_bits = HDSPM_Frequency192KHz; 1516 break; 1517 default: 1518 return -EINVAL; 1519 } 1520 1521 if (current_speed != target_speed 1522 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) { 1523 snd_printk 1524 (KERN_ERR "HDSPM: " 1525 "cannot change from %s speed to %s speed mode " 1526 "(capture PID = %d, playback PID = %d)\n", 1527 hdspm_speed_names[current_speed], 1528 hdspm_speed_names[target_speed], 1529 hdspm->capture_pid, hdspm->playback_pid); 1530 return -EBUSY; 1531 } 1532 1533 hdspm->control_register &= ~HDSPM_FrequencyMask; 1534 hdspm->control_register |= rate_bits; 1535 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1536 1537 /* For AES32, need to set DDS value in FREQ register 1538 For MADI, also apparently */ 1539 hdspm_set_dds_value(hdspm, rate); 1540 1541 if (AES32 == hdspm->io_type && rate != current_rate) 1542 hdspm_write(hdspm, HDSPM_eeprom_wr, 0); 1543 1544 hdspm->system_sample_rate = rate; 1545 1546 if (rate <= 48000) { 1547 hdspm->channel_map_in = hdspm->channel_map_in_ss; 1548 hdspm->channel_map_out = hdspm->channel_map_out_ss; 1549 hdspm->max_channels_in = hdspm->ss_in_channels; 1550 hdspm->max_channels_out = hdspm->ss_out_channels; 1551 hdspm->port_names_in = hdspm->port_names_in_ss; 1552 hdspm->port_names_out = hdspm->port_names_out_ss; 1553 } else if (rate <= 96000) { 1554 hdspm->channel_map_in = hdspm->channel_map_in_ds; 1555 hdspm->channel_map_out = hdspm->channel_map_out_ds; 1556 hdspm->max_channels_in = hdspm->ds_in_channels; 1557 hdspm->max_channels_out = hdspm->ds_out_channels; 1558 hdspm->port_names_in = hdspm->port_names_in_ds; 1559 hdspm->port_names_out = hdspm->port_names_out_ds; 1560 } else { 1561 hdspm->channel_map_in = hdspm->channel_map_in_qs; 1562 hdspm->channel_map_out = hdspm->channel_map_out_qs; 1563 hdspm->max_channels_in = hdspm->qs_in_channels; 1564 hdspm->max_channels_out = hdspm->qs_out_channels; 1565 hdspm->port_names_in = hdspm->port_names_in_qs; 1566 hdspm->port_names_out = hdspm->port_names_out_qs; 1567 } 1568 1569 if (not_set != 0) 1570 return -1; 1571 1572 return 0; 1573 } 1574 1575 /* mainly for init to 0 on load */ 1576 static void all_in_all_mixer(struct hdspm * hdspm, int sgain) 1577 { 1578 int i, j; 1579 unsigned int gain; 1580 1581 if (sgain > UNITY_GAIN) 1582 gain = UNITY_GAIN; 1583 else if (sgain < 0) 1584 gain = 0; 1585 else 1586 gain = sgain; 1587 1588 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++) 1589 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) { 1590 hdspm_write_in_gain(hdspm, i, j, gain); 1591 hdspm_write_pb_gain(hdspm, i, j, gain); 1592 } 1593 } 1594 1595 /*---------------------------------------------------------------------------- 1596 MIDI 1597 ----------------------------------------------------------------------------*/ 1598 1599 static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm, 1600 int id) 1601 { 1602 /* the hardware already does the relevant bit-mask with 0xff */ 1603 return hdspm_read(hdspm, hdspm->midi[id].dataIn); 1604 } 1605 1606 static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id, 1607 int val) 1608 { 1609 /* the hardware already does the relevant bit-mask with 0xff */ 1610 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val); 1611 } 1612 1613 static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id) 1614 { 1615 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF; 1616 } 1617 1618 static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id) 1619 { 1620 int fifo_bytes_used; 1621 1622 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF; 1623 1624 if (fifo_bytes_used < 128) 1625 return 128 - fifo_bytes_used; 1626 else 1627 return 0; 1628 } 1629 1630 static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id) 1631 { 1632 while (snd_hdspm_midi_input_available (hdspm, id)) 1633 snd_hdspm_midi_read_byte (hdspm, id); 1634 } 1635 1636 static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi) 1637 { 1638 unsigned long flags; 1639 int n_pending; 1640 int to_write; 1641 int i; 1642 unsigned char buf[128]; 1643 1644 /* Output is not interrupt driven */ 1645 1646 spin_lock_irqsave (&hmidi->lock, flags); 1647 if (hmidi->output && 1648 !snd_rawmidi_transmit_empty (hmidi->output)) { 1649 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm, 1650 hmidi->id); 1651 if (n_pending > 0) { 1652 if (n_pending > (int)sizeof (buf)) 1653 n_pending = sizeof (buf); 1654 1655 to_write = snd_rawmidi_transmit (hmidi->output, buf, 1656 n_pending); 1657 if (to_write > 0) { 1658 for (i = 0; i < to_write; ++i) 1659 snd_hdspm_midi_write_byte (hmidi->hdspm, 1660 hmidi->id, 1661 buf[i]); 1662 } 1663 } 1664 } 1665 spin_unlock_irqrestore (&hmidi->lock, flags); 1666 return 0; 1667 } 1668 1669 static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi) 1670 { 1671 unsigned char buf[128]; /* this buffer is designed to match the MIDI 1672 * input FIFO size 1673 */ 1674 unsigned long flags; 1675 int n_pending; 1676 int i; 1677 1678 spin_lock_irqsave (&hmidi->lock, flags); 1679 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id); 1680 if (n_pending > 0) { 1681 if (hmidi->input) { 1682 if (n_pending > (int)sizeof (buf)) 1683 n_pending = sizeof (buf); 1684 for (i = 0; i < n_pending; ++i) 1685 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm, 1686 hmidi->id); 1687 if (n_pending) 1688 snd_rawmidi_receive (hmidi->input, buf, 1689 n_pending); 1690 } else { 1691 /* flush the MIDI input FIFO */ 1692 while (n_pending--) 1693 snd_hdspm_midi_read_byte (hmidi->hdspm, 1694 hmidi->id); 1695 } 1696 } 1697 hmidi->pending = 0; 1698 spin_unlock_irqrestore(&hmidi->lock, flags); 1699 1700 spin_lock_irqsave(&hmidi->hdspm->lock, flags); 1701 hmidi->hdspm->control_register |= hmidi->ie; 1702 hdspm_write(hmidi->hdspm, HDSPM_controlRegister, 1703 hmidi->hdspm->control_register); 1704 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags); 1705 1706 return snd_hdspm_midi_output_write (hmidi); 1707 } 1708 1709 static void 1710 snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 1711 { 1712 struct hdspm *hdspm; 1713 struct hdspm_midi *hmidi; 1714 unsigned long flags; 1715 1716 hmidi = substream->rmidi->private_data; 1717 hdspm = hmidi->hdspm; 1718 1719 spin_lock_irqsave (&hdspm->lock, flags); 1720 if (up) { 1721 if (!(hdspm->control_register & hmidi->ie)) { 1722 snd_hdspm_flush_midi_input (hdspm, hmidi->id); 1723 hdspm->control_register |= hmidi->ie; 1724 } 1725 } else { 1726 hdspm->control_register &= ~hmidi->ie; 1727 } 1728 1729 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 1730 spin_unlock_irqrestore (&hdspm->lock, flags); 1731 } 1732 1733 static void snd_hdspm_midi_output_timer(unsigned long data) 1734 { 1735 struct hdspm_midi *hmidi = (struct hdspm_midi *) data; 1736 unsigned long flags; 1737 1738 snd_hdspm_midi_output_write(hmidi); 1739 spin_lock_irqsave (&hmidi->lock, flags); 1740 1741 /* this does not bump hmidi->istimer, because the 1742 kernel automatically removed the timer when it 1743 expired, and we are now adding it back, thus 1744 leaving istimer wherever it was set before. 1745 */ 1746 1747 if (hmidi->istimer) { 1748 hmidi->timer.expires = 1 + jiffies; 1749 add_timer(&hmidi->timer); 1750 } 1751 1752 spin_unlock_irqrestore (&hmidi->lock, flags); 1753 } 1754 1755 static void 1756 snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 1757 { 1758 struct hdspm_midi *hmidi; 1759 unsigned long flags; 1760 1761 hmidi = substream->rmidi->private_data; 1762 spin_lock_irqsave (&hmidi->lock, flags); 1763 if (up) { 1764 if (!hmidi->istimer) { 1765 init_timer(&hmidi->timer); 1766 hmidi->timer.function = snd_hdspm_midi_output_timer; 1767 hmidi->timer.data = (unsigned long) hmidi; 1768 hmidi->timer.expires = 1 + jiffies; 1769 add_timer(&hmidi->timer); 1770 hmidi->istimer++; 1771 } 1772 } else { 1773 if (hmidi->istimer && --hmidi->istimer <= 0) 1774 del_timer (&hmidi->timer); 1775 } 1776 spin_unlock_irqrestore (&hmidi->lock, flags); 1777 if (up) 1778 snd_hdspm_midi_output_write(hmidi); 1779 } 1780 1781 static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream) 1782 { 1783 struct hdspm_midi *hmidi; 1784 1785 hmidi = substream->rmidi->private_data; 1786 spin_lock_irq (&hmidi->lock); 1787 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id); 1788 hmidi->input = substream; 1789 spin_unlock_irq (&hmidi->lock); 1790 1791 return 0; 1792 } 1793 1794 static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream) 1795 { 1796 struct hdspm_midi *hmidi; 1797 1798 hmidi = substream->rmidi->private_data; 1799 spin_lock_irq (&hmidi->lock); 1800 hmidi->output = substream; 1801 spin_unlock_irq (&hmidi->lock); 1802 1803 return 0; 1804 } 1805 1806 static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream) 1807 { 1808 struct hdspm_midi *hmidi; 1809 1810 snd_hdspm_midi_input_trigger (substream, 0); 1811 1812 hmidi = substream->rmidi->private_data; 1813 spin_lock_irq (&hmidi->lock); 1814 hmidi->input = NULL; 1815 spin_unlock_irq (&hmidi->lock); 1816 1817 return 0; 1818 } 1819 1820 static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream) 1821 { 1822 struct hdspm_midi *hmidi; 1823 1824 snd_hdspm_midi_output_trigger (substream, 0); 1825 1826 hmidi = substream->rmidi->private_data; 1827 spin_lock_irq (&hmidi->lock); 1828 hmidi->output = NULL; 1829 spin_unlock_irq (&hmidi->lock); 1830 1831 return 0; 1832 } 1833 1834 static struct snd_rawmidi_ops snd_hdspm_midi_output = 1835 { 1836 .open = snd_hdspm_midi_output_open, 1837 .close = snd_hdspm_midi_output_close, 1838 .trigger = snd_hdspm_midi_output_trigger, 1839 }; 1840 1841 static struct snd_rawmidi_ops snd_hdspm_midi_input = 1842 { 1843 .open = snd_hdspm_midi_input_open, 1844 .close = snd_hdspm_midi_input_close, 1845 .trigger = snd_hdspm_midi_input_trigger, 1846 }; 1847 1848 static int __devinit snd_hdspm_create_midi (struct snd_card *card, 1849 struct hdspm *hdspm, int id) 1850 { 1851 int err; 1852 char buf[32]; 1853 1854 hdspm->midi[id].id = id; 1855 hdspm->midi[id].hdspm = hdspm; 1856 spin_lock_init (&hdspm->midi[id].lock); 1857 1858 if (0 == id) { 1859 if (MADIface == hdspm->io_type) { 1860 /* MIDI-over-MADI on HDSPe MADIface */ 1861 hdspm->midi[0].dataIn = HDSPM_midiDataIn2; 1862 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2; 1863 hdspm->midi[0].dataOut = HDSPM_midiDataOut2; 1864 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2; 1865 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable; 1866 hdspm->midi[0].irq = HDSPM_midi2IRQPending; 1867 } else { 1868 hdspm->midi[0].dataIn = HDSPM_midiDataIn0; 1869 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0; 1870 hdspm->midi[0].dataOut = HDSPM_midiDataOut0; 1871 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0; 1872 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable; 1873 hdspm->midi[0].irq = HDSPM_midi0IRQPending; 1874 } 1875 } else if (1 == id) { 1876 hdspm->midi[1].dataIn = HDSPM_midiDataIn1; 1877 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1; 1878 hdspm->midi[1].dataOut = HDSPM_midiDataOut1; 1879 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1; 1880 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable; 1881 hdspm->midi[1].irq = HDSPM_midi1IRQPending; 1882 } else if ((2 == id) && (MADI == hdspm->io_type)) { 1883 /* MIDI-over-MADI on HDSPe MADI */ 1884 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 1885 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 1886 hdspm->midi[2].dataOut = HDSPM_midiDataOut2; 1887 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2; 1888 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 1889 hdspm->midi[2].irq = HDSPM_midi2IRQPending; 1890 } else if (2 == id) { 1891 /* TCO MTC, read only */ 1892 hdspm->midi[2].dataIn = HDSPM_midiDataIn2; 1893 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2; 1894 hdspm->midi[2].dataOut = -1; 1895 hdspm->midi[2].statusOut = -1; 1896 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable; 1897 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES; 1898 } else if (3 == id) { 1899 /* TCO MTC on HDSPe MADI */ 1900 hdspm->midi[3].dataIn = HDSPM_midiDataIn3; 1901 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3; 1902 hdspm->midi[3].dataOut = -1; 1903 hdspm->midi[3].statusOut = -1; 1904 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable; 1905 hdspm->midi[3].irq = HDSPM_midi3IRQPending; 1906 } 1907 1908 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) || 1909 (MADIface == hdspm->io_type)))) { 1910 if ((id == 0) && (MADIface == hdspm->io_type)) { 1911 sprintf(buf, "%s MIDIoverMADI", card->shortname); 1912 } else if ((id == 2) && (MADI == hdspm->io_type)) { 1913 sprintf(buf, "%s MIDIoverMADI", card->shortname); 1914 } else { 1915 sprintf(buf, "%s MIDI %d", card->shortname, id+1); 1916 } 1917 err = snd_rawmidi_new(card, buf, id, 1, 1, 1918 &hdspm->midi[id].rmidi); 1919 if (err < 0) 1920 return err; 1921 1922 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d", 1923 card->id, id+1); 1924 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 1925 1926 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 1927 SNDRV_RAWMIDI_STREAM_OUTPUT, 1928 &snd_hdspm_midi_output); 1929 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 1930 SNDRV_RAWMIDI_STREAM_INPUT, 1931 &snd_hdspm_midi_input); 1932 1933 hdspm->midi[id].rmidi->info_flags |= 1934 SNDRV_RAWMIDI_INFO_OUTPUT | 1935 SNDRV_RAWMIDI_INFO_INPUT | 1936 SNDRV_RAWMIDI_INFO_DUPLEX; 1937 } else { 1938 /* TCO MTC, read only */ 1939 sprintf(buf, "%s MTC %d", card->shortname, id+1); 1940 err = snd_rawmidi_new(card, buf, id, 1, 1, 1941 &hdspm->midi[id].rmidi); 1942 if (err < 0) 1943 return err; 1944 1945 sprintf(hdspm->midi[id].rmidi->name, 1946 "%s MTC %d", card->id, id+1); 1947 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id]; 1948 1949 snd_rawmidi_set_ops(hdspm->midi[id].rmidi, 1950 SNDRV_RAWMIDI_STREAM_INPUT, 1951 &snd_hdspm_midi_input); 1952 1953 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT; 1954 } 1955 1956 return 0; 1957 } 1958 1959 1960 static void hdspm_midi_tasklet(unsigned long arg) 1961 { 1962 struct hdspm *hdspm = (struct hdspm *)arg; 1963 int i = 0; 1964 1965 while (i < hdspm->midiPorts) { 1966 if (hdspm->midi[i].pending) 1967 snd_hdspm_midi_input_read(&hdspm->midi[i]); 1968 1969 i++; 1970 } 1971 } 1972 1973 1974 /*----------------------------------------------------------------------------- 1975 Status Interface 1976 ----------------------------------------------------------------------------*/ 1977 1978 /* get the system sample rate which is set */ 1979 1980 1981 /** 1982 * Calculate the real sample rate from the 1983 * current DDS value. 1984 **/ 1985 static int hdspm_get_system_sample_rate(struct hdspm *hdspm) 1986 { 1987 unsigned int period, rate; 1988 1989 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 1990 rate = hdspm_calc_dds_value(hdspm, period); 1991 1992 if (rate > 207000) { 1993 /* Unreasonable high sample rate as seen on PCI MADI cards. */ 1994 if (0 == hdspm_system_clock_mode(hdspm)) { 1995 /* master mode, return internal sample rate */ 1996 rate = hdspm->system_sample_rate; 1997 } else { 1998 /* slave mode, return external sample rate */ 1999 rate = hdspm_external_sample_rate(hdspm); 2000 } 2001 } 2002 2003 return rate; 2004 } 2005 2006 2007 #define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \ 2008 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2009 .name = xname, \ 2010 .index = xindex, \ 2011 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2012 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2013 .info = snd_hdspm_info_system_sample_rate, \ 2014 .put = snd_hdspm_put_system_sample_rate, \ 2015 .get = snd_hdspm_get_system_sample_rate \ 2016 } 2017 2018 static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol, 2019 struct snd_ctl_elem_info *uinfo) 2020 { 2021 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2022 uinfo->count = 1; 2023 uinfo->value.integer.min = 27000; 2024 uinfo->value.integer.max = 207000; 2025 uinfo->value.integer.step = 1; 2026 return 0; 2027 } 2028 2029 2030 static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol, 2031 struct snd_ctl_elem_value * 2032 ucontrol) 2033 { 2034 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2035 2036 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm); 2037 return 0; 2038 } 2039 2040 static int snd_hdspm_put_system_sample_rate(struct snd_kcontrol *kcontrol, 2041 struct snd_ctl_elem_value * 2042 ucontrol) 2043 { 2044 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2045 2046 hdspm_set_dds_value(hdspm, ucontrol->value.enumerated.item[0]); 2047 return 0; 2048 } 2049 2050 2051 /** 2052 * Returns the WordClock sample rate class for the given card. 2053 **/ 2054 static int hdspm_get_wc_sample_rate(struct hdspm *hdspm) 2055 { 2056 int status; 2057 2058 switch (hdspm->io_type) { 2059 case RayDAT: 2060 case AIO: 2061 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2062 return (status >> 16) & 0xF; 2063 break; 2064 default: 2065 break; 2066 } 2067 2068 2069 return 0; 2070 } 2071 2072 2073 /** 2074 * Returns the TCO sample rate class for the given card. 2075 **/ 2076 static int hdspm_get_tco_sample_rate(struct hdspm *hdspm) 2077 { 2078 int status; 2079 2080 if (hdspm->tco) { 2081 switch (hdspm->io_type) { 2082 case RayDAT: 2083 case AIO: 2084 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 2085 return (status >> 20) & 0xF; 2086 break; 2087 default: 2088 break; 2089 } 2090 } 2091 2092 return 0; 2093 } 2094 2095 2096 /** 2097 * Returns the SYNC_IN sample rate class for the given card. 2098 **/ 2099 static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm) 2100 { 2101 int status; 2102 2103 if (hdspm->tco) { 2104 switch (hdspm->io_type) { 2105 case RayDAT: 2106 case AIO: 2107 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2108 return (status >> 12) & 0xF; 2109 break; 2110 default: 2111 break; 2112 } 2113 } 2114 2115 return 0; 2116 } 2117 2118 2119 /** 2120 * Returns the sample rate class for input source <idx> for 2121 * 'new style' cards like the AIO and RayDAT. 2122 **/ 2123 static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx) 2124 { 2125 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2); 2126 2127 return (status >> (idx*4)) & 0xF; 2128 } 2129 2130 2131 2132 #define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \ 2133 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2134 .name = xname, \ 2135 .private_value = xindex, \ 2136 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2137 .info = snd_hdspm_info_autosync_sample_rate, \ 2138 .get = snd_hdspm_get_autosync_sample_rate \ 2139 } 2140 2141 2142 static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2143 struct snd_ctl_elem_info *uinfo) 2144 { 2145 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2146 uinfo->count = 1; 2147 uinfo->value.enumerated.items = 10; 2148 2149 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2150 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; 2151 strcpy(uinfo->value.enumerated.name, 2152 texts_freq[uinfo->value.enumerated.item]); 2153 return 0; 2154 } 2155 2156 2157 static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol, 2158 struct snd_ctl_elem_value * 2159 ucontrol) 2160 { 2161 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2162 2163 switch (hdspm->io_type) { 2164 case RayDAT: 2165 switch (kcontrol->private_value) { 2166 case 0: 2167 ucontrol->value.enumerated.item[0] = 2168 hdspm_get_wc_sample_rate(hdspm); 2169 break; 2170 case 7: 2171 ucontrol->value.enumerated.item[0] = 2172 hdspm_get_tco_sample_rate(hdspm); 2173 break; 2174 case 8: 2175 ucontrol->value.enumerated.item[0] = 2176 hdspm_get_sync_in_sample_rate(hdspm); 2177 break; 2178 default: 2179 ucontrol->value.enumerated.item[0] = 2180 hdspm_get_s1_sample_rate(hdspm, 2181 kcontrol->private_value-1); 2182 } 2183 break; 2184 2185 case AIO: 2186 switch (kcontrol->private_value) { 2187 case 0: /* WC */ 2188 ucontrol->value.enumerated.item[0] = 2189 hdspm_get_wc_sample_rate(hdspm); 2190 break; 2191 case 4: /* TCO */ 2192 ucontrol->value.enumerated.item[0] = 2193 hdspm_get_tco_sample_rate(hdspm); 2194 break; 2195 case 5: /* SYNC_IN */ 2196 ucontrol->value.enumerated.item[0] = 2197 hdspm_get_sync_in_sample_rate(hdspm); 2198 break; 2199 default: 2200 ucontrol->value.enumerated.item[0] = 2201 hdspm_get_s1_sample_rate(hdspm, 2202 ucontrol->id.index-1); 2203 } 2204 break; 2205 2206 case AES32: 2207 2208 switch (kcontrol->private_value) { 2209 case 0: /* WC */ 2210 ucontrol->value.enumerated.item[0] = 2211 hdspm_get_wc_sample_rate(hdspm); 2212 break; 2213 case 9: /* TCO */ 2214 ucontrol->value.enumerated.item[0] = 2215 hdspm_get_tco_sample_rate(hdspm); 2216 break; 2217 case 10: /* SYNC_IN */ 2218 ucontrol->value.enumerated.item[0] = 2219 hdspm_get_sync_in_sample_rate(hdspm); 2220 break; 2221 default: /* AES1 to AES8 */ 2222 ucontrol->value.enumerated.item[0] = 2223 hdspm_get_s1_sample_rate(hdspm, 2224 kcontrol->private_value-1); 2225 break; 2226 } 2227 break; 2228 2229 case MADI: 2230 case MADIface: 2231 { 2232 int rate = hdspm_external_sample_rate(hdspm); 2233 int i, selected_rate = 0; 2234 for (i = 1; i < 10; i++) 2235 if (HDSPM_bit2freq(i) == rate) { 2236 selected_rate = i; 2237 break; 2238 } 2239 ucontrol->value.enumerated.item[0] = selected_rate; 2240 } 2241 break; 2242 2243 default: 2244 break; 2245 } 2246 2247 return 0; 2248 } 2249 2250 2251 #define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \ 2252 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2253 .name = xname, \ 2254 .index = xindex, \ 2255 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2256 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2257 .info = snd_hdspm_info_system_clock_mode, \ 2258 .get = snd_hdspm_get_system_clock_mode, \ 2259 .put = snd_hdspm_put_system_clock_mode, \ 2260 } 2261 2262 2263 /** 2264 * Returns the system clock mode for the given card. 2265 * @returns 0 - master, 1 - slave 2266 **/ 2267 static int hdspm_system_clock_mode(struct hdspm *hdspm) 2268 { 2269 switch (hdspm->io_type) { 2270 case AIO: 2271 case RayDAT: 2272 if (hdspm->settings_register & HDSPM_c0Master) 2273 return 0; 2274 break; 2275 2276 default: 2277 if (hdspm->control_register & HDSPM_ClockModeMaster) 2278 return 0; 2279 } 2280 2281 return 1; 2282 } 2283 2284 2285 /** 2286 * Sets the system clock mode. 2287 * @param mode 0 - master, 1 - slave 2288 **/ 2289 static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode) 2290 { 2291 switch (hdspm->io_type) { 2292 case AIO: 2293 case RayDAT: 2294 if (0 == mode) 2295 hdspm->settings_register |= HDSPM_c0Master; 2296 else 2297 hdspm->settings_register &= ~HDSPM_c0Master; 2298 2299 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 2300 break; 2301 2302 default: 2303 if (0 == mode) 2304 hdspm->control_register |= HDSPM_ClockModeMaster; 2305 else 2306 hdspm->control_register &= ~HDSPM_ClockModeMaster; 2307 2308 hdspm_write(hdspm, HDSPM_controlRegister, 2309 hdspm->control_register); 2310 } 2311 } 2312 2313 2314 static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol, 2315 struct snd_ctl_elem_info *uinfo) 2316 { 2317 static char *texts[] = { "Master", "AutoSync" }; 2318 2319 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2320 uinfo->count = 1; 2321 uinfo->value.enumerated.items = 2; 2322 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2323 uinfo->value.enumerated.item = 2324 uinfo->value.enumerated.items - 1; 2325 strcpy(uinfo->value.enumerated.name, 2326 texts[uinfo->value.enumerated.item]); 2327 return 0; 2328 } 2329 2330 static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol, 2331 struct snd_ctl_elem_value *ucontrol) 2332 { 2333 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2334 2335 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm); 2336 return 0; 2337 } 2338 2339 static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol, 2340 struct snd_ctl_elem_value *ucontrol) 2341 { 2342 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2343 int val; 2344 2345 if (!snd_hdspm_use_is_exclusive(hdspm)) 2346 return -EBUSY; 2347 2348 val = ucontrol->value.enumerated.item[0]; 2349 if (val < 0) 2350 val = 0; 2351 else if (val > 1) 2352 val = 1; 2353 2354 hdspm_set_system_clock_mode(hdspm, val); 2355 2356 return 0; 2357 } 2358 2359 2360 #define HDSPM_INTERNAL_CLOCK(xname, xindex) \ 2361 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2362 .name = xname, \ 2363 .index = xindex, \ 2364 .info = snd_hdspm_info_clock_source, \ 2365 .get = snd_hdspm_get_clock_source, \ 2366 .put = snd_hdspm_put_clock_source \ 2367 } 2368 2369 2370 static int hdspm_clock_source(struct hdspm * hdspm) 2371 { 2372 switch (hdspm->system_sample_rate) { 2373 case 32000: return 0; 2374 case 44100: return 1; 2375 case 48000: return 2; 2376 case 64000: return 3; 2377 case 88200: return 4; 2378 case 96000: return 5; 2379 case 128000: return 6; 2380 case 176400: return 7; 2381 case 192000: return 8; 2382 } 2383 2384 return -1; 2385 } 2386 2387 static int hdspm_set_clock_source(struct hdspm * hdspm, int mode) 2388 { 2389 int rate; 2390 switch (mode) { 2391 case 0: 2392 rate = 32000; break; 2393 case 1: 2394 rate = 44100; break; 2395 case 2: 2396 rate = 48000; break; 2397 case 3: 2398 rate = 64000; break; 2399 case 4: 2400 rate = 88200; break; 2401 case 5: 2402 rate = 96000; break; 2403 case 6: 2404 rate = 128000; break; 2405 case 7: 2406 rate = 176400; break; 2407 case 8: 2408 rate = 192000; break; 2409 default: 2410 rate = 48000; 2411 } 2412 hdspm_set_rate(hdspm, rate, 1); 2413 return 0; 2414 } 2415 2416 static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol, 2417 struct snd_ctl_elem_info *uinfo) 2418 { 2419 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2420 uinfo->count = 1; 2421 uinfo->value.enumerated.items = 9; 2422 2423 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2424 uinfo->value.enumerated.item = 2425 uinfo->value.enumerated.items - 1; 2426 2427 strcpy(uinfo->value.enumerated.name, 2428 texts_freq[uinfo->value.enumerated.item+1]); 2429 2430 return 0; 2431 } 2432 2433 static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol, 2434 struct snd_ctl_elem_value *ucontrol) 2435 { 2436 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2437 2438 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm); 2439 return 0; 2440 } 2441 2442 static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol, 2443 struct snd_ctl_elem_value *ucontrol) 2444 { 2445 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2446 int change; 2447 int val; 2448 2449 if (!snd_hdspm_use_is_exclusive(hdspm)) 2450 return -EBUSY; 2451 val = ucontrol->value.enumerated.item[0]; 2452 if (val < 0) 2453 val = 0; 2454 if (val > 9) 2455 val = 9; 2456 spin_lock_irq(&hdspm->lock); 2457 if (val != hdspm_clock_source(hdspm)) 2458 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0; 2459 else 2460 change = 0; 2461 spin_unlock_irq(&hdspm->lock); 2462 return change; 2463 } 2464 2465 2466 #define HDSPM_PREF_SYNC_REF(xname, xindex) \ 2467 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2468 .name = xname, \ 2469 .index = xindex, \ 2470 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 2471 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 2472 .info = snd_hdspm_info_pref_sync_ref, \ 2473 .get = snd_hdspm_get_pref_sync_ref, \ 2474 .put = snd_hdspm_put_pref_sync_ref \ 2475 } 2476 2477 2478 /** 2479 * Returns the current preferred sync reference setting. 2480 * The semantics of the return value are depending on the 2481 * card, please see the comments for clarification. 2482 **/ 2483 static int hdspm_pref_sync_ref(struct hdspm * hdspm) 2484 { 2485 switch (hdspm->io_type) { 2486 case AES32: 2487 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2488 case 0: return 0; /* WC */ 2489 case HDSPM_SyncRef0: return 1; /* AES 1 */ 2490 case HDSPM_SyncRef1: return 2; /* AES 2 */ 2491 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */ 2492 case HDSPM_SyncRef2: return 4; /* AES 4 */ 2493 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */ 2494 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */ 2495 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0: 2496 return 7; /* AES 7 */ 2497 case HDSPM_SyncRef3: return 8; /* AES 8 */ 2498 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */ 2499 } 2500 break; 2501 2502 case MADI: 2503 case MADIface: 2504 if (hdspm->tco) { 2505 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2506 case 0: return 0; /* WC */ 2507 case HDSPM_SyncRef0: return 1; /* MADI */ 2508 case HDSPM_SyncRef1: return 2; /* TCO */ 2509 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2510 return 3; /* SYNC_IN */ 2511 } 2512 } else { 2513 switch (hdspm->control_register & HDSPM_SyncRefMask) { 2514 case 0: return 0; /* WC */ 2515 case HDSPM_SyncRef0: return 1; /* MADI */ 2516 case HDSPM_SyncRef1+HDSPM_SyncRef0: 2517 return 2; /* SYNC_IN */ 2518 } 2519 } 2520 break; 2521 2522 case RayDAT: 2523 if (hdspm->tco) { 2524 switch ((hdspm->settings_register & 2525 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2526 case 0: return 0; /* WC */ 2527 case 3: return 1; /* ADAT 1 */ 2528 case 4: return 2; /* ADAT 2 */ 2529 case 5: return 3; /* ADAT 3 */ 2530 case 6: return 4; /* ADAT 4 */ 2531 case 1: return 5; /* AES */ 2532 case 2: return 6; /* SPDIF */ 2533 case 9: return 7; /* TCO */ 2534 case 10: return 8; /* SYNC_IN */ 2535 } 2536 } else { 2537 switch ((hdspm->settings_register & 2538 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2539 case 0: return 0; /* WC */ 2540 case 3: return 1; /* ADAT 1 */ 2541 case 4: return 2; /* ADAT 2 */ 2542 case 5: return 3; /* ADAT 3 */ 2543 case 6: return 4; /* ADAT 4 */ 2544 case 1: return 5; /* AES */ 2545 case 2: return 6; /* SPDIF */ 2546 case 10: return 7; /* SYNC_IN */ 2547 } 2548 } 2549 2550 break; 2551 2552 case AIO: 2553 if (hdspm->tco) { 2554 switch ((hdspm->settings_register & 2555 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2556 case 0: return 0; /* WC */ 2557 case 3: return 1; /* ADAT */ 2558 case 1: return 2; /* AES */ 2559 case 2: return 3; /* SPDIF */ 2560 case 9: return 4; /* TCO */ 2561 case 10: return 5; /* SYNC_IN */ 2562 } 2563 } else { 2564 switch ((hdspm->settings_register & 2565 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) { 2566 case 0: return 0; /* WC */ 2567 case 3: return 1; /* ADAT */ 2568 case 1: return 2; /* AES */ 2569 case 2: return 3; /* SPDIF */ 2570 case 10: return 4; /* SYNC_IN */ 2571 } 2572 } 2573 2574 break; 2575 } 2576 2577 return -1; 2578 } 2579 2580 2581 /** 2582 * Set the preferred sync reference to <pref>. The semantics 2583 * of <pref> are depending on the card type, see the comments 2584 * for clarification. 2585 **/ 2586 static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref) 2587 { 2588 int p = 0; 2589 2590 switch (hdspm->io_type) { 2591 case AES32: 2592 hdspm->control_register &= ~HDSPM_SyncRefMask; 2593 switch (pref) { 2594 case 0: /* WC */ 2595 break; 2596 case 1: /* AES 1 */ 2597 hdspm->control_register |= HDSPM_SyncRef0; 2598 break; 2599 case 2: /* AES 2 */ 2600 hdspm->control_register |= HDSPM_SyncRef1; 2601 break; 2602 case 3: /* AES 3 */ 2603 hdspm->control_register |= 2604 HDSPM_SyncRef1+HDSPM_SyncRef0; 2605 break; 2606 case 4: /* AES 4 */ 2607 hdspm->control_register |= HDSPM_SyncRef2; 2608 break; 2609 case 5: /* AES 5 */ 2610 hdspm->control_register |= 2611 HDSPM_SyncRef2+HDSPM_SyncRef0; 2612 break; 2613 case 6: /* AES 6 */ 2614 hdspm->control_register |= 2615 HDSPM_SyncRef2+HDSPM_SyncRef1; 2616 break; 2617 case 7: /* AES 7 */ 2618 hdspm->control_register |= 2619 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0; 2620 break; 2621 case 8: /* AES 8 */ 2622 hdspm->control_register |= HDSPM_SyncRef3; 2623 break; 2624 case 9: /* TCO */ 2625 hdspm->control_register |= 2626 HDSPM_SyncRef3+HDSPM_SyncRef0; 2627 break; 2628 default: 2629 return -1; 2630 } 2631 2632 break; 2633 2634 case MADI: 2635 case MADIface: 2636 hdspm->control_register &= ~HDSPM_SyncRefMask; 2637 if (hdspm->tco) { 2638 switch (pref) { 2639 case 0: /* WC */ 2640 break; 2641 case 1: /* MADI */ 2642 hdspm->control_register |= HDSPM_SyncRef0; 2643 break; 2644 case 2: /* TCO */ 2645 hdspm->control_register |= HDSPM_SyncRef1; 2646 break; 2647 case 3: /* SYNC_IN */ 2648 hdspm->control_register |= 2649 HDSPM_SyncRef0+HDSPM_SyncRef1; 2650 break; 2651 default: 2652 return -1; 2653 } 2654 } else { 2655 switch (pref) { 2656 case 0: /* WC */ 2657 break; 2658 case 1: /* MADI */ 2659 hdspm->control_register |= HDSPM_SyncRef0; 2660 break; 2661 case 2: /* SYNC_IN */ 2662 hdspm->control_register |= 2663 HDSPM_SyncRef0+HDSPM_SyncRef1; 2664 break; 2665 default: 2666 return -1; 2667 } 2668 } 2669 2670 break; 2671 2672 case RayDAT: 2673 if (hdspm->tco) { 2674 switch (pref) { 2675 case 0: p = 0; break; /* WC */ 2676 case 1: p = 3; break; /* ADAT 1 */ 2677 case 2: p = 4; break; /* ADAT 2 */ 2678 case 3: p = 5; break; /* ADAT 3 */ 2679 case 4: p = 6; break; /* ADAT 4 */ 2680 case 5: p = 1; break; /* AES */ 2681 case 6: p = 2; break; /* SPDIF */ 2682 case 7: p = 9; break; /* TCO */ 2683 case 8: p = 10; break; /* SYNC_IN */ 2684 default: return -1; 2685 } 2686 } else { 2687 switch (pref) { 2688 case 0: p = 0; break; /* WC */ 2689 case 1: p = 3; break; /* ADAT 1 */ 2690 case 2: p = 4; break; /* ADAT 2 */ 2691 case 3: p = 5; break; /* ADAT 3 */ 2692 case 4: p = 6; break; /* ADAT 4 */ 2693 case 5: p = 1; break; /* AES */ 2694 case 6: p = 2; break; /* SPDIF */ 2695 case 7: p = 10; break; /* SYNC_IN */ 2696 default: return -1; 2697 } 2698 } 2699 break; 2700 2701 case AIO: 2702 if (hdspm->tco) { 2703 switch (pref) { 2704 case 0: p = 0; break; /* WC */ 2705 case 1: p = 3; break; /* ADAT */ 2706 case 2: p = 1; break; /* AES */ 2707 case 3: p = 2; break; /* SPDIF */ 2708 case 4: p = 9; break; /* TCO */ 2709 case 5: p = 10; break; /* SYNC_IN */ 2710 default: return -1; 2711 } 2712 } else { 2713 switch (pref) { 2714 case 0: p = 0; break; /* WC */ 2715 case 1: p = 3; break; /* ADAT */ 2716 case 2: p = 1; break; /* AES */ 2717 case 3: p = 2; break; /* SPDIF */ 2718 case 4: p = 10; break; /* SYNC_IN */ 2719 default: return -1; 2720 } 2721 } 2722 break; 2723 } 2724 2725 switch (hdspm->io_type) { 2726 case RayDAT: 2727 case AIO: 2728 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask; 2729 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p; 2730 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 2731 break; 2732 2733 case MADI: 2734 case MADIface: 2735 case AES32: 2736 hdspm_write(hdspm, HDSPM_controlRegister, 2737 hdspm->control_register); 2738 } 2739 2740 return 0; 2741 } 2742 2743 2744 static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol, 2745 struct snd_ctl_elem_info *uinfo) 2746 { 2747 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2748 2749 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2750 uinfo->count = 1; 2751 uinfo->value.enumerated.items = hdspm->texts_autosync_items; 2752 2753 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2754 uinfo->value.enumerated.item = 2755 uinfo->value.enumerated.items - 1; 2756 2757 strcpy(uinfo->value.enumerated.name, 2758 hdspm->texts_autosync[uinfo->value.enumerated.item]); 2759 2760 return 0; 2761 } 2762 2763 static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol, 2764 struct snd_ctl_elem_value *ucontrol) 2765 { 2766 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2767 int psf = hdspm_pref_sync_ref(hdspm); 2768 2769 if (psf >= 0) { 2770 ucontrol->value.enumerated.item[0] = psf; 2771 return 0; 2772 } 2773 2774 return -1; 2775 } 2776 2777 static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol, 2778 struct snd_ctl_elem_value *ucontrol) 2779 { 2780 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2781 int val, change = 0; 2782 2783 if (!snd_hdspm_use_is_exclusive(hdspm)) 2784 return -EBUSY; 2785 2786 val = ucontrol->value.enumerated.item[0]; 2787 2788 if (val < 0) 2789 val = 0; 2790 else if (val >= hdspm->texts_autosync_items) 2791 val = hdspm->texts_autosync_items-1; 2792 2793 spin_lock_irq(&hdspm->lock); 2794 if (val != hdspm_pref_sync_ref(hdspm)) 2795 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0; 2796 2797 spin_unlock_irq(&hdspm->lock); 2798 return change; 2799 } 2800 2801 2802 #define HDSPM_AUTOSYNC_REF(xname, xindex) \ 2803 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2804 .name = xname, \ 2805 .index = xindex, \ 2806 .access = SNDRV_CTL_ELEM_ACCESS_READ, \ 2807 .info = snd_hdspm_info_autosync_ref, \ 2808 .get = snd_hdspm_get_autosync_ref, \ 2809 } 2810 2811 static int hdspm_autosync_ref(struct hdspm *hdspm) 2812 { 2813 if (AES32 == hdspm->io_type) { 2814 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister); 2815 unsigned int syncref = 2816 (status >> HDSPM_AES32_syncref_bit) & 0xF; 2817 if (syncref == 0) 2818 return HDSPM_AES32_AUTOSYNC_FROM_WORD; 2819 if (syncref <= 8) 2820 return syncref; 2821 return HDSPM_AES32_AUTOSYNC_FROM_NONE; 2822 } else if (MADI == hdspm->io_type) { 2823 /* This looks at the autosync selected sync reference */ 2824 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 2825 2826 switch (status2 & HDSPM_SelSyncRefMask) { 2827 case HDSPM_SelSyncRef_WORD: 2828 return HDSPM_AUTOSYNC_FROM_WORD; 2829 case HDSPM_SelSyncRef_MADI: 2830 return HDSPM_AUTOSYNC_FROM_MADI; 2831 case HDSPM_SelSyncRef_TCO: 2832 return HDSPM_AUTOSYNC_FROM_TCO; 2833 case HDSPM_SelSyncRef_SyncIn: 2834 return HDSPM_AUTOSYNC_FROM_SYNC_IN; 2835 case HDSPM_SelSyncRef_NVALID: 2836 return HDSPM_AUTOSYNC_FROM_NONE; 2837 default: 2838 return 0; 2839 } 2840 2841 } 2842 return 0; 2843 } 2844 2845 2846 static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol, 2847 struct snd_ctl_elem_info *uinfo) 2848 { 2849 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2850 2851 if (AES32 == hdspm->io_type) { 2852 static char *texts[] = { "WordClock", "AES1", "AES2", "AES3", 2853 "AES4", "AES5", "AES6", "AES7", "AES8", "None"}; 2854 2855 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2856 uinfo->count = 1; 2857 uinfo->value.enumerated.items = 10; 2858 if (uinfo->value.enumerated.item >= 2859 uinfo->value.enumerated.items) 2860 uinfo->value.enumerated.item = 2861 uinfo->value.enumerated.items - 1; 2862 strcpy(uinfo->value.enumerated.name, 2863 texts[uinfo->value.enumerated.item]); 2864 } else if (MADI == hdspm->io_type) { 2865 static char *texts[] = {"Word Clock", "MADI", "TCO", 2866 "Sync In", "None" }; 2867 2868 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2869 uinfo->count = 1; 2870 uinfo->value.enumerated.items = 5; 2871 if (uinfo->value.enumerated.item >= 2872 uinfo->value.enumerated.items) 2873 uinfo->value.enumerated.item = 2874 uinfo->value.enumerated.items - 1; 2875 strcpy(uinfo->value.enumerated.name, 2876 texts[uinfo->value.enumerated.item]); 2877 } 2878 return 0; 2879 } 2880 2881 static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol, 2882 struct snd_ctl_elem_value *ucontrol) 2883 { 2884 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2885 2886 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm); 2887 return 0; 2888 } 2889 2890 2891 #define HDSPM_LINE_OUT(xname, xindex) \ 2892 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2893 .name = xname, \ 2894 .index = xindex, \ 2895 .info = snd_hdspm_info_line_out, \ 2896 .get = snd_hdspm_get_line_out, \ 2897 .put = snd_hdspm_put_line_out \ 2898 } 2899 2900 static int hdspm_line_out(struct hdspm * hdspm) 2901 { 2902 return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0; 2903 } 2904 2905 2906 static int hdspm_set_line_output(struct hdspm * hdspm, int out) 2907 { 2908 if (out) 2909 hdspm->control_register |= HDSPM_LineOut; 2910 else 2911 hdspm->control_register &= ~HDSPM_LineOut; 2912 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2913 2914 return 0; 2915 } 2916 2917 #define snd_hdspm_info_line_out snd_ctl_boolean_mono_info 2918 2919 static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol, 2920 struct snd_ctl_elem_value *ucontrol) 2921 { 2922 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2923 2924 spin_lock_irq(&hdspm->lock); 2925 ucontrol->value.integer.value[0] = hdspm_line_out(hdspm); 2926 spin_unlock_irq(&hdspm->lock); 2927 return 0; 2928 } 2929 2930 static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol, 2931 struct snd_ctl_elem_value *ucontrol) 2932 { 2933 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2934 int change; 2935 unsigned int val; 2936 2937 if (!snd_hdspm_use_is_exclusive(hdspm)) 2938 return -EBUSY; 2939 val = ucontrol->value.integer.value[0] & 1; 2940 spin_lock_irq(&hdspm->lock); 2941 change = (int) val != hdspm_line_out(hdspm); 2942 hdspm_set_line_output(hdspm, val); 2943 spin_unlock_irq(&hdspm->lock); 2944 return change; 2945 } 2946 2947 2948 #define HDSPM_TX_64(xname, xindex) \ 2949 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 2950 .name = xname, \ 2951 .index = xindex, \ 2952 .info = snd_hdspm_info_tx_64, \ 2953 .get = snd_hdspm_get_tx_64, \ 2954 .put = snd_hdspm_put_tx_64 \ 2955 } 2956 2957 static int hdspm_tx_64(struct hdspm * hdspm) 2958 { 2959 return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0; 2960 } 2961 2962 static int hdspm_set_tx_64(struct hdspm * hdspm, int out) 2963 { 2964 if (out) 2965 hdspm->control_register |= HDSPM_TX_64ch; 2966 else 2967 hdspm->control_register &= ~HDSPM_TX_64ch; 2968 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 2969 2970 return 0; 2971 } 2972 2973 #define snd_hdspm_info_tx_64 snd_ctl_boolean_mono_info 2974 2975 static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol, 2976 struct snd_ctl_elem_value *ucontrol) 2977 { 2978 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2979 2980 spin_lock_irq(&hdspm->lock); 2981 ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm); 2982 spin_unlock_irq(&hdspm->lock); 2983 return 0; 2984 } 2985 2986 static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol, 2987 struct snd_ctl_elem_value *ucontrol) 2988 { 2989 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 2990 int change; 2991 unsigned int val; 2992 2993 if (!snd_hdspm_use_is_exclusive(hdspm)) 2994 return -EBUSY; 2995 val = ucontrol->value.integer.value[0] & 1; 2996 spin_lock_irq(&hdspm->lock); 2997 change = (int) val != hdspm_tx_64(hdspm); 2998 hdspm_set_tx_64(hdspm, val); 2999 spin_unlock_irq(&hdspm->lock); 3000 return change; 3001 } 3002 3003 3004 #define HDSPM_C_TMS(xname, xindex) \ 3005 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3006 .name = xname, \ 3007 .index = xindex, \ 3008 .info = snd_hdspm_info_c_tms, \ 3009 .get = snd_hdspm_get_c_tms, \ 3010 .put = snd_hdspm_put_c_tms \ 3011 } 3012 3013 static int hdspm_c_tms(struct hdspm * hdspm) 3014 { 3015 return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0; 3016 } 3017 3018 static int hdspm_set_c_tms(struct hdspm * hdspm, int out) 3019 { 3020 if (out) 3021 hdspm->control_register |= HDSPM_clr_tms; 3022 else 3023 hdspm->control_register &= ~HDSPM_clr_tms; 3024 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3025 3026 return 0; 3027 } 3028 3029 #define snd_hdspm_info_c_tms snd_ctl_boolean_mono_info 3030 3031 static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol, 3032 struct snd_ctl_elem_value *ucontrol) 3033 { 3034 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3035 3036 spin_lock_irq(&hdspm->lock); 3037 ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm); 3038 spin_unlock_irq(&hdspm->lock); 3039 return 0; 3040 } 3041 3042 static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol, 3043 struct snd_ctl_elem_value *ucontrol) 3044 { 3045 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3046 int change; 3047 unsigned int val; 3048 3049 if (!snd_hdspm_use_is_exclusive(hdspm)) 3050 return -EBUSY; 3051 val = ucontrol->value.integer.value[0] & 1; 3052 spin_lock_irq(&hdspm->lock); 3053 change = (int) val != hdspm_c_tms(hdspm); 3054 hdspm_set_c_tms(hdspm, val); 3055 spin_unlock_irq(&hdspm->lock); 3056 return change; 3057 } 3058 3059 3060 #define HDSPM_SAFE_MODE(xname, xindex) \ 3061 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3062 .name = xname, \ 3063 .index = xindex, \ 3064 .info = snd_hdspm_info_safe_mode, \ 3065 .get = snd_hdspm_get_safe_mode, \ 3066 .put = snd_hdspm_put_safe_mode \ 3067 } 3068 3069 static int hdspm_safe_mode(struct hdspm * hdspm) 3070 { 3071 return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0; 3072 } 3073 3074 static int hdspm_set_safe_mode(struct hdspm * hdspm, int out) 3075 { 3076 if (out) 3077 hdspm->control_register |= HDSPM_AutoInp; 3078 else 3079 hdspm->control_register &= ~HDSPM_AutoInp; 3080 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3081 3082 return 0; 3083 } 3084 3085 #define snd_hdspm_info_safe_mode snd_ctl_boolean_mono_info 3086 3087 static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol, 3088 struct snd_ctl_elem_value *ucontrol) 3089 { 3090 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3091 3092 spin_lock_irq(&hdspm->lock); 3093 ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm); 3094 spin_unlock_irq(&hdspm->lock); 3095 return 0; 3096 } 3097 3098 static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol, 3099 struct snd_ctl_elem_value *ucontrol) 3100 { 3101 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3102 int change; 3103 unsigned int val; 3104 3105 if (!snd_hdspm_use_is_exclusive(hdspm)) 3106 return -EBUSY; 3107 val = ucontrol->value.integer.value[0] & 1; 3108 spin_lock_irq(&hdspm->lock); 3109 change = (int) val != hdspm_safe_mode(hdspm); 3110 hdspm_set_safe_mode(hdspm, val); 3111 spin_unlock_irq(&hdspm->lock); 3112 return change; 3113 } 3114 3115 3116 #define HDSPM_EMPHASIS(xname, xindex) \ 3117 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3118 .name = xname, \ 3119 .index = xindex, \ 3120 .info = snd_hdspm_info_emphasis, \ 3121 .get = snd_hdspm_get_emphasis, \ 3122 .put = snd_hdspm_put_emphasis \ 3123 } 3124 3125 static int hdspm_emphasis(struct hdspm * hdspm) 3126 { 3127 return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0; 3128 } 3129 3130 static int hdspm_set_emphasis(struct hdspm * hdspm, int emp) 3131 { 3132 if (emp) 3133 hdspm->control_register |= HDSPM_Emphasis; 3134 else 3135 hdspm->control_register &= ~HDSPM_Emphasis; 3136 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3137 3138 return 0; 3139 } 3140 3141 #define snd_hdspm_info_emphasis snd_ctl_boolean_mono_info 3142 3143 static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol, 3144 struct snd_ctl_elem_value *ucontrol) 3145 { 3146 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3147 3148 spin_lock_irq(&hdspm->lock); 3149 ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm); 3150 spin_unlock_irq(&hdspm->lock); 3151 return 0; 3152 } 3153 3154 static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol, 3155 struct snd_ctl_elem_value *ucontrol) 3156 { 3157 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3158 int change; 3159 unsigned int val; 3160 3161 if (!snd_hdspm_use_is_exclusive(hdspm)) 3162 return -EBUSY; 3163 val = ucontrol->value.integer.value[0] & 1; 3164 spin_lock_irq(&hdspm->lock); 3165 change = (int) val != hdspm_emphasis(hdspm); 3166 hdspm_set_emphasis(hdspm, val); 3167 spin_unlock_irq(&hdspm->lock); 3168 return change; 3169 } 3170 3171 3172 #define HDSPM_DOLBY(xname, xindex) \ 3173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3174 .name = xname, \ 3175 .index = xindex, \ 3176 .info = snd_hdspm_info_dolby, \ 3177 .get = snd_hdspm_get_dolby, \ 3178 .put = snd_hdspm_put_dolby \ 3179 } 3180 3181 static int hdspm_dolby(struct hdspm * hdspm) 3182 { 3183 return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0; 3184 } 3185 3186 static int hdspm_set_dolby(struct hdspm * hdspm, int dol) 3187 { 3188 if (dol) 3189 hdspm->control_register |= HDSPM_Dolby; 3190 else 3191 hdspm->control_register &= ~HDSPM_Dolby; 3192 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3193 3194 return 0; 3195 } 3196 3197 #define snd_hdspm_info_dolby snd_ctl_boolean_mono_info 3198 3199 static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol, 3200 struct snd_ctl_elem_value *ucontrol) 3201 { 3202 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3203 3204 spin_lock_irq(&hdspm->lock); 3205 ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm); 3206 spin_unlock_irq(&hdspm->lock); 3207 return 0; 3208 } 3209 3210 static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol, 3211 struct snd_ctl_elem_value *ucontrol) 3212 { 3213 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3214 int change; 3215 unsigned int val; 3216 3217 if (!snd_hdspm_use_is_exclusive(hdspm)) 3218 return -EBUSY; 3219 val = ucontrol->value.integer.value[0] & 1; 3220 spin_lock_irq(&hdspm->lock); 3221 change = (int) val != hdspm_dolby(hdspm); 3222 hdspm_set_dolby(hdspm, val); 3223 spin_unlock_irq(&hdspm->lock); 3224 return change; 3225 } 3226 3227 3228 #define HDSPM_PROFESSIONAL(xname, xindex) \ 3229 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3230 .name = xname, \ 3231 .index = xindex, \ 3232 .info = snd_hdspm_info_professional, \ 3233 .get = snd_hdspm_get_professional, \ 3234 .put = snd_hdspm_put_professional \ 3235 } 3236 3237 static int hdspm_professional(struct hdspm * hdspm) 3238 { 3239 return (hdspm->control_register & HDSPM_Professional) ? 1 : 0; 3240 } 3241 3242 static int hdspm_set_professional(struct hdspm * hdspm, int dol) 3243 { 3244 if (dol) 3245 hdspm->control_register |= HDSPM_Professional; 3246 else 3247 hdspm->control_register &= ~HDSPM_Professional; 3248 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3249 3250 return 0; 3251 } 3252 3253 #define snd_hdspm_info_professional snd_ctl_boolean_mono_info 3254 3255 static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol, 3256 struct snd_ctl_elem_value *ucontrol) 3257 { 3258 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3259 3260 spin_lock_irq(&hdspm->lock); 3261 ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm); 3262 spin_unlock_irq(&hdspm->lock); 3263 return 0; 3264 } 3265 3266 static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol, 3267 struct snd_ctl_elem_value *ucontrol) 3268 { 3269 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3270 int change; 3271 unsigned int val; 3272 3273 if (!snd_hdspm_use_is_exclusive(hdspm)) 3274 return -EBUSY; 3275 val = ucontrol->value.integer.value[0] & 1; 3276 spin_lock_irq(&hdspm->lock); 3277 change = (int) val != hdspm_professional(hdspm); 3278 hdspm_set_professional(hdspm, val); 3279 spin_unlock_irq(&hdspm->lock); 3280 return change; 3281 } 3282 3283 #define HDSPM_INPUT_SELECT(xname, xindex) \ 3284 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3285 .name = xname, \ 3286 .index = xindex, \ 3287 .info = snd_hdspm_info_input_select, \ 3288 .get = snd_hdspm_get_input_select, \ 3289 .put = snd_hdspm_put_input_select \ 3290 } 3291 3292 static int hdspm_input_select(struct hdspm * hdspm) 3293 { 3294 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0; 3295 } 3296 3297 static int hdspm_set_input_select(struct hdspm * hdspm, int out) 3298 { 3299 if (out) 3300 hdspm->control_register |= HDSPM_InputSelect0; 3301 else 3302 hdspm->control_register &= ~HDSPM_InputSelect0; 3303 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3304 3305 return 0; 3306 } 3307 3308 static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol, 3309 struct snd_ctl_elem_info *uinfo) 3310 { 3311 static char *texts[] = { "optical", "coaxial" }; 3312 3313 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 3314 uinfo->count = 1; 3315 uinfo->value.enumerated.items = 2; 3316 3317 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 3318 uinfo->value.enumerated.item = 3319 uinfo->value.enumerated.items - 1; 3320 strcpy(uinfo->value.enumerated.name, 3321 texts[uinfo->value.enumerated.item]); 3322 3323 return 0; 3324 } 3325 3326 static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol, 3327 struct snd_ctl_elem_value *ucontrol) 3328 { 3329 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3330 3331 spin_lock_irq(&hdspm->lock); 3332 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm); 3333 spin_unlock_irq(&hdspm->lock); 3334 return 0; 3335 } 3336 3337 static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol, 3338 struct snd_ctl_elem_value *ucontrol) 3339 { 3340 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3341 int change; 3342 unsigned int val; 3343 3344 if (!snd_hdspm_use_is_exclusive(hdspm)) 3345 return -EBUSY; 3346 val = ucontrol->value.integer.value[0] & 1; 3347 spin_lock_irq(&hdspm->lock); 3348 change = (int) val != hdspm_input_select(hdspm); 3349 hdspm_set_input_select(hdspm, val); 3350 spin_unlock_irq(&hdspm->lock); 3351 return change; 3352 } 3353 3354 3355 #define HDSPM_DS_WIRE(xname, xindex) \ 3356 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3357 .name = xname, \ 3358 .index = xindex, \ 3359 .info = snd_hdspm_info_ds_wire, \ 3360 .get = snd_hdspm_get_ds_wire, \ 3361 .put = snd_hdspm_put_ds_wire \ 3362 } 3363 3364 static int hdspm_ds_wire(struct hdspm * hdspm) 3365 { 3366 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0; 3367 } 3368 3369 static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds) 3370 { 3371 if (ds) 3372 hdspm->control_register |= HDSPM_DS_DoubleWire; 3373 else 3374 hdspm->control_register &= ~HDSPM_DS_DoubleWire; 3375 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3376 3377 return 0; 3378 } 3379 3380 static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol, 3381 struct snd_ctl_elem_info *uinfo) 3382 { 3383 static char *texts[] = { "Single", "Double" }; 3384 3385 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 3386 uinfo->count = 1; 3387 uinfo->value.enumerated.items = 2; 3388 3389 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 3390 uinfo->value.enumerated.item = 3391 uinfo->value.enumerated.items - 1; 3392 strcpy(uinfo->value.enumerated.name, 3393 texts[uinfo->value.enumerated.item]); 3394 3395 return 0; 3396 } 3397 3398 static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol, 3399 struct snd_ctl_elem_value *ucontrol) 3400 { 3401 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3402 3403 spin_lock_irq(&hdspm->lock); 3404 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm); 3405 spin_unlock_irq(&hdspm->lock); 3406 return 0; 3407 } 3408 3409 static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol, 3410 struct snd_ctl_elem_value *ucontrol) 3411 { 3412 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3413 int change; 3414 unsigned int val; 3415 3416 if (!snd_hdspm_use_is_exclusive(hdspm)) 3417 return -EBUSY; 3418 val = ucontrol->value.integer.value[0] & 1; 3419 spin_lock_irq(&hdspm->lock); 3420 change = (int) val != hdspm_ds_wire(hdspm); 3421 hdspm_set_ds_wire(hdspm, val); 3422 spin_unlock_irq(&hdspm->lock); 3423 return change; 3424 } 3425 3426 3427 #define HDSPM_QS_WIRE(xname, xindex) \ 3428 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3429 .name = xname, \ 3430 .index = xindex, \ 3431 .info = snd_hdspm_info_qs_wire, \ 3432 .get = snd_hdspm_get_qs_wire, \ 3433 .put = snd_hdspm_put_qs_wire \ 3434 } 3435 3436 static int hdspm_qs_wire(struct hdspm * hdspm) 3437 { 3438 if (hdspm->control_register & HDSPM_QS_DoubleWire) 3439 return 1; 3440 if (hdspm->control_register & HDSPM_QS_QuadWire) 3441 return 2; 3442 return 0; 3443 } 3444 3445 static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode) 3446 { 3447 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire); 3448 switch (mode) { 3449 case 0: 3450 break; 3451 case 1: 3452 hdspm->control_register |= HDSPM_QS_DoubleWire; 3453 break; 3454 case 2: 3455 hdspm->control_register |= HDSPM_QS_QuadWire; 3456 break; 3457 } 3458 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3459 3460 return 0; 3461 } 3462 3463 static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol, 3464 struct snd_ctl_elem_info *uinfo) 3465 { 3466 static char *texts[] = { "Single", "Double", "Quad" }; 3467 3468 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 3469 uinfo->count = 1; 3470 uinfo->value.enumerated.items = 3; 3471 3472 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 3473 uinfo->value.enumerated.item = 3474 uinfo->value.enumerated.items - 1; 3475 strcpy(uinfo->value.enumerated.name, 3476 texts[uinfo->value.enumerated.item]); 3477 3478 return 0; 3479 } 3480 3481 static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol, 3482 struct snd_ctl_elem_value *ucontrol) 3483 { 3484 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3485 3486 spin_lock_irq(&hdspm->lock); 3487 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm); 3488 spin_unlock_irq(&hdspm->lock); 3489 return 0; 3490 } 3491 3492 static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol, 3493 struct snd_ctl_elem_value *ucontrol) 3494 { 3495 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3496 int change; 3497 int val; 3498 3499 if (!snd_hdspm_use_is_exclusive(hdspm)) 3500 return -EBUSY; 3501 val = ucontrol->value.integer.value[0]; 3502 if (val < 0) 3503 val = 0; 3504 if (val > 2) 3505 val = 2; 3506 spin_lock_irq(&hdspm->lock); 3507 change = val != hdspm_qs_wire(hdspm); 3508 hdspm_set_qs_wire(hdspm, val); 3509 spin_unlock_irq(&hdspm->lock); 3510 return change; 3511 } 3512 3513 #define HDSPM_MADI_SPEEDMODE(xname, xindex) \ 3514 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3515 .name = xname, \ 3516 .index = xindex, \ 3517 .info = snd_hdspm_info_madi_speedmode, \ 3518 .get = snd_hdspm_get_madi_speedmode, \ 3519 .put = snd_hdspm_put_madi_speedmode \ 3520 } 3521 3522 static int hdspm_madi_speedmode(struct hdspm *hdspm) 3523 { 3524 if (hdspm->control_register & HDSPM_QuadSpeed) 3525 return 2; 3526 if (hdspm->control_register & HDSPM_DoubleSpeed) 3527 return 1; 3528 return 0; 3529 } 3530 3531 static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode) 3532 { 3533 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed); 3534 switch (mode) { 3535 case 0: 3536 break; 3537 case 1: 3538 hdspm->control_register |= HDSPM_DoubleSpeed; 3539 break; 3540 case 2: 3541 hdspm->control_register |= HDSPM_QuadSpeed; 3542 break; 3543 } 3544 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 3545 3546 return 0; 3547 } 3548 3549 static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol, 3550 struct snd_ctl_elem_info *uinfo) 3551 { 3552 static char *texts[] = { "Single", "Double", "Quad" }; 3553 3554 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 3555 uinfo->count = 1; 3556 uinfo->value.enumerated.items = 3; 3557 3558 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 3559 uinfo->value.enumerated.item = 3560 uinfo->value.enumerated.items - 1; 3561 strcpy(uinfo->value.enumerated.name, 3562 texts[uinfo->value.enumerated.item]); 3563 3564 return 0; 3565 } 3566 3567 static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol, 3568 struct snd_ctl_elem_value *ucontrol) 3569 { 3570 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3571 3572 spin_lock_irq(&hdspm->lock); 3573 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm); 3574 spin_unlock_irq(&hdspm->lock); 3575 return 0; 3576 } 3577 3578 static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol, 3579 struct snd_ctl_elem_value *ucontrol) 3580 { 3581 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3582 int change; 3583 int val; 3584 3585 if (!snd_hdspm_use_is_exclusive(hdspm)) 3586 return -EBUSY; 3587 val = ucontrol->value.integer.value[0]; 3588 if (val < 0) 3589 val = 0; 3590 if (val > 2) 3591 val = 2; 3592 spin_lock_irq(&hdspm->lock); 3593 change = val != hdspm_madi_speedmode(hdspm); 3594 hdspm_set_madi_speedmode(hdspm, val); 3595 spin_unlock_irq(&hdspm->lock); 3596 return change; 3597 } 3598 3599 #define HDSPM_MIXER(xname, xindex) \ 3600 { .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \ 3601 .name = xname, \ 3602 .index = xindex, \ 3603 .device = 0, \ 3604 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \ 3605 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3606 .info = snd_hdspm_info_mixer, \ 3607 .get = snd_hdspm_get_mixer, \ 3608 .put = snd_hdspm_put_mixer \ 3609 } 3610 3611 static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol, 3612 struct snd_ctl_elem_info *uinfo) 3613 { 3614 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3615 uinfo->count = 3; 3616 uinfo->value.integer.min = 0; 3617 uinfo->value.integer.max = 65535; 3618 uinfo->value.integer.step = 1; 3619 return 0; 3620 } 3621 3622 static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol, 3623 struct snd_ctl_elem_value *ucontrol) 3624 { 3625 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3626 int source; 3627 int destination; 3628 3629 source = ucontrol->value.integer.value[0]; 3630 if (source < 0) 3631 source = 0; 3632 else if (source >= 2 * HDSPM_MAX_CHANNELS) 3633 source = 2 * HDSPM_MAX_CHANNELS - 1; 3634 3635 destination = ucontrol->value.integer.value[1]; 3636 if (destination < 0) 3637 destination = 0; 3638 else if (destination >= HDSPM_MAX_CHANNELS) 3639 destination = HDSPM_MAX_CHANNELS - 1; 3640 3641 spin_lock_irq(&hdspm->lock); 3642 if (source >= HDSPM_MAX_CHANNELS) 3643 ucontrol->value.integer.value[2] = 3644 hdspm_read_pb_gain(hdspm, destination, 3645 source - HDSPM_MAX_CHANNELS); 3646 else 3647 ucontrol->value.integer.value[2] = 3648 hdspm_read_in_gain(hdspm, destination, source); 3649 3650 spin_unlock_irq(&hdspm->lock); 3651 3652 return 0; 3653 } 3654 3655 static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol, 3656 struct snd_ctl_elem_value *ucontrol) 3657 { 3658 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3659 int change; 3660 int source; 3661 int destination; 3662 int gain; 3663 3664 if (!snd_hdspm_use_is_exclusive(hdspm)) 3665 return -EBUSY; 3666 3667 source = ucontrol->value.integer.value[0]; 3668 destination = ucontrol->value.integer.value[1]; 3669 3670 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS) 3671 return -1; 3672 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS) 3673 return -1; 3674 3675 gain = ucontrol->value.integer.value[2]; 3676 3677 spin_lock_irq(&hdspm->lock); 3678 3679 if (source >= HDSPM_MAX_CHANNELS) 3680 change = gain != hdspm_read_pb_gain(hdspm, destination, 3681 source - 3682 HDSPM_MAX_CHANNELS); 3683 else 3684 change = gain != hdspm_read_in_gain(hdspm, destination, 3685 source); 3686 3687 if (change) { 3688 if (source >= HDSPM_MAX_CHANNELS) 3689 hdspm_write_pb_gain(hdspm, destination, 3690 source - HDSPM_MAX_CHANNELS, 3691 gain); 3692 else 3693 hdspm_write_in_gain(hdspm, destination, source, 3694 gain); 3695 } 3696 spin_unlock_irq(&hdspm->lock); 3697 3698 return change; 3699 } 3700 3701 /* The simple mixer control(s) provide gain control for the 3702 basic 1:1 mappings of playback streams to output 3703 streams. 3704 */ 3705 3706 #define HDSPM_PLAYBACK_MIXER \ 3707 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3708 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \ 3709 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3710 .info = snd_hdspm_info_playback_mixer, \ 3711 .get = snd_hdspm_get_playback_mixer, \ 3712 .put = snd_hdspm_put_playback_mixer \ 3713 } 3714 3715 static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol, 3716 struct snd_ctl_elem_info *uinfo) 3717 { 3718 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 3719 uinfo->count = 1; 3720 uinfo->value.integer.min = 0; 3721 uinfo->value.integer.max = 64; 3722 uinfo->value.integer.step = 1; 3723 return 0; 3724 } 3725 3726 static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol, 3727 struct snd_ctl_elem_value *ucontrol) 3728 { 3729 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3730 int channel; 3731 3732 channel = ucontrol->id.index - 1; 3733 3734 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3735 return -EINVAL; 3736 3737 spin_lock_irq(&hdspm->lock); 3738 ucontrol->value.integer.value[0] = 3739 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN; 3740 spin_unlock_irq(&hdspm->lock); 3741 3742 return 0; 3743 } 3744 3745 static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol, 3746 struct snd_ctl_elem_value *ucontrol) 3747 { 3748 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3749 int change; 3750 int channel; 3751 int gain; 3752 3753 if (!snd_hdspm_use_is_exclusive(hdspm)) 3754 return -EBUSY; 3755 3756 channel = ucontrol->id.index - 1; 3757 3758 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS)) 3759 return -EINVAL; 3760 3761 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64; 3762 3763 spin_lock_irq(&hdspm->lock); 3764 change = 3765 gain != hdspm_read_pb_gain(hdspm, channel, 3766 channel); 3767 if (change) 3768 hdspm_write_pb_gain(hdspm, channel, channel, 3769 gain); 3770 spin_unlock_irq(&hdspm->lock); 3771 return change; 3772 } 3773 3774 #define HDSPM_SYNC_CHECK(xname, xindex) \ 3775 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 3776 .name = xname, \ 3777 .private_value = xindex, \ 3778 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 3779 .info = snd_hdspm_info_sync_check, \ 3780 .get = snd_hdspm_get_sync_check \ 3781 } 3782 3783 3784 static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol, 3785 struct snd_ctl_elem_info *uinfo) 3786 { 3787 static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" }; 3788 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 3789 uinfo->count = 1; 3790 uinfo->value.enumerated.items = 4; 3791 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 3792 uinfo->value.enumerated.item = 3793 uinfo->value.enumerated.items - 1; 3794 strcpy(uinfo->value.enumerated.name, 3795 texts[uinfo->value.enumerated.item]); 3796 return 0; 3797 } 3798 3799 static int hdspm_wc_sync_check(struct hdspm *hdspm) 3800 { 3801 int status, status2; 3802 3803 switch (hdspm->io_type) { 3804 case AES32: 3805 status = hdspm_read(hdspm, HDSPM_statusRegister); 3806 if (status & HDSPM_wcSync) 3807 return 2; 3808 else if (status & HDSPM_wcLock) 3809 return 1; 3810 return 0; 3811 break; 3812 3813 case MADI: 3814 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3815 if (status2 & HDSPM_wcLock) { 3816 if (status2 & HDSPM_wcSync) 3817 return 2; 3818 else 3819 return 1; 3820 } 3821 return 0; 3822 break; 3823 3824 case RayDAT: 3825 case AIO: 3826 status = hdspm_read(hdspm, HDSPM_statusRegister); 3827 3828 if (status & 0x2000000) 3829 return 2; 3830 else if (status & 0x1000000) 3831 return 1; 3832 return 0; 3833 3834 break; 3835 3836 case MADIface: 3837 break; 3838 } 3839 3840 3841 return 3; 3842 } 3843 3844 3845 static int hdspm_madi_sync_check(struct hdspm *hdspm) 3846 { 3847 int status = hdspm_read(hdspm, HDSPM_statusRegister); 3848 if (status & HDSPM_madiLock) { 3849 if (status & HDSPM_madiSync) 3850 return 2; 3851 else 3852 return 1; 3853 } 3854 return 0; 3855 } 3856 3857 3858 static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx) 3859 { 3860 int status, lock, sync; 3861 3862 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3863 3864 lock = (status & (0x1<<idx)) ? 1 : 0; 3865 sync = (status & (0x100<<idx)) ? 1 : 0; 3866 3867 if (lock && sync) 3868 return 2; 3869 else if (lock) 3870 return 1; 3871 return 0; 3872 } 3873 3874 3875 static int hdspm_sync_in_sync_check(struct hdspm *hdspm) 3876 { 3877 int status, lock = 0, sync = 0; 3878 3879 switch (hdspm->io_type) { 3880 case RayDAT: 3881 case AIO: 3882 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3); 3883 lock = (status & 0x400) ? 1 : 0; 3884 sync = (status & 0x800) ? 1 : 0; 3885 break; 3886 3887 case MADI: 3888 status = hdspm_read(hdspm, HDSPM_statusRegister); 3889 lock = (status & HDSPM_syncInLock) ? 1 : 0; 3890 sync = (status & HDSPM_syncInSync) ? 1 : 0; 3891 break; 3892 3893 case AES32: 3894 status = hdspm_read(hdspm, HDSPM_statusRegister2); 3895 lock = (status & 0x100000) ? 1 : 0; 3896 sync = (status & 0x200000) ? 1 : 0; 3897 break; 3898 3899 case MADIface: 3900 break; 3901 } 3902 3903 if (lock && sync) 3904 return 2; 3905 else if (lock) 3906 return 1; 3907 3908 return 0; 3909 } 3910 3911 static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx) 3912 { 3913 int status2, lock, sync; 3914 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 3915 3916 lock = (status2 & (0x0080 >> idx)) ? 1 : 0; 3917 sync = (status2 & (0x8000 >> idx)) ? 1 : 0; 3918 3919 if (sync) 3920 return 2; 3921 else if (lock) 3922 return 1; 3923 return 0; 3924 } 3925 3926 3927 static int hdspm_tco_sync_check(struct hdspm *hdspm) 3928 { 3929 int status; 3930 3931 if (hdspm->tco) { 3932 switch (hdspm->io_type) { 3933 case MADI: 3934 case AES32: 3935 status = hdspm_read(hdspm, HDSPM_statusRegister); 3936 if (status & HDSPM_tcoLock) { 3937 if (status & HDSPM_tcoSync) 3938 return 2; 3939 else 3940 return 1; 3941 } 3942 return 0; 3943 3944 break; 3945 3946 case RayDAT: 3947 case AIO: 3948 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1); 3949 3950 if (status & 0x8000000) 3951 return 2; /* Sync */ 3952 if (status & 0x4000000) 3953 return 1; /* Lock */ 3954 return 0; /* No signal */ 3955 break; 3956 3957 default: 3958 break; 3959 } 3960 } 3961 3962 return 3; /* N/A */ 3963 } 3964 3965 3966 static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol, 3967 struct snd_ctl_elem_value *ucontrol) 3968 { 3969 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 3970 int val = -1; 3971 3972 switch (hdspm->io_type) { 3973 case RayDAT: 3974 switch (kcontrol->private_value) { 3975 case 0: /* WC */ 3976 val = hdspm_wc_sync_check(hdspm); break; 3977 case 7: /* TCO */ 3978 val = hdspm_tco_sync_check(hdspm); break; 3979 case 8: /* SYNC IN */ 3980 val = hdspm_sync_in_sync_check(hdspm); break; 3981 default: 3982 val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1); 3983 } 3984 break; 3985 3986 case AIO: 3987 switch (kcontrol->private_value) { 3988 case 0: /* WC */ 3989 val = hdspm_wc_sync_check(hdspm); break; 3990 case 4: /* TCO */ 3991 val = hdspm_tco_sync_check(hdspm); break; 3992 case 5: /* SYNC IN */ 3993 val = hdspm_sync_in_sync_check(hdspm); break; 3994 default: 3995 val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1); 3996 } 3997 break; 3998 3999 case MADI: 4000 switch (kcontrol->private_value) { 4001 case 0: /* WC */ 4002 val = hdspm_wc_sync_check(hdspm); break; 4003 case 1: /* MADI */ 4004 val = hdspm_madi_sync_check(hdspm); break; 4005 case 2: /* TCO */ 4006 val = hdspm_tco_sync_check(hdspm); break; 4007 case 3: /* SYNC_IN */ 4008 val = hdspm_sync_in_sync_check(hdspm); break; 4009 } 4010 break; 4011 4012 case MADIface: 4013 val = hdspm_madi_sync_check(hdspm); /* MADI */ 4014 break; 4015 4016 case AES32: 4017 switch (kcontrol->private_value) { 4018 case 0: /* WC */ 4019 val = hdspm_wc_sync_check(hdspm); break; 4020 case 9: /* TCO */ 4021 val = hdspm_tco_sync_check(hdspm); break; 4022 case 10 /* SYNC IN */: 4023 val = hdspm_sync_in_sync_check(hdspm); break; 4024 default: /* AES1 to AES8 */ 4025 val = hdspm_aes_sync_check(hdspm, 4026 kcontrol->private_value-1); 4027 } 4028 break; 4029 4030 } 4031 4032 if (-1 == val) 4033 val = 3; 4034 4035 ucontrol->value.enumerated.item[0] = val; 4036 return 0; 4037 } 4038 4039 4040 4041 /** 4042 * TCO controls 4043 **/ 4044 static void hdspm_tco_write(struct hdspm *hdspm) 4045 { 4046 unsigned int tc[4] = { 0, 0, 0, 0}; 4047 4048 switch (hdspm->tco->input) { 4049 case 0: 4050 tc[2] |= HDSPM_TCO2_set_input_MSB; 4051 break; 4052 case 1: 4053 tc[2] |= HDSPM_TCO2_set_input_LSB; 4054 break; 4055 default: 4056 break; 4057 } 4058 4059 switch (hdspm->tco->framerate) { 4060 case 1: 4061 tc[1] |= HDSPM_TCO1_LTC_Format_LSB; 4062 break; 4063 case 2: 4064 tc[1] |= HDSPM_TCO1_LTC_Format_MSB; 4065 break; 4066 case 3: 4067 tc[1] |= HDSPM_TCO1_LTC_Format_MSB + 4068 HDSPM_TCO1_set_drop_frame_flag; 4069 break; 4070 case 4: 4071 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4072 HDSPM_TCO1_LTC_Format_MSB; 4073 break; 4074 case 5: 4075 tc[1] |= HDSPM_TCO1_LTC_Format_LSB + 4076 HDSPM_TCO1_LTC_Format_MSB + 4077 HDSPM_TCO1_set_drop_frame_flag; 4078 break; 4079 default: 4080 break; 4081 } 4082 4083 switch (hdspm->tco->wordclock) { 4084 case 1: 4085 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB; 4086 break; 4087 case 2: 4088 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB; 4089 break; 4090 default: 4091 break; 4092 } 4093 4094 switch (hdspm->tco->samplerate) { 4095 case 1: 4096 tc[2] |= HDSPM_TCO2_set_freq; 4097 break; 4098 case 2: 4099 tc[2] |= HDSPM_TCO2_set_freq_from_app; 4100 break; 4101 default: 4102 break; 4103 } 4104 4105 switch (hdspm->tco->pull) { 4106 case 1: 4107 tc[2] |= HDSPM_TCO2_set_pull_up; 4108 break; 4109 case 2: 4110 tc[2] |= HDSPM_TCO2_set_pull_down; 4111 break; 4112 case 3: 4113 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4; 4114 break; 4115 case 4: 4116 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4; 4117 break; 4118 default: 4119 break; 4120 } 4121 4122 if (1 == hdspm->tco->term) { 4123 tc[2] |= HDSPM_TCO2_set_term_75R; 4124 } 4125 4126 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]); 4127 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]); 4128 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]); 4129 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]); 4130 } 4131 4132 4133 #define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \ 4134 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4135 .name = xname, \ 4136 .index = xindex, \ 4137 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4138 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4139 .info = snd_hdspm_info_tco_sample_rate, \ 4140 .get = snd_hdspm_get_tco_sample_rate, \ 4141 .put = snd_hdspm_put_tco_sample_rate \ 4142 } 4143 4144 static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol, 4145 struct snd_ctl_elem_info *uinfo) 4146 { 4147 static char *texts[] = { "44.1 kHz", "48 kHz" }; 4148 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 4149 uinfo->count = 1; 4150 uinfo->value.enumerated.items = 2; 4151 4152 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 4153 uinfo->value.enumerated.item = 4154 uinfo->value.enumerated.items - 1; 4155 4156 strcpy(uinfo->value.enumerated.name, 4157 texts[uinfo->value.enumerated.item]); 4158 4159 return 0; 4160 } 4161 4162 static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol, 4163 struct snd_ctl_elem_value *ucontrol) 4164 { 4165 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4166 4167 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate; 4168 4169 return 0; 4170 } 4171 4172 static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol, 4173 struct snd_ctl_elem_value *ucontrol) 4174 { 4175 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4176 4177 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) { 4178 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0]; 4179 4180 hdspm_tco_write(hdspm); 4181 4182 return 1; 4183 } 4184 4185 return 0; 4186 } 4187 4188 4189 #define HDSPM_TCO_PULL(xname, xindex) \ 4190 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4191 .name = xname, \ 4192 .index = xindex, \ 4193 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4194 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4195 .info = snd_hdspm_info_tco_pull, \ 4196 .get = snd_hdspm_get_tco_pull, \ 4197 .put = snd_hdspm_put_tco_pull \ 4198 } 4199 4200 static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol, 4201 struct snd_ctl_elem_info *uinfo) 4202 { 4203 static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" }; 4204 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 4205 uinfo->count = 1; 4206 uinfo->value.enumerated.items = 5; 4207 4208 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 4209 uinfo->value.enumerated.item = 4210 uinfo->value.enumerated.items - 1; 4211 4212 strcpy(uinfo->value.enumerated.name, 4213 texts[uinfo->value.enumerated.item]); 4214 4215 return 0; 4216 } 4217 4218 static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol, 4219 struct snd_ctl_elem_value *ucontrol) 4220 { 4221 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4222 4223 ucontrol->value.enumerated.item[0] = hdspm->tco->pull; 4224 4225 return 0; 4226 } 4227 4228 static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol, 4229 struct snd_ctl_elem_value *ucontrol) 4230 { 4231 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4232 4233 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) { 4234 hdspm->tco->pull = ucontrol->value.enumerated.item[0]; 4235 4236 hdspm_tco_write(hdspm); 4237 4238 return 1; 4239 } 4240 4241 return 0; 4242 } 4243 4244 #define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \ 4245 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4246 .name = xname, \ 4247 .index = xindex, \ 4248 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4249 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4250 .info = snd_hdspm_info_tco_wck_conversion, \ 4251 .get = snd_hdspm_get_tco_wck_conversion, \ 4252 .put = snd_hdspm_put_tco_wck_conversion \ 4253 } 4254 4255 static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4256 struct snd_ctl_elem_info *uinfo) 4257 { 4258 static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" }; 4259 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 4260 uinfo->count = 1; 4261 uinfo->value.enumerated.items = 3; 4262 4263 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 4264 uinfo->value.enumerated.item = 4265 uinfo->value.enumerated.items - 1; 4266 4267 strcpy(uinfo->value.enumerated.name, 4268 texts[uinfo->value.enumerated.item]); 4269 4270 return 0; 4271 } 4272 4273 static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4274 struct snd_ctl_elem_value *ucontrol) 4275 { 4276 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4277 4278 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock; 4279 4280 return 0; 4281 } 4282 4283 static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol, 4284 struct snd_ctl_elem_value *ucontrol) 4285 { 4286 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4287 4288 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) { 4289 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0]; 4290 4291 hdspm_tco_write(hdspm); 4292 4293 return 1; 4294 } 4295 4296 return 0; 4297 } 4298 4299 4300 #define HDSPM_TCO_FRAME_RATE(xname, xindex) \ 4301 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4302 .name = xname, \ 4303 .index = xindex, \ 4304 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4305 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4306 .info = snd_hdspm_info_tco_frame_rate, \ 4307 .get = snd_hdspm_get_tco_frame_rate, \ 4308 .put = snd_hdspm_put_tco_frame_rate \ 4309 } 4310 4311 static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol, 4312 struct snd_ctl_elem_info *uinfo) 4313 { 4314 static char *texts[] = { "24 fps", "25 fps", "29.97fps", 4315 "29.97 dfps", "30 fps", "30 dfps" }; 4316 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 4317 uinfo->count = 1; 4318 uinfo->value.enumerated.items = 6; 4319 4320 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 4321 uinfo->value.enumerated.item = 4322 uinfo->value.enumerated.items - 1; 4323 4324 strcpy(uinfo->value.enumerated.name, 4325 texts[uinfo->value.enumerated.item]); 4326 4327 return 0; 4328 } 4329 4330 static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol, 4331 struct snd_ctl_elem_value *ucontrol) 4332 { 4333 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4334 4335 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate; 4336 4337 return 0; 4338 } 4339 4340 static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol, 4341 struct snd_ctl_elem_value *ucontrol) 4342 { 4343 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4344 4345 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) { 4346 hdspm->tco->framerate = ucontrol->value.enumerated.item[0]; 4347 4348 hdspm_tco_write(hdspm); 4349 4350 return 1; 4351 } 4352 4353 return 0; 4354 } 4355 4356 4357 #define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \ 4358 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4359 .name = xname, \ 4360 .index = xindex, \ 4361 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4362 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4363 .info = snd_hdspm_info_tco_sync_source, \ 4364 .get = snd_hdspm_get_tco_sync_source, \ 4365 .put = snd_hdspm_put_tco_sync_source \ 4366 } 4367 4368 static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol, 4369 struct snd_ctl_elem_info *uinfo) 4370 { 4371 static char *texts[] = { "LTC", "Video", "WCK" }; 4372 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 4373 uinfo->count = 1; 4374 uinfo->value.enumerated.items = 3; 4375 4376 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 4377 uinfo->value.enumerated.item = 4378 uinfo->value.enumerated.items - 1; 4379 4380 strcpy(uinfo->value.enumerated.name, 4381 texts[uinfo->value.enumerated.item]); 4382 4383 return 0; 4384 } 4385 4386 static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol, 4387 struct snd_ctl_elem_value *ucontrol) 4388 { 4389 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4390 4391 ucontrol->value.enumerated.item[0] = hdspm->tco->input; 4392 4393 return 0; 4394 } 4395 4396 static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol, 4397 struct snd_ctl_elem_value *ucontrol) 4398 { 4399 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4400 4401 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) { 4402 hdspm->tco->input = ucontrol->value.enumerated.item[0]; 4403 4404 hdspm_tco_write(hdspm); 4405 4406 return 1; 4407 } 4408 4409 return 0; 4410 } 4411 4412 4413 #define HDSPM_TCO_WORD_TERM(xname, xindex) \ 4414 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 4415 .name = xname, \ 4416 .index = xindex, \ 4417 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\ 4418 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \ 4419 .info = snd_hdspm_info_tco_word_term, \ 4420 .get = snd_hdspm_get_tco_word_term, \ 4421 .put = snd_hdspm_put_tco_word_term \ 4422 } 4423 4424 static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol, 4425 struct snd_ctl_elem_info *uinfo) 4426 { 4427 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 4428 uinfo->count = 1; 4429 uinfo->value.integer.min = 0; 4430 uinfo->value.integer.max = 1; 4431 4432 return 0; 4433 } 4434 4435 4436 static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol, 4437 struct snd_ctl_elem_value *ucontrol) 4438 { 4439 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4440 4441 ucontrol->value.enumerated.item[0] = hdspm->tco->term; 4442 4443 return 0; 4444 } 4445 4446 4447 static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol, 4448 struct snd_ctl_elem_value *ucontrol) 4449 { 4450 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol); 4451 4452 if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) { 4453 hdspm->tco->term = ucontrol->value.enumerated.item[0]; 4454 4455 hdspm_tco_write(hdspm); 4456 4457 return 1; 4458 } 4459 4460 return 0; 4461 } 4462 4463 4464 4465 4466 static struct snd_kcontrol_new snd_hdspm_controls_madi[] = { 4467 HDSPM_MIXER("Mixer", 0), 4468 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4469 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4470 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4471 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4472 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4473 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4474 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4475 HDSPM_SYNC_CHECK("MADI SyncCheck", 1), 4476 HDSPM_SYNC_CHECK("TCO SyncCheck", 2), 4477 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3), 4478 HDSPM_LINE_OUT("Line Out", 0), 4479 HDSPM_TX_64("TX 64 channels mode", 0), 4480 HDSPM_C_TMS("Clear Track Marker", 0), 4481 HDSPM_SAFE_MODE("Safe Mode", 0), 4482 HDSPM_INPUT_SELECT("Input Select", 0), 4483 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4484 }; 4485 4486 4487 static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = { 4488 HDSPM_MIXER("Mixer", 0), 4489 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4490 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4491 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4492 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4493 HDSPM_SYNC_CHECK("MADI SyncCheck", 0), 4494 HDSPM_TX_64("TX 64 channels mode", 0), 4495 HDSPM_C_TMS("Clear Track Marker", 0), 4496 HDSPM_SAFE_MODE("Safe Mode", 0), 4497 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0) 4498 }; 4499 4500 static struct snd_kcontrol_new snd_hdspm_controls_aio[] = { 4501 HDSPM_MIXER("Mixer", 0), 4502 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4503 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4504 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4505 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4506 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4507 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4508 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4509 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4510 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4511 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3), 4512 HDSPM_SYNC_CHECK("TCO SyncCheck", 4), 4513 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5), 4514 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4515 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4516 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4517 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3), 4518 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4), 4519 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5) 4520 4521 /* 4522 HDSPM_INPUT_SELECT("Input Select", 0), 4523 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0), 4524 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0); 4525 HDSPM_SPDIF_IN("SPDIF In", 0); 4526 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0); 4527 HDSPM_INPUT_LEVEL("Input Level", 0); 4528 HDSPM_OUTPUT_LEVEL("Output Level", 0); 4529 HDSPM_PHONES("Phones", 0); 4530 */ 4531 }; 4532 4533 static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = { 4534 HDSPM_MIXER("Mixer", 0), 4535 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4536 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0), 4537 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0), 4538 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4539 HDSPM_SYNC_CHECK("WC SyncCheck", 0), 4540 HDSPM_SYNC_CHECK("AES SyncCheck", 1), 4541 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2), 4542 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3), 4543 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4), 4544 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5), 4545 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6), 4546 HDSPM_SYNC_CHECK("TCO SyncCheck", 7), 4547 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8), 4548 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4549 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1), 4550 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2), 4551 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3), 4552 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4), 4553 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5), 4554 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6), 4555 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7), 4556 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8) 4557 }; 4558 4559 static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = { 4560 HDSPM_MIXER("Mixer", 0), 4561 HDSPM_INTERNAL_CLOCK("Internal Clock", 0), 4562 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0), 4563 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0), 4564 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0), 4565 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0), 4566 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0), 4567 HDSPM_SYNC_CHECK("WC Sync Check", 0), 4568 HDSPM_SYNC_CHECK("AES1 Sync Check", 1), 4569 HDSPM_SYNC_CHECK("AES2 Sync Check", 2), 4570 HDSPM_SYNC_CHECK("AES3 Sync Check", 3), 4571 HDSPM_SYNC_CHECK("AES4 Sync Check", 4), 4572 HDSPM_SYNC_CHECK("AES5 Sync Check", 5), 4573 HDSPM_SYNC_CHECK("AES6 Sync Check", 6), 4574 HDSPM_SYNC_CHECK("AES7 Sync Check", 7), 4575 HDSPM_SYNC_CHECK("AES8 Sync Check", 8), 4576 HDSPM_SYNC_CHECK("TCO Sync Check", 9), 4577 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10), 4578 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0), 4579 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1), 4580 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2), 4581 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3), 4582 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4), 4583 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5), 4584 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6), 4585 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7), 4586 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8), 4587 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9), 4588 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10), 4589 HDSPM_LINE_OUT("Line Out", 0), 4590 HDSPM_EMPHASIS("Emphasis", 0), 4591 HDSPM_DOLBY("Non Audio", 0), 4592 HDSPM_PROFESSIONAL("Professional", 0), 4593 HDSPM_C_TMS("Clear Track Marker", 0), 4594 HDSPM_DS_WIRE("Double Speed Wire Mode", 0), 4595 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0), 4596 }; 4597 4598 4599 4600 /* Control elements for the optional TCO module */ 4601 static struct snd_kcontrol_new snd_hdspm_controls_tco[] = { 4602 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0), 4603 HDSPM_TCO_PULL("TCO Pull", 0), 4604 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0), 4605 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0), 4606 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0), 4607 HDSPM_TCO_WORD_TERM("TCO Word Term", 0) 4608 }; 4609 4610 4611 static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER; 4612 4613 4614 static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm) 4615 { 4616 int i; 4617 4618 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) { 4619 if (hdspm->system_sample_rate > 48000) { 4620 hdspm->playback_mixer_ctls[i]->vd[0].access = 4621 SNDRV_CTL_ELEM_ACCESS_INACTIVE | 4622 SNDRV_CTL_ELEM_ACCESS_READ | 4623 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4624 } else { 4625 hdspm->playback_mixer_ctls[i]->vd[0].access = 4626 SNDRV_CTL_ELEM_ACCESS_READWRITE | 4627 SNDRV_CTL_ELEM_ACCESS_VOLATILE; 4628 } 4629 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE | 4630 SNDRV_CTL_EVENT_MASK_INFO, 4631 &hdspm->playback_mixer_ctls[i]->id); 4632 } 4633 4634 return 0; 4635 } 4636 4637 4638 static int snd_hdspm_create_controls(struct snd_card *card, 4639 struct hdspm *hdspm) 4640 { 4641 unsigned int idx, limit; 4642 int err; 4643 struct snd_kcontrol *kctl; 4644 struct snd_kcontrol_new *list = NULL; 4645 4646 switch (hdspm->io_type) { 4647 case MADI: 4648 list = snd_hdspm_controls_madi; 4649 limit = ARRAY_SIZE(snd_hdspm_controls_madi); 4650 break; 4651 case MADIface: 4652 list = snd_hdspm_controls_madiface; 4653 limit = ARRAY_SIZE(snd_hdspm_controls_madiface); 4654 break; 4655 case AIO: 4656 list = snd_hdspm_controls_aio; 4657 limit = ARRAY_SIZE(snd_hdspm_controls_aio); 4658 break; 4659 case RayDAT: 4660 list = snd_hdspm_controls_raydat; 4661 limit = ARRAY_SIZE(snd_hdspm_controls_raydat); 4662 break; 4663 case AES32: 4664 list = snd_hdspm_controls_aes32; 4665 limit = ARRAY_SIZE(snd_hdspm_controls_aes32); 4666 break; 4667 } 4668 4669 if (NULL != list) { 4670 for (idx = 0; idx < limit; idx++) { 4671 err = snd_ctl_add(card, 4672 snd_ctl_new1(&list[idx], hdspm)); 4673 if (err < 0) 4674 return err; 4675 } 4676 } 4677 4678 4679 /* create simple 1:1 playback mixer controls */ 4680 snd_hdspm_playback_mixer.name = "Chn"; 4681 if (hdspm->system_sample_rate >= 128000) { 4682 limit = hdspm->qs_out_channels; 4683 } else if (hdspm->system_sample_rate >= 64000) { 4684 limit = hdspm->ds_out_channels; 4685 } else { 4686 limit = hdspm->ss_out_channels; 4687 } 4688 for (idx = 0; idx < limit; ++idx) { 4689 snd_hdspm_playback_mixer.index = idx + 1; 4690 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm); 4691 err = snd_ctl_add(card, kctl); 4692 if (err < 0) 4693 return err; 4694 hdspm->playback_mixer_ctls[idx] = kctl; 4695 } 4696 4697 4698 if (hdspm->tco) { 4699 /* add tco control elements */ 4700 list = snd_hdspm_controls_tco; 4701 limit = ARRAY_SIZE(snd_hdspm_controls_tco); 4702 for (idx = 0; idx < limit; idx++) { 4703 err = snd_ctl_add(card, 4704 snd_ctl_new1(&list[idx], hdspm)); 4705 if (err < 0) 4706 return err; 4707 } 4708 } 4709 4710 return 0; 4711 } 4712 4713 /*------------------------------------------------------------ 4714 /proc interface 4715 ------------------------------------------------------------*/ 4716 4717 static void 4718 snd_hdspm_proc_read_madi(struct snd_info_entry * entry, 4719 struct snd_info_buffer *buffer) 4720 { 4721 struct hdspm *hdspm = entry->private_data; 4722 unsigned int status, status2, control, freq; 4723 4724 char *pref_sync_ref; 4725 char *autosync_ref; 4726 char *system_clock_mode; 4727 char *insel; 4728 int x, x2; 4729 4730 /* TCO stuff */ 4731 int a, ltc, frames, seconds, minutes, hours; 4732 unsigned int period; 4733 u64 freq_const = 0; 4734 u32 rate; 4735 4736 status = hdspm_read(hdspm, HDSPM_statusRegister); 4737 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 4738 control = hdspm->control_register; 4739 freq = hdspm_read(hdspm, HDSPM_timecodeRegister); 4740 4741 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n", 4742 hdspm->card_name, hdspm->card->number + 1, 4743 hdspm->firmware_rev, 4744 (status2 & HDSPM_version0) | 4745 (status2 & HDSPM_version1) | (status2 & 4746 HDSPM_version2)); 4747 4748 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n", 4749 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF, 4750 hdspm->serial); 4751 4752 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 4753 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 4754 4755 snd_iprintf(buffer, "--- System ---\n"); 4756 4757 snd_iprintf(buffer, 4758 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 4759 status & HDSPM_audioIRQPending, 4760 (status & HDSPM_midi0IRQPending) ? 1 : 0, 4761 (status & HDSPM_midi1IRQPending) ? 1 : 0, 4762 hdspm->irq_count); 4763 snd_iprintf(buffer, 4764 "HW pointer: id = %d, rawptr = %d (%d->%d) " 4765 "estimated= %ld (bytes)\n", 4766 ((status & HDSPM_BufferID) ? 1 : 0), 4767 (status & HDSPM_BufferPositionMask), 4768 (status & HDSPM_BufferPositionMask) % 4769 (2 * (int)hdspm->period_bytes), 4770 ((status & HDSPM_BufferPositionMask) - 64) % 4771 (2 * (int)hdspm->period_bytes), 4772 (long) hdspm_hw_pointer(hdspm) * 4); 4773 4774 snd_iprintf(buffer, 4775 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 4776 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 4777 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 4778 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 4779 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 4780 snd_iprintf(buffer, 4781 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 4782 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 4783 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 4784 snd_iprintf(buffer, 4785 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 4786 "status2=0x%x\n", 4787 hdspm->control_register, hdspm->control2_register, 4788 status, status2); 4789 if (status & HDSPM_tco_detect) { 4790 snd_iprintf(buffer, "TCO module detected.\n"); 4791 a = hdspm_read(hdspm, HDSPM_RD_TCO+4); 4792 if (a & HDSPM_TCO1_LTC_Input_valid) { 4793 snd_iprintf(buffer, " LTC valid, "); 4794 switch (a & (HDSPM_TCO1_LTC_Format_LSB | 4795 HDSPM_TCO1_LTC_Format_MSB)) { 4796 case 0: 4797 snd_iprintf(buffer, "24 fps, "); 4798 break; 4799 case HDSPM_TCO1_LTC_Format_LSB: 4800 snd_iprintf(buffer, "25 fps, "); 4801 break; 4802 case HDSPM_TCO1_LTC_Format_MSB: 4803 snd_iprintf(buffer, "29.97 fps, "); 4804 break; 4805 default: 4806 snd_iprintf(buffer, "30 fps, "); 4807 break; 4808 } 4809 if (a & HDSPM_TCO1_set_drop_frame_flag) { 4810 snd_iprintf(buffer, "drop frame\n"); 4811 } else { 4812 snd_iprintf(buffer, "full frame\n"); 4813 } 4814 } else { 4815 snd_iprintf(buffer, " no LTC\n"); 4816 } 4817 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) { 4818 snd_iprintf(buffer, " Video: NTSC\n"); 4819 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) { 4820 snd_iprintf(buffer, " Video: PAL\n"); 4821 } else { 4822 snd_iprintf(buffer, " No video\n"); 4823 } 4824 if (a & HDSPM_TCO1_TCO_lock) { 4825 snd_iprintf(buffer, " Sync: lock\n"); 4826 } else { 4827 snd_iprintf(buffer, " Sync: no lock\n"); 4828 } 4829 4830 switch (hdspm->io_type) { 4831 case MADI: 4832 case AES32: 4833 freq_const = 110069313433624ULL; 4834 break; 4835 case RayDAT: 4836 case AIO: 4837 freq_const = 104857600000000ULL; 4838 break; 4839 case MADIface: 4840 break; /* no TCO possible */ 4841 } 4842 4843 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 4844 snd_iprintf(buffer, " period: %u\n", period); 4845 4846 4847 /* rate = freq_const/period; */ 4848 rate = div_u64(freq_const, period); 4849 4850 if (control & HDSPM_QuadSpeed) { 4851 rate *= 4; 4852 } else if (control & HDSPM_DoubleSpeed) { 4853 rate *= 2; 4854 } 4855 4856 snd_iprintf(buffer, " Frequency: %u Hz\n", 4857 (unsigned int) rate); 4858 4859 ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 4860 frames = ltc & 0xF; 4861 ltc >>= 4; 4862 frames += (ltc & 0x3) * 10; 4863 ltc >>= 4; 4864 seconds = ltc & 0xF; 4865 ltc >>= 4; 4866 seconds += (ltc & 0x7) * 10; 4867 ltc >>= 4; 4868 minutes = ltc & 0xF; 4869 ltc >>= 4; 4870 minutes += (ltc & 0x7) * 10; 4871 ltc >>= 4; 4872 hours = ltc & 0xF; 4873 ltc >>= 4; 4874 hours += (ltc & 0x3) * 10; 4875 snd_iprintf(buffer, 4876 " LTC In: %02d:%02d:%02d:%02d\n", 4877 hours, minutes, seconds, frames); 4878 4879 } else { 4880 snd_iprintf(buffer, "No TCO module detected.\n"); 4881 } 4882 4883 snd_iprintf(buffer, "--- Settings ---\n"); 4884 4885 x = hdspm_get_latency(hdspm); 4886 4887 snd_iprintf(buffer, 4888 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 4889 x, (unsigned long) hdspm->period_bytes); 4890 4891 snd_iprintf(buffer, "Line out: %s\n", 4892 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off"); 4893 4894 switch (hdspm->control_register & HDSPM_InputMask) { 4895 case HDSPM_InputOptical: 4896 insel = "Optical"; 4897 break; 4898 case HDSPM_InputCoaxial: 4899 insel = "Coaxial"; 4900 break; 4901 default: 4902 insel = "Unkown"; 4903 } 4904 4905 snd_iprintf(buffer, 4906 "ClearTrackMarker = %s, Transmit in %s Channel Mode, " 4907 "Auto Input %s\n", 4908 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off", 4909 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56", 4910 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off"); 4911 4912 4913 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) 4914 system_clock_mode = "AutoSync"; 4915 else 4916 system_clock_mode = "Master"; 4917 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode); 4918 4919 switch (hdspm_pref_sync_ref(hdspm)) { 4920 case HDSPM_SYNC_FROM_WORD: 4921 pref_sync_ref = "Word Clock"; 4922 break; 4923 case HDSPM_SYNC_FROM_MADI: 4924 pref_sync_ref = "MADI Sync"; 4925 break; 4926 case HDSPM_SYNC_FROM_TCO: 4927 pref_sync_ref = "TCO"; 4928 break; 4929 case HDSPM_SYNC_FROM_SYNC_IN: 4930 pref_sync_ref = "Sync In"; 4931 break; 4932 default: 4933 pref_sync_ref = "XXXX Clock"; 4934 break; 4935 } 4936 snd_iprintf(buffer, "Preferred Sync Reference: %s\n", 4937 pref_sync_ref); 4938 4939 snd_iprintf(buffer, "System Clock Frequency: %d\n", 4940 hdspm->system_sample_rate); 4941 4942 4943 snd_iprintf(buffer, "--- Status:\n"); 4944 4945 x = status & HDSPM_madiSync; 4946 x2 = status2 & HDSPM_wcSync; 4947 4948 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n", 4949 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") : 4950 "NoLock", 4951 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") : 4952 "NoLock"); 4953 4954 switch (hdspm_autosync_ref(hdspm)) { 4955 case HDSPM_AUTOSYNC_FROM_SYNC_IN: 4956 autosync_ref = "Sync In"; 4957 break; 4958 case HDSPM_AUTOSYNC_FROM_TCO: 4959 autosync_ref = "TCO"; 4960 break; 4961 case HDSPM_AUTOSYNC_FROM_WORD: 4962 autosync_ref = "Word Clock"; 4963 break; 4964 case HDSPM_AUTOSYNC_FROM_MADI: 4965 autosync_ref = "MADI Sync"; 4966 break; 4967 case HDSPM_AUTOSYNC_FROM_NONE: 4968 autosync_ref = "Input not valid"; 4969 break; 4970 default: 4971 autosync_ref = "---"; 4972 break; 4973 } 4974 snd_iprintf(buffer, 4975 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n", 4976 autosync_ref, hdspm_external_sample_rate(hdspm), 4977 (status & HDSPM_madiFreqMask) >> 22, 4978 (status2 & HDSPM_wcFreqMask) >> 5); 4979 4980 snd_iprintf(buffer, "Input: %s, Mode=%s\n", 4981 (status & HDSPM_AB_int) ? "Coax" : "Optical", 4982 (status & HDSPM_RX_64ch) ? "64 channels" : 4983 "56 channels"); 4984 4985 snd_iprintf(buffer, "\n"); 4986 } 4987 4988 static void 4989 snd_hdspm_proc_read_aes32(struct snd_info_entry * entry, 4990 struct snd_info_buffer *buffer) 4991 { 4992 struct hdspm *hdspm = entry->private_data; 4993 unsigned int status; 4994 unsigned int status2; 4995 unsigned int timecode; 4996 int pref_syncref; 4997 char *autosync_ref; 4998 int x; 4999 5000 status = hdspm_read(hdspm, HDSPM_statusRegister); 5001 status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 5002 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister); 5003 5004 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n", 5005 hdspm->card_name, hdspm->card->number + 1, 5006 hdspm->firmware_rev); 5007 5008 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n", 5009 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase); 5010 5011 snd_iprintf(buffer, "--- System ---\n"); 5012 5013 snd_iprintf(buffer, 5014 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n", 5015 status & HDSPM_audioIRQPending, 5016 (status & HDSPM_midi0IRQPending) ? 1 : 0, 5017 (status & HDSPM_midi1IRQPending) ? 1 : 0, 5018 hdspm->irq_count); 5019 snd_iprintf(buffer, 5020 "HW pointer: id = %d, rawptr = %d (%d->%d) " 5021 "estimated= %ld (bytes)\n", 5022 ((status & HDSPM_BufferID) ? 1 : 0), 5023 (status & HDSPM_BufferPositionMask), 5024 (status & HDSPM_BufferPositionMask) % 5025 (2 * (int)hdspm->period_bytes), 5026 ((status & HDSPM_BufferPositionMask) - 64) % 5027 (2 * (int)hdspm->period_bytes), 5028 (long) hdspm_hw_pointer(hdspm) * 4); 5029 5030 snd_iprintf(buffer, 5031 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n", 5032 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF, 5033 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF, 5034 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF, 5035 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF); 5036 snd_iprintf(buffer, 5037 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n", 5038 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF, 5039 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF); 5040 snd_iprintf(buffer, 5041 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, " 5042 "status2=0x%x\n", 5043 hdspm->control_register, hdspm->control2_register, 5044 status, status2); 5045 5046 snd_iprintf(buffer, "--- Settings ---\n"); 5047 5048 x = hdspm_get_latency(hdspm); 5049 5050 snd_iprintf(buffer, 5051 "Size (Latency): %d samples (2 periods of %lu bytes)\n", 5052 x, (unsigned long) hdspm->period_bytes); 5053 5054 snd_iprintf(buffer, "Line out: %s\n", 5055 (hdspm-> 5056 control_register & HDSPM_LineOut) ? "on " : "off"); 5057 5058 snd_iprintf(buffer, 5059 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n", 5060 (hdspm-> 5061 control_register & HDSPM_clr_tms) ? "on" : "off", 5062 (hdspm-> 5063 control_register & HDSPM_Emphasis) ? "on" : "off", 5064 (hdspm-> 5065 control_register & HDSPM_Dolby) ? "on" : "off"); 5066 5067 5068 pref_syncref = hdspm_pref_sync_ref(hdspm); 5069 if (pref_syncref == 0) 5070 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n"); 5071 else 5072 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n", 5073 pref_syncref); 5074 5075 snd_iprintf(buffer, "System Clock Frequency: %d\n", 5076 hdspm->system_sample_rate); 5077 5078 snd_iprintf(buffer, "Double speed: %s\n", 5079 hdspm->control_register & HDSPM_DS_DoubleWire? 5080 "Double wire" : "Single wire"); 5081 snd_iprintf(buffer, "Quad speed: %s\n", 5082 hdspm->control_register & HDSPM_QS_DoubleWire? 5083 "Double wire" : 5084 hdspm->control_register & HDSPM_QS_QuadWire? 5085 "Quad wire" : "Single wire"); 5086 5087 snd_iprintf(buffer, "--- Status:\n"); 5088 5089 snd_iprintf(buffer, "Word: %s Frequency: %d\n", 5090 (status & HDSPM_AES32_wcLock) ? "Sync " : "No Lock", 5091 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF)); 5092 5093 for (x = 0; x < 8; x++) { 5094 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n", 5095 x+1, 5096 (status2 & (HDSPM_LockAES >> x)) ? 5097 "Sync " : "No Lock", 5098 HDSPM_bit2freq((timecode >> (4*x)) & 0xF)); 5099 } 5100 5101 switch (hdspm_autosync_ref(hdspm)) { 5102 case HDSPM_AES32_AUTOSYNC_FROM_NONE: 5103 autosync_ref = "None"; break; 5104 case HDSPM_AES32_AUTOSYNC_FROM_WORD: 5105 autosync_ref = "Word Clock"; break; 5106 case HDSPM_AES32_AUTOSYNC_FROM_AES1: 5107 autosync_ref = "AES1"; break; 5108 case HDSPM_AES32_AUTOSYNC_FROM_AES2: 5109 autosync_ref = "AES2"; break; 5110 case HDSPM_AES32_AUTOSYNC_FROM_AES3: 5111 autosync_ref = "AES3"; break; 5112 case HDSPM_AES32_AUTOSYNC_FROM_AES4: 5113 autosync_ref = "AES4"; break; 5114 case HDSPM_AES32_AUTOSYNC_FROM_AES5: 5115 autosync_ref = "AES5"; break; 5116 case HDSPM_AES32_AUTOSYNC_FROM_AES6: 5117 autosync_ref = "AES6"; break; 5118 case HDSPM_AES32_AUTOSYNC_FROM_AES7: 5119 autosync_ref = "AES7"; break; 5120 case HDSPM_AES32_AUTOSYNC_FROM_AES8: 5121 autosync_ref = "AES8"; break; 5122 default: 5123 autosync_ref = "---"; break; 5124 } 5125 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref); 5126 5127 snd_iprintf(buffer, "\n"); 5128 } 5129 5130 static void 5131 snd_hdspm_proc_read_raydat(struct snd_info_entry *entry, 5132 struct snd_info_buffer *buffer) 5133 { 5134 struct hdspm *hdspm = entry->private_data; 5135 unsigned int status1, status2, status3, control, i; 5136 unsigned int lock, sync; 5137 5138 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */ 5139 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */ 5140 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */ 5141 5142 control = hdspm->control_register; 5143 5144 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1); 5145 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2); 5146 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3); 5147 5148 5149 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n"); 5150 5151 snd_iprintf(buffer, "Clock mode : %s\n", 5152 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave"); 5153 snd_iprintf(buffer, "System frequency: %d Hz\n", 5154 hdspm_get_system_sample_rate(hdspm)); 5155 5156 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n"); 5157 5158 lock = 0x1; 5159 sync = 0x100; 5160 5161 for (i = 0; i < 8; i++) { 5162 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n", 5163 i, 5164 (status1 & lock) ? 1 : 0, 5165 (status1 & sync) ? 1 : 0, 5166 texts_freq[(status2 >> (i * 4)) & 0xF]); 5167 5168 lock = lock<<1; 5169 sync = sync<<1; 5170 } 5171 5172 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n", 5173 (status1 & 0x1000000) ? 1 : 0, 5174 (status1 & 0x2000000) ? 1 : 0, 5175 texts_freq[(status1 >> 16) & 0xF]); 5176 5177 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n", 5178 (status1 & 0x4000000) ? 1 : 0, 5179 (status1 & 0x8000000) ? 1 : 0, 5180 texts_freq[(status1 >> 20) & 0xF]); 5181 5182 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n", 5183 (status3 & 0x400) ? 1 : 0, 5184 (status3 & 0x800) ? 1 : 0, 5185 texts_freq[(status2 >> 12) & 0xF]); 5186 5187 } 5188 5189 #ifdef CONFIG_SND_DEBUG 5190 static void 5191 snd_hdspm_proc_read_debug(struct snd_info_entry *entry, 5192 struct snd_info_buffer *buffer) 5193 { 5194 struct hdspm *hdspm = entry->private_data; 5195 5196 int j,i; 5197 5198 for (i = 0; i < 256 /* 1024*64 */; i += j) { 5199 snd_iprintf(buffer, "0x%08X: ", i); 5200 for (j = 0; j < 16; j += 4) 5201 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j)); 5202 snd_iprintf(buffer, "\n"); 5203 } 5204 } 5205 #endif 5206 5207 5208 static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry, 5209 struct snd_info_buffer *buffer) 5210 { 5211 struct hdspm *hdspm = entry->private_data; 5212 int i; 5213 5214 snd_iprintf(buffer, "# generated by hdspm\n"); 5215 5216 for (i = 0; i < hdspm->max_channels_in; i++) { 5217 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]); 5218 } 5219 } 5220 5221 static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry, 5222 struct snd_info_buffer *buffer) 5223 { 5224 struct hdspm *hdspm = entry->private_data; 5225 int i; 5226 5227 snd_iprintf(buffer, "# generated by hdspm\n"); 5228 5229 for (i = 0; i < hdspm->max_channels_out; i++) { 5230 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]); 5231 } 5232 } 5233 5234 5235 static void __devinit snd_hdspm_proc_init(struct hdspm *hdspm) 5236 { 5237 struct snd_info_entry *entry; 5238 5239 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) { 5240 switch (hdspm->io_type) { 5241 case AES32: 5242 snd_info_set_text_ops(entry, hdspm, 5243 snd_hdspm_proc_read_aes32); 5244 break; 5245 case MADI: 5246 snd_info_set_text_ops(entry, hdspm, 5247 snd_hdspm_proc_read_madi); 5248 break; 5249 case MADIface: 5250 /* snd_info_set_text_ops(entry, hdspm, 5251 snd_hdspm_proc_read_madiface); */ 5252 break; 5253 case RayDAT: 5254 snd_info_set_text_ops(entry, hdspm, 5255 snd_hdspm_proc_read_raydat); 5256 break; 5257 case AIO: 5258 break; 5259 } 5260 } 5261 5262 if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) { 5263 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in); 5264 } 5265 5266 if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) { 5267 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out); 5268 } 5269 5270 #ifdef CONFIG_SND_DEBUG 5271 /* debug file to read all hdspm registers */ 5272 if (!snd_card_proc_new(hdspm->card, "debug", &entry)) 5273 snd_info_set_text_ops(entry, hdspm, 5274 snd_hdspm_proc_read_debug); 5275 #endif 5276 } 5277 5278 /*------------------------------------------------------------ 5279 hdspm intitialize 5280 ------------------------------------------------------------*/ 5281 5282 static int snd_hdspm_set_defaults(struct hdspm * hdspm) 5283 { 5284 /* ASSUMPTION: hdspm->lock is either held, or there is no need to 5285 hold it (e.g. during module initialization). 5286 */ 5287 5288 /* set defaults: */ 5289 5290 hdspm->settings_register = 0; 5291 5292 switch (hdspm->io_type) { 5293 case MADI: 5294 case MADIface: 5295 hdspm->control_register = 5296 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5297 break; 5298 5299 case RayDAT: 5300 case AIO: 5301 hdspm->settings_register = 0x1 + 0x1000; 5302 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0, 5303 * line_out */ 5304 hdspm->control_register = 5305 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000; 5306 break; 5307 5308 case AES32: 5309 hdspm->control_register = 5310 HDSPM_ClockModeMaster | /* Master Cloack Mode on */ 5311 hdspm_encode_latency(7) | /* latency max=8192samples */ 5312 HDSPM_SyncRef0 | /* AES1 is syncclock */ 5313 HDSPM_LineOut | /* Analog output in */ 5314 HDSPM_Professional; /* Professional mode */ 5315 break; 5316 } 5317 5318 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5319 5320 if (AES32 == hdspm->io_type) { 5321 /* No control2 register for AES32 */ 5322 #ifdef SNDRV_BIG_ENDIAN 5323 hdspm->control2_register = HDSPM_BIGENDIAN_MODE; 5324 #else 5325 hdspm->control2_register = 0; 5326 #endif 5327 5328 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register); 5329 } 5330 hdspm_compute_period_size(hdspm); 5331 5332 /* silence everything */ 5333 5334 all_in_all_mixer(hdspm, 0 * UNITY_GAIN); 5335 5336 if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) { 5337 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register); 5338 } 5339 5340 /* set a default rate so that the channel map is set up. */ 5341 hdspm_set_rate(hdspm, 48000, 1); 5342 5343 return 0; 5344 } 5345 5346 5347 /*------------------------------------------------------------ 5348 interrupt 5349 ------------------------------------------------------------*/ 5350 5351 static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id) 5352 { 5353 struct hdspm *hdspm = (struct hdspm *) dev_id; 5354 unsigned int status; 5355 int i, audio, midi, schedule = 0; 5356 /* cycles_t now; */ 5357 5358 status = hdspm_read(hdspm, HDSPM_statusRegister); 5359 5360 audio = status & HDSPM_audioIRQPending; 5361 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending | 5362 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending); 5363 5364 /* now = get_cycles(); */ 5365 /** 5366 * LAT_2..LAT_0 period counter (win) counter (mac) 5367 * 6 4096 ~256053425 ~514672358 5368 * 5 2048 ~128024983 ~257373821 5369 * 4 1024 ~64023706 ~128718089 5370 * 3 512 ~32005945 ~64385999 5371 * 2 256 ~16003039 ~32260176 5372 * 1 128 ~7998738 ~16194507 5373 * 0 64 ~3998231 ~8191558 5374 **/ 5375 /* 5376 snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n", 5377 now-hdspm->last_interrupt, status & 0xFFC0); 5378 hdspm->last_interrupt = now; 5379 */ 5380 5381 if (!audio && !midi) 5382 return IRQ_NONE; 5383 5384 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0); 5385 hdspm->irq_count++; 5386 5387 5388 if (audio) { 5389 if (hdspm->capture_substream) 5390 snd_pcm_period_elapsed(hdspm->capture_substream); 5391 5392 if (hdspm->playback_substream) 5393 snd_pcm_period_elapsed(hdspm->playback_substream); 5394 } 5395 5396 if (midi) { 5397 i = 0; 5398 while (i < hdspm->midiPorts) { 5399 if ((hdspm_read(hdspm, 5400 hdspm->midi[i].statusIn) & 0xff) && 5401 (status & hdspm->midi[i].irq)) { 5402 /* we disable interrupts for this input until 5403 * processing is done 5404 */ 5405 hdspm->control_register &= ~hdspm->midi[i].ie; 5406 hdspm_write(hdspm, HDSPM_controlRegister, 5407 hdspm->control_register); 5408 hdspm->midi[i].pending = 1; 5409 schedule = 1; 5410 } 5411 5412 i++; 5413 } 5414 5415 if (schedule) 5416 tasklet_hi_schedule(&hdspm->midi_tasklet); 5417 } 5418 5419 return IRQ_HANDLED; 5420 } 5421 5422 /*------------------------------------------------------------ 5423 pcm interface 5424 ------------------------------------------------------------*/ 5425 5426 5427 static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream 5428 *substream) 5429 { 5430 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5431 return hdspm_hw_pointer(hdspm); 5432 } 5433 5434 5435 static int snd_hdspm_reset(struct snd_pcm_substream *substream) 5436 { 5437 struct snd_pcm_runtime *runtime = substream->runtime; 5438 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5439 struct snd_pcm_substream *other; 5440 5441 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5442 other = hdspm->capture_substream; 5443 else 5444 other = hdspm->playback_substream; 5445 5446 if (hdspm->running) 5447 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm); 5448 else 5449 runtime->status->hw_ptr = 0; 5450 if (other) { 5451 struct snd_pcm_substream *s; 5452 struct snd_pcm_runtime *oruntime = other->runtime; 5453 snd_pcm_group_for_each_entry(s, substream) { 5454 if (s == other) { 5455 oruntime->status->hw_ptr = 5456 runtime->status->hw_ptr; 5457 break; 5458 } 5459 } 5460 } 5461 return 0; 5462 } 5463 5464 static int snd_hdspm_hw_params(struct snd_pcm_substream *substream, 5465 struct snd_pcm_hw_params *params) 5466 { 5467 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5468 int err; 5469 int i; 5470 pid_t this_pid; 5471 pid_t other_pid; 5472 5473 spin_lock_irq(&hdspm->lock); 5474 5475 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5476 this_pid = hdspm->playback_pid; 5477 other_pid = hdspm->capture_pid; 5478 } else { 5479 this_pid = hdspm->capture_pid; 5480 other_pid = hdspm->playback_pid; 5481 } 5482 5483 if (other_pid > 0 && this_pid != other_pid) { 5484 5485 /* The other stream is open, and not by the same 5486 task as this one. Make sure that the parameters 5487 that matter are the same. 5488 */ 5489 5490 if (params_rate(params) != hdspm->system_sample_rate) { 5491 spin_unlock_irq(&hdspm->lock); 5492 _snd_pcm_hw_param_setempty(params, 5493 SNDRV_PCM_HW_PARAM_RATE); 5494 return -EBUSY; 5495 } 5496 5497 if (params_period_size(params) != hdspm->period_bytes / 4) { 5498 spin_unlock_irq(&hdspm->lock); 5499 _snd_pcm_hw_param_setempty(params, 5500 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5501 return -EBUSY; 5502 } 5503 5504 } 5505 /* We're fine. */ 5506 spin_unlock_irq(&hdspm->lock); 5507 5508 /* how to make sure that the rate matches an externally-set one ? */ 5509 5510 spin_lock_irq(&hdspm->lock); 5511 err = hdspm_set_rate(hdspm, params_rate(params), 0); 5512 if (err < 0) { 5513 snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err); 5514 spin_unlock_irq(&hdspm->lock); 5515 _snd_pcm_hw_param_setempty(params, 5516 SNDRV_PCM_HW_PARAM_RATE); 5517 return err; 5518 } 5519 spin_unlock_irq(&hdspm->lock); 5520 5521 err = hdspm_set_interrupt_interval(hdspm, 5522 params_period_size(params)); 5523 if (err < 0) { 5524 snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err); 5525 _snd_pcm_hw_param_setempty(params, 5526 SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 5527 return err; 5528 } 5529 5530 /* Memory allocation, takashi's method, dont know if we should 5531 * spinlock 5532 */ 5533 /* malloc all buffer even if not enabled to get sure */ 5534 /* Update for MADI rev 204: we need to allocate for all channels, 5535 * otherwise it doesn't work at 96kHz */ 5536 5537 err = 5538 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES); 5539 if (err < 0) { 5540 snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err); 5541 return err; 5542 } 5543 5544 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5545 5546 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut, 5547 params_channels(params)); 5548 5549 for (i = 0; i < params_channels(params); ++i) 5550 snd_hdspm_enable_out(hdspm, i, 1); 5551 5552 hdspm->playback_buffer = 5553 (unsigned char *) substream->runtime->dma_area; 5554 snd_printdd("Allocated sample buffer for playback at %p\n", 5555 hdspm->playback_buffer); 5556 } else { 5557 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn, 5558 params_channels(params)); 5559 5560 for (i = 0; i < params_channels(params); ++i) 5561 snd_hdspm_enable_in(hdspm, i, 1); 5562 5563 hdspm->capture_buffer = 5564 (unsigned char *) substream->runtime->dma_area; 5565 snd_printdd("Allocated sample buffer for capture at %p\n", 5566 hdspm->capture_buffer); 5567 } 5568 5569 /* 5570 snd_printdd("Allocated sample buffer for %s at 0x%08X\n", 5571 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5572 "playback" : "capture", 5573 snd_pcm_sgbuf_get_addr(substream, 0)); 5574 */ 5575 /* 5576 snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n", 5577 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 5578 "playback" : "capture", 5579 params_rate(params), params_channels(params), 5580 params_buffer_size(params)); 5581 */ 5582 5583 5584 /* Switch to native float format if requested */ 5585 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) { 5586 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT)) 5587 snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n"); 5588 5589 hdspm->control_register |= HDSPe_FLOAT_FORMAT; 5590 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) { 5591 if (hdspm->control_register & HDSPe_FLOAT_FORMAT) 5592 snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n"); 5593 5594 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT; 5595 } 5596 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register); 5597 5598 return 0; 5599 } 5600 5601 static int snd_hdspm_hw_free(struct snd_pcm_substream *substream) 5602 { 5603 int i; 5604 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5605 5606 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5607 5608 /* params_channels(params) should be enough, 5609 but to get sure in case of error */ 5610 for (i = 0; i < hdspm->max_channels_out; ++i) 5611 snd_hdspm_enable_out(hdspm, i, 0); 5612 5613 hdspm->playback_buffer = NULL; 5614 } else { 5615 for (i = 0; i < hdspm->max_channels_in; ++i) 5616 snd_hdspm_enable_in(hdspm, i, 0); 5617 5618 hdspm->capture_buffer = NULL; 5619 5620 } 5621 5622 snd_pcm_lib_free_pages(substream); 5623 5624 return 0; 5625 } 5626 5627 5628 static int snd_hdspm_channel_info(struct snd_pcm_substream *substream, 5629 struct snd_pcm_channel_info *info) 5630 { 5631 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5632 5633 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 5634 if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) { 5635 snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel); 5636 return -EINVAL; 5637 } 5638 5639 if (hdspm->channel_map_out[info->channel] < 0) { 5640 snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel); 5641 return -EINVAL; 5642 } 5643 5644 info->offset = hdspm->channel_map_out[info->channel] * 5645 HDSPM_CHANNEL_BUFFER_BYTES; 5646 } else { 5647 if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) { 5648 snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel); 5649 return -EINVAL; 5650 } 5651 5652 if (hdspm->channel_map_in[info->channel] < 0) { 5653 snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel); 5654 return -EINVAL; 5655 } 5656 5657 info->offset = hdspm->channel_map_in[info->channel] * 5658 HDSPM_CHANNEL_BUFFER_BYTES; 5659 } 5660 5661 info->first = 0; 5662 info->step = 32; 5663 return 0; 5664 } 5665 5666 5667 static int snd_hdspm_ioctl(struct snd_pcm_substream *substream, 5668 unsigned int cmd, void *arg) 5669 { 5670 switch (cmd) { 5671 case SNDRV_PCM_IOCTL1_RESET: 5672 return snd_hdspm_reset(substream); 5673 5674 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 5675 { 5676 struct snd_pcm_channel_info *info = arg; 5677 return snd_hdspm_channel_info(substream, info); 5678 } 5679 default: 5680 break; 5681 } 5682 5683 return snd_pcm_lib_ioctl(substream, cmd, arg); 5684 } 5685 5686 static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd) 5687 { 5688 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5689 struct snd_pcm_substream *other; 5690 int running; 5691 5692 spin_lock(&hdspm->lock); 5693 running = hdspm->running; 5694 switch (cmd) { 5695 case SNDRV_PCM_TRIGGER_START: 5696 running |= 1 << substream->stream; 5697 break; 5698 case SNDRV_PCM_TRIGGER_STOP: 5699 running &= ~(1 << substream->stream); 5700 break; 5701 default: 5702 snd_BUG(); 5703 spin_unlock(&hdspm->lock); 5704 return -EINVAL; 5705 } 5706 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5707 other = hdspm->capture_substream; 5708 else 5709 other = hdspm->playback_substream; 5710 5711 if (other) { 5712 struct snd_pcm_substream *s; 5713 snd_pcm_group_for_each_entry(s, substream) { 5714 if (s == other) { 5715 snd_pcm_trigger_done(s, substream); 5716 if (cmd == SNDRV_PCM_TRIGGER_START) 5717 running |= 1 << s->stream; 5718 else 5719 running &= ~(1 << s->stream); 5720 goto _ok; 5721 } 5722 } 5723 if (cmd == SNDRV_PCM_TRIGGER_START) { 5724 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK)) 5725 && substream->stream == 5726 SNDRV_PCM_STREAM_CAPTURE) 5727 hdspm_silence_playback(hdspm); 5728 } else { 5729 if (running && 5730 substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 5731 hdspm_silence_playback(hdspm); 5732 } 5733 } else { 5734 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) 5735 hdspm_silence_playback(hdspm); 5736 } 5737 _ok: 5738 snd_pcm_trigger_done(substream, substream); 5739 if (!hdspm->running && running) 5740 hdspm_start_audio(hdspm); 5741 else if (hdspm->running && !running) 5742 hdspm_stop_audio(hdspm); 5743 hdspm->running = running; 5744 spin_unlock(&hdspm->lock); 5745 5746 return 0; 5747 } 5748 5749 static int snd_hdspm_prepare(struct snd_pcm_substream *substream) 5750 { 5751 return 0; 5752 } 5753 5754 static struct snd_pcm_hardware snd_hdspm_playback_subinfo = { 5755 .info = (SNDRV_PCM_INFO_MMAP | 5756 SNDRV_PCM_INFO_MMAP_VALID | 5757 SNDRV_PCM_INFO_NONINTERLEAVED | 5758 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE), 5759 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5760 .rates = (SNDRV_PCM_RATE_32000 | 5761 SNDRV_PCM_RATE_44100 | 5762 SNDRV_PCM_RATE_48000 | 5763 SNDRV_PCM_RATE_64000 | 5764 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5765 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ), 5766 .rate_min = 32000, 5767 .rate_max = 192000, 5768 .channels_min = 1, 5769 .channels_max = HDSPM_MAX_CHANNELS, 5770 .buffer_bytes_max = 5771 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5772 .period_bytes_min = (32 * 4), 5773 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5774 .periods_min = 2, 5775 .periods_max = 512, 5776 .fifo_size = 0 5777 }; 5778 5779 static struct snd_pcm_hardware snd_hdspm_capture_subinfo = { 5780 .info = (SNDRV_PCM_INFO_MMAP | 5781 SNDRV_PCM_INFO_MMAP_VALID | 5782 SNDRV_PCM_INFO_NONINTERLEAVED | 5783 SNDRV_PCM_INFO_SYNC_START), 5784 .formats = SNDRV_PCM_FMTBIT_S32_LE, 5785 .rates = (SNDRV_PCM_RATE_32000 | 5786 SNDRV_PCM_RATE_44100 | 5787 SNDRV_PCM_RATE_48000 | 5788 SNDRV_PCM_RATE_64000 | 5789 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | 5790 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000), 5791 .rate_min = 32000, 5792 .rate_max = 192000, 5793 .channels_min = 1, 5794 .channels_max = HDSPM_MAX_CHANNELS, 5795 .buffer_bytes_max = 5796 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS, 5797 .period_bytes_min = (32 * 4), 5798 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS, 5799 .periods_min = 2, 5800 .periods_max = 512, 5801 .fifo_size = 0 5802 }; 5803 5804 static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params, 5805 struct snd_pcm_hw_rule *rule) 5806 { 5807 struct hdspm *hdspm = rule->private; 5808 struct snd_interval *c = 5809 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5810 struct snd_interval *r = 5811 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5812 5813 if (r->min > 96000 && r->max <= 192000) { 5814 struct snd_interval t = { 5815 .min = hdspm->qs_in_channels, 5816 .max = hdspm->qs_in_channels, 5817 .integer = 1, 5818 }; 5819 return snd_interval_refine(c, &t); 5820 } else if (r->min > 48000 && r->max <= 96000) { 5821 struct snd_interval t = { 5822 .min = hdspm->ds_in_channels, 5823 .max = hdspm->ds_in_channels, 5824 .integer = 1, 5825 }; 5826 return snd_interval_refine(c, &t); 5827 } else if (r->max < 64000) { 5828 struct snd_interval t = { 5829 .min = hdspm->ss_in_channels, 5830 .max = hdspm->ss_in_channels, 5831 .integer = 1, 5832 }; 5833 return snd_interval_refine(c, &t); 5834 } 5835 5836 return 0; 5837 } 5838 5839 static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params, 5840 struct snd_pcm_hw_rule * rule) 5841 { 5842 struct hdspm *hdspm = rule->private; 5843 struct snd_interval *c = 5844 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5845 struct snd_interval *r = 5846 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5847 5848 if (r->min > 96000 && r->max <= 192000) { 5849 struct snd_interval t = { 5850 .min = hdspm->qs_out_channels, 5851 .max = hdspm->qs_out_channels, 5852 .integer = 1, 5853 }; 5854 return snd_interval_refine(c, &t); 5855 } else if (r->min > 48000 && r->max <= 96000) { 5856 struct snd_interval t = { 5857 .min = hdspm->ds_out_channels, 5858 .max = hdspm->ds_out_channels, 5859 .integer = 1, 5860 }; 5861 return snd_interval_refine(c, &t); 5862 } else if (r->max < 64000) { 5863 struct snd_interval t = { 5864 .min = hdspm->ss_out_channels, 5865 .max = hdspm->ss_out_channels, 5866 .integer = 1, 5867 }; 5868 return snd_interval_refine(c, &t); 5869 } else { 5870 } 5871 return 0; 5872 } 5873 5874 static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params, 5875 struct snd_pcm_hw_rule * rule) 5876 { 5877 struct hdspm *hdspm = rule->private; 5878 struct snd_interval *c = 5879 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5880 struct snd_interval *r = 5881 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5882 5883 if (c->min >= hdspm->ss_in_channels) { 5884 struct snd_interval t = { 5885 .min = 32000, 5886 .max = 48000, 5887 .integer = 1, 5888 }; 5889 return snd_interval_refine(r, &t); 5890 } else if (c->max <= hdspm->qs_in_channels) { 5891 struct snd_interval t = { 5892 .min = 128000, 5893 .max = 192000, 5894 .integer = 1, 5895 }; 5896 return snd_interval_refine(r, &t); 5897 } else if (c->max <= hdspm->ds_in_channels) { 5898 struct snd_interval t = { 5899 .min = 64000, 5900 .max = 96000, 5901 .integer = 1, 5902 }; 5903 return snd_interval_refine(r, &t); 5904 } 5905 5906 return 0; 5907 } 5908 static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params, 5909 struct snd_pcm_hw_rule *rule) 5910 { 5911 struct hdspm *hdspm = rule->private; 5912 struct snd_interval *c = 5913 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 5914 struct snd_interval *r = 5915 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 5916 5917 if (c->min >= hdspm->ss_out_channels) { 5918 struct snd_interval t = { 5919 .min = 32000, 5920 .max = 48000, 5921 .integer = 1, 5922 }; 5923 return snd_interval_refine(r, &t); 5924 } else if (c->max <= hdspm->qs_out_channels) { 5925 struct snd_interval t = { 5926 .min = 128000, 5927 .max = 192000, 5928 .integer = 1, 5929 }; 5930 return snd_interval_refine(r, &t); 5931 } else if (c->max <= hdspm->ds_out_channels) { 5932 struct snd_interval t = { 5933 .min = 64000, 5934 .max = 96000, 5935 .integer = 1, 5936 }; 5937 return snd_interval_refine(r, &t); 5938 } 5939 5940 return 0; 5941 } 5942 5943 static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params, 5944 struct snd_pcm_hw_rule *rule) 5945 { 5946 unsigned int list[3]; 5947 struct hdspm *hdspm = rule->private; 5948 struct snd_interval *c = hw_param_interval(params, 5949 SNDRV_PCM_HW_PARAM_CHANNELS); 5950 5951 list[0] = hdspm->qs_in_channels; 5952 list[1] = hdspm->ds_in_channels; 5953 list[2] = hdspm->ss_in_channels; 5954 return snd_interval_list(c, 3, list, 0); 5955 } 5956 5957 static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params, 5958 struct snd_pcm_hw_rule *rule) 5959 { 5960 unsigned int list[3]; 5961 struct hdspm *hdspm = rule->private; 5962 struct snd_interval *c = hw_param_interval(params, 5963 SNDRV_PCM_HW_PARAM_CHANNELS); 5964 5965 list[0] = hdspm->qs_out_channels; 5966 list[1] = hdspm->ds_out_channels; 5967 list[2] = hdspm->ss_out_channels; 5968 return snd_interval_list(c, 3, list, 0); 5969 } 5970 5971 5972 static unsigned int hdspm_aes32_sample_rates[] = { 5973 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000 5974 }; 5975 5976 static struct snd_pcm_hw_constraint_list 5977 hdspm_hw_constraints_aes32_sample_rates = { 5978 .count = ARRAY_SIZE(hdspm_aes32_sample_rates), 5979 .list = hdspm_aes32_sample_rates, 5980 .mask = 0 5981 }; 5982 5983 static int snd_hdspm_playback_open(struct snd_pcm_substream *substream) 5984 { 5985 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 5986 struct snd_pcm_runtime *runtime = substream->runtime; 5987 5988 spin_lock_irq(&hdspm->lock); 5989 5990 snd_pcm_set_sync(substream); 5991 5992 5993 runtime->hw = snd_hdspm_playback_subinfo; 5994 5995 if (hdspm->capture_substream == NULL) 5996 hdspm_stop_audio(hdspm); 5997 5998 hdspm->playback_pid = current->pid; 5999 hdspm->playback_substream = substream; 6000 6001 spin_unlock_irq(&hdspm->lock); 6002 6003 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 6004 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 6005 6006 switch (hdspm->io_type) { 6007 case AIO: 6008 case RayDAT: 6009 snd_pcm_hw_constraint_minmax(runtime, 6010 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6011 32, 4096); 6012 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */ 6013 snd_pcm_hw_constraint_minmax(runtime, 6014 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 6015 16384, 16384); 6016 break; 6017 6018 default: 6019 snd_pcm_hw_constraint_minmax(runtime, 6020 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6021 64, 8192); 6022 break; 6023 } 6024 6025 if (AES32 == hdspm->io_type) { 6026 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 6027 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6028 &hdspm_hw_constraints_aes32_sample_rates); 6029 } else { 6030 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6031 snd_hdspm_hw_rule_rate_out_channels, hdspm, 6032 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6033 } 6034 6035 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6036 snd_hdspm_hw_rule_out_channels, hdspm, 6037 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6038 6039 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6040 snd_hdspm_hw_rule_out_channels_rate, hdspm, 6041 SNDRV_PCM_HW_PARAM_RATE, -1); 6042 6043 return 0; 6044 } 6045 6046 static int snd_hdspm_playback_release(struct snd_pcm_substream *substream) 6047 { 6048 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6049 6050 spin_lock_irq(&hdspm->lock); 6051 6052 hdspm->playback_pid = -1; 6053 hdspm->playback_substream = NULL; 6054 6055 spin_unlock_irq(&hdspm->lock); 6056 6057 return 0; 6058 } 6059 6060 6061 static int snd_hdspm_capture_open(struct snd_pcm_substream *substream) 6062 { 6063 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6064 struct snd_pcm_runtime *runtime = substream->runtime; 6065 6066 spin_lock_irq(&hdspm->lock); 6067 snd_pcm_set_sync(substream); 6068 runtime->hw = snd_hdspm_capture_subinfo; 6069 6070 if (hdspm->playback_substream == NULL) 6071 hdspm_stop_audio(hdspm); 6072 6073 hdspm->capture_pid = current->pid; 6074 hdspm->capture_substream = substream; 6075 6076 spin_unlock_irq(&hdspm->lock); 6077 6078 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 6079 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE); 6080 6081 switch (hdspm->io_type) { 6082 case AIO: 6083 case RayDAT: 6084 snd_pcm_hw_constraint_minmax(runtime, 6085 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6086 32, 4096); 6087 snd_pcm_hw_constraint_minmax(runtime, 6088 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 6089 16384, 16384); 6090 break; 6091 6092 default: 6093 snd_pcm_hw_constraint_minmax(runtime, 6094 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 6095 64, 8192); 6096 break; 6097 } 6098 6099 if (AES32 == hdspm->io_type) { 6100 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 6101 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6102 &hdspm_hw_constraints_aes32_sample_rates); 6103 } else { 6104 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 6105 snd_hdspm_hw_rule_rate_in_channels, hdspm, 6106 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6107 } 6108 6109 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6110 snd_hdspm_hw_rule_in_channels, hdspm, 6111 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 6112 6113 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 6114 snd_hdspm_hw_rule_in_channels_rate, hdspm, 6115 SNDRV_PCM_HW_PARAM_RATE, -1); 6116 6117 return 0; 6118 } 6119 6120 static int snd_hdspm_capture_release(struct snd_pcm_substream *substream) 6121 { 6122 struct hdspm *hdspm = snd_pcm_substream_chip(substream); 6123 6124 spin_lock_irq(&hdspm->lock); 6125 6126 hdspm->capture_pid = -1; 6127 hdspm->capture_substream = NULL; 6128 6129 spin_unlock_irq(&hdspm->lock); 6130 return 0; 6131 } 6132 6133 static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file) 6134 { 6135 /* we have nothing to initialize but the call is required */ 6136 return 0; 6137 } 6138 6139 static inline int copy_u32_le(void __user *dest, void __iomem *src) 6140 { 6141 u32 val = readl(src); 6142 return copy_to_user(dest, &val, 4); 6143 } 6144 6145 static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file, 6146 unsigned int cmd, unsigned long arg) 6147 { 6148 void __user *argp = (void __user *)arg; 6149 struct hdspm *hdspm = hw->private_data; 6150 struct hdspm_mixer_ioctl mixer; 6151 struct hdspm_config info; 6152 struct hdspm_status status; 6153 struct hdspm_version hdspm_version; 6154 struct hdspm_peak_rms *levels; 6155 struct hdspm_ltc ltc; 6156 unsigned int statusregister; 6157 long unsigned int s; 6158 int i = 0; 6159 6160 switch (cmd) { 6161 6162 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS: 6163 levels = &hdspm->peak_rms; 6164 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) { 6165 levels->input_peaks[i] = 6166 readl(hdspm->iobase + 6167 HDSPM_MADI_INPUT_PEAK + i*4); 6168 levels->playback_peaks[i] = 6169 readl(hdspm->iobase + 6170 HDSPM_MADI_PLAYBACK_PEAK + i*4); 6171 levels->output_peaks[i] = 6172 readl(hdspm->iobase + 6173 HDSPM_MADI_OUTPUT_PEAK + i*4); 6174 6175 levels->input_rms[i] = 6176 ((uint64_t) readl(hdspm->iobase + 6177 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) | 6178 (uint64_t) readl(hdspm->iobase + 6179 HDSPM_MADI_INPUT_RMS_L + i*4); 6180 levels->playback_rms[i] = 6181 ((uint64_t)readl(hdspm->iobase + 6182 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) | 6183 (uint64_t)readl(hdspm->iobase + 6184 HDSPM_MADI_PLAYBACK_RMS_L + i*4); 6185 levels->output_rms[i] = 6186 ((uint64_t)readl(hdspm->iobase + 6187 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) | 6188 (uint64_t)readl(hdspm->iobase + 6189 HDSPM_MADI_OUTPUT_RMS_L + i*4); 6190 } 6191 6192 if (hdspm->system_sample_rate > 96000) { 6193 levels->speed = qs; 6194 } else if (hdspm->system_sample_rate > 48000) { 6195 levels->speed = ds; 6196 } else { 6197 levels->speed = ss; 6198 } 6199 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2); 6200 6201 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms)); 6202 if (0 != s) { 6203 /* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu 6204 [Levels]\n", sizeof(struct hdspm_peak_rms), s); 6205 */ 6206 return -EFAULT; 6207 } 6208 break; 6209 6210 case SNDRV_HDSPM_IOCTL_GET_LTC: 6211 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO); 6212 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4); 6213 if (i & HDSPM_TCO1_LTC_Input_valid) { 6214 switch (i & (HDSPM_TCO1_LTC_Format_LSB | 6215 HDSPM_TCO1_LTC_Format_MSB)) { 6216 case 0: 6217 ltc.format = fps_24; 6218 break; 6219 case HDSPM_TCO1_LTC_Format_LSB: 6220 ltc.format = fps_25; 6221 break; 6222 case HDSPM_TCO1_LTC_Format_MSB: 6223 ltc.format = fps_2997; 6224 break; 6225 default: 6226 ltc.format = 30; 6227 break; 6228 } 6229 if (i & HDSPM_TCO1_set_drop_frame_flag) { 6230 ltc.frame = drop_frame; 6231 } else { 6232 ltc.frame = full_frame; 6233 } 6234 } else { 6235 ltc.format = format_invalid; 6236 ltc.frame = frame_invalid; 6237 } 6238 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) { 6239 ltc.input_format = ntsc; 6240 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) { 6241 ltc.input_format = pal; 6242 } else { 6243 ltc.input_format = no_video; 6244 } 6245 6246 s = copy_to_user(argp, <c, sizeof(struct hdspm_ltc)); 6247 if (0 != s) { 6248 /* 6249 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */ 6250 return -EFAULT; 6251 } 6252 6253 break; 6254 6255 case SNDRV_HDSPM_IOCTL_GET_CONFIG: 6256 6257 memset(&info, 0, sizeof(info)); 6258 spin_lock_irq(&hdspm->lock); 6259 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm); 6260 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm); 6261 6262 info.system_sample_rate = hdspm->system_sample_rate; 6263 info.autosync_sample_rate = 6264 hdspm_external_sample_rate(hdspm); 6265 info.system_clock_mode = hdspm_system_clock_mode(hdspm); 6266 info.clock_source = hdspm_clock_source(hdspm); 6267 info.autosync_ref = hdspm_autosync_ref(hdspm); 6268 info.line_out = hdspm_line_out(hdspm); 6269 info.passthru = 0; 6270 spin_unlock_irq(&hdspm->lock); 6271 if (copy_to_user(argp, &info, sizeof(info))) 6272 return -EFAULT; 6273 break; 6274 6275 case SNDRV_HDSPM_IOCTL_GET_STATUS: 6276 memset(&status, 0, sizeof(status)); 6277 6278 status.card_type = hdspm->io_type; 6279 6280 status.autosync_source = hdspm_autosync_ref(hdspm); 6281 6282 status.card_clock = 110069313433624ULL; 6283 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ); 6284 6285 switch (hdspm->io_type) { 6286 case MADI: 6287 case MADIface: 6288 status.card_specific.madi.sync_wc = 6289 hdspm_wc_sync_check(hdspm); 6290 status.card_specific.madi.sync_madi = 6291 hdspm_madi_sync_check(hdspm); 6292 status.card_specific.madi.sync_tco = 6293 hdspm_tco_sync_check(hdspm); 6294 status.card_specific.madi.sync_in = 6295 hdspm_sync_in_sync_check(hdspm); 6296 6297 statusregister = 6298 hdspm_read(hdspm, HDSPM_statusRegister); 6299 status.card_specific.madi.madi_input = 6300 (statusregister & HDSPM_AB_int) ? 1 : 0; 6301 status.card_specific.madi.channel_format = 6302 (statusregister & HDSPM_RX_64ch) ? 1 : 0; 6303 /* TODO: Mac driver sets it when f_s>48kHz */ 6304 status.card_specific.madi.frame_format = 0; 6305 6306 default: 6307 break; 6308 } 6309 6310 if (copy_to_user(argp, &status, sizeof(status))) 6311 return -EFAULT; 6312 6313 6314 break; 6315 6316 case SNDRV_HDSPM_IOCTL_GET_VERSION: 6317 memset(&hdspm_version, 0, sizeof(hdspm_version)); 6318 6319 hdspm_version.card_type = hdspm->io_type; 6320 strncpy(hdspm_version.cardname, hdspm->card_name, 6321 sizeof(hdspm_version.cardname)); 6322 hdspm_version.serial = hdspm->serial; 6323 hdspm_version.firmware_rev = hdspm->firmware_rev; 6324 hdspm_version.addons = 0; 6325 if (hdspm->tco) 6326 hdspm_version.addons |= HDSPM_ADDON_TCO; 6327 6328 if (copy_to_user(argp, &hdspm_version, 6329 sizeof(hdspm_version))) 6330 return -EFAULT; 6331 break; 6332 6333 case SNDRV_HDSPM_IOCTL_GET_MIXER: 6334 if (copy_from_user(&mixer, argp, sizeof(mixer))) 6335 return -EFAULT; 6336 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer, 6337 sizeof(struct hdspm_mixer))) 6338 return -EFAULT; 6339 break; 6340 6341 default: 6342 return -EINVAL; 6343 } 6344 return 0; 6345 } 6346 6347 static struct snd_pcm_ops snd_hdspm_playback_ops = { 6348 .open = snd_hdspm_playback_open, 6349 .close = snd_hdspm_playback_release, 6350 .ioctl = snd_hdspm_ioctl, 6351 .hw_params = snd_hdspm_hw_params, 6352 .hw_free = snd_hdspm_hw_free, 6353 .prepare = snd_hdspm_prepare, 6354 .trigger = snd_hdspm_trigger, 6355 .pointer = snd_hdspm_hw_pointer, 6356 .page = snd_pcm_sgbuf_ops_page, 6357 }; 6358 6359 static struct snd_pcm_ops snd_hdspm_capture_ops = { 6360 .open = snd_hdspm_capture_open, 6361 .close = snd_hdspm_capture_release, 6362 .ioctl = snd_hdspm_ioctl, 6363 .hw_params = snd_hdspm_hw_params, 6364 .hw_free = snd_hdspm_hw_free, 6365 .prepare = snd_hdspm_prepare, 6366 .trigger = snd_hdspm_trigger, 6367 .pointer = snd_hdspm_hw_pointer, 6368 .page = snd_pcm_sgbuf_ops_page, 6369 }; 6370 6371 static int __devinit snd_hdspm_create_hwdep(struct snd_card *card, 6372 struct hdspm * hdspm) 6373 { 6374 struct snd_hwdep *hw; 6375 int err; 6376 6377 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw); 6378 if (err < 0) 6379 return err; 6380 6381 hdspm->hwdep = hw; 6382 hw->private_data = hdspm; 6383 strcpy(hw->name, "HDSPM hwdep interface"); 6384 6385 hw->ops.open = snd_hdspm_hwdep_dummy_op; 6386 hw->ops.ioctl = snd_hdspm_hwdep_ioctl; 6387 hw->ops.ioctl_compat = snd_hdspm_hwdep_ioctl; 6388 hw->ops.release = snd_hdspm_hwdep_dummy_op; 6389 6390 return 0; 6391 } 6392 6393 6394 /*------------------------------------------------------------ 6395 memory interface 6396 ------------------------------------------------------------*/ 6397 static int __devinit snd_hdspm_preallocate_memory(struct hdspm *hdspm) 6398 { 6399 int err; 6400 struct snd_pcm *pcm; 6401 size_t wanted; 6402 6403 pcm = hdspm->pcm; 6404 6405 wanted = HDSPM_DMA_AREA_BYTES; 6406 6407 err = 6408 snd_pcm_lib_preallocate_pages_for_all(pcm, 6409 SNDRV_DMA_TYPE_DEV_SG, 6410 snd_dma_pci_data(hdspm->pci), 6411 wanted, 6412 wanted); 6413 if (err < 0) { 6414 snd_printdd("Could not preallocate %zd Bytes\n", wanted); 6415 6416 return err; 6417 } else 6418 snd_printdd(" Preallocated %zd Bytes\n", wanted); 6419 6420 return 0; 6421 } 6422 6423 6424 static void hdspm_set_sgbuf(struct hdspm *hdspm, 6425 struct snd_pcm_substream *substream, 6426 unsigned int reg, int channels) 6427 { 6428 int i; 6429 6430 /* continuous memory segment */ 6431 for (i = 0; i < (channels * 16); i++) 6432 hdspm_write(hdspm, reg + 4 * i, 6433 snd_pcm_sgbuf_get_addr(substream, 4096 * i)); 6434 } 6435 6436 6437 /* ------------- ALSA Devices ---------------------------- */ 6438 static int __devinit snd_hdspm_create_pcm(struct snd_card *card, 6439 struct hdspm *hdspm) 6440 { 6441 struct snd_pcm *pcm; 6442 int err; 6443 6444 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm); 6445 if (err < 0) 6446 return err; 6447 6448 hdspm->pcm = pcm; 6449 pcm->private_data = hdspm; 6450 strcpy(pcm->name, hdspm->card_name); 6451 6452 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 6453 &snd_hdspm_playback_ops); 6454 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 6455 &snd_hdspm_capture_ops); 6456 6457 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 6458 6459 err = snd_hdspm_preallocate_memory(hdspm); 6460 if (err < 0) 6461 return err; 6462 6463 return 0; 6464 } 6465 6466 static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm) 6467 { 6468 int i; 6469 6470 for (i = 0; i < hdspm->midiPorts; i++) 6471 snd_hdspm_flush_midi_input(hdspm, i); 6472 } 6473 6474 static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card, 6475 struct hdspm * hdspm) 6476 { 6477 int err, i; 6478 6479 snd_printdd("Create card...\n"); 6480 err = snd_hdspm_create_pcm(card, hdspm); 6481 if (err < 0) 6482 return err; 6483 6484 i = 0; 6485 while (i < hdspm->midiPorts) { 6486 err = snd_hdspm_create_midi(card, hdspm, i); 6487 if (err < 0) { 6488 return err; 6489 } 6490 i++; 6491 } 6492 6493 err = snd_hdspm_create_controls(card, hdspm); 6494 if (err < 0) 6495 return err; 6496 6497 err = snd_hdspm_create_hwdep(card, hdspm); 6498 if (err < 0) 6499 return err; 6500 6501 snd_printdd("proc init...\n"); 6502 snd_hdspm_proc_init(hdspm); 6503 6504 hdspm->system_sample_rate = -1; 6505 hdspm->last_external_sample_rate = -1; 6506 hdspm->last_internal_sample_rate = -1; 6507 hdspm->playback_pid = -1; 6508 hdspm->capture_pid = -1; 6509 hdspm->capture_substream = NULL; 6510 hdspm->playback_substream = NULL; 6511 6512 snd_printdd("Set defaults...\n"); 6513 err = snd_hdspm_set_defaults(hdspm); 6514 if (err < 0) 6515 return err; 6516 6517 snd_printdd("Update mixer controls...\n"); 6518 hdspm_update_simple_mixer_controls(hdspm); 6519 6520 snd_printdd("Initializeing complete ???\n"); 6521 6522 err = snd_card_register(card); 6523 if (err < 0) { 6524 snd_printk(KERN_ERR "HDSPM: error registering card\n"); 6525 return err; 6526 } 6527 6528 snd_printdd("... yes now\n"); 6529 6530 return 0; 6531 } 6532 6533 static int __devinit snd_hdspm_create(struct snd_card *card, 6534 struct hdspm *hdspm) { 6535 6536 struct pci_dev *pci = hdspm->pci; 6537 int err; 6538 unsigned long io_extent; 6539 6540 hdspm->irq = -1; 6541 hdspm->card = card; 6542 6543 spin_lock_init(&hdspm->lock); 6544 6545 pci_read_config_word(hdspm->pci, 6546 PCI_CLASS_REVISION, &hdspm->firmware_rev); 6547 6548 strcpy(card->mixername, "Xilinx FPGA"); 6549 strcpy(card->driver, "HDSPM"); 6550 6551 switch (hdspm->firmware_rev) { 6552 case HDSPM_RAYDAT_REV: 6553 hdspm->io_type = RayDAT; 6554 hdspm->card_name = "RME RayDAT"; 6555 hdspm->midiPorts = 2; 6556 break; 6557 case HDSPM_AIO_REV: 6558 hdspm->io_type = AIO; 6559 hdspm->card_name = "RME AIO"; 6560 hdspm->midiPorts = 1; 6561 break; 6562 case HDSPM_MADIFACE_REV: 6563 hdspm->io_type = MADIface; 6564 hdspm->card_name = "RME MADIface"; 6565 hdspm->midiPorts = 1; 6566 break; 6567 default: 6568 if ((hdspm->firmware_rev == 0xf0) || 6569 ((hdspm->firmware_rev >= 0xe6) && 6570 (hdspm->firmware_rev <= 0xea))) { 6571 hdspm->io_type = AES32; 6572 hdspm->card_name = "RME AES32"; 6573 hdspm->midiPorts = 2; 6574 } else if ((hdspm->firmware_rev == 0xd2) || 6575 ((hdspm->firmware_rev >= 0xc8) && 6576 (hdspm->firmware_rev <= 0xcf))) { 6577 hdspm->io_type = MADI; 6578 hdspm->card_name = "RME MADI"; 6579 hdspm->midiPorts = 3; 6580 } else { 6581 snd_printk(KERN_ERR 6582 "HDSPM: unknown firmware revision %x\n", 6583 hdspm->firmware_rev); 6584 return -ENODEV; 6585 } 6586 } 6587 6588 err = pci_enable_device(pci); 6589 if (err < 0) 6590 return err; 6591 6592 pci_set_master(hdspm->pci); 6593 6594 err = pci_request_regions(pci, "hdspm"); 6595 if (err < 0) 6596 return err; 6597 6598 hdspm->port = pci_resource_start(pci, 0); 6599 io_extent = pci_resource_len(pci, 0); 6600 6601 snd_printdd("grabbed memory region 0x%lx-0x%lx\n", 6602 hdspm->port, hdspm->port + io_extent - 1); 6603 6604 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent); 6605 if (!hdspm->iobase) { 6606 snd_printk(KERN_ERR "HDSPM: " 6607 "unable to remap region 0x%lx-0x%lx\n", 6608 hdspm->port, hdspm->port + io_extent - 1); 6609 return -EBUSY; 6610 } 6611 snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n", 6612 (unsigned long)hdspm->iobase, hdspm->port, 6613 hdspm->port + io_extent - 1); 6614 6615 if (request_irq(pci->irq, snd_hdspm_interrupt, 6616 IRQF_SHARED, KBUILD_MODNAME, hdspm)) { 6617 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq); 6618 return -EBUSY; 6619 } 6620 6621 snd_printdd("use IRQ %d\n", pci->irq); 6622 6623 hdspm->irq = pci->irq; 6624 6625 snd_printdd("kmalloc Mixer memory of %zd Bytes\n", 6626 sizeof(struct hdspm_mixer)); 6627 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL); 6628 if (!hdspm->mixer) { 6629 snd_printk(KERN_ERR "HDSPM: " 6630 "unable to kmalloc Mixer memory of %d Bytes\n", 6631 (int)sizeof(struct hdspm_mixer)); 6632 return -ENOMEM; 6633 } 6634 6635 hdspm->port_names_in = NULL; 6636 hdspm->port_names_out = NULL; 6637 6638 switch (hdspm->io_type) { 6639 case AES32: 6640 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS; 6641 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS; 6642 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS; 6643 6644 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6645 channel_map_aes32; 6646 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6647 channel_map_aes32; 6648 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6649 channel_map_aes32; 6650 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6651 texts_ports_aes32; 6652 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6653 texts_ports_aes32; 6654 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6655 texts_ports_aes32; 6656 6657 hdspm->max_channels_out = hdspm->max_channels_in = 6658 AES32_CHANNELS; 6659 hdspm->port_names_in = hdspm->port_names_out = 6660 texts_ports_aes32; 6661 hdspm->channel_map_in = hdspm->channel_map_out = 6662 channel_map_aes32; 6663 6664 break; 6665 6666 case MADI: 6667 case MADIface: 6668 hdspm->ss_in_channels = hdspm->ss_out_channels = 6669 MADI_SS_CHANNELS; 6670 hdspm->ds_in_channels = hdspm->ds_out_channels = 6671 MADI_DS_CHANNELS; 6672 hdspm->qs_in_channels = hdspm->qs_out_channels = 6673 MADI_QS_CHANNELS; 6674 6675 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6676 channel_map_unity_ss; 6677 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6678 channel_map_unity_ss; 6679 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6680 channel_map_unity_ss; 6681 6682 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6683 texts_ports_madi; 6684 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6685 texts_ports_madi; 6686 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6687 texts_ports_madi; 6688 break; 6689 6690 case AIO: 6691 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) { 6692 snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n"); 6693 } 6694 6695 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS; 6696 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS; 6697 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS; 6698 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS; 6699 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS; 6700 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS; 6701 6702 hdspm->channel_map_out_ss = channel_map_aio_out_ss; 6703 hdspm->channel_map_out_ds = channel_map_aio_out_ds; 6704 hdspm->channel_map_out_qs = channel_map_aio_out_qs; 6705 6706 hdspm->channel_map_in_ss = channel_map_aio_in_ss; 6707 hdspm->channel_map_in_ds = channel_map_aio_in_ds; 6708 hdspm->channel_map_in_qs = channel_map_aio_in_qs; 6709 6710 hdspm->port_names_in_ss = texts_ports_aio_in_ss; 6711 hdspm->port_names_out_ss = texts_ports_aio_out_ss; 6712 hdspm->port_names_in_ds = texts_ports_aio_in_ds; 6713 hdspm->port_names_out_ds = texts_ports_aio_out_ds; 6714 hdspm->port_names_in_qs = texts_ports_aio_in_qs; 6715 hdspm->port_names_out_qs = texts_ports_aio_out_qs; 6716 6717 break; 6718 6719 case RayDAT: 6720 hdspm->ss_in_channels = hdspm->ss_out_channels = 6721 RAYDAT_SS_CHANNELS; 6722 hdspm->ds_in_channels = hdspm->ds_out_channels = 6723 RAYDAT_DS_CHANNELS; 6724 hdspm->qs_in_channels = hdspm->qs_out_channels = 6725 RAYDAT_QS_CHANNELS; 6726 6727 hdspm->max_channels_in = RAYDAT_SS_CHANNELS; 6728 hdspm->max_channels_out = RAYDAT_SS_CHANNELS; 6729 6730 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss = 6731 channel_map_raydat_ss; 6732 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds = 6733 channel_map_raydat_ds; 6734 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs = 6735 channel_map_raydat_qs; 6736 hdspm->channel_map_in = hdspm->channel_map_out = 6737 channel_map_raydat_ss; 6738 6739 hdspm->port_names_in_ss = hdspm->port_names_out_ss = 6740 texts_ports_raydat_ss; 6741 hdspm->port_names_in_ds = hdspm->port_names_out_ds = 6742 texts_ports_raydat_ds; 6743 hdspm->port_names_in_qs = hdspm->port_names_out_qs = 6744 texts_ports_raydat_qs; 6745 6746 6747 break; 6748 6749 } 6750 6751 /* TCO detection */ 6752 switch (hdspm->io_type) { 6753 case AIO: 6754 case RayDAT: 6755 if (hdspm_read(hdspm, HDSPM_statusRegister2) & 6756 HDSPM_s2_tco_detect) { 6757 hdspm->midiPorts++; 6758 hdspm->tco = kzalloc(sizeof(struct hdspm_tco), 6759 GFP_KERNEL); 6760 if (NULL != hdspm->tco) { 6761 hdspm_tco_write(hdspm); 6762 } 6763 snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n"); 6764 } else { 6765 hdspm->tco = NULL; 6766 } 6767 break; 6768 6769 case MADI: 6770 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) { 6771 hdspm->midiPorts++; 6772 hdspm->tco = kzalloc(sizeof(struct hdspm_tco), 6773 GFP_KERNEL); 6774 if (NULL != hdspm->tco) { 6775 hdspm_tco_write(hdspm); 6776 } 6777 snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n"); 6778 } else { 6779 hdspm->tco = NULL; 6780 } 6781 break; 6782 6783 default: 6784 hdspm->tco = NULL; 6785 } 6786 6787 /* texts */ 6788 switch (hdspm->io_type) { 6789 case AES32: 6790 if (hdspm->tco) { 6791 hdspm->texts_autosync = texts_autosync_aes_tco; 6792 hdspm->texts_autosync_items = 10; 6793 } else { 6794 hdspm->texts_autosync = texts_autosync_aes; 6795 hdspm->texts_autosync_items = 9; 6796 } 6797 break; 6798 6799 case MADI: 6800 if (hdspm->tco) { 6801 hdspm->texts_autosync = texts_autosync_madi_tco; 6802 hdspm->texts_autosync_items = 4; 6803 } else { 6804 hdspm->texts_autosync = texts_autosync_madi; 6805 hdspm->texts_autosync_items = 3; 6806 } 6807 break; 6808 6809 case MADIface: 6810 6811 break; 6812 6813 case RayDAT: 6814 if (hdspm->tco) { 6815 hdspm->texts_autosync = texts_autosync_raydat_tco; 6816 hdspm->texts_autosync_items = 9; 6817 } else { 6818 hdspm->texts_autosync = texts_autosync_raydat; 6819 hdspm->texts_autosync_items = 8; 6820 } 6821 break; 6822 6823 case AIO: 6824 if (hdspm->tco) { 6825 hdspm->texts_autosync = texts_autosync_aio_tco; 6826 hdspm->texts_autosync_items = 6; 6827 } else { 6828 hdspm->texts_autosync = texts_autosync_aio; 6829 hdspm->texts_autosync_items = 5; 6830 } 6831 break; 6832 6833 } 6834 6835 tasklet_init(&hdspm->midi_tasklet, 6836 hdspm_midi_tasklet, (unsigned long) hdspm); 6837 6838 6839 if (hdspm->io_type != MADIface) { 6840 hdspm->serial = (hdspm_read(hdspm, 6841 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF; 6842 /* id contains either a user-provided value or the default 6843 * NULL. If it's the default, we're safe to 6844 * fill card->id with the serial number. 6845 * 6846 * If the serial number is 0xFFFFFF, then we're dealing with 6847 * an old PCI revision that comes without a sane number. In 6848 * this case, we don't set card->id to avoid collisions 6849 * when running with multiple cards. 6850 */ 6851 if (NULL == id[hdspm->dev] && hdspm->serial != 0xFFFFFF) { 6852 sprintf(card->id, "HDSPMx%06x", hdspm->serial); 6853 snd_card_set_id(card, card->id); 6854 } 6855 } 6856 6857 snd_printdd("create alsa devices.\n"); 6858 err = snd_hdspm_create_alsa_devices(card, hdspm); 6859 if (err < 0) 6860 return err; 6861 6862 snd_hdspm_initialize_midi_flush(hdspm); 6863 6864 return 0; 6865 } 6866 6867 6868 static int snd_hdspm_free(struct hdspm * hdspm) 6869 { 6870 6871 if (hdspm->port) { 6872 6873 /* stop th audio, and cancel all interrupts */ 6874 hdspm->control_register &= 6875 ~(HDSPM_Start | HDSPM_AudioInterruptEnable | 6876 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable | 6877 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable); 6878 hdspm_write(hdspm, HDSPM_controlRegister, 6879 hdspm->control_register); 6880 } 6881 6882 if (hdspm->irq >= 0) 6883 free_irq(hdspm->irq, (void *) hdspm); 6884 6885 kfree(hdspm->mixer); 6886 6887 if (hdspm->iobase) 6888 iounmap(hdspm->iobase); 6889 6890 if (hdspm->port) 6891 pci_release_regions(hdspm->pci); 6892 6893 pci_disable_device(hdspm->pci); 6894 return 0; 6895 } 6896 6897 6898 static void snd_hdspm_card_free(struct snd_card *card) 6899 { 6900 struct hdspm *hdspm = card->private_data; 6901 6902 if (hdspm) 6903 snd_hdspm_free(hdspm); 6904 } 6905 6906 6907 static int __devinit snd_hdspm_probe(struct pci_dev *pci, 6908 const struct pci_device_id *pci_id) 6909 { 6910 static int dev; 6911 struct hdspm *hdspm; 6912 struct snd_card *card; 6913 int err; 6914 6915 if (dev >= SNDRV_CARDS) 6916 return -ENODEV; 6917 if (!enable[dev]) { 6918 dev++; 6919 return -ENOENT; 6920 } 6921 6922 err = snd_card_create(index[dev], id[dev], 6923 THIS_MODULE, sizeof(struct hdspm), &card); 6924 if (err < 0) 6925 return err; 6926 6927 hdspm = card->private_data; 6928 card->private_free = snd_hdspm_card_free; 6929 hdspm->dev = dev; 6930 hdspm->pci = pci; 6931 6932 snd_card_set_dev(card, &pci->dev); 6933 6934 err = snd_hdspm_create(card, hdspm); 6935 if (err < 0) { 6936 snd_card_free(card); 6937 return err; 6938 } 6939 6940 if (hdspm->io_type != MADIface) { 6941 sprintf(card->shortname, "%s_%x", 6942 hdspm->card_name, 6943 hdspm->serial); 6944 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d", 6945 hdspm->card_name, 6946 hdspm->serial, 6947 hdspm->port, hdspm->irq); 6948 } else { 6949 sprintf(card->shortname, "%s", hdspm->card_name); 6950 sprintf(card->longname, "%s at 0x%lx, irq %d", 6951 hdspm->card_name, hdspm->port, hdspm->irq); 6952 } 6953 6954 err = snd_card_register(card); 6955 if (err < 0) { 6956 snd_card_free(card); 6957 return err; 6958 } 6959 6960 pci_set_drvdata(pci, card); 6961 6962 dev++; 6963 return 0; 6964 } 6965 6966 static void __devexit snd_hdspm_remove(struct pci_dev *pci) 6967 { 6968 snd_card_free(pci_get_drvdata(pci)); 6969 pci_set_drvdata(pci, NULL); 6970 } 6971 6972 static struct pci_driver hdspm_driver = { 6973 .name = KBUILD_MODNAME, 6974 .id_table = snd_hdspm_ids, 6975 .probe = snd_hdspm_probe, 6976 .remove = __devexit_p(snd_hdspm_remove), 6977 }; 6978 6979 module_pci_driver(hdspm_driver); 6980