1 /* 2 * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces 3 * 4 * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>, 5 * Pilo Chambert <pilo.c@wanadoo.fr> 6 * 7 * Thanks to : Anders Torger <torger@ludd.luth.se>, 8 * Henk Hesselink <henk@anda.nl> 9 * for writing the digi96-driver 10 * and RME for all informations. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * **************************************************************************** 28 * 29 * Note #1 "Sek'd models" ................................... martin 2002-12-07 30 * 31 * Identical soundcards by Sek'd were labeled: 32 * RME Digi 32 = Sek'd Prodif 32 33 * RME Digi 32 Pro = Sek'd Prodif 96 34 * RME Digi 32/8 = Sek'd Prodif Gold 35 * 36 * **************************************************************************** 37 * 38 * Note #2 "full duplex mode" ............................... martin 2002-12-07 39 * 40 * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical 41 * in this mode. Rec data and play data are using the same buffer therefore. At 42 * first you have got the playing bits in the buffer and then (after playing 43 * them) they were overwitten by the captured sound of the CS8412/14. Both 44 * modes (play/record) are running harmonically hand in hand in the same buffer 45 * and you have only one start bit plus one interrupt bit to control this 46 * paired action. 47 * This is opposite to the latter rme96 where playing and capturing is totally 48 * separated and so their full duplex mode is supported by alsa (using two 49 * start bits and two interrupts for two different buffers). 50 * But due to the wrong sequence of playing and capturing ALSA shows no solved 51 * full duplex support for the rme32 at the moment. That's bad, but I'm not 52 * able to solve it. Are you motivated enough to solve this problem now? Your 53 * patch would be welcome! 54 * 55 * **************************************************************************** 56 * 57 * "The story after the long seeking" -- tiwai 58 * 59 * Ok, the situation regarding the full duplex is now improved a bit. 60 * In the fullduplex mode (given by the module parameter), the hardware buffer 61 * is split to halves for read and write directions at the DMA pointer. 62 * That is, the half above the current DMA pointer is used for write, and 63 * the half below is used for read. To mangle this strange behavior, an 64 * software intermediate buffer is introduced. This is, of course, not good 65 * from the viewpoint of the data transfer efficiency. However, this allows 66 * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size. 67 * 68 * **************************************************************************** 69 */ 70 71 72 #include <sound/driver.h> 73 #include <linux/delay.h> 74 #include <linux/init.h> 75 #include <linux/interrupt.h> 76 #include <linux/pci.h> 77 #include <linux/slab.h> 78 #include <linux/moduleparam.h> 79 80 #include <sound/core.h> 81 #include <sound/info.h> 82 #include <sound/control.h> 83 #include <sound/pcm.h> 84 #include <sound/pcm_params.h> 85 #include <sound/pcm-indirect.h> 86 #include <sound/asoundef.h> 87 #include <sound/initval.h> 88 89 #include <asm/io.h> 90 91 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 92 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 93 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 94 static int fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1}; 95 96 module_param_array(index, int, NULL, 0444); 97 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard."); 98 module_param_array(id, charp, NULL, 0444); 99 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard."); 100 module_param_array(enable, bool, NULL, 0444); 101 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard."); 102 module_param_array(fullduplex, bool, NULL, 0444); 103 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode."); 104 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>"); 105 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO"); 106 MODULE_LICENSE("GPL"); 107 MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}"); 108 109 /* Defines for RME Digi32 series */ 110 #define RME32_SPDIF_NCHANNELS 2 111 112 /* Playback and capture buffer size */ 113 #define RME32_BUFFER_SIZE 0x20000 114 115 /* IO area size */ 116 #define RME32_IO_SIZE 0x30000 117 118 /* IO area offsets */ 119 #define RME32_IO_DATA_BUFFER 0x0 120 #define RME32_IO_CONTROL_REGISTER 0x20000 121 #define RME32_IO_GET_POS 0x20000 122 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004 123 #define RME32_IO_RESET_POS 0x20100 124 125 /* Write control register bits */ 126 #define RME32_WCR_START (1 << 0) /* startbit */ 127 #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono 128 Setting the whole card to mono 129 doesn't seem to be very useful. 130 A software-solution can handle 131 full-duplex with one direction in 132 stereo and the other way in mono. 133 So, the hardware should work all 134 the time in stereo! */ 135 #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */ 136 #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */ 137 #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */ 138 #define RME32_WCR_FREQ_1 (1 << 5) 139 #define RME32_WCR_INP_0 (1 << 6) /* input switch */ 140 #define RME32_WCR_INP_1 (1 << 7) 141 #define RME32_WCR_RESET (1 << 8) /* Reset address */ 142 #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */ 143 #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */ 144 #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */ 145 #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */ 146 #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */ 147 #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */ 148 #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */ 149 150 #define RME32_WCR_BITPOS_FREQ_0 4 151 #define RME32_WCR_BITPOS_FREQ_1 5 152 #define RME32_WCR_BITPOS_INP_0 6 153 #define RME32_WCR_BITPOS_INP_1 7 154 155 /* Read control register bits */ 156 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff 157 #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */ 158 #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */ 159 #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */ 160 #define RME32_RCR_FREQ_1 (1 << 28) 161 #define RME32_RCR_FREQ_2 (1 << 29) 162 #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */ 163 #define RME32_RCR_IRQ (1 << 31) /* interrupt */ 164 165 #define RME32_RCR_BITPOS_F0 27 166 #define RME32_RCR_BITPOS_F1 28 167 #define RME32_RCR_BITPOS_F2 29 168 169 /* Input types */ 170 #define RME32_INPUT_OPTICAL 0 171 #define RME32_INPUT_COAXIAL 1 172 #define RME32_INPUT_INTERNAL 2 173 #define RME32_INPUT_XLR 3 174 175 /* Clock modes */ 176 #define RME32_CLOCKMODE_SLAVE 0 177 #define RME32_CLOCKMODE_MASTER_32 1 178 #define RME32_CLOCKMODE_MASTER_44 2 179 #define RME32_CLOCKMODE_MASTER_48 3 180 181 /* Block sizes in bytes */ 182 #define RME32_BLOCK_SIZE 8192 183 184 /* Software intermediate buffer (max) size */ 185 #define RME32_MID_BUFFER_SIZE (1024*1024) 186 187 /* Hardware revisions */ 188 #define RME32_32_REVISION 192 189 #define RME32_328_REVISION_OLD 100 190 #define RME32_328_REVISION_NEW 101 191 #define RME32_PRO_REVISION_WITH_8412 192 192 #define RME32_PRO_REVISION_WITH_8414 150 193 194 195 struct rme32 { 196 spinlock_t lock; 197 int irq; 198 unsigned long port; 199 void __iomem *iobase; 200 201 u32 wcreg; /* cached write control register value */ 202 u32 wcreg_spdif; /* S/PDIF setup */ 203 u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */ 204 u32 rcreg; /* cached read control register value */ 205 206 u8 rev; /* card revision number */ 207 208 struct snd_pcm_substream *playback_substream; 209 struct snd_pcm_substream *capture_substream; 210 211 int playback_frlog; /* log2 of framesize */ 212 int capture_frlog; 213 214 size_t playback_periodsize; /* in bytes, zero if not used */ 215 size_t capture_periodsize; /* in bytes, zero if not used */ 216 217 unsigned int fullduplex_mode; 218 int running; 219 220 struct snd_pcm_indirect playback_pcm; 221 struct snd_pcm_indirect capture_pcm; 222 223 struct snd_card *card; 224 struct snd_pcm *spdif_pcm; 225 struct snd_pcm *adat_pcm; 226 struct pci_dev *pci; 227 struct snd_kcontrol *spdif_ctl; 228 }; 229 230 static struct pci_device_id snd_rme32_ids[] = { 231 {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32, 232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,}, 233 {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8, 234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,}, 235 {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO, 236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,}, 237 {0,} 238 }; 239 240 MODULE_DEVICE_TABLE(pci, snd_rme32_ids); 241 242 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START) 243 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414) 244 245 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream); 246 247 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream); 248 249 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd); 250 251 static void snd_rme32_proc_init(struct rme32 * rme32); 252 253 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32); 254 255 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32) 256 { 257 return (readl(rme32->iobase + RME32_IO_GET_POS) 258 & RME32_RCR_AUDIO_ADDR_MASK); 259 } 260 261 static int snd_rme32_ratecode(int rate) 262 { 263 switch (rate) { 264 case 32000: return SNDRV_PCM_RATE_32000; 265 case 44100: return SNDRV_PCM_RATE_44100; 266 case 48000: return SNDRV_PCM_RATE_48000; 267 case 64000: return SNDRV_PCM_RATE_64000; 268 case 88200: return SNDRV_PCM_RATE_88200; 269 case 96000: return SNDRV_PCM_RATE_96000; 270 } 271 return 0; 272 } 273 274 /* silence callback for halfduplex mode */ 275 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ 276 snd_pcm_uframes_t pos, 277 snd_pcm_uframes_t count) 278 { 279 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 280 count <<= rme32->playback_frlog; 281 pos <<= rme32->playback_frlog; 282 memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count); 283 return 0; 284 } 285 286 /* copy callback for halfduplex mode */ 287 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ 288 snd_pcm_uframes_t pos, 289 void __user *src, snd_pcm_uframes_t count) 290 { 291 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 292 count <<= rme32->playback_frlog; 293 pos <<= rme32->playback_frlog; 294 if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 295 src, count)) 296 return -EFAULT; 297 return 0; 298 } 299 300 /* copy callback for halfduplex mode */ 301 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */ 302 snd_pcm_uframes_t pos, 303 void __user *dst, snd_pcm_uframes_t count) 304 { 305 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 306 count <<= rme32->capture_frlog; 307 pos <<= rme32->capture_frlog; 308 if (copy_to_user_fromio(dst, 309 rme32->iobase + RME32_IO_DATA_BUFFER + pos, 310 count)) 311 return -EFAULT; 312 return 0; 313 } 314 315 /* 316 * SPDIF I/O capabilities (half-duplex mode) 317 */ 318 static struct snd_pcm_hardware snd_rme32_spdif_info = { 319 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 320 SNDRV_PCM_INFO_MMAP_VALID | 321 SNDRV_PCM_INFO_INTERLEAVED | 322 SNDRV_PCM_INFO_PAUSE | 323 SNDRV_PCM_INFO_SYNC_START), 324 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 325 SNDRV_PCM_FMTBIT_S32_LE), 326 .rates = (SNDRV_PCM_RATE_32000 | 327 SNDRV_PCM_RATE_44100 | 328 SNDRV_PCM_RATE_48000), 329 .rate_min = 32000, 330 .rate_max = 48000, 331 .channels_min = 2, 332 .channels_max = 2, 333 .buffer_bytes_max = RME32_BUFFER_SIZE, 334 .period_bytes_min = RME32_BLOCK_SIZE, 335 .period_bytes_max = RME32_BLOCK_SIZE, 336 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 337 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 338 .fifo_size = 0, 339 }; 340 341 /* 342 * ADAT I/O capabilities (half-duplex mode) 343 */ 344 static struct snd_pcm_hardware snd_rme32_adat_info = 345 { 346 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 347 SNDRV_PCM_INFO_MMAP_VALID | 348 SNDRV_PCM_INFO_INTERLEAVED | 349 SNDRV_PCM_INFO_PAUSE | 350 SNDRV_PCM_INFO_SYNC_START), 351 .formats= SNDRV_PCM_FMTBIT_S16_LE, 352 .rates = (SNDRV_PCM_RATE_44100 | 353 SNDRV_PCM_RATE_48000), 354 .rate_min = 44100, 355 .rate_max = 48000, 356 .channels_min = 8, 357 .channels_max = 8, 358 .buffer_bytes_max = RME32_BUFFER_SIZE, 359 .period_bytes_min = RME32_BLOCK_SIZE, 360 .period_bytes_max = RME32_BLOCK_SIZE, 361 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 362 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 363 .fifo_size = 0, 364 }; 365 366 /* 367 * SPDIF I/O capabilities (full-duplex mode) 368 */ 369 static struct snd_pcm_hardware snd_rme32_spdif_fd_info = { 370 .info = (SNDRV_PCM_INFO_MMAP | 371 SNDRV_PCM_INFO_MMAP_VALID | 372 SNDRV_PCM_INFO_INTERLEAVED | 373 SNDRV_PCM_INFO_PAUSE | 374 SNDRV_PCM_INFO_SYNC_START), 375 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 376 SNDRV_PCM_FMTBIT_S32_LE), 377 .rates = (SNDRV_PCM_RATE_32000 | 378 SNDRV_PCM_RATE_44100 | 379 SNDRV_PCM_RATE_48000), 380 .rate_min = 32000, 381 .rate_max = 48000, 382 .channels_min = 2, 383 .channels_max = 2, 384 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 385 .period_bytes_min = RME32_BLOCK_SIZE, 386 .period_bytes_max = RME32_BLOCK_SIZE, 387 .periods_min = 2, 388 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 389 .fifo_size = 0, 390 }; 391 392 /* 393 * ADAT I/O capabilities (full-duplex mode) 394 */ 395 static struct snd_pcm_hardware snd_rme32_adat_fd_info = 396 { 397 .info = (SNDRV_PCM_INFO_MMAP | 398 SNDRV_PCM_INFO_MMAP_VALID | 399 SNDRV_PCM_INFO_INTERLEAVED | 400 SNDRV_PCM_INFO_PAUSE | 401 SNDRV_PCM_INFO_SYNC_START), 402 .formats= SNDRV_PCM_FMTBIT_S16_LE, 403 .rates = (SNDRV_PCM_RATE_44100 | 404 SNDRV_PCM_RATE_48000), 405 .rate_min = 44100, 406 .rate_max = 48000, 407 .channels_min = 8, 408 .channels_max = 8, 409 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 410 .period_bytes_min = RME32_BLOCK_SIZE, 411 .period_bytes_max = RME32_BLOCK_SIZE, 412 .periods_min = 2, 413 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 414 .fifo_size = 0, 415 }; 416 417 static void snd_rme32_reset_dac(struct rme32 *rme32) 418 { 419 writel(rme32->wcreg | RME32_WCR_PD, 420 rme32->iobase + RME32_IO_CONTROL_REGISTER); 421 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 422 } 423 424 static int snd_rme32_playback_getrate(struct rme32 * rme32) 425 { 426 int rate; 427 428 rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 429 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 430 switch (rate) { 431 case 1: 432 rate = 32000; 433 break; 434 case 2: 435 rate = 44100; 436 break; 437 case 3: 438 rate = 48000; 439 break; 440 default: 441 return -1; 442 } 443 return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate; 444 } 445 446 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat) 447 { 448 int n; 449 450 *is_adat = 0; 451 if (rme32->rcreg & RME32_RCR_LOCK) { 452 /* ADAT rate */ 453 *is_adat = 1; 454 } 455 if (rme32->rcreg & RME32_RCR_ERF) { 456 return -1; 457 } 458 459 /* S/PDIF rate */ 460 n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) + 461 (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) + 462 (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2); 463 464 if (RME32_PRO_WITH_8414(rme32)) 465 switch (n) { /* supporting the CS8414 */ 466 case 0: 467 case 1: 468 case 2: 469 return -1; 470 case 3: 471 return 96000; 472 case 4: 473 return 88200; 474 case 5: 475 return 48000; 476 case 6: 477 return 44100; 478 case 7: 479 return 32000; 480 default: 481 return -1; 482 break; 483 } 484 else 485 switch (n) { /* supporting the CS8412 */ 486 case 0: 487 return -1; 488 case 1: 489 return 48000; 490 case 2: 491 return 44100; 492 case 3: 493 return 32000; 494 case 4: 495 return 48000; 496 case 5: 497 return 44100; 498 case 6: 499 return 44056; 500 case 7: 501 return 32000; 502 default: 503 break; 504 } 505 return -1; 506 } 507 508 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate) 509 { 510 int ds; 511 512 ds = rme32->wcreg & RME32_WCR_DS_BM; 513 switch (rate) { 514 case 32000: 515 rme32->wcreg &= ~RME32_WCR_DS_BM; 516 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 517 ~RME32_WCR_FREQ_1; 518 break; 519 case 44100: 520 rme32->wcreg &= ~RME32_WCR_DS_BM; 521 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 522 ~RME32_WCR_FREQ_0; 523 break; 524 case 48000: 525 rme32->wcreg &= ~RME32_WCR_DS_BM; 526 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 527 RME32_WCR_FREQ_1; 528 break; 529 case 64000: 530 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 531 return -EINVAL; 532 rme32->wcreg |= RME32_WCR_DS_BM; 533 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 534 ~RME32_WCR_FREQ_1; 535 break; 536 case 88200: 537 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 538 return -EINVAL; 539 rme32->wcreg |= RME32_WCR_DS_BM; 540 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 541 ~RME32_WCR_FREQ_0; 542 break; 543 case 96000: 544 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 545 return -EINVAL; 546 rme32->wcreg |= RME32_WCR_DS_BM; 547 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 548 RME32_WCR_FREQ_1; 549 break; 550 default: 551 return -EINVAL; 552 } 553 if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) || 554 (ds && !(rme32->wcreg & RME32_WCR_DS_BM))) 555 { 556 /* change to/from double-speed: reset the DAC (if available) */ 557 snd_rme32_reset_dac(rme32); 558 } else { 559 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 560 } 561 return 0; 562 } 563 564 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode) 565 { 566 switch (mode) { 567 case RME32_CLOCKMODE_SLAVE: 568 /* AutoSync */ 569 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) & 570 ~RME32_WCR_FREQ_1; 571 break; 572 case RME32_CLOCKMODE_MASTER_32: 573 /* Internal 32.0kHz */ 574 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 575 ~RME32_WCR_FREQ_1; 576 break; 577 case RME32_CLOCKMODE_MASTER_44: 578 /* Internal 44.1kHz */ 579 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) | 580 RME32_WCR_FREQ_1; 581 break; 582 case RME32_CLOCKMODE_MASTER_48: 583 /* Internal 48.0kHz */ 584 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 585 RME32_WCR_FREQ_1; 586 break; 587 default: 588 return -EINVAL; 589 } 590 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 591 return 0; 592 } 593 594 static int snd_rme32_getclockmode(struct rme32 * rme32) 595 { 596 return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 597 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 598 } 599 600 static int snd_rme32_setinputtype(struct rme32 * rme32, int type) 601 { 602 switch (type) { 603 case RME32_INPUT_OPTICAL: 604 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) & 605 ~RME32_WCR_INP_1; 606 break; 607 case RME32_INPUT_COAXIAL: 608 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) & 609 ~RME32_WCR_INP_1; 610 break; 611 case RME32_INPUT_INTERNAL: 612 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) | 613 RME32_WCR_INP_1; 614 break; 615 case RME32_INPUT_XLR: 616 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) | 617 RME32_WCR_INP_1; 618 break; 619 default: 620 return -EINVAL; 621 } 622 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 623 return 0; 624 } 625 626 static int snd_rme32_getinputtype(struct rme32 * rme32) 627 { 628 return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) + 629 (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1); 630 } 631 632 static void 633 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback) 634 { 635 int frlog; 636 637 if (n_channels == 2) { 638 frlog = 1; 639 } else { 640 /* assume 8 channels */ 641 frlog = 3; 642 } 643 if (is_playback) { 644 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 645 rme32->playback_frlog = frlog; 646 } else { 647 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 648 rme32->capture_frlog = frlog; 649 } 650 } 651 652 static int snd_rme32_setformat(struct rme32 * rme32, int format) 653 { 654 switch (format) { 655 case SNDRV_PCM_FORMAT_S16_LE: 656 rme32->wcreg &= ~RME32_WCR_MODE24; 657 break; 658 case SNDRV_PCM_FORMAT_S32_LE: 659 rme32->wcreg |= RME32_WCR_MODE24; 660 break; 661 default: 662 return -EINVAL; 663 } 664 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 665 return 0; 666 } 667 668 static int 669 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream, 670 struct snd_pcm_hw_params *params) 671 { 672 int err, rate, dummy; 673 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 674 struct snd_pcm_runtime *runtime = substream->runtime; 675 676 if (rme32->fullduplex_mode) { 677 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 678 if (err < 0) 679 return err; 680 } else { 681 runtime->dma_area = (void __force *)(rme32->iobase + 682 RME32_IO_DATA_BUFFER); 683 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 684 runtime->dma_bytes = RME32_BUFFER_SIZE; 685 } 686 687 spin_lock_irq(&rme32->lock); 688 if ((rme32->rcreg & RME32_RCR_KMODE) && 689 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 690 /* AutoSync */ 691 if ((int)params_rate(params) != rate) { 692 spin_unlock_irq(&rme32->lock); 693 return -EIO; 694 } 695 } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { 696 spin_unlock_irq(&rme32->lock); 697 return err; 698 } 699 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { 700 spin_unlock_irq(&rme32->lock); 701 return err; 702 } 703 704 snd_rme32_setframelog(rme32, params_channels(params), 1); 705 if (rme32->capture_periodsize != 0) { 706 if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) { 707 spin_unlock_irq(&rme32->lock); 708 return -EBUSY; 709 } 710 } 711 rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog; 712 /* S/PDIF setup */ 713 if ((rme32->wcreg & RME32_WCR_ADAT) == 0) { 714 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 715 rme32->wcreg |= rme32->wcreg_spdif_stream; 716 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 717 } 718 spin_unlock_irq(&rme32->lock); 719 720 return 0; 721 } 722 723 static int 724 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream, 725 struct snd_pcm_hw_params *params) 726 { 727 int err, isadat, rate; 728 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 729 struct snd_pcm_runtime *runtime = substream->runtime; 730 731 if (rme32->fullduplex_mode) { 732 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 733 if (err < 0) 734 return err; 735 } else { 736 runtime->dma_area = (void __force *)rme32->iobase + 737 RME32_IO_DATA_BUFFER; 738 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 739 runtime->dma_bytes = RME32_BUFFER_SIZE; 740 } 741 742 spin_lock_irq(&rme32->lock); 743 /* enable AutoSync for record-preparing */ 744 rme32->wcreg |= RME32_WCR_AUTOSYNC; 745 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 746 747 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { 748 spin_unlock_irq(&rme32->lock); 749 return err; 750 } 751 if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { 752 spin_unlock_irq(&rme32->lock); 753 return err; 754 } 755 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 756 if ((int)params_rate(params) != rate) { 757 spin_unlock_irq(&rme32->lock); 758 return -EIO; 759 } 760 if ((isadat && runtime->hw.channels_min == 2) || 761 (!isadat && runtime->hw.channels_min == 8)) { 762 spin_unlock_irq(&rme32->lock); 763 return -EIO; 764 } 765 } 766 /* AutoSync off for recording */ 767 rme32->wcreg &= ~RME32_WCR_AUTOSYNC; 768 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 769 770 snd_rme32_setframelog(rme32, params_channels(params), 0); 771 if (rme32->playback_periodsize != 0) { 772 if (params_period_size(params) << rme32->capture_frlog != 773 rme32->playback_periodsize) { 774 spin_unlock_irq(&rme32->lock); 775 return -EBUSY; 776 } 777 } 778 rme32->capture_periodsize = 779 params_period_size(params) << rme32->capture_frlog; 780 spin_unlock_irq(&rme32->lock); 781 782 return 0; 783 } 784 785 static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream) 786 { 787 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 788 if (! rme32->fullduplex_mode) 789 return 0; 790 return snd_pcm_lib_free_pages(substream); 791 } 792 793 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause) 794 { 795 if (!from_pause) { 796 writel(0, rme32->iobase + RME32_IO_RESET_POS); 797 } 798 799 rme32->wcreg |= RME32_WCR_START; 800 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 801 } 802 803 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause) 804 { 805 /* 806 * Check if there is an unconfirmed IRQ, if so confirm it, or else 807 * the hardware will not stop generating interrupts 808 */ 809 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 810 if (rme32->rcreg & RME32_RCR_IRQ) { 811 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 812 } 813 rme32->wcreg &= ~RME32_WCR_START; 814 if (rme32->wcreg & RME32_WCR_SEL) 815 rme32->wcreg |= RME32_WCR_MUTE; 816 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 817 if (! to_pause) 818 writel(0, rme32->iobase + RME32_IO_RESET_POS); 819 } 820 821 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id) 822 { 823 struct rme32 *rme32 = (struct rme32 *) dev_id; 824 825 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 826 if (!(rme32->rcreg & RME32_RCR_IRQ)) { 827 return IRQ_NONE; 828 } else { 829 if (rme32->capture_substream) { 830 snd_pcm_period_elapsed(rme32->capture_substream); 831 } 832 if (rme32->playback_substream) { 833 snd_pcm_period_elapsed(rme32->playback_substream); 834 } 835 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 836 } 837 return IRQ_HANDLED; 838 } 839 840 static unsigned int period_bytes[] = { RME32_BLOCK_SIZE }; 841 842 843 static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = { 844 .count = ARRAY_SIZE(period_bytes), 845 .list = period_bytes, 846 .mask = 0 847 }; 848 849 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime) 850 { 851 if (! rme32->fullduplex_mode) { 852 snd_pcm_hw_constraint_minmax(runtime, 853 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 854 RME32_BUFFER_SIZE, RME32_BUFFER_SIZE); 855 snd_pcm_hw_constraint_list(runtime, 0, 856 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 857 &hw_constraints_period_bytes); 858 } 859 } 860 861 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream) 862 { 863 int rate, dummy; 864 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 865 struct snd_pcm_runtime *runtime = substream->runtime; 866 867 snd_pcm_set_sync(substream); 868 869 spin_lock_irq(&rme32->lock); 870 if (rme32->playback_substream != NULL) { 871 spin_unlock_irq(&rme32->lock); 872 return -EBUSY; 873 } 874 rme32->wcreg &= ~RME32_WCR_ADAT; 875 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 876 rme32->playback_substream = substream; 877 spin_unlock_irq(&rme32->lock); 878 879 if (rme32->fullduplex_mode) 880 runtime->hw = snd_rme32_spdif_fd_info; 881 else 882 runtime->hw = snd_rme32_spdif_info; 883 if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) { 884 runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 885 runtime->hw.rate_max = 96000; 886 } 887 if ((rme32->rcreg & RME32_RCR_KMODE) && 888 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 889 /* AutoSync */ 890 runtime->hw.rates = snd_rme32_ratecode(rate); 891 runtime->hw.rate_min = rate; 892 runtime->hw.rate_max = rate; 893 } 894 895 snd_rme32_set_buffer_constraint(rme32, runtime); 896 897 rme32->wcreg_spdif_stream = rme32->wcreg_spdif; 898 rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 899 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 900 SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id); 901 return 0; 902 } 903 904 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream) 905 { 906 int isadat, rate; 907 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 908 struct snd_pcm_runtime *runtime = substream->runtime; 909 910 snd_pcm_set_sync(substream); 911 912 spin_lock_irq(&rme32->lock); 913 if (rme32->capture_substream != NULL) { 914 spin_unlock_irq(&rme32->lock); 915 return -EBUSY; 916 } 917 rme32->capture_substream = substream; 918 spin_unlock_irq(&rme32->lock); 919 920 if (rme32->fullduplex_mode) 921 runtime->hw = snd_rme32_spdif_fd_info; 922 else 923 runtime->hw = snd_rme32_spdif_info; 924 if (RME32_PRO_WITH_8414(rme32)) { 925 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 926 runtime->hw.rate_max = 96000; 927 } 928 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 929 if (isadat) { 930 return -EIO; 931 } 932 runtime->hw.rates = snd_rme32_ratecode(rate); 933 runtime->hw.rate_min = rate; 934 runtime->hw.rate_max = rate; 935 } 936 937 snd_rme32_set_buffer_constraint(rme32, runtime); 938 939 return 0; 940 } 941 942 static int 943 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream) 944 { 945 int rate, dummy; 946 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 947 struct snd_pcm_runtime *runtime = substream->runtime; 948 949 snd_pcm_set_sync(substream); 950 951 spin_lock_irq(&rme32->lock); 952 if (rme32->playback_substream != NULL) { 953 spin_unlock_irq(&rme32->lock); 954 return -EBUSY; 955 } 956 rme32->wcreg |= RME32_WCR_ADAT; 957 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 958 rme32->playback_substream = substream; 959 spin_unlock_irq(&rme32->lock); 960 961 if (rme32->fullduplex_mode) 962 runtime->hw = snd_rme32_adat_fd_info; 963 else 964 runtime->hw = snd_rme32_adat_info; 965 if ((rme32->rcreg & RME32_RCR_KMODE) && 966 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 967 /* AutoSync */ 968 runtime->hw.rates = snd_rme32_ratecode(rate); 969 runtime->hw.rate_min = rate; 970 runtime->hw.rate_max = rate; 971 } 972 973 snd_rme32_set_buffer_constraint(rme32, runtime); 974 return 0; 975 } 976 977 static int 978 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream) 979 { 980 int isadat, rate; 981 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 982 struct snd_pcm_runtime *runtime = substream->runtime; 983 984 if (rme32->fullduplex_mode) 985 runtime->hw = snd_rme32_adat_fd_info; 986 else 987 runtime->hw = snd_rme32_adat_info; 988 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 989 if (!isadat) { 990 return -EIO; 991 } 992 runtime->hw.rates = snd_rme32_ratecode(rate); 993 runtime->hw.rate_min = rate; 994 runtime->hw.rate_max = rate; 995 } 996 997 snd_pcm_set_sync(substream); 998 999 spin_lock_irq(&rme32->lock); 1000 if (rme32->capture_substream != NULL) { 1001 spin_unlock_irq(&rme32->lock); 1002 return -EBUSY; 1003 } 1004 rme32->capture_substream = substream; 1005 spin_unlock_irq(&rme32->lock); 1006 1007 snd_rme32_set_buffer_constraint(rme32, runtime); 1008 return 0; 1009 } 1010 1011 static int snd_rme32_playback_close(struct snd_pcm_substream *substream) 1012 { 1013 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1014 int spdif = 0; 1015 1016 spin_lock_irq(&rme32->lock); 1017 rme32->playback_substream = NULL; 1018 rme32->playback_periodsize = 0; 1019 spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0; 1020 spin_unlock_irq(&rme32->lock); 1021 if (spdif) { 1022 rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1023 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 1024 SNDRV_CTL_EVENT_MASK_INFO, 1025 &rme32->spdif_ctl->id); 1026 } 1027 return 0; 1028 } 1029 1030 static int snd_rme32_capture_close(struct snd_pcm_substream *substream) 1031 { 1032 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1033 1034 spin_lock_irq(&rme32->lock); 1035 rme32->capture_substream = NULL; 1036 rme32->capture_periodsize = 0; 1037 spin_unlock(&rme32->lock); 1038 return 0; 1039 } 1040 1041 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream) 1042 { 1043 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1044 1045 spin_lock_irq(&rme32->lock); 1046 if (rme32->fullduplex_mode) { 1047 memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm)); 1048 rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1049 rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1050 } else { 1051 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1052 } 1053 if (rme32->wcreg & RME32_WCR_SEL) 1054 rme32->wcreg &= ~RME32_WCR_MUTE; 1055 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1056 spin_unlock_irq(&rme32->lock); 1057 return 0; 1058 } 1059 1060 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream) 1061 { 1062 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1063 1064 spin_lock_irq(&rme32->lock); 1065 if (rme32->fullduplex_mode) { 1066 memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm)); 1067 rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1068 rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2; 1069 rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1070 } else { 1071 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1072 } 1073 spin_unlock_irq(&rme32->lock); 1074 return 0; 1075 } 1076 1077 static int 1078 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1079 { 1080 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1081 struct list_head *pos; 1082 struct snd_pcm_substream *s; 1083 1084 spin_lock(&rme32->lock); 1085 snd_pcm_group_for_each(pos, substream) { 1086 s = snd_pcm_group_substream_entry(pos); 1087 if (s != rme32->playback_substream && 1088 s != rme32->capture_substream) 1089 continue; 1090 switch (cmd) { 1091 case SNDRV_PCM_TRIGGER_START: 1092 rme32->running |= (1 << s->stream); 1093 if (rme32->fullduplex_mode) { 1094 /* remember the current DMA position */ 1095 if (s == rme32->playback_substream) { 1096 rme32->playback_pcm.hw_io = 1097 rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1098 } else { 1099 rme32->capture_pcm.hw_io = 1100 rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1101 } 1102 } 1103 break; 1104 case SNDRV_PCM_TRIGGER_STOP: 1105 rme32->running &= ~(1 << s->stream); 1106 break; 1107 } 1108 snd_pcm_trigger_done(s, substream); 1109 } 1110 1111 /* prefill playback buffer */ 1112 if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) { 1113 snd_pcm_group_for_each(pos, substream) { 1114 s = snd_pcm_group_substream_entry(pos); 1115 if (s == rme32->playback_substream) { 1116 s->ops->ack(s); 1117 break; 1118 } 1119 } 1120 } 1121 1122 switch (cmd) { 1123 case SNDRV_PCM_TRIGGER_START: 1124 if (rme32->running && ! RME32_ISWORKING(rme32)) 1125 snd_rme32_pcm_start(rme32, 0); 1126 break; 1127 case SNDRV_PCM_TRIGGER_STOP: 1128 if (! rme32->running && RME32_ISWORKING(rme32)) 1129 snd_rme32_pcm_stop(rme32, 0); 1130 break; 1131 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1132 if (rme32->running && RME32_ISWORKING(rme32)) 1133 snd_rme32_pcm_stop(rme32, 1); 1134 break; 1135 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1136 if (rme32->running && ! RME32_ISWORKING(rme32)) 1137 snd_rme32_pcm_start(rme32, 1); 1138 break; 1139 } 1140 spin_unlock(&rme32->lock); 1141 return 0; 1142 } 1143 1144 /* pointer callback for halfduplex mode */ 1145 static snd_pcm_uframes_t 1146 snd_rme32_playback_pointer(struct snd_pcm_substream *substream) 1147 { 1148 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1149 return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog; 1150 } 1151 1152 static snd_pcm_uframes_t 1153 snd_rme32_capture_pointer(struct snd_pcm_substream *substream) 1154 { 1155 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1156 return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog; 1157 } 1158 1159 1160 /* ack and pointer callbacks for fullduplex mode */ 1161 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream, 1162 struct snd_pcm_indirect *rec, size_t bytes) 1163 { 1164 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1165 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1166 substream->runtime->dma_area + rec->sw_data, bytes); 1167 } 1168 1169 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream) 1170 { 1171 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1172 struct snd_pcm_indirect *rec, *cprec; 1173 1174 rec = &rme32->playback_pcm; 1175 cprec = &rme32->capture_pcm; 1176 spin_lock(&rme32->lock); 1177 rec->hw_queue_size = RME32_BUFFER_SIZE; 1178 if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE)) 1179 rec->hw_queue_size -= cprec->hw_ready; 1180 spin_unlock(&rme32->lock); 1181 snd_pcm_indirect_playback_transfer(substream, rec, 1182 snd_rme32_pb_trans_copy); 1183 return 0; 1184 } 1185 1186 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream, 1187 struct snd_pcm_indirect *rec, size_t bytes) 1188 { 1189 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1190 memcpy_fromio(substream->runtime->dma_area + rec->sw_data, 1191 rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1192 bytes); 1193 } 1194 1195 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream) 1196 { 1197 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1198 snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm, 1199 snd_rme32_cp_trans_copy); 1200 return 0; 1201 } 1202 1203 static snd_pcm_uframes_t 1204 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream) 1205 { 1206 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1207 return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm, 1208 snd_rme32_pcm_byteptr(rme32)); 1209 } 1210 1211 static snd_pcm_uframes_t 1212 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream) 1213 { 1214 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1215 return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm, 1216 snd_rme32_pcm_byteptr(rme32)); 1217 } 1218 1219 /* for halfduplex mode */ 1220 static struct snd_pcm_ops snd_rme32_playback_spdif_ops = { 1221 .open = snd_rme32_playback_spdif_open, 1222 .close = snd_rme32_playback_close, 1223 .ioctl = snd_pcm_lib_ioctl, 1224 .hw_params = snd_rme32_playback_hw_params, 1225 .hw_free = snd_rme32_pcm_hw_free, 1226 .prepare = snd_rme32_playback_prepare, 1227 .trigger = snd_rme32_pcm_trigger, 1228 .pointer = snd_rme32_playback_pointer, 1229 .copy = snd_rme32_playback_copy, 1230 .silence = snd_rme32_playback_silence, 1231 .mmap = snd_pcm_lib_mmap_iomem, 1232 }; 1233 1234 static struct snd_pcm_ops snd_rme32_capture_spdif_ops = { 1235 .open = snd_rme32_capture_spdif_open, 1236 .close = snd_rme32_capture_close, 1237 .ioctl = snd_pcm_lib_ioctl, 1238 .hw_params = snd_rme32_capture_hw_params, 1239 .hw_free = snd_rme32_pcm_hw_free, 1240 .prepare = snd_rme32_capture_prepare, 1241 .trigger = snd_rme32_pcm_trigger, 1242 .pointer = snd_rme32_capture_pointer, 1243 .copy = snd_rme32_capture_copy, 1244 .mmap = snd_pcm_lib_mmap_iomem, 1245 }; 1246 1247 static struct snd_pcm_ops snd_rme32_playback_adat_ops = { 1248 .open = snd_rme32_playback_adat_open, 1249 .close = snd_rme32_playback_close, 1250 .ioctl = snd_pcm_lib_ioctl, 1251 .hw_params = snd_rme32_playback_hw_params, 1252 .prepare = snd_rme32_playback_prepare, 1253 .trigger = snd_rme32_pcm_trigger, 1254 .pointer = snd_rme32_playback_pointer, 1255 .copy = snd_rme32_playback_copy, 1256 .silence = snd_rme32_playback_silence, 1257 .mmap = snd_pcm_lib_mmap_iomem, 1258 }; 1259 1260 static struct snd_pcm_ops snd_rme32_capture_adat_ops = { 1261 .open = snd_rme32_capture_adat_open, 1262 .close = snd_rme32_capture_close, 1263 .ioctl = snd_pcm_lib_ioctl, 1264 .hw_params = snd_rme32_capture_hw_params, 1265 .prepare = snd_rme32_capture_prepare, 1266 .trigger = snd_rme32_pcm_trigger, 1267 .pointer = snd_rme32_capture_pointer, 1268 .copy = snd_rme32_capture_copy, 1269 .mmap = snd_pcm_lib_mmap_iomem, 1270 }; 1271 1272 /* for fullduplex mode */ 1273 static struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = { 1274 .open = snd_rme32_playback_spdif_open, 1275 .close = snd_rme32_playback_close, 1276 .ioctl = snd_pcm_lib_ioctl, 1277 .hw_params = snd_rme32_playback_hw_params, 1278 .hw_free = snd_rme32_pcm_hw_free, 1279 .prepare = snd_rme32_playback_prepare, 1280 .trigger = snd_rme32_pcm_trigger, 1281 .pointer = snd_rme32_playback_fd_pointer, 1282 .ack = snd_rme32_playback_fd_ack, 1283 }; 1284 1285 static struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = { 1286 .open = snd_rme32_capture_spdif_open, 1287 .close = snd_rme32_capture_close, 1288 .ioctl = snd_pcm_lib_ioctl, 1289 .hw_params = snd_rme32_capture_hw_params, 1290 .hw_free = snd_rme32_pcm_hw_free, 1291 .prepare = snd_rme32_capture_prepare, 1292 .trigger = snd_rme32_pcm_trigger, 1293 .pointer = snd_rme32_capture_fd_pointer, 1294 .ack = snd_rme32_capture_fd_ack, 1295 }; 1296 1297 static struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = { 1298 .open = snd_rme32_playback_adat_open, 1299 .close = snd_rme32_playback_close, 1300 .ioctl = snd_pcm_lib_ioctl, 1301 .hw_params = snd_rme32_playback_hw_params, 1302 .prepare = snd_rme32_playback_prepare, 1303 .trigger = snd_rme32_pcm_trigger, 1304 .pointer = snd_rme32_playback_fd_pointer, 1305 .ack = snd_rme32_playback_fd_ack, 1306 }; 1307 1308 static struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = { 1309 .open = snd_rme32_capture_adat_open, 1310 .close = snd_rme32_capture_close, 1311 .ioctl = snd_pcm_lib_ioctl, 1312 .hw_params = snd_rme32_capture_hw_params, 1313 .prepare = snd_rme32_capture_prepare, 1314 .trigger = snd_rme32_pcm_trigger, 1315 .pointer = snd_rme32_capture_fd_pointer, 1316 .ack = snd_rme32_capture_fd_ack, 1317 }; 1318 1319 static void snd_rme32_free(void *private_data) 1320 { 1321 struct rme32 *rme32 = (struct rme32 *) private_data; 1322 1323 if (rme32 == NULL) { 1324 return; 1325 } 1326 if (rme32->irq >= 0) { 1327 snd_rme32_pcm_stop(rme32, 0); 1328 free_irq(rme32->irq, (void *) rme32); 1329 rme32->irq = -1; 1330 } 1331 if (rme32->iobase) { 1332 iounmap(rme32->iobase); 1333 rme32->iobase = NULL; 1334 } 1335 if (rme32->port) { 1336 pci_release_regions(rme32->pci); 1337 rme32->port = 0; 1338 } 1339 pci_disable_device(rme32->pci); 1340 } 1341 1342 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm) 1343 { 1344 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1345 rme32->spdif_pcm = NULL; 1346 } 1347 1348 static void 1349 snd_rme32_free_adat_pcm(struct snd_pcm *pcm) 1350 { 1351 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1352 rme32->adat_pcm = NULL; 1353 } 1354 1355 static int __devinit snd_rme32_create(struct rme32 * rme32) 1356 { 1357 struct pci_dev *pci = rme32->pci; 1358 int err; 1359 1360 rme32->irq = -1; 1361 spin_lock_init(&rme32->lock); 1362 1363 if ((err = pci_enable_device(pci)) < 0) 1364 return err; 1365 1366 if ((err = pci_request_regions(pci, "RME32")) < 0) 1367 return err; 1368 rme32->port = pci_resource_start(rme32->pci, 0); 1369 1370 if ((rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE)) == 0) { 1371 snd_printk(KERN_ERR "unable to remap memory region 0x%lx-0x%lx\n", 1372 rme32->port, rme32->port + RME32_IO_SIZE - 1); 1373 return -ENOMEM; 1374 } 1375 1376 if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED, 1377 "RME32", rme32)) { 1378 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 1379 return -EBUSY; 1380 } 1381 rme32->irq = pci->irq; 1382 1383 /* read the card's revision number */ 1384 pci_read_config_byte(pci, 8, &rme32->rev); 1385 1386 /* set up ALSA pcm device for S/PDIF */ 1387 if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) { 1388 return err; 1389 } 1390 rme32->spdif_pcm->private_data = rme32; 1391 rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm; 1392 strcpy(rme32->spdif_pcm->name, "Digi32 IEC958"); 1393 if (rme32->fullduplex_mode) { 1394 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1395 &snd_rme32_playback_spdif_fd_ops); 1396 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1397 &snd_rme32_capture_spdif_fd_ops); 1398 snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1399 snd_dma_continuous_data(GFP_KERNEL), 1400 0, RME32_MID_BUFFER_SIZE); 1401 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1402 } else { 1403 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1404 &snd_rme32_playback_spdif_ops); 1405 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1406 &snd_rme32_capture_spdif_ops); 1407 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1408 } 1409 1410 /* set up ALSA pcm device for ADAT */ 1411 if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) || 1412 (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) { 1413 /* ADAT is not available on DIGI32 and DIGI32 Pro */ 1414 rme32->adat_pcm = NULL; 1415 } 1416 else { 1417 if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1, 1418 1, 1, &rme32->adat_pcm)) < 0) 1419 { 1420 return err; 1421 } 1422 rme32->adat_pcm->private_data = rme32; 1423 rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm; 1424 strcpy(rme32->adat_pcm->name, "Digi32 ADAT"); 1425 if (rme32->fullduplex_mode) { 1426 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1427 &snd_rme32_playback_adat_fd_ops); 1428 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1429 &snd_rme32_capture_adat_fd_ops); 1430 snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1431 snd_dma_continuous_data(GFP_KERNEL), 1432 0, RME32_MID_BUFFER_SIZE); 1433 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1434 } else { 1435 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1436 &snd_rme32_playback_adat_ops); 1437 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1438 &snd_rme32_capture_adat_ops); 1439 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1440 } 1441 } 1442 1443 1444 rme32->playback_periodsize = 0; 1445 rme32->capture_periodsize = 0; 1446 1447 /* make sure playback/capture is stopped, if by some reason active */ 1448 snd_rme32_pcm_stop(rme32, 0); 1449 1450 /* reset DAC */ 1451 snd_rme32_reset_dac(rme32); 1452 1453 /* reset buffer pointer */ 1454 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1455 1456 /* set default values in registers */ 1457 rme32->wcreg = RME32_WCR_SEL | /* normal playback */ 1458 RME32_WCR_INP_0 | /* input select */ 1459 RME32_WCR_MUTE; /* muting on */ 1460 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1461 1462 1463 /* init switch interface */ 1464 if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) { 1465 return err; 1466 } 1467 1468 /* init proc interface */ 1469 snd_rme32_proc_init(rme32); 1470 1471 rme32->capture_substream = NULL; 1472 rme32->playback_substream = NULL; 1473 1474 return 0; 1475 } 1476 1477 /* 1478 * proc interface 1479 */ 1480 1481 static void 1482 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) 1483 { 1484 int n; 1485 struct rme32 *rme32 = (struct rme32 *) entry->private_data; 1486 1487 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 1488 1489 snd_iprintf(buffer, rme32->card->longname); 1490 snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1); 1491 1492 snd_iprintf(buffer, "\nGeneral settings\n"); 1493 if (rme32->fullduplex_mode) 1494 snd_iprintf(buffer, " Full-duplex mode\n"); 1495 else 1496 snd_iprintf(buffer, " Half-duplex mode\n"); 1497 if (RME32_PRO_WITH_8414(rme32)) { 1498 snd_iprintf(buffer, " receiver: CS8414\n"); 1499 } else { 1500 snd_iprintf(buffer, " receiver: CS8412\n"); 1501 } 1502 if (rme32->wcreg & RME32_WCR_MODE24) { 1503 snd_iprintf(buffer, " format: 24 bit"); 1504 } else { 1505 snd_iprintf(buffer, " format: 16 bit"); 1506 } 1507 if (rme32->wcreg & RME32_WCR_MONO) { 1508 snd_iprintf(buffer, ", Mono\n"); 1509 } else { 1510 snd_iprintf(buffer, ", Stereo\n"); 1511 } 1512 1513 snd_iprintf(buffer, "\nInput settings\n"); 1514 switch (snd_rme32_getinputtype(rme32)) { 1515 case RME32_INPUT_OPTICAL: 1516 snd_iprintf(buffer, " input: optical"); 1517 break; 1518 case RME32_INPUT_COAXIAL: 1519 snd_iprintf(buffer, " input: coaxial"); 1520 break; 1521 case RME32_INPUT_INTERNAL: 1522 snd_iprintf(buffer, " input: internal"); 1523 break; 1524 case RME32_INPUT_XLR: 1525 snd_iprintf(buffer, " input: XLR"); 1526 break; 1527 } 1528 if (snd_rme32_capture_getrate(rme32, &n) < 0) { 1529 snd_iprintf(buffer, "\n sample rate: no valid signal\n"); 1530 } else { 1531 if (n) { 1532 snd_iprintf(buffer, " (8 channels)\n"); 1533 } else { 1534 snd_iprintf(buffer, " (2 channels)\n"); 1535 } 1536 snd_iprintf(buffer, " sample rate: %d Hz\n", 1537 snd_rme32_capture_getrate(rme32, &n)); 1538 } 1539 1540 snd_iprintf(buffer, "\nOutput settings\n"); 1541 if (rme32->wcreg & RME32_WCR_SEL) { 1542 snd_iprintf(buffer, " output signal: normal playback"); 1543 } else { 1544 snd_iprintf(buffer, " output signal: same as input"); 1545 } 1546 if (rme32->wcreg & RME32_WCR_MUTE) { 1547 snd_iprintf(buffer, " (muted)\n"); 1548 } else { 1549 snd_iprintf(buffer, "\n"); 1550 } 1551 1552 /* master output frequency */ 1553 if (! 1554 ((!(rme32->wcreg & RME32_WCR_FREQ_0)) 1555 && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) { 1556 snd_iprintf(buffer, " sample rate: %d Hz\n", 1557 snd_rme32_playback_getrate(rme32)); 1558 } 1559 if (rme32->rcreg & RME32_RCR_KMODE) { 1560 snd_iprintf(buffer, " sample clock source: AutoSync\n"); 1561 } else { 1562 snd_iprintf(buffer, " sample clock source: Internal\n"); 1563 } 1564 if (rme32->wcreg & RME32_WCR_PRO) { 1565 snd_iprintf(buffer, " format: AES/EBU (professional)\n"); 1566 } else { 1567 snd_iprintf(buffer, " format: IEC958 (consumer)\n"); 1568 } 1569 if (rme32->wcreg & RME32_WCR_EMP) { 1570 snd_iprintf(buffer, " emphasis: on\n"); 1571 } else { 1572 snd_iprintf(buffer, " emphasis: off\n"); 1573 } 1574 } 1575 1576 static void __devinit snd_rme32_proc_init(struct rme32 * rme32) 1577 { 1578 struct snd_info_entry *entry; 1579 1580 if (! snd_card_proc_new(rme32->card, "rme32", &entry)) 1581 snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read); 1582 } 1583 1584 /* 1585 * control interface 1586 */ 1587 1588 static int 1589 snd_rme32_info_loopback_control(struct snd_kcontrol *kcontrol, 1590 struct snd_ctl_elem_info *uinfo) 1591 { 1592 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1593 uinfo->count = 1; 1594 uinfo->value.integer.min = 0; 1595 uinfo->value.integer.max = 1; 1596 return 0; 1597 } 1598 static int 1599 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol, 1600 struct snd_ctl_elem_value *ucontrol) 1601 { 1602 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1603 1604 spin_lock_irq(&rme32->lock); 1605 ucontrol->value.integer.value[0] = 1606 rme32->wcreg & RME32_WCR_SEL ? 0 : 1; 1607 spin_unlock_irq(&rme32->lock); 1608 return 0; 1609 } 1610 static int 1611 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol, 1612 struct snd_ctl_elem_value *ucontrol) 1613 { 1614 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1615 unsigned int val; 1616 int change; 1617 1618 val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL; 1619 spin_lock_irq(&rme32->lock); 1620 val = (rme32->wcreg & ~RME32_WCR_SEL) | val; 1621 change = val != rme32->wcreg; 1622 if (ucontrol->value.integer.value[0]) 1623 val &= ~RME32_WCR_MUTE; 1624 else 1625 val |= RME32_WCR_MUTE; 1626 rme32->wcreg = val; 1627 writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1628 spin_unlock_irq(&rme32->lock); 1629 return change; 1630 } 1631 1632 static int 1633 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol, 1634 struct snd_ctl_elem_info *uinfo) 1635 { 1636 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1637 static char *texts[4] = { "Optical", "Coaxial", "Internal", "XLR" }; 1638 1639 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1640 uinfo->count = 1; 1641 switch (rme32->pci->device) { 1642 case PCI_DEVICE_ID_RME_DIGI32: 1643 case PCI_DEVICE_ID_RME_DIGI32_8: 1644 uinfo->value.enumerated.items = 3; 1645 break; 1646 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1647 uinfo->value.enumerated.items = 4; 1648 break; 1649 default: 1650 snd_BUG(); 1651 break; 1652 } 1653 if (uinfo->value.enumerated.item > 1654 uinfo->value.enumerated.items - 1) { 1655 uinfo->value.enumerated.item = 1656 uinfo->value.enumerated.items - 1; 1657 } 1658 strcpy(uinfo->value.enumerated.name, 1659 texts[uinfo->value.enumerated.item]); 1660 return 0; 1661 } 1662 static int 1663 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol, 1664 struct snd_ctl_elem_value *ucontrol) 1665 { 1666 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1667 unsigned int items = 3; 1668 1669 spin_lock_irq(&rme32->lock); 1670 ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32); 1671 1672 switch (rme32->pci->device) { 1673 case PCI_DEVICE_ID_RME_DIGI32: 1674 case PCI_DEVICE_ID_RME_DIGI32_8: 1675 items = 3; 1676 break; 1677 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1678 items = 4; 1679 break; 1680 default: 1681 snd_BUG(); 1682 break; 1683 } 1684 if (ucontrol->value.enumerated.item[0] >= items) { 1685 ucontrol->value.enumerated.item[0] = items - 1; 1686 } 1687 1688 spin_unlock_irq(&rme32->lock); 1689 return 0; 1690 } 1691 static int 1692 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol, 1693 struct snd_ctl_elem_value *ucontrol) 1694 { 1695 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1696 unsigned int val; 1697 int change, items = 3; 1698 1699 switch (rme32->pci->device) { 1700 case PCI_DEVICE_ID_RME_DIGI32: 1701 case PCI_DEVICE_ID_RME_DIGI32_8: 1702 items = 3; 1703 break; 1704 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1705 items = 4; 1706 break; 1707 default: 1708 snd_BUG(); 1709 break; 1710 } 1711 val = ucontrol->value.enumerated.item[0] % items; 1712 1713 spin_lock_irq(&rme32->lock); 1714 change = val != (unsigned int)snd_rme32_getinputtype(rme32); 1715 snd_rme32_setinputtype(rme32, val); 1716 spin_unlock_irq(&rme32->lock); 1717 return change; 1718 } 1719 1720 static int 1721 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol, 1722 struct snd_ctl_elem_info *uinfo) 1723 { 1724 static char *texts[4] = { "AutoSync", 1725 "Internal 32.0kHz", 1726 "Internal 44.1kHz", 1727 "Internal 48.0kHz" }; 1728 1729 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 1730 uinfo->count = 1; 1731 uinfo->value.enumerated.items = 4; 1732 if (uinfo->value.enumerated.item > 3) { 1733 uinfo->value.enumerated.item = 3; 1734 } 1735 strcpy(uinfo->value.enumerated.name, 1736 texts[uinfo->value.enumerated.item]); 1737 return 0; 1738 } 1739 static int 1740 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol, 1741 struct snd_ctl_elem_value *ucontrol) 1742 { 1743 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1744 1745 spin_lock_irq(&rme32->lock); 1746 ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32); 1747 spin_unlock_irq(&rme32->lock); 1748 return 0; 1749 } 1750 static int 1751 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol, 1752 struct snd_ctl_elem_value *ucontrol) 1753 { 1754 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1755 unsigned int val; 1756 int change; 1757 1758 val = ucontrol->value.enumerated.item[0] % 3; 1759 spin_lock_irq(&rme32->lock); 1760 change = val != (unsigned int)snd_rme32_getclockmode(rme32); 1761 snd_rme32_setclockmode(rme32, val); 1762 spin_unlock_irq(&rme32->lock); 1763 return change; 1764 } 1765 1766 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes) 1767 { 1768 u32 val = 0; 1769 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0; 1770 if (val & RME32_WCR_PRO) 1771 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1772 else 1773 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1774 return val; 1775 } 1776 1777 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val) 1778 { 1779 aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0); 1780 if (val & RME32_WCR_PRO) 1781 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; 1782 else 1783 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; 1784 } 1785 1786 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol, 1787 struct snd_ctl_elem_info *uinfo) 1788 { 1789 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1790 uinfo->count = 1; 1791 return 0; 1792 } 1793 1794 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol, 1795 struct snd_ctl_elem_value *ucontrol) 1796 { 1797 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1798 1799 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1800 rme32->wcreg_spdif); 1801 return 0; 1802 } 1803 1804 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol, 1805 struct snd_ctl_elem_value *ucontrol) 1806 { 1807 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1808 int change; 1809 u32 val; 1810 1811 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1812 spin_lock_irq(&rme32->lock); 1813 change = val != rme32->wcreg_spdif; 1814 rme32->wcreg_spdif = val; 1815 spin_unlock_irq(&rme32->lock); 1816 return change; 1817 } 1818 1819 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol, 1820 struct snd_ctl_elem_info *uinfo) 1821 { 1822 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1823 uinfo->count = 1; 1824 return 0; 1825 } 1826 1827 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol, 1828 struct snd_ctl_elem_value * 1829 ucontrol) 1830 { 1831 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1832 1833 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1834 rme32->wcreg_spdif_stream); 1835 return 0; 1836 } 1837 1838 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol, 1839 struct snd_ctl_elem_value * 1840 ucontrol) 1841 { 1842 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1843 int change; 1844 u32 val; 1845 1846 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1847 spin_lock_irq(&rme32->lock); 1848 change = val != rme32->wcreg_spdif_stream; 1849 rme32->wcreg_spdif_stream = val; 1850 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 1851 rme32->wcreg |= val; 1852 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1853 spin_unlock_irq(&rme32->lock); 1854 return change; 1855 } 1856 1857 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol, 1858 struct snd_ctl_elem_info *uinfo) 1859 { 1860 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1861 uinfo->count = 1; 1862 return 0; 1863 } 1864 1865 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol, 1866 struct snd_ctl_elem_value * 1867 ucontrol) 1868 { 1869 ucontrol->value.iec958.status[0] = kcontrol->private_value; 1870 return 0; 1871 } 1872 1873 static struct snd_kcontrol_new snd_rme32_controls[] = { 1874 { 1875 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1876 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1877 .info = snd_rme32_control_spdif_info, 1878 .get = snd_rme32_control_spdif_get, 1879 .put = snd_rme32_control_spdif_put 1880 }, 1881 { 1882 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1883 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1884 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), 1885 .info = snd_rme32_control_spdif_stream_info, 1886 .get = snd_rme32_control_spdif_stream_get, 1887 .put = snd_rme32_control_spdif_stream_put 1888 }, 1889 { 1890 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1891 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1892 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), 1893 .info = snd_rme32_control_spdif_mask_info, 1894 .get = snd_rme32_control_spdif_mask_get, 1895 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS 1896 }, 1897 { 1898 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1899 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1900 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), 1901 .info = snd_rme32_control_spdif_mask_info, 1902 .get = snd_rme32_control_spdif_mask_get, 1903 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS 1904 }, 1905 { 1906 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1907 .name = "Input Connector", 1908 .info = snd_rme32_info_inputtype_control, 1909 .get = snd_rme32_get_inputtype_control, 1910 .put = snd_rme32_put_inputtype_control 1911 }, 1912 { 1913 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1914 .name = "Loopback Input", 1915 .info = snd_rme32_info_loopback_control, 1916 .get = snd_rme32_get_loopback_control, 1917 .put = snd_rme32_put_loopback_control 1918 }, 1919 { 1920 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1921 .name = "Sample Clock Source", 1922 .info = snd_rme32_info_clockmode_control, 1923 .get = snd_rme32_get_clockmode_control, 1924 .put = snd_rme32_put_clockmode_control 1925 } 1926 }; 1927 1928 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32) 1929 { 1930 int idx, err; 1931 struct snd_kcontrol *kctl; 1932 1933 for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) { 1934 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0) 1935 return err; 1936 if (idx == 1) /* IEC958 (S/PDIF) Stream */ 1937 rme32->spdif_ctl = kctl; 1938 } 1939 1940 return 0; 1941 } 1942 1943 /* 1944 * Card initialisation 1945 */ 1946 1947 static void snd_rme32_card_free(struct snd_card *card) 1948 { 1949 snd_rme32_free(card->private_data); 1950 } 1951 1952 static int __devinit 1953 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) 1954 { 1955 static int dev; 1956 struct rme32 *rme32; 1957 struct snd_card *card; 1958 int err; 1959 1960 if (dev >= SNDRV_CARDS) { 1961 return -ENODEV; 1962 } 1963 if (!enable[dev]) { 1964 dev++; 1965 return -ENOENT; 1966 } 1967 1968 if ((card = snd_card_new(index[dev], id[dev], THIS_MODULE, 1969 sizeof(struct rme32))) == NULL) 1970 return -ENOMEM; 1971 card->private_free = snd_rme32_card_free; 1972 rme32 = (struct rme32 *) card->private_data; 1973 rme32->card = card; 1974 rme32->pci = pci; 1975 snd_card_set_dev(card, &pci->dev); 1976 if (fullduplex[dev]) 1977 rme32->fullduplex_mode = 1; 1978 if ((err = snd_rme32_create(rme32)) < 0) { 1979 snd_card_free(card); 1980 return err; 1981 } 1982 1983 strcpy(card->driver, "Digi32"); 1984 switch (rme32->pci->device) { 1985 case PCI_DEVICE_ID_RME_DIGI32: 1986 strcpy(card->shortname, "RME Digi32"); 1987 break; 1988 case PCI_DEVICE_ID_RME_DIGI32_8: 1989 strcpy(card->shortname, "RME Digi32/8"); 1990 break; 1991 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1992 strcpy(card->shortname, "RME Digi32 PRO"); 1993 break; 1994 } 1995 sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d", 1996 card->shortname, rme32->rev, rme32->port, rme32->irq); 1997 1998 if ((err = snd_card_register(card)) < 0) { 1999 snd_card_free(card); 2000 return err; 2001 } 2002 pci_set_drvdata(pci, card); 2003 dev++; 2004 return 0; 2005 } 2006 2007 static void __devexit snd_rme32_remove(struct pci_dev *pci) 2008 { 2009 snd_card_free(pci_get_drvdata(pci)); 2010 pci_set_drvdata(pci, NULL); 2011 } 2012 2013 static struct pci_driver driver = { 2014 .name = "RME Digi32", 2015 .id_table = snd_rme32_ids, 2016 .probe = snd_rme32_probe, 2017 .remove = __devexit_p(snd_rme32_remove), 2018 }; 2019 2020 static int __init alsa_card_rme32_init(void) 2021 { 2022 return pci_register_driver(&driver); 2023 } 2024 2025 static void __exit alsa_card_rme32_exit(void) 2026 { 2027 pci_unregister_driver(&driver); 2028 } 2029 2030 module_init(alsa_card_rme32_init) 2031 module_exit(alsa_card_rme32_exit) 2032