1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces 4 * 5 * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>, 6 * Pilo Chambert <pilo.c@wanadoo.fr> 7 * 8 * Thanks to : Anders Torger <torger@ludd.luth.se>, 9 * Henk Hesselink <henk@anda.nl> 10 * for writing the digi96-driver 11 * and RME for all informations. 12 * 13 * **************************************************************************** 14 * 15 * Note #1 "Sek'd models" ................................... martin 2002-12-07 16 * 17 * Identical soundcards by Sek'd were labeled: 18 * RME Digi 32 = Sek'd Prodif 32 19 * RME Digi 32 Pro = Sek'd Prodif 96 20 * RME Digi 32/8 = Sek'd Prodif Gold 21 * 22 * **************************************************************************** 23 * 24 * Note #2 "full duplex mode" ............................... martin 2002-12-07 25 * 26 * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical 27 * in this mode. Rec data and play data are using the same buffer therefore. At 28 * first you have got the playing bits in the buffer and then (after playing 29 * them) they were overwitten by the captured sound of the CS8412/14. Both 30 * modes (play/record) are running harmonically hand in hand in the same buffer 31 * and you have only one start bit plus one interrupt bit to control this 32 * paired action. 33 * This is opposite to the latter rme96 where playing and capturing is totally 34 * separated and so their full duplex mode is supported by alsa (using two 35 * start bits and two interrupts for two different buffers). 36 * But due to the wrong sequence of playing and capturing ALSA shows no solved 37 * full duplex support for the rme32 at the moment. That's bad, but I'm not 38 * able to solve it. Are you motivated enough to solve this problem now? Your 39 * patch would be welcome! 40 * 41 * **************************************************************************** 42 * 43 * "The story after the long seeking" -- tiwai 44 * 45 * Ok, the situation regarding the full duplex is now improved a bit. 46 * In the fullduplex mode (given by the module parameter), the hardware buffer 47 * is split to halves for read and write directions at the DMA pointer. 48 * That is, the half above the current DMA pointer is used for write, and 49 * the half below is used for read. To mangle this strange behavior, an 50 * software intermediate buffer is introduced. This is, of course, not good 51 * from the viewpoint of the data transfer efficiency. However, this allows 52 * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size. 53 * 54 * **************************************************************************** 55 */ 56 57 58 #include <linux/delay.h> 59 #include <linux/gfp.h> 60 #include <linux/init.h> 61 #include <linux/interrupt.h> 62 #include <linux/pci.h> 63 #include <linux/module.h> 64 #include <linux/io.h> 65 66 #include <sound/core.h> 67 #include <sound/info.h> 68 #include <sound/control.h> 69 #include <sound/pcm.h> 70 #include <sound/pcm_params.h> 71 #include <sound/pcm-indirect.h> 72 #include <sound/asoundef.h> 73 #include <sound/initval.h> 74 75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 77 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ 78 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1}; 79 80 module_param_array(index, int, NULL, 0444); 81 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard."); 82 module_param_array(id, charp, NULL, 0444); 83 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard."); 84 module_param_array(enable, bool, NULL, 0444); 85 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard."); 86 module_param_array(fullduplex, bool, NULL, 0444); 87 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode."); 88 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>"); 89 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO"); 90 MODULE_LICENSE("GPL"); 91 MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}"); 92 93 /* Defines for RME Digi32 series */ 94 #define RME32_SPDIF_NCHANNELS 2 95 96 /* Playback and capture buffer size */ 97 #define RME32_BUFFER_SIZE 0x20000 98 99 /* IO area size */ 100 #define RME32_IO_SIZE 0x30000 101 102 /* IO area offsets */ 103 #define RME32_IO_DATA_BUFFER 0x0 104 #define RME32_IO_CONTROL_REGISTER 0x20000 105 #define RME32_IO_GET_POS 0x20000 106 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004 107 #define RME32_IO_RESET_POS 0x20100 108 109 /* Write control register bits */ 110 #define RME32_WCR_START (1 << 0) /* startbit */ 111 #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono 112 Setting the whole card to mono 113 doesn't seem to be very useful. 114 A software-solution can handle 115 full-duplex with one direction in 116 stereo and the other way in mono. 117 So, the hardware should work all 118 the time in stereo! */ 119 #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */ 120 #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */ 121 #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */ 122 #define RME32_WCR_FREQ_1 (1 << 5) 123 #define RME32_WCR_INP_0 (1 << 6) /* input switch */ 124 #define RME32_WCR_INP_1 (1 << 7) 125 #define RME32_WCR_RESET (1 << 8) /* Reset address */ 126 #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */ 127 #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */ 128 #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */ 129 #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */ 130 #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */ 131 #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */ 132 #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */ 133 134 #define RME32_WCR_BITPOS_FREQ_0 4 135 #define RME32_WCR_BITPOS_FREQ_1 5 136 #define RME32_WCR_BITPOS_INP_0 6 137 #define RME32_WCR_BITPOS_INP_1 7 138 139 /* Read control register bits */ 140 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff 141 #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */ 142 #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */ 143 #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */ 144 #define RME32_RCR_FREQ_1 (1 << 28) 145 #define RME32_RCR_FREQ_2 (1 << 29) 146 #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */ 147 #define RME32_RCR_IRQ (1 << 31) /* interrupt */ 148 149 #define RME32_RCR_BITPOS_F0 27 150 #define RME32_RCR_BITPOS_F1 28 151 #define RME32_RCR_BITPOS_F2 29 152 153 /* Input types */ 154 #define RME32_INPUT_OPTICAL 0 155 #define RME32_INPUT_COAXIAL 1 156 #define RME32_INPUT_INTERNAL 2 157 #define RME32_INPUT_XLR 3 158 159 /* Clock modes */ 160 #define RME32_CLOCKMODE_SLAVE 0 161 #define RME32_CLOCKMODE_MASTER_32 1 162 #define RME32_CLOCKMODE_MASTER_44 2 163 #define RME32_CLOCKMODE_MASTER_48 3 164 165 /* Block sizes in bytes */ 166 #define RME32_BLOCK_SIZE 8192 167 168 /* Software intermediate buffer (max) size */ 169 #define RME32_MID_BUFFER_SIZE (1024*1024) 170 171 /* Hardware revisions */ 172 #define RME32_32_REVISION 192 173 #define RME32_328_REVISION_OLD 100 174 #define RME32_328_REVISION_NEW 101 175 #define RME32_PRO_REVISION_WITH_8412 192 176 #define RME32_PRO_REVISION_WITH_8414 150 177 178 179 struct rme32 { 180 spinlock_t lock; 181 int irq; 182 unsigned long port; 183 void __iomem *iobase; 184 185 u32 wcreg; /* cached write control register value */ 186 u32 wcreg_spdif; /* S/PDIF setup */ 187 u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */ 188 u32 rcreg; /* cached read control register value */ 189 190 u8 rev; /* card revision number */ 191 192 struct snd_pcm_substream *playback_substream; 193 struct snd_pcm_substream *capture_substream; 194 195 int playback_frlog; /* log2 of framesize */ 196 int capture_frlog; 197 198 size_t playback_periodsize; /* in bytes, zero if not used */ 199 size_t capture_periodsize; /* in bytes, zero if not used */ 200 201 unsigned int fullduplex_mode; 202 int running; 203 204 struct snd_pcm_indirect playback_pcm; 205 struct snd_pcm_indirect capture_pcm; 206 207 struct snd_card *card; 208 struct snd_pcm *spdif_pcm; 209 struct snd_pcm *adat_pcm; 210 struct pci_dev *pci; 211 struct snd_kcontrol *spdif_ctl; 212 }; 213 214 static const struct pci_device_id snd_rme32_ids[] = { 215 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,}, 216 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,}, 217 {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,}, 218 {0,} 219 }; 220 221 MODULE_DEVICE_TABLE(pci, snd_rme32_ids); 222 223 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START) 224 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414) 225 226 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream); 227 228 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream); 229 230 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd); 231 232 static void snd_rme32_proc_init(struct rme32 * rme32); 233 234 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32); 235 236 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32) 237 { 238 return (readl(rme32->iobase + RME32_IO_GET_POS) 239 & RME32_RCR_AUDIO_ADDR_MASK); 240 } 241 242 /* silence callback for halfduplex mode */ 243 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, 244 int channel, unsigned long pos, 245 unsigned long count) 246 { 247 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 248 249 memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count); 250 return 0; 251 } 252 253 /* copy callback for halfduplex mode */ 254 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, 255 int channel, unsigned long pos, 256 void __user *src, unsigned long count) 257 { 258 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 259 260 if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 261 src, count)) 262 return -EFAULT; 263 return 0; 264 } 265 266 static int snd_rme32_playback_copy_kernel(struct snd_pcm_substream *substream, 267 int channel, unsigned long pos, 268 void *src, unsigned long count) 269 { 270 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 271 272 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count); 273 return 0; 274 } 275 276 /* copy callback for halfduplex mode */ 277 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, 278 int channel, unsigned long pos, 279 void __user *dst, unsigned long count) 280 { 281 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 282 283 if (copy_to_user_fromio(dst, 284 rme32->iobase + RME32_IO_DATA_BUFFER + pos, 285 count)) 286 return -EFAULT; 287 return 0; 288 } 289 290 static int snd_rme32_capture_copy_kernel(struct snd_pcm_substream *substream, 291 int channel, unsigned long pos, 292 void *dst, unsigned long count) 293 { 294 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 295 296 memcpy_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count); 297 return 0; 298 } 299 300 /* 301 * SPDIF I/O capabilities (half-duplex mode) 302 */ 303 static const struct snd_pcm_hardware snd_rme32_spdif_info = { 304 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 305 SNDRV_PCM_INFO_MMAP_VALID | 306 SNDRV_PCM_INFO_INTERLEAVED | 307 SNDRV_PCM_INFO_PAUSE | 308 SNDRV_PCM_INFO_SYNC_START | 309 SNDRV_PCM_INFO_SYNC_APPLPTR), 310 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 311 SNDRV_PCM_FMTBIT_S32_LE), 312 .rates = (SNDRV_PCM_RATE_32000 | 313 SNDRV_PCM_RATE_44100 | 314 SNDRV_PCM_RATE_48000), 315 .rate_min = 32000, 316 .rate_max = 48000, 317 .channels_min = 2, 318 .channels_max = 2, 319 .buffer_bytes_max = RME32_BUFFER_SIZE, 320 .period_bytes_min = RME32_BLOCK_SIZE, 321 .period_bytes_max = RME32_BLOCK_SIZE, 322 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 323 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 324 .fifo_size = 0, 325 }; 326 327 /* 328 * ADAT I/O capabilities (half-duplex mode) 329 */ 330 static const struct snd_pcm_hardware snd_rme32_adat_info = 331 { 332 .info = (SNDRV_PCM_INFO_MMAP_IOMEM | 333 SNDRV_PCM_INFO_MMAP_VALID | 334 SNDRV_PCM_INFO_INTERLEAVED | 335 SNDRV_PCM_INFO_PAUSE | 336 SNDRV_PCM_INFO_SYNC_START | 337 SNDRV_PCM_INFO_SYNC_APPLPTR), 338 .formats= SNDRV_PCM_FMTBIT_S16_LE, 339 .rates = (SNDRV_PCM_RATE_44100 | 340 SNDRV_PCM_RATE_48000), 341 .rate_min = 44100, 342 .rate_max = 48000, 343 .channels_min = 8, 344 .channels_max = 8, 345 .buffer_bytes_max = RME32_BUFFER_SIZE, 346 .period_bytes_min = RME32_BLOCK_SIZE, 347 .period_bytes_max = RME32_BLOCK_SIZE, 348 .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 349 .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE, 350 .fifo_size = 0, 351 }; 352 353 /* 354 * SPDIF I/O capabilities (full-duplex mode) 355 */ 356 static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = { 357 .info = (SNDRV_PCM_INFO_MMAP | 358 SNDRV_PCM_INFO_MMAP_VALID | 359 SNDRV_PCM_INFO_INTERLEAVED | 360 SNDRV_PCM_INFO_PAUSE | 361 SNDRV_PCM_INFO_SYNC_START | 362 SNDRV_PCM_INFO_SYNC_APPLPTR), 363 .formats = (SNDRV_PCM_FMTBIT_S16_LE | 364 SNDRV_PCM_FMTBIT_S32_LE), 365 .rates = (SNDRV_PCM_RATE_32000 | 366 SNDRV_PCM_RATE_44100 | 367 SNDRV_PCM_RATE_48000), 368 .rate_min = 32000, 369 .rate_max = 48000, 370 .channels_min = 2, 371 .channels_max = 2, 372 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 373 .period_bytes_min = RME32_BLOCK_SIZE, 374 .period_bytes_max = RME32_BLOCK_SIZE, 375 .periods_min = 2, 376 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 377 .fifo_size = 0, 378 }; 379 380 /* 381 * ADAT I/O capabilities (full-duplex mode) 382 */ 383 static const struct snd_pcm_hardware snd_rme32_adat_fd_info = 384 { 385 .info = (SNDRV_PCM_INFO_MMAP | 386 SNDRV_PCM_INFO_MMAP_VALID | 387 SNDRV_PCM_INFO_INTERLEAVED | 388 SNDRV_PCM_INFO_PAUSE | 389 SNDRV_PCM_INFO_SYNC_START | 390 SNDRV_PCM_INFO_SYNC_APPLPTR), 391 .formats= SNDRV_PCM_FMTBIT_S16_LE, 392 .rates = (SNDRV_PCM_RATE_44100 | 393 SNDRV_PCM_RATE_48000), 394 .rate_min = 44100, 395 .rate_max = 48000, 396 .channels_min = 8, 397 .channels_max = 8, 398 .buffer_bytes_max = RME32_MID_BUFFER_SIZE, 399 .period_bytes_min = RME32_BLOCK_SIZE, 400 .period_bytes_max = RME32_BLOCK_SIZE, 401 .periods_min = 2, 402 .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE, 403 .fifo_size = 0, 404 }; 405 406 static void snd_rme32_reset_dac(struct rme32 *rme32) 407 { 408 writel(rme32->wcreg | RME32_WCR_PD, 409 rme32->iobase + RME32_IO_CONTROL_REGISTER); 410 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 411 } 412 413 static int snd_rme32_playback_getrate(struct rme32 * rme32) 414 { 415 int rate; 416 417 rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 418 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 419 switch (rate) { 420 case 1: 421 rate = 32000; 422 break; 423 case 2: 424 rate = 44100; 425 break; 426 case 3: 427 rate = 48000; 428 break; 429 default: 430 return -1; 431 } 432 return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate; 433 } 434 435 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat) 436 { 437 int n; 438 439 *is_adat = 0; 440 if (rme32->rcreg & RME32_RCR_LOCK) { 441 /* ADAT rate */ 442 *is_adat = 1; 443 } 444 if (rme32->rcreg & RME32_RCR_ERF) { 445 return -1; 446 } 447 448 /* S/PDIF rate */ 449 n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) + 450 (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) + 451 (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2); 452 453 if (RME32_PRO_WITH_8414(rme32)) 454 switch (n) { /* supporting the CS8414 */ 455 case 0: 456 case 1: 457 case 2: 458 return -1; 459 case 3: 460 return 96000; 461 case 4: 462 return 88200; 463 case 5: 464 return 48000; 465 case 6: 466 return 44100; 467 case 7: 468 return 32000; 469 default: 470 return -1; 471 break; 472 } 473 else 474 switch (n) { /* supporting the CS8412 */ 475 case 0: 476 return -1; 477 case 1: 478 return 48000; 479 case 2: 480 return 44100; 481 case 3: 482 return 32000; 483 case 4: 484 return 48000; 485 case 5: 486 return 44100; 487 case 6: 488 return 44056; 489 case 7: 490 return 32000; 491 default: 492 break; 493 } 494 return -1; 495 } 496 497 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate) 498 { 499 int ds; 500 501 ds = rme32->wcreg & RME32_WCR_DS_BM; 502 switch (rate) { 503 case 32000: 504 rme32->wcreg &= ~RME32_WCR_DS_BM; 505 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 506 ~RME32_WCR_FREQ_1; 507 break; 508 case 44100: 509 rme32->wcreg &= ~RME32_WCR_DS_BM; 510 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 511 ~RME32_WCR_FREQ_0; 512 break; 513 case 48000: 514 rme32->wcreg &= ~RME32_WCR_DS_BM; 515 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 516 RME32_WCR_FREQ_1; 517 break; 518 case 64000: 519 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 520 return -EINVAL; 521 rme32->wcreg |= RME32_WCR_DS_BM; 522 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 523 ~RME32_WCR_FREQ_1; 524 break; 525 case 88200: 526 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 527 return -EINVAL; 528 rme32->wcreg |= RME32_WCR_DS_BM; 529 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 530 ~RME32_WCR_FREQ_0; 531 break; 532 case 96000: 533 if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO) 534 return -EINVAL; 535 rme32->wcreg |= RME32_WCR_DS_BM; 536 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 537 RME32_WCR_FREQ_1; 538 break; 539 default: 540 return -EINVAL; 541 } 542 if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) || 543 (ds && !(rme32->wcreg & RME32_WCR_DS_BM))) 544 { 545 /* change to/from double-speed: reset the DAC (if available) */ 546 snd_rme32_reset_dac(rme32); 547 } else { 548 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 549 } 550 return 0; 551 } 552 553 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode) 554 { 555 switch (mode) { 556 case RME32_CLOCKMODE_SLAVE: 557 /* AutoSync */ 558 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) & 559 ~RME32_WCR_FREQ_1; 560 break; 561 case RME32_CLOCKMODE_MASTER_32: 562 /* Internal 32.0kHz */ 563 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 564 ~RME32_WCR_FREQ_1; 565 break; 566 case RME32_CLOCKMODE_MASTER_44: 567 /* Internal 44.1kHz */ 568 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) | 569 RME32_WCR_FREQ_1; 570 break; 571 case RME32_CLOCKMODE_MASTER_48: 572 /* Internal 48.0kHz */ 573 rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 574 RME32_WCR_FREQ_1; 575 break; 576 default: 577 return -EINVAL; 578 } 579 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 580 return 0; 581 } 582 583 static int snd_rme32_getclockmode(struct rme32 * rme32) 584 { 585 return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) + 586 (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1); 587 } 588 589 static int snd_rme32_setinputtype(struct rme32 * rme32, int type) 590 { 591 switch (type) { 592 case RME32_INPUT_OPTICAL: 593 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) & 594 ~RME32_WCR_INP_1; 595 break; 596 case RME32_INPUT_COAXIAL: 597 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) & 598 ~RME32_WCR_INP_1; 599 break; 600 case RME32_INPUT_INTERNAL: 601 rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) | 602 RME32_WCR_INP_1; 603 break; 604 case RME32_INPUT_XLR: 605 rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) | 606 RME32_WCR_INP_1; 607 break; 608 default: 609 return -EINVAL; 610 } 611 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 612 return 0; 613 } 614 615 static int snd_rme32_getinputtype(struct rme32 * rme32) 616 { 617 return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) + 618 (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1); 619 } 620 621 static void 622 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback) 623 { 624 int frlog; 625 626 if (n_channels == 2) { 627 frlog = 1; 628 } else { 629 /* assume 8 channels */ 630 frlog = 3; 631 } 632 if (is_playback) { 633 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 634 rme32->playback_frlog = frlog; 635 } else { 636 frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1; 637 rme32->capture_frlog = frlog; 638 } 639 } 640 641 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format) 642 { 643 switch (format) { 644 case SNDRV_PCM_FORMAT_S16_LE: 645 rme32->wcreg &= ~RME32_WCR_MODE24; 646 break; 647 case SNDRV_PCM_FORMAT_S32_LE: 648 rme32->wcreg |= RME32_WCR_MODE24; 649 break; 650 default: 651 return -EINVAL; 652 } 653 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 654 return 0; 655 } 656 657 static int 658 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream, 659 struct snd_pcm_hw_params *params) 660 { 661 int err, rate, dummy; 662 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 663 struct snd_pcm_runtime *runtime = substream->runtime; 664 665 if (rme32->fullduplex_mode) { 666 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 667 if (err < 0) 668 return err; 669 } else { 670 runtime->dma_area = (void __force *)(rme32->iobase + 671 RME32_IO_DATA_BUFFER); 672 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 673 runtime->dma_bytes = RME32_BUFFER_SIZE; 674 } 675 676 spin_lock_irq(&rme32->lock); 677 if ((rme32->rcreg & RME32_RCR_KMODE) && 678 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 679 /* AutoSync */ 680 if ((int)params_rate(params) != rate) { 681 spin_unlock_irq(&rme32->lock); 682 return -EIO; 683 } 684 } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { 685 spin_unlock_irq(&rme32->lock); 686 return err; 687 } 688 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { 689 spin_unlock_irq(&rme32->lock); 690 return err; 691 } 692 693 snd_rme32_setframelog(rme32, params_channels(params), 1); 694 if (rme32->capture_periodsize != 0) { 695 if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) { 696 spin_unlock_irq(&rme32->lock); 697 return -EBUSY; 698 } 699 } 700 rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog; 701 /* S/PDIF setup */ 702 if ((rme32->wcreg & RME32_WCR_ADAT) == 0) { 703 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 704 rme32->wcreg |= rme32->wcreg_spdif_stream; 705 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 706 } 707 spin_unlock_irq(&rme32->lock); 708 709 return 0; 710 } 711 712 static int 713 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream, 714 struct snd_pcm_hw_params *params) 715 { 716 int err, isadat, rate; 717 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 718 struct snd_pcm_runtime *runtime = substream->runtime; 719 720 if (rme32->fullduplex_mode) { 721 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 722 if (err < 0) 723 return err; 724 } else { 725 runtime->dma_area = (void __force *)rme32->iobase + 726 RME32_IO_DATA_BUFFER; 727 runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER; 728 runtime->dma_bytes = RME32_BUFFER_SIZE; 729 } 730 731 spin_lock_irq(&rme32->lock); 732 /* enable AutoSync for record-preparing */ 733 rme32->wcreg |= RME32_WCR_AUTOSYNC; 734 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 735 736 if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) { 737 spin_unlock_irq(&rme32->lock); 738 return err; 739 } 740 if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) { 741 spin_unlock_irq(&rme32->lock); 742 return err; 743 } 744 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 745 if ((int)params_rate(params) != rate) { 746 spin_unlock_irq(&rme32->lock); 747 return -EIO; 748 } 749 if ((isadat && runtime->hw.channels_min == 2) || 750 (!isadat && runtime->hw.channels_min == 8)) { 751 spin_unlock_irq(&rme32->lock); 752 return -EIO; 753 } 754 } 755 /* AutoSync off for recording */ 756 rme32->wcreg &= ~RME32_WCR_AUTOSYNC; 757 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 758 759 snd_rme32_setframelog(rme32, params_channels(params), 0); 760 if (rme32->playback_periodsize != 0) { 761 if (params_period_size(params) << rme32->capture_frlog != 762 rme32->playback_periodsize) { 763 spin_unlock_irq(&rme32->lock); 764 return -EBUSY; 765 } 766 } 767 rme32->capture_periodsize = 768 params_period_size(params) << rme32->capture_frlog; 769 spin_unlock_irq(&rme32->lock); 770 771 return 0; 772 } 773 774 static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream) 775 { 776 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 777 if (! rme32->fullduplex_mode) 778 return 0; 779 return snd_pcm_lib_free_pages(substream); 780 } 781 782 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause) 783 { 784 if (!from_pause) { 785 writel(0, rme32->iobase + RME32_IO_RESET_POS); 786 } 787 788 rme32->wcreg |= RME32_WCR_START; 789 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 790 } 791 792 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause) 793 { 794 /* 795 * Check if there is an unconfirmed IRQ, if so confirm it, or else 796 * the hardware will not stop generating interrupts 797 */ 798 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 799 if (rme32->rcreg & RME32_RCR_IRQ) { 800 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 801 } 802 rme32->wcreg &= ~RME32_WCR_START; 803 if (rme32->wcreg & RME32_WCR_SEL) 804 rme32->wcreg |= RME32_WCR_MUTE; 805 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 806 if (! to_pause) 807 writel(0, rme32->iobase + RME32_IO_RESET_POS); 808 } 809 810 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id) 811 { 812 struct rme32 *rme32 = (struct rme32 *) dev_id; 813 814 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 815 if (!(rme32->rcreg & RME32_RCR_IRQ)) { 816 return IRQ_NONE; 817 } else { 818 if (rme32->capture_substream) { 819 snd_pcm_period_elapsed(rme32->capture_substream); 820 } 821 if (rme32->playback_substream) { 822 snd_pcm_period_elapsed(rme32->playback_substream); 823 } 824 writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ); 825 } 826 return IRQ_HANDLED; 827 } 828 829 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE }; 830 831 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = { 832 .count = ARRAY_SIZE(period_bytes), 833 .list = period_bytes, 834 .mask = 0 835 }; 836 837 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime) 838 { 839 if (! rme32->fullduplex_mode) { 840 snd_pcm_hw_constraint_single(runtime, 841 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 842 RME32_BUFFER_SIZE); 843 snd_pcm_hw_constraint_list(runtime, 0, 844 SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 845 &hw_constraints_period_bytes); 846 } 847 } 848 849 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream) 850 { 851 int rate, dummy; 852 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 853 struct snd_pcm_runtime *runtime = substream->runtime; 854 855 snd_pcm_set_sync(substream); 856 857 spin_lock_irq(&rme32->lock); 858 if (rme32->playback_substream != NULL) { 859 spin_unlock_irq(&rme32->lock); 860 return -EBUSY; 861 } 862 rme32->wcreg &= ~RME32_WCR_ADAT; 863 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 864 rme32->playback_substream = substream; 865 spin_unlock_irq(&rme32->lock); 866 867 if (rme32->fullduplex_mode) 868 runtime->hw = snd_rme32_spdif_fd_info; 869 else 870 runtime->hw = snd_rme32_spdif_info; 871 if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) { 872 runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 873 runtime->hw.rate_max = 96000; 874 } 875 if ((rme32->rcreg & RME32_RCR_KMODE) && 876 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 877 /* AutoSync */ 878 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 879 runtime->hw.rate_min = rate; 880 runtime->hw.rate_max = rate; 881 } 882 883 snd_rme32_set_buffer_constraint(rme32, runtime); 884 885 rme32->wcreg_spdif_stream = rme32->wcreg_spdif; 886 rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 887 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 888 SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id); 889 return 0; 890 } 891 892 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream) 893 { 894 int isadat, rate; 895 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 896 struct snd_pcm_runtime *runtime = substream->runtime; 897 898 snd_pcm_set_sync(substream); 899 900 spin_lock_irq(&rme32->lock); 901 if (rme32->capture_substream != NULL) { 902 spin_unlock_irq(&rme32->lock); 903 return -EBUSY; 904 } 905 rme32->capture_substream = substream; 906 spin_unlock_irq(&rme32->lock); 907 908 if (rme32->fullduplex_mode) 909 runtime->hw = snd_rme32_spdif_fd_info; 910 else 911 runtime->hw = snd_rme32_spdif_info; 912 if (RME32_PRO_WITH_8414(rme32)) { 913 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000; 914 runtime->hw.rate_max = 96000; 915 } 916 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 917 if (isadat) { 918 return -EIO; 919 } 920 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 921 runtime->hw.rate_min = rate; 922 runtime->hw.rate_max = rate; 923 } 924 925 snd_rme32_set_buffer_constraint(rme32, runtime); 926 927 return 0; 928 } 929 930 static int 931 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream) 932 { 933 int rate, dummy; 934 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 935 struct snd_pcm_runtime *runtime = substream->runtime; 936 937 snd_pcm_set_sync(substream); 938 939 spin_lock_irq(&rme32->lock); 940 if (rme32->playback_substream != NULL) { 941 spin_unlock_irq(&rme32->lock); 942 return -EBUSY; 943 } 944 rme32->wcreg |= RME32_WCR_ADAT; 945 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 946 rme32->playback_substream = substream; 947 spin_unlock_irq(&rme32->lock); 948 949 if (rme32->fullduplex_mode) 950 runtime->hw = snd_rme32_adat_fd_info; 951 else 952 runtime->hw = snd_rme32_adat_info; 953 if ((rme32->rcreg & RME32_RCR_KMODE) && 954 (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) { 955 /* AutoSync */ 956 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 957 runtime->hw.rate_min = rate; 958 runtime->hw.rate_max = rate; 959 } 960 961 snd_rme32_set_buffer_constraint(rme32, runtime); 962 return 0; 963 } 964 965 static int 966 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream) 967 { 968 int isadat, rate; 969 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 970 struct snd_pcm_runtime *runtime = substream->runtime; 971 972 if (rme32->fullduplex_mode) 973 runtime->hw = snd_rme32_adat_fd_info; 974 else 975 runtime->hw = snd_rme32_adat_info; 976 if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) { 977 if (!isadat) { 978 return -EIO; 979 } 980 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 981 runtime->hw.rate_min = rate; 982 runtime->hw.rate_max = rate; 983 } 984 985 snd_pcm_set_sync(substream); 986 987 spin_lock_irq(&rme32->lock); 988 if (rme32->capture_substream != NULL) { 989 spin_unlock_irq(&rme32->lock); 990 return -EBUSY; 991 } 992 rme32->capture_substream = substream; 993 spin_unlock_irq(&rme32->lock); 994 995 snd_rme32_set_buffer_constraint(rme32, runtime); 996 return 0; 997 } 998 999 static int snd_rme32_playback_close(struct snd_pcm_substream *substream) 1000 { 1001 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1002 int spdif = 0; 1003 1004 spin_lock_irq(&rme32->lock); 1005 rme32->playback_substream = NULL; 1006 rme32->playback_periodsize = 0; 1007 spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0; 1008 spin_unlock_irq(&rme32->lock); 1009 if (spdif) { 1010 rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1011 snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE | 1012 SNDRV_CTL_EVENT_MASK_INFO, 1013 &rme32->spdif_ctl->id); 1014 } 1015 return 0; 1016 } 1017 1018 static int snd_rme32_capture_close(struct snd_pcm_substream *substream) 1019 { 1020 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1021 1022 spin_lock_irq(&rme32->lock); 1023 rme32->capture_substream = NULL; 1024 rme32->capture_periodsize = 0; 1025 spin_unlock_irq(&rme32->lock); 1026 return 0; 1027 } 1028 1029 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream) 1030 { 1031 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1032 1033 spin_lock_irq(&rme32->lock); 1034 if (rme32->fullduplex_mode) { 1035 memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm)); 1036 rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1037 rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1038 } else { 1039 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1040 } 1041 if (rme32->wcreg & RME32_WCR_SEL) 1042 rme32->wcreg &= ~RME32_WCR_MUTE; 1043 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1044 spin_unlock_irq(&rme32->lock); 1045 return 0; 1046 } 1047 1048 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream) 1049 { 1050 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1051 1052 spin_lock_irq(&rme32->lock); 1053 if (rme32->fullduplex_mode) { 1054 memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm)); 1055 rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE; 1056 rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2; 1057 rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1058 } else { 1059 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1060 } 1061 spin_unlock_irq(&rme32->lock); 1062 return 0; 1063 } 1064 1065 static int 1066 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 1067 { 1068 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1069 struct snd_pcm_substream *s; 1070 1071 spin_lock(&rme32->lock); 1072 snd_pcm_group_for_each_entry(s, substream) { 1073 if (s != rme32->playback_substream && 1074 s != rme32->capture_substream) 1075 continue; 1076 switch (cmd) { 1077 case SNDRV_PCM_TRIGGER_START: 1078 rme32->running |= (1 << s->stream); 1079 if (rme32->fullduplex_mode) { 1080 /* remember the current DMA position */ 1081 if (s == rme32->playback_substream) { 1082 rme32->playback_pcm.hw_io = 1083 rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1084 } else { 1085 rme32->capture_pcm.hw_io = 1086 rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32); 1087 } 1088 } 1089 break; 1090 case SNDRV_PCM_TRIGGER_STOP: 1091 rme32->running &= ~(1 << s->stream); 1092 break; 1093 } 1094 snd_pcm_trigger_done(s, substream); 1095 } 1096 1097 switch (cmd) { 1098 case SNDRV_PCM_TRIGGER_START: 1099 if (rme32->running && ! RME32_ISWORKING(rme32)) 1100 snd_rme32_pcm_start(rme32, 0); 1101 break; 1102 case SNDRV_PCM_TRIGGER_STOP: 1103 if (! rme32->running && RME32_ISWORKING(rme32)) 1104 snd_rme32_pcm_stop(rme32, 0); 1105 break; 1106 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1107 if (rme32->running && RME32_ISWORKING(rme32)) 1108 snd_rme32_pcm_stop(rme32, 1); 1109 break; 1110 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1111 if (rme32->running && ! RME32_ISWORKING(rme32)) 1112 snd_rme32_pcm_start(rme32, 1); 1113 break; 1114 } 1115 spin_unlock(&rme32->lock); 1116 return 0; 1117 } 1118 1119 /* pointer callback for halfduplex mode */ 1120 static snd_pcm_uframes_t 1121 snd_rme32_playback_pointer(struct snd_pcm_substream *substream) 1122 { 1123 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1124 return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog; 1125 } 1126 1127 static snd_pcm_uframes_t 1128 snd_rme32_capture_pointer(struct snd_pcm_substream *substream) 1129 { 1130 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1131 return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog; 1132 } 1133 1134 1135 /* ack and pointer callbacks for fullduplex mode */ 1136 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream, 1137 struct snd_pcm_indirect *rec, size_t bytes) 1138 { 1139 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1140 memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1141 substream->runtime->dma_area + rec->sw_data, bytes); 1142 } 1143 1144 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream) 1145 { 1146 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1147 struct snd_pcm_indirect *rec, *cprec; 1148 1149 rec = &rme32->playback_pcm; 1150 cprec = &rme32->capture_pcm; 1151 spin_lock(&rme32->lock); 1152 rec->hw_queue_size = RME32_BUFFER_SIZE; 1153 if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE)) 1154 rec->hw_queue_size -= cprec->hw_ready; 1155 spin_unlock(&rme32->lock); 1156 return snd_pcm_indirect_playback_transfer(substream, rec, 1157 snd_rme32_pb_trans_copy); 1158 } 1159 1160 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream, 1161 struct snd_pcm_indirect *rec, size_t bytes) 1162 { 1163 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1164 memcpy_fromio(substream->runtime->dma_area + rec->sw_data, 1165 rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data, 1166 bytes); 1167 } 1168 1169 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream) 1170 { 1171 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1172 return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm, 1173 snd_rme32_cp_trans_copy); 1174 } 1175 1176 static snd_pcm_uframes_t 1177 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream) 1178 { 1179 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1180 return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm, 1181 snd_rme32_pcm_byteptr(rme32)); 1182 } 1183 1184 static snd_pcm_uframes_t 1185 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream) 1186 { 1187 struct rme32 *rme32 = snd_pcm_substream_chip(substream); 1188 return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm, 1189 snd_rme32_pcm_byteptr(rme32)); 1190 } 1191 1192 /* for halfduplex mode */ 1193 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = { 1194 .open = snd_rme32_playback_spdif_open, 1195 .close = snd_rme32_playback_close, 1196 .ioctl = snd_pcm_lib_ioctl, 1197 .hw_params = snd_rme32_playback_hw_params, 1198 .hw_free = snd_rme32_pcm_hw_free, 1199 .prepare = snd_rme32_playback_prepare, 1200 .trigger = snd_rme32_pcm_trigger, 1201 .pointer = snd_rme32_playback_pointer, 1202 .copy_user = snd_rme32_playback_copy, 1203 .copy_kernel = snd_rme32_playback_copy_kernel, 1204 .fill_silence = snd_rme32_playback_silence, 1205 .mmap = snd_pcm_lib_mmap_iomem, 1206 }; 1207 1208 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = { 1209 .open = snd_rme32_capture_spdif_open, 1210 .close = snd_rme32_capture_close, 1211 .ioctl = snd_pcm_lib_ioctl, 1212 .hw_params = snd_rme32_capture_hw_params, 1213 .hw_free = snd_rme32_pcm_hw_free, 1214 .prepare = snd_rme32_capture_prepare, 1215 .trigger = snd_rme32_pcm_trigger, 1216 .pointer = snd_rme32_capture_pointer, 1217 .copy_user = snd_rme32_capture_copy, 1218 .copy_kernel = snd_rme32_capture_copy_kernel, 1219 .mmap = snd_pcm_lib_mmap_iomem, 1220 }; 1221 1222 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = { 1223 .open = snd_rme32_playback_adat_open, 1224 .close = snd_rme32_playback_close, 1225 .ioctl = snd_pcm_lib_ioctl, 1226 .hw_params = snd_rme32_playback_hw_params, 1227 .prepare = snd_rme32_playback_prepare, 1228 .trigger = snd_rme32_pcm_trigger, 1229 .pointer = snd_rme32_playback_pointer, 1230 .copy_user = snd_rme32_playback_copy, 1231 .copy_kernel = snd_rme32_playback_copy_kernel, 1232 .fill_silence = snd_rme32_playback_silence, 1233 .mmap = snd_pcm_lib_mmap_iomem, 1234 }; 1235 1236 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = { 1237 .open = snd_rme32_capture_adat_open, 1238 .close = snd_rme32_capture_close, 1239 .ioctl = snd_pcm_lib_ioctl, 1240 .hw_params = snd_rme32_capture_hw_params, 1241 .prepare = snd_rme32_capture_prepare, 1242 .trigger = snd_rme32_pcm_trigger, 1243 .pointer = snd_rme32_capture_pointer, 1244 .copy_user = snd_rme32_capture_copy, 1245 .copy_kernel = snd_rme32_capture_copy_kernel, 1246 .mmap = snd_pcm_lib_mmap_iomem, 1247 }; 1248 1249 /* for fullduplex mode */ 1250 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = { 1251 .open = snd_rme32_playback_spdif_open, 1252 .close = snd_rme32_playback_close, 1253 .ioctl = snd_pcm_lib_ioctl, 1254 .hw_params = snd_rme32_playback_hw_params, 1255 .hw_free = snd_rme32_pcm_hw_free, 1256 .prepare = snd_rme32_playback_prepare, 1257 .trigger = snd_rme32_pcm_trigger, 1258 .pointer = snd_rme32_playback_fd_pointer, 1259 .ack = snd_rme32_playback_fd_ack, 1260 }; 1261 1262 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = { 1263 .open = snd_rme32_capture_spdif_open, 1264 .close = snd_rme32_capture_close, 1265 .ioctl = snd_pcm_lib_ioctl, 1266 .hw_params = snd_rme32_capture_hw_params, 1267 .hw_free = snd_rme32_pcm_hw_free, 1268 .prepare = snd_rme32_capture_prepare, 1269 .trigger = snd_rme32_pcm_trigger, 1270 .pointer = snd_rme32_capture_fd_pointer, 1271 .ack = snd_rme32_capture_fd_ack, 1272 }; 1273 1274 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = { 1275 .open = snd_rme32_playback_adat_open, 1276 .close = snd_rme32_playback_close, 1277 .ioctl = snd_pcm_lib_ioctl, 1278 .hw_params = snd_rme32_playback_hw_params, 1279 .prepare = snd_rme32_playback_prepare, 1280 .trigger = snd_rme32_pcm_trigger, 1281 .pointer = snd_rme32_playback_fd_pointer, 1282 .ack = snd_rme32_playback_fd_ack, 1283 }; 1284 1285 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = { 1286 .open = snd_rme32_capture_adat_open, 1287 .close = snd_rme32_capture_close, 1288 .ioctl = snd_pcm_lib_ioctl, 1289 .hw_params = snd_rme32_capture_hw_params, 1290 .prepare = snd_rme32_capture_prepare, 1291 .trigger = snd_rme32_pcm_trigger, 1292 .pointer = snd_rme32_capture_fd_pointer, 1293 .ack = snd_rme32_capture_fd_ack, 1294 }; 1295 1296 static void snd_rme32_free(void *private_data) 1297 { 1298 struct rme32 *rme32 = (struct rme32 *) private_data; 1299 1300 if (rme32 == NULL) { 1301 return; 1302 } 1303 if (rme32->irq >= 0) { 1304 snd_rme32_pcm_stop(rme32, 0); 1305 free_irq(rme32->irq, (void *) rme32); 1306 rme32->irq = -1; 1307 } 1308 if (rme32->iobase) { 1309 iounmap(rme32->iobase); 1310 rme32->iobase = NULL; 1311 } 1312 if (rme32->port) { 1313 pci_release_regions(rme32->pci); 1314 rme32->port = 0; 1315 } 1316 pci_disable_device(rme32->pci); 1317 } 1318 1319 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm) 1320 { 1321 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1322 rme32->spdif_pcm = NULL; 1323 } 1324 1325 static void 1326 snd_rme32_free_adat_pcm(struct snd_pcm *pcm) 1327 { 1328 struct rme32 *rme32 = (struct rme32 *) pcm->private_data; 1329 rme32->adat_pcm = NULL; 1330 } 1331 1332 static int snd_rme32_create(struct rme32 *rme32) 1333 { 1334 struct pci_dev *pci = rme32->pci; 1335 int err; 1336 1337 rme32->irq = -1; 1338 spin_lock_init(&rme32->lock); 1339 1340 if ((err = pci_enable_device(pci)) < 0) 1341 return err; 1342 1343 if ((err = pci_request_regions(pci, "RME32")) < 0) 1344 return err; 1345 rme32->port = pci_resource_start(rme32->pci, 0); 1346 1347 rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE); 1348 if (!rme32->iobase) { 1349 dev_err(rme32->card->dev, 1350 "unable to remap memory region 0x%lx-0x%lx\n", 1351 rme32->port, rme32->port + RME32_IO_SIZE - 1); 1352 return -ENOMEM; 1353 } 1354 1355 if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED, 1356 KBUILD_MODNAME, rme32)) { 1357 dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq); 1358 return -EBUSY; 1359 } 1360 rme32->irq = pci->irq; 1361 1362 /* read the card's revision number */ 1363 pci_read_config_byte(pci, 8, &rme32->rev); 1364 1365 /* set up ALSA pcm device for S/PDIF */ 1366 if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) { 1367 return err; 1368 } 1369 rme32->spdif_pcm->private_data = rme32; 1370 rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm; 1371 strcpy(rme32->spdif_pcm->name, "Digi32 IEC958"); 1372 if (rme32->fullduplex_mode) { 1373 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1374 &snd_rme32_playback_spdif_fd_ops); 1375 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1376 &snd_rme32_capture_spdif_fd_ops); 1377 snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1378 NULL, 1379 0, RME32_MID_BUFFER_SIZE); 1380 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1381 } else { 1382 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1383 &snd_rme32_playback_spdif_ops); 1384 snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, 1385 &snd_rme32_capture_spdif_ops); 1386 rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1387 } 1388 1389 /* set up ALSA pcm device for ADAT */ 1390 if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) || 1391 (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) { 1392 /* ADAT is not available on DIGI32 and DIGI32 Pro */ 1393 rme32->adat_pcm = NULL; 1394 } 1395 else { 1396 if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1, 1397 1, 1, &rme32->adat_pcm)) < 0) 1398 { 1399 return err; 1400 } 1401 rme32->adat_pcm->private_data = rme32; 1402 rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm; 1403 strcpy(rme32->adat_pcm->name, "Digi32 ADAT"); 1404 if (rme32->fullduplex_mode) { 1405 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1406 &snd_rme32_playback_adat_fd_ops); 1407 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1408 &snd_rme32_capture_adat_fd_ops); 1409 snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS, 1410 NULL, 1411 0, RME32_MID_BUFFER_SIZE); 1412 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX; 1413 } else { 1414 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 1415 &snd_rme32_playback_adat_ops); 1416 snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 1417 &snd_rme32_capture_adat_ops); 1418 rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; 1419 } 1420 } 1421 1422 1423 rme32->playback_periodsize = 0; 1424 rme32->capture_periodsize = 0; 1425 1426 /* make sure playback/capture is stopped, if by some reason active */ 1427 snd_rme32_pcm_stop(rme32, 0); 1428 1429 /* reset DAC */ 1430 snd_rme32_reset_dac(rme32); 1431 1432 /* reset buffer pointer */ 1433 writel(0, rme32->iobase + RME32_IO_RESET_POS); 1434 1435 /* set default values in registers */ 1436 rme32->wcreg = RME32_WCR_SEL | /* normal playback */ 1437 RME32_WCR_INP_0 | /* input select */ 1438 RME32_WCR_MUTE; /* muting on */ 1439 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1440 1441 1442 /* init switch interface */ 1443 if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) { 1444 return err; 1445 } 1446 1447 /* init proc interface */ 1448 snd_rme32_proc_init(rme32); 1449 1450 rme32->capture_substream = NULL; 1451 rme32->playback_substream = NULL; 1452 1453 return 0; 1454 } 1455 1456 /* 1457 * proc interface 1458 */ 1459 1460 static void 1461 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer) 1462 { 1463 int n; 1464 struct rme32 *rme32 = (struct rme32 *) entry->private_data; 1465 1466 rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER); 1467 1468 snd_iprintf(buffer, rme32->card->longname); 1469 snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1); 1470 1471 snd_iprintf(buffer, "\nGeneral settings\n"); 1472 if (rme32->fullduplex_mode) 1473 snd_iprintf(buffer, " Full-duplex mode\n"); 1474 else 1475 snd_iprintf(buffer, " Half-duplex mode\n"); 1476 if (RME32_PRO_WITH_8414(rme32)) { 1477 snd_iprintf(buffer, " receiver: CS8414\n"); 1478 } else { 1479 snd_iprintf(buffer, " receiver: CS8412\n"); 1480 } 1481 if (rme32->wcreg & RME32_WCR_MODE24) { 1482 snd_iprintf(buffer, " format: 24 bit"); 1483 } else { 1484 snd_iprintf(buffer, " format: 16 bit"); 1485 } 1486 if (rme32->wcreg & RME32_WCR_MONO) { 1487 snd_iprintf(buffer, ", Mono\n"); 1488 } else { 1489 snd_iprintf(buffer, ", Stereo\n"); 1490 } 1491 1492 snd_iprintf(buffer, "\nInput settings\n"); 1493 switch (snd_rme32_getinputtype(rme32)) { 1494 case RME32_INPUT_OPTICAL: 1495 snd_iprintf(buffer, " input: optical"); 1496 break; 1497 case RME32_INPUT_COAXIAL: 1498 snd_iprintf(buffer, " input: coaxial"); 1499 break; 1500 case RME32_INPUT_INTERNAL: 1501 snd_iprintf(buffer, " input: internal"); 1502 break; 1503 case RME32_INPUT_XLR: 1504 snd_iprintf(buffer, " input: XLR"); 1505 break; 1506 } 1507 if (snd_rme32_capture_getrate(rme32, &n) < 0) { 1508 snd_iprintf(buffer, "\n sample rate: no valid signal\n"); 1509 } else { 1510 if (n) { 1511 snd_iprintf(buffer, " (8 channels)\n"); 1512 } else { 1513 snd_iprintf(buffer, " (2 channels)\n"); 1514 } 1515 snd_iprintf(buffer, " sample rate: %d Hz\n", 1516 snd_rme32_capture_getrate(rme32, &n)); 1517 } 1518 1519 snd_iprintf(buffer, "\nOutput settings\n"); 1520 if (rme32->wcreg & RME32_WCR_SEL) { 1521 snd_iprintf(buffer, " output signal: normal playback"); 1522 } else { 1523 snd_iprintf(buffer, " output signal: same as input"); 1524 } 1525 if (rme32->wcreg & RME32_WCR_MUTE) { 1526 snd_iprintf(buffer, " (muted)\n"); 1527 } else { 1528 snd_iprintf(buffer, "\n"); 1529 } 1530 1531 /* master output frequency */ 1532 if (! 1533 ((!(rme32->wcreg & RME32_WCR_FREQ_0)) 1534 && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) { 1535 snd_iprintf(buffer, " sample rate: %d Hz\n", 1536 snd_rme32_playback_getrate(rme32)); 1537 } 1538 if (rme32->rcreg & RME32_RCR_KMODE) { 1539 snd_iprintf(buffer, " sample clock source: AutoSync\n"); 1540 } else { 1541 snd_iprintf(buffer, " sample clock source: Internal\n"); 1542 } 1543 if (rme32->wcreg & RME32_WCR_PRO) { 1544 snd_iprintf(buffer, " format: AES/EBU (professional)\n"); 1545 } else { 1546 snd_iprintf(buffer, " format: IEC958 (consumer)\n"); 1547 } 1548 if (rme32->wcreg & RME32_WCR_EMP) { 1549 snd_iprintf(buffer, " emphasis: on\n"); 1550 } else { 1551 snd_iprintf(buffer, " emphasis: off\n"); 1552 } 1553 } 1554 1555 static void snd_rme32_proc_init(struct rme32 *rme32) 1556 { 1557 snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read); 1558 } 1559 1560 /* 1561 * control interface 1562 */ 1563 1564 #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info 1565 1566 static int 1567 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol, 1568 struct snd_ctl_elem_value *ucontrol) 1569 { 1570 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1571 1572 spin_lock_irq(&rme32->lock); 1573 ucontrol->value.integer.value[0] = 1574 rme32->wcreg & RME32_WCR_SEL ? 0 : 1; 1575 spin_unlock_irq(&rme32->lock); 1576 return 0; 1577 } 1578 static int 1579 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol, 1580 struct snd_ctl_elem_value *ucontrol) 1581 { 1582 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1583 unsigned int val; 1584 int change; 1585 1586 val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL; 1587 spin_lock_irq(&rme32->lock); 1588 val = (rme32->wcreg & ~RME32_WCR_SEL) | val; 1589 change = val != rme32->wcreg; 1590 if (ucontrol->value.integer.value[0]) 1591 val &= ~RME32_WCR_MUTE; 1592 else 1593 val |= RME32_WCR_MUTE; 1594 rme32->wcreg = val; 1595 writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1596 spin_unlock_irq(&rme32->lock); 1597 return change; 1598 } 1599 1600 static int 1601 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol, 1602 struct snd_ctl_elem_info *uinfo) 1603 { 1604 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1605 static const char * const texts[4] = { 1606 "Optical", "Coaxial", "Internal", "XLR" 1607 }; 1608 int num_items; 1609 1610 switch (rme32->pci->device) { 1611 case PCI_DEVICE_ID_RME_DIGI32: 1612 case PCI_DEVICE_ID_RME_DIGI32_8: 1613 num_items = 3; 1614 break; 1615 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1616 num_items = 4; 1617 break; 1618 default: 1619 snd_BUG(); 1620 return -EINVAL; 1621 } 1622 return snd_ctl_enum_info(uinfo, 1, num_items, texts); 1623 } 1624 static int 1625 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol, 1626 struct snd_ctl_elem_value *ucontrol) 1627 { 1628 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1629 unsigned int items = 3; 1630 1631 spin_lock_irq(&rme32->lock); 1632 ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32); 1633 1634 switch (rme32->pci->device) { 1635 case PCI_DEVICE_ID_RME_DIGI32: 1636 case PCI_DEVICE_ID_RME_DIGI32_8: 1637 items = 3; 1638 break; 1639 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1640 items = 4; 1641 break; 1642 default: 1643 snd_BUG(); 1644 break; 1645 } 1646 if (ucontrol->value.enumerated.item[0] >= items) { 1647 ucontrol->value.enumerated.item[0] = items - 1; 1648 } 1649 1650 spin_unlock_irq(&rme32->lock); 1651 return 0; 1652 } 1653 static int 1654 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol, 1655 struct snd_ctl_elem_value *ucontrol) 1656 { 1657 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1658 unsigned int val; 1659 int change, items = 3; 1660 1661 switch (rme32->pci->device) { 1662 case PCI_DEVICE_ID_RME_DIGI32: 1663 case PCI_DEVICE_ID_RME_DIGI32_8: 1664 items = 3; 1665 break; 1666 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1667 items = 4; 1668 break; 1669 default: 1670 snd_BUG(); 1671 break; 1672 } 1673 val = ucontrol->value.enumerated.item[0] % items; 1674 1675 spin_lock_irq(&rme32->lock); 1676 change = val != (unsigned int)snd_rme32_getinputtype(rme32); 1677 snd_rme32_setinputtype(rme32, val); 1678 spin_unlock_irq(&rme32->lock); 1679 return change; 1680 } 1681 1682 static int 1683 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol, 1684 struct snd_ctl_elem_info *uinfo) 1685 { 1686 static const char * const texts[4] = { "AutoSync", 1687 "Internal 32.0kHz", 1688 "Internal 44.1kHz", 1689 "Internal 48.0kHz" }; 1690 1691 return snd_ctl_enum_info(uinfo, 1, 4, texts); 1692 } 1693 static int 1694 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol, 1695 struct snd_ctl_elem_value *ucontrol) 1696 { 1697 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1698 1699 spin_lock_irq(&rme32->lock); 1700 ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32); 1701 spin_unlock_irq(&rme32->lock); 1702 return 0; 1703 } 1704 static int 1705 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol, 1706 struct snd_ctl_elem_value *ucontrol) 1707 { 1708 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1709 unsigned int val; 1710 int change; 1711 1712 val = ucontrol->value.enumerated.item[0] % 3; 1713 spin_lock_irq(&rme32->lock); 1714 change = val != (unsigned int)snd_rme32_getclockmode(rme32); 1715 snd_rme32_setclockmode(rme32, val); 1716 spin_unlock_irq(&rme32->lock); 1717 return change; 1718 } 1719 1720 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes) 1721 { 1722 u32 val = 0; 1723 val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0; 1724 if (val & RME32_WCR_PRO) 1725 val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1726 else 1727 val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0; 1728 return val; 1729 } 1730 1731 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val) 1732 { 1733 aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0); 1734 if (val & RME32_WCR_PRO) 1735 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; 1736 else 1737 aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; 1738 } 1739 1740 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol, 1741 struct snd_ctl_elem_info *uinfo) 1742 { 1743 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1744 uinfo->count = 1; 1745 return 0; 1746 } 1747 1748 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol, 1749 struct snd_ctl_elem_value *ucontrol) 1750 { 1751 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1752 1753 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1754 rme32->wcreg_spdif); 1755 return 0; 1756 } 1757 1758 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol, 1759 struct snd_ctl_elem_value *ucontrol) 1760 { 1761 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1762 int change; 1763 u32 val; 1764 1765 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1766 spin_lock_irq(&rme32->lock); 1767 change = val != rme32->wcreg_spdif; 1768 rme32->wcreg_spdif = val; 1769 spin_unlock_irq(&rme32->lock); 1770 return change; 1771 } 1772 1773 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol, 1774 struct snd_ctl_elem_info *uinfo) 1775 { 1776 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1777 uinfo->count = 1; 1778 return 0; 1779 } 1780 1781 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol, 1782 struct snd_ctl_elem_value * 1783 ucontrol) 1784 { 1785 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1786 1787 snd_rme32_convert_to_aes(&ucontrol->value.iec958, 1788 rme32->wcreg_spdif_stream); 1789 return 0; 1790 } 1791 1792 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol, 1793 struct snd_ctl_elem_value * 1794 ucontrol) 1795 { 1796 struct rme32 *rme32 = snd_kcontrol_chip(kcontrol); 1797 int change; 1798 u32 val; 1799 1800 val = snd_rme32_convert_from_aes(&ucontrol->value.iec958); 1801 spin_lock_irq(&rme32->lock); 1802 change = val != rme32->wcreg_spdif_stream; 1803 rme32->wcreg_spdif_stream = val; 1804 rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP); 1805 rme32->wcreg |= val; 1806 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER); 1807 spin_unlock_irq(&rme32->lock); 1808 return change; 1809 } 1810 1811 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol, 1812 struct snd_ctl_elem_info *uinfo) 1813 { 1814 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1815 uinfo->count = 1; 1816 return 0; 1817 } 1818 1819 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol, 1820 struct snd_ctl_elem_value * 1821 ucontrol) 1822 { 1823 ucontrol->value.iec958.status[0] = kcontrol->private_value; 1824 return 0; 1825 } 1826 1827 static struct snd_kcontrol_new snd_rme32_controls[] = { 1828 { 1829 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1830 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), 1831 .info = snd_rme32_control_spdif_info, 1832 .get = snd_rme32_control_spdif_get, 1833 .put = snd_rme32_control_spdif_put 1834 }, 1835 { 1836 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1837 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1838 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM), 1839 .info = snd_rme32_control_spdif_stream_info, 1840 .get = snd_rme32_control_spdif_stream_get, 1841 .put = snd_rme32_control_spdif_stream_put 1842 }, 1843 { 1844 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1845 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1846 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK), 1847 .info = snd_rme32_control_spdif_mask_info, 1848 .get = snd_rme32_control_spdif_mask_get, 1849 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS 1850 }, 1851 { 1852 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1853 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1854 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK), 1855 .info = snd_rme32_control_spdif_mask_info, 1856 .get = snd_rme32_control_spdif_mask_get, 1857 .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS 1858 }, 1859 { 1860 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1861 .name = "Input Connector", 1862 .info = snd_rme32_info_inputtype_control, 1863 .get = snd_rme32_get_inputtype_control, 1864 .put = snd_rme32_put_inputtype_control 1865 }, 1866 { 1867 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1868 .name = "Loopback Input", 1869 .info = snd_rme32_info_loopback_control, 1870 .get = snd_rme32_get_loopback_control, 1871 .put = snd_rme32_put_loopback_control 1872 }, 1873 { 1874 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1875 .name = "Sample Clock Source", 1876 .info = snd_rme32_info_clockmode_control, 1877 .get = snd_rme32_get_clockmode_control, 1878 .put = snd_rme32_put_clockmode_control 1879 } 1880 }; 1881 1882 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32) 1883 { 1884 int idx, err; 1885 struct snd_kcontrol *kctl; 1886 1887 for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) { 1888 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0) 1889 return err; 1890 if (idx == 1) /* IEC958 (S/PDIF) Stream */ 1891 rme32->spdif_ctl = kctl; 1892 } 1893 1894 return 0; 1895 } 1896 1897 /* 1898 * Card initialisation 1899 */ 1900 1901 static void snd_rme32_card_free(struct snd_card *card) 1902 { 1903 snd_rme32_free(card->private_data); 1904 } 1905 1906 static int 1907 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) 1908 { 1909 static int dev; 1910 struct rme32 *rme32; 1911 struct snd_card *card; 1912 int err; 1913 1914 if (dev >= SNDRV_CARDS) { 1915 return -ENODEV; 1916 } 1917 if (!enable[dev]) { 1918 dev++; 1919 return -ENOENT; 1920 } 1921 1922 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 1923 sizeof(struct rme32), &card); 1924 if (err < 0) 1925 return err; 1926 card->private_free = snd_rme32_card_free; 1927 rme32 = (struct rme32 *) card->private_data; 1928 rme32->card = card; 1929 rme32->pci = pci; 1930 if (fullduplex[dev]) 1931 rme32->fullduplex_mode = 1; 1932 if ((err = snd_rme32_create(rme32)) < 0) { 1933 snd_card_free(card); 1934 return err; 1935 } 1936 1937 strcpy(card->driver, "Digi32"); 1938 switch (rme32->pci->device) { 1939 case PCI_DEVICE_ID_RME_DIGI32: 1940 strcpy(card->shortname, "RME Digi32"); 1941 break; 1942 case PCI_DEVICE_ID_RME_DIGI32_8: 1943 strcpy(card->shortname, "RME Digi32/8"); 1944 break; 1945 case PCI_DEVICE_ID_RME_DIGI32_PRO: 1946 strcpy(card->shortname, "RME Digi32 PRO"); 1947 break; 1948 } 1949 sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d", 1950 card->shortname, rme32->rev, rme32->port, rme32->irq); 1951 1952 if ((err = snd_card_register(card)) < 0) { 1953 snd_card_free(card); 1954 return err; 1955 } 1956 pci_set_drvdata(pci, card); 1957 dev++; 1958 return 0; 1959 } 1960 1961 static void snd_rme32_remove(struct pci_dev *pci) 1962 { 1963 snd_card_free(pci_get_drvdata(pci)); 1964 } 1965 1966 static struct pci_driver rme32_driver = { 1967 .name = KBUILD_MODNAME, 1968 .id_table = snd_rme32_ids, 1969 .probe = snd_rme32_probe, 1970 .remove = snd_rme32_remove, 1971 }; 1972 1973 module_pci_driver(rme32_driver); 1974