xref: /linux/sound/pci/pcxhr/pcxhr.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * Driver for Digigram pcxhr compatible soundcards
3  *
4  * main file with alsa callbacks
5  *
6  * Copyright (c) 2004 by Digigram <alsa@digigram.com>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/slab.h>
27 #include <linux/pci.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/delay.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mutex.h>
32 
33 #include <sound/core.h>
34 #include <sound/initval.h>
35 #include <sound/info.h>
36 #include <sound/control.h>
37 #include <sound/pcm.h>
38 #include <sound/pcm_params.h>
39 #include "pcxhr.h"
40 #include "pcxhr_mixer.h"
41 #include "pcxhr_hwdep.h"
42 #include "pcxhr_core.h"
43 
44 #define DRIVER_NAME "pcxhr"
45 
46 MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>");
47 MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
48 MODULE_LICENSE("GPL");
49 MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}");
50 
51 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;		/* Index 0-MAX */
52 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;		/* ID for this card */
53 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
54 static int mono[SNDRV_CARDS];					/* capture in mono only */
55 
56 module_param_array(index, int, NULL, 0444);
57 MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
58 module_param_array(id, charp, NULL, 0444);
59 MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
60 module_param_array(enable, bool, NULL, 0444);
61 MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
62 module_param_array(mono, bool, NULL, 0444);
63 MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");
64 
65 enum {
66 	PCI_ID_VX882HR,
67 	PCI_ID_PCX882HR,
68 	PCI_ID_VX881HR,
69 	PCI_ID_PCX881HR,
70 	PCI_ID_PCX1222HR,
71 	PCI_ID_PCX1221HR,
72 	PCI_ID_LAST
73 };
74 
75 static struct pci_device_id pcxhr_ids[] = {
76 	{ 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, },   /* VX882HR */
77 	{ 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, },  /* PCX882HR */
78 	{ 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, },   /* VX881HR */
79 	{ 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, },  /* PCX881HR */
80 	{ 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, /* PCX1222HR */
81 	{ 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, /* PCX1221HR */
82 	{ 0, }
83 };
84 
85 MODULE_DEVICE_TABLE(pci, pcxhr_ids);
86 
87 struct board_parameters {
88 	char* board_name;
89 	short playback_chips;
90 	short capture_chips;
91 	short firmware_num;
92 };
93 static struct board_parameters pcxhr_board_params[] = {
94 [PCI_ID_VX882HR] =	{ "VX882HR",   4, 4, 41, },
95 [PCI_ID_PCX882HR] =	{ "PCX882HR",  4, 4, 41, },
96 [PCI_ID_VX881HR] =	{ "VX881HR",   4, 4, 41, },
97 [PCI_ID_PCX881HR] =	{ "PCX881HR",  4, 4, 41, },
98 [PCI_ID_PCX1222HR] =	{ "PCX1222HR", 6, 1, 42, },
99 [PCI_ID_PCX1221HR] =	{ "PCX1221HR", 6, 1, 42, },
100 };
101 
102 
103 static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
104 				   unsigned int* realfreq)
105 {
106 	unsigned int reg;
107 
108 	if (freq < 6900 || freq > 110250)
109 		return -EINVAL;
110 	reg = (28224000 * 10) / freq;
111 	reg = (reg + 5) / 10;
112 	if (reg < 0x200)
113 		*pllreg = reg + 0x800;
114 	else if (reg < 0x400)
115 		*pllreg = reg & 0x1ff;
116 	else if (reg < 0x800) {
117 		*pllreg = ((reg >> 1) & 0x1ff) + 0x200;
118 		reg &= ~1;
119 	} else {
120 		*pllreg = ((reg >> 2) & 0x1ff) + 0x400;
121 		reg &= ~3;
122 	}
123 	if (realfreq)
124 		*realfreq = ((28224000 * 10) / reg + 5) / 10;
125 	return 0;
126 }
127 
128 
129 #define PCXHR_FREQ_REG_MASK		0x1f
130 #define PCXHR_FREQ_QUARTZ_48000		0x00
131 #define PCXHR_FREQ_QUARTZ_24000		0x01
132 #define PCXHR_FREQ_QUARTZ_12000		0x09
133 #define PCXHR_FREQ_QUARTZ_32000		0x08
134 #define PCXHR_FREQ_QUARTZ_16000		0x04
135 #define PCXHR_FREQ_QUARTZ_8000		0x0c
136 #define PCXHR_FREQ_QUARTZ_44100		0x02
137 #define PCXHR_FREQ_QUARTZ_22050		0x0a
138 #define PCXHR_FREQ_QUARTZ_11025		0x06
139 #define PCXHR_FREQ_PLL			0x05
140 #define PCXHR_FREQ_QUARTZ_192000	0x10
141 #define PCXHR_FREQ_QUARTZ_96000		0x18
142 #define PCXHR_FREQ_QUARTZ_176400	0x14
143 #define PCXHR_FREQ_QUARTZ_88200		0x1c
144 #define PCXHR_FREQ_QUARTZ_128000	0x12
145 #define PCXHR_FREQ_QUARTZ_64000		0x1a
146 
147 #define PCXHR_FREQ_WORD_CLOCK		0x0f
148 #define PCXHR_FREQ_SYNC_AES		0x0e
149 #define PCXHR_FREQ_AES_1		0x07
150 #define PCXHR_FREQ_AES_2		0x0b
151 #define PCXHR_FREQ_AES_3		0x03
152 #define PCXHR_FREQ_AES_4		0x0d
153 
154 #define PCXHR_MODIFY_CLOCK_S_BIT	0x04
155 
156 #define PCXHR_IRQ_TIMER_FREQ		92000
157 #define PCXHR_IRQ_TIMER_PERIOD		48
158 
159 static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
160 			       unsigned int *reg, unsigned int *freq)
161 {
162 	unsigned int val, realfreq, pllreg;
163 	struct pcxhr_rmh rmh;
164 	int err;
165 
166 	realfreq = rate;
167 	switch (mgr->use_clock_type) {
168 	case PCXHR_CLOCK_TYPE_INTERNAL :	/* clock by quartz or pll */
169 		switch (rate) {
170 		case 48000 :	val = PCXHR_FREQ_QUARTZ_48000;	break;
171 		case 24000 :	val = PCXHR_FREQ_QUARTZ_24000;	break;
172 		case 12000 :	val = PCXHR_FREQ_QUARTZ_12000;	break;
173 		case 32000 :	val = PCXHR_FREQ_QUARTZ_32000;	break;
174 		case 16000 :	val = PCXHR_FREQ_QUARTZ_16000;	break;
175 		case 8000 :	val = PCXHR_FREQ_QUARTZ_8000;	break;
176 		case 44100 :	val = PCXHR_FREQ_QUARTZ_44100;	break;
177 		case 22050 :	val = PCXHR_FREQ_QUARTZ_22050;	break;
178 		case 11025 :	val = PCXHR_FREQ_QUARTZ_11025;	break;
179 		case 192000 :	val = PCXHR_FREQ_QUARTZ_192000;	break;
180 		case 96000 :	val = PCXHR_FREQ_QUARTZ_96000;	break;
181 		case 176400 :	val = PCXHR_FREQ_QUARTZ_176400;	break;
182 		case 88200 :	val = PCXHR_FREQ_QUARTZ_88200;	break;
183 		case 128000 :	val = PCXHR_FREQ_QUARTZ_128000;	break;
184 		case 64000 :	val = PCXHR_FREQ_QUARTZ_64000;	break;
185 		default :
186 			val = PCXHR_FREQ_PLL;
187 			/* get the value for the pll register */
188 			err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
189 			if (err)
190 				return err;
191 			pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
192 			rmh.cmd[0] |= IO_NUM_REG_GENCLK;
193 			rmh.cmd[1]  = pllreg & MASK_DSP_WORD;
194 			rmh.cmd[2]  = pllreg >> 24;
195 			rmh.cmd_len = 3;
196 			err = pcxhr_send_msg(mgr, &rmh);
197 			if (err < 0) {
198 				snd_printk(KERN_ERR
199 					   "error CMD_ACCESS_IO_WRITE for PLL register : %x!\n",
200 					   err );
201 				return err;
202 			}
203 		}
204 		break;
205 	case PCXHR_CLOCK_TYPE_WORD_CLOCK :	val = PCXHR_FREQ_WORD_CLOCK;	break;
206 	case PCXHR_CLOCK_TYPE_AES_SYNC :	val = PCXHR_FREQ_SYNC_AES;	break;
207 	case PCXHR_CLOCK_TYPE_AES_1 :		val = PCXHR_FREQ_AES_1;		break;
208 	case PCXHR_CLOCK_TYPE_AES_2 :		val = PCXHR_FREQ_AES_2;		break;
209 	case PCXHR_CLOCK_TYPE_AES_3 :		val = PCXHR_FREQ_AES_3;		break;
210 	case PCXHR_CLOCK_TYPE_AES_4 :		val = PCXHR_FREQ_AES_4;		break;
211 	default : return -EINVAL;
212 	}
213 	*reg = val;
214 	*freq = realfreq;
215 	return 0;
216 }
217 
218 
219 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
220 {
221 	unsigned int val, realfreq, speed;
222 	struct pcxhr_rmh rmh;
223 	int err, changed;
224 
225 	if (rate == 0)
226 		return 0; /* nothing to do */
227 
228 	err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
229 	if (err)
230 		return err;
231 
232 	/* codec speed modes */
233 	if (rate < 55000)
234 		speed = 0;	/* single speed */
235 	else if (rate < 100000)
236 		speed = 1;	/* dual speed */
237 	else
238 		speed = 2;	/* quad speed */
239 	if (mgr->codec_speed != speed) {
240 		pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);	/* mute outputs */
241 		rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
242 		err = pcxhr_send_msg(mgr, &rmh);
243 		if (err)
244 			return err;
245 
246 		pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);	/* set speed ratio */
247 		rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
248 		rmh.cmd[1] = speed;
249 		rmh.cmd_len = 2;
250 		err = pcxhr_send_msg(mgr, &rmh);
251 		if (err)
252 			return err;
253 	}
254 	/* set the new frequency */
255 	snd_printdd("clock register : set %x\n", val);
256 	err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, &changed);
257 	if (err)
258 		return err;
259 	mgr->sample_rate_real = realfreq;
260 	mgr->cur_clock_type = mgr->use_clock_type;
261 
262 	/* unmute after codec speed modes */
263 	if (mgr->codec_speed != speed) {
264 		pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);	/* unmute outputs */
265 		rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
266 		err = pcxhr_send_msg(mgr, &rmh);
267 		if (err)
268 			return err;
269 		mgr->codec_speed = speed;			/* save new codec speed */
270 	}
271 
272 	if (changed) {
273 		pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
274 		rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT;		/* resync fifos  */
275 		if (rate < PCXHR_IRQ_TIMER_FREQ)
276 			rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
277 		else
278 			rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
279 		rmh.cmd[2] = rate;
280 		rmh.cmd_len = 3;
281 		err = pcxhr_send_msg(mgr, &rmh);
282 		if (err)
283 			return err;
284 	}
285 	snd_printdd("pcxhr_set_clock to %dHz (realfreq=%d)\n", rate, realfreq);
286 	return 0;
287 }
288 
289 
290 int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type,
291 			     int *sample_rate)
292 {
293 	struct pcxhr_rmh rmh;
294 	unsigned char reg;
295 	int err, rate;
296 
297 	switch (clock_type) {
298 	case PCXHR_CLOCK_TYPE_WORD_CLOCK :	reg = REG_STATUS_WORD_CLOCK;	break;
299 	case PCXHR_CLOCK_TYPE_AES_SYNC :	reg = REG_STATUS_AES_SYNC;	break;
300 	case PCXHR_CLOCK_TYPE_AES_1 :		reg = REG_STATUS_AES_1;		break;
301 	case PCXHR_CLOCK_TYPE_AES_2 :		reg = REG_STATUS_AES_2;		break;
302 	case PCXHR_CLOCK_TYPE_AES_3 :		reg = REG_STATUS_AES_3;		break;
303 	case PCXHR_CLOCK_TYPE_AES_4 :		reg = REG_STATUS_AES_4;		break;
304 	default : return -EINVAL;
305 	}
306 	pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
307 	rmh.cmd_len = 2;
308 	rmh.cmd[0] |= IO_NUM_REG_STATUS;
309 	if (mgr->last_reg_stat != reg) {
310 		rmh.cmd[1]  = reg;
311 		err = pcxhr_send_msg(mgr, &rmh);
312 		if (err)
313 			return err;
314 		udelay(100);		/* wait minimum 2 sample_frames at 32kHz ! */
315 		mgr->last_reg_stat = reg;
316 	}
317 	rmh.cmd[1]  = REG_STATUS_CURRENT;
318 	err = pcxhr_send_msg(mgr, &rmh);
319 	if (err)
320 		return err;
321 	switch (rmh.stat[1] & 0x0f) {
322 	case REG_STATUS_SYNC_32000 :	rate = 32000; break;
323 	case REG_STATUS_SYNC_44100 :	rate = 44100; break;
324 	case REG_STATUS_SYNC_48000 :	rate = 48000; break;
325 	case REG_STATUS_SYNC_64000 :	rate = 64000; break;
326 	case REG_STATUS_SYNC_88200 :	rate = 88200; break;
327 	case REG_STATUS_SYNC_96000 :	rate = 96000; break;
328 	case REG_STATUS_SYNC_128000 :	rate = 128000; break;
329 	case REG_STATUS_SYNC_176400 :	rate = 176400; break;
330 	case REG_STATUS_SYNC_192000 :	rate = 192000; break;
331 	default: rate = 0;
332 	}
333 	snd_printdd("External clock is at %d Hz\n", rate);
334 	*sample_rate = rate;
335 	return 0;
336 }
337 
338 
339 /*
340  *  start or stop playback/capture substream
341  */
342 static int pcxhr_set_stream_state(struct pcxhr_stream *stream)
343 {
344 	int err;
345 	struct snd_pcxhr *chip;
346 	struct pcxhr_rmh rmh;
347 	int stream_mask, start;
348 
349 	if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
350 		start = 1;
351 	else {
352 		if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
353 			snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state CANNOT be stopped\n");
354 			return -EINVAL;
355 		}
356 		start = 0;
357 	}
358 	if (!stream->substream)
359 		return -EINVAL;
360 
361 	stream->timer_abs_periods = 0;
362 	stream->timer_period_frag = 0;            /* reset theoretical stream pos */
363 	stream->timer_buf_periods = 0;
364 	stream->timer_is_synced = 0;
365 
366 	stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number;
367 
368 	pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
369 	pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
370 				  stream->pipe->first_audio, 0, stream_mask);
371 
372 	chip = snd_pcm_substream_chip(stream->substream);
373 
374 	err = pcxhr_send_msg(chip->mgr, &rmh);
375 	if (err)
376 		snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n", err);
377 	stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
378 	return err;
379 }
380 
381 #define HEADER_FMT_BASE_LIN		0xfed00000
382 #define HEADER_FMT_BASE_FLOAT		0xfad00000
383 #define HEADER_FMT_INTEL		0x00008000
384 #define HEADER_FMT_24BITS		0x00004000
385 #define HEADER_FMT_16BITS		0x00002000
386 #define HEADER_FMT_UPTO11		0x00000200
387 #define HEADER_FMT_UPTO32		0x00000100
388 #define HEADER_FMT_MONO			0x00000080
389 
390 static int pcxhr_set_format(struct pcxhr_stream *stream)
391 {
392 	int err, is_capture, sample_rate, stream_num;
393 	struct snd_pcxhr *chip;
394 	struct pcxhr_rmh rmh;
395 	unsigned int header;
396 
397 	switch (stream->format) {
398 	case SNDRV_PCM_FORMAT_U8:
399 		header = HEADER_FMT_BASE_LIN;
400 		break;
401 	case SNDRV_PCM_FORMAT_S16_LE:
402 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL;
403 		break;
404 	case SNDRV_PCM_FORMAT_S16_BE:
405 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
406 		break;
407 	case SNDRV_PCM_FORMAT_S24_3LE:
408 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL;
409 		break;
410 	case SNDRV_PCM_FORMAT_S24_3BE:
411 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
412 		break;
413 	case SNDRV_PCM_FORMAT_FLOAT_LE:
414 		header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
415 		break;
416 	default:
417 		snd_printk(KERN_ERR "error pcxhr_set_format() : unknown format\n");
418 		return -EINVAL;
419 	}
420 	chip = snd_pcm_substream_chip(stream->substream);
421 
422 	sample_rate = chip->mgr->sample_rate;
423 	if (sample_rate <= 32000 && sample_rate !=0) {
424 		if (sample_rate <= 11025)
425 			header |= HEADER_FMT_UPTO11;
426 		else
427 			header |= HEADER_FMT_UPTO32;
428 	}
429 	if (stream->channels == 1)
430 		header |= HEADER_FMT_MONO;
431 
432 	is_capture = stream->pipe->is_capture;
433 	stream_num = is_capture ? 0 : stream->substream->number;
434 
435 	pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
436 	pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
437 	if (is_capture)
438 		rmh.cmd[0] |= 1<<12;
439 	rmh.cmd[1] = 0;
440 	rmh.cmd[2] = header >> 8;
441 	rmh.cmd[3] = (header & 0xff) << 16;
442 	rmh.cmd_len = 4;
443 	err = pcxhr_send_msg(chip->mgr, &rmh);
444 	if (err)
445 		snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err);
446 	return err;
447 }
448 
449 static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
450 {
451 	int err, is_capture, stream_num;
452 	struct pcxhr_rmh rmh;
453 	struct snd_pcm_substream *subs = stream->substream;
454 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
455 
456 	is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
457 	stream_num = is_capture ? 0 : subs->number;
458 
459 	snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n",
460 		    is_capture ? 'c' : 'p',
461 		    chip->chip_idx, (void *)(long)subs->runtime->dma_addr,
462 		    subs->runtime->dma_bytes, subs->number);
463 
464 	pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
465 	pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
466 
467 	/* max buffer size is 2 MByte */
468 	snd_BUG_ON(subs->runtime->dma_bytes >= 0x200000);
469 	rmh.cmd[1] = subs->runtime->dma_bytes * 8;		/* size in bits */
470 	rmh.cmd[2] = subs->runtime->dma_addr >> 24;		/* most significant byte */
471 	rmh.cmd[2] |= 1<<19;					/* this is a circular buffer */
472 	rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD;	/* least 3 significant bytes */
473 	rmh.cmd_len = 4;
474 	err = pcxhr_send_msg(chip->mgr, &rmh);
475 	if (err)
476 		snd_printk(KERN_ERR "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
477 	return err;
478 }
479 
480 
481 #if 0
482 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count)
483 {
484 	struct pcxhr_rmh rmh;
485 	int err;
486 	pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
487 	pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
488 	pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
489 				  1<<stream->pipe->first_audio);
490 	err = pcxhr_send_msg(chip->mgr, &rmh);
491 	if (err == 0) {
492 		*sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
493 		*sample_count += (snd_pcm_uframes_t)rmh.stat[1];
494 	}
495 	snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
496 	return err;
497 }
498 #endif
499 
500 static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
501 						  struct pcxhr_pipe **pipe)
502 {
503 	if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
504 		*pipe = stream->pipe;
505 		return 1;
506 	}
507 	return 0;
508 }
509 
510 static void pcxhr_trigger_tasklet(unsigned long arg)
511 {
512 	unsigned long flags;
513 	int i, j, err;
514 	struct pcxhr_pipe *pipe;
515 	struct snd_pcxhr *chip;
516 	struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg);
517 	int capture_mask = 0;
518 	int playback_mask = 0;
519 
520 #ifdef CONFIG_SND_DEBUG_VERBOSE
521 	struct timeval my_tv1, my_tv2;
522 	do_gettimeofday(&my_tv1);
523 #endif
524 	mutex_lock(&mgr->setup_mutex);
525 
526 	/* check the pipes concerned and build pipe_array */
527 	for (i = 0; i < mgr->num_cards; i++) {
528 		chip = mgr->chip[i];
529 		for (j = 0; j < chip->nb_streams_capt; j++) {
530 			if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
531 				capture_mask |= (1 << pipe->first_audio);
532 		}
533 		for (j = 0; j < chip->nb_streams_play; j++) {
534 			if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
535 				playback_mask |= (1 << pipe->first_audio);
536 				break;	/* add only once, as all playback streams of
537 					 * one chip use the same pipe
538 					 */
539 			}
540 		}
541 	}
542 	if (capture_mask == 0 && playback_mask == 0) {
543 		mutex_unlock(&mgr->setup_mutex);
544 		snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n");
545 		return;
546 	}
547 
548 	snd_printdd("pcxhr_trigger_tasklet : playback_mask=%x capture_mask=%x\n",
549 		    playback_mask, capture_mask);
550 
551 	/* synchronous stop of all the pipes concerned */
552 	err = pcxhr_set_pipe_state(mgr,  playback_mask, capture_mask, 0);
553 	if (err) {
554 		mutex_unlock(&mgr->setup_mutex);
555 		snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error stop pipes (P%x C%x)\n",
556 			   playback_mask, capture_mask);
557 		return;
558 	}
559 
560 	/* unfortunately the dsp lost format and buffer info with the stop pipe */
561 	for (i = 0; i < mgr->num_cards; i++) {
562 		struct pcxhr_stream *stream;
563 		chip = mgr->chip[i];
564 		for (j = 0; j < chip->nb_streams_capt; j++) {
565 			stream = &chip->capture_stream[j];
566 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
567 				err = pcxhr_set_format(stream);
568 				err = pcxhr_update_r_buffer(stream);
569 			}
570 		}
571 		for (j = 0; j < chip->nb_streams_play; j++) {
572 			stream = &chip->playback_stream[j];
573 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
574 				err = pcxhr_set_format(stream);
575 				err = pcxhr_update_r_buffer(stream);
576 			}
577 		}
578 	}
579 	/* start all the streams */
580 	for (i = 0; i < mgr->num_cards; i++) {
581 		struct pcxhr_stream *stream;
582 		chip = mgr->chip[i];
583 		for (j = 0; j < chip->nb_streams_capt; j++) {
584 			stream = &chip->capture_stream[j];
585 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
586 				err = pcxhr_set_stream_state(stream);
587 		}
588 		for (j = 0; j < chip->nb_streams_play; j++) {
589 			stream = &chip->playback_stream[j];
590 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
591 				err = pcxhr_set_stream_state(stream);
592 		}
593 	}
594 
595 	/* synchronous start of all the pipes concerned */
596 	err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
597 	if (err) {
598 		mutex_unlock(&mgr->setup_mutex);
599 		snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error start pipes (P%x C%x)\n",
600 			   playback_mask, capture_mask);
601 		return;
602 	}
603 
604 	/* put the streams into the running state now (increment pointer by interrupt) */
605 	spin_lock_irqsave(&mgr->lock, flags);
606 	for ( i =0; i < mgr->num_cards; i++) {
607 		struct pcxhr_stream *stream;
608 		chip = mgr->chip[i];
609 		for(j = 0; j < chip->nb_streams_capt; j++) {
610 			stream = &chip->capture_stream[j];
611 			if(stream->status == PCXHR_STREAM_STATUS_STARTED)
612 				stream->status = PCXHR_STREAM_STATUS_RUNNING;
613 		}
614 		for (j = 0; j < chip->nb_streams_play; j++) {
615 			stream = &chip->playback_stream[j];
616 			if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
617 				/* playback will already have advanced ! */
618 				stream->timer_period_frag += PCXHR_GRANULARITY;
619 				stream->status = PCXHR_STREAM_STATUS_RUNNING;
620 			}
621 		}
622 	}
623 	spin_unlock_irqrestore(&mgr->lock, flags);
624 
625 	mutex_unlock(&mgr->setup_mutex);
626 
627 #ifdef CONFIG_SND_DEBUG_VERBOSE
628 	do_gettimeofday(&my_tv2);
629 	snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n",
630 		    (long)(my_tv2.tv_usec - my_tv1.tv_usec), err);
631 #endif
632 }
633 
634 
635 /*
636  *  trigger callback
637  */
638 static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
639 {
640 	struct pcxhr_stream *stream;
641 	struct snd_pcm_substream *s;
642 
643 	switch (cmd) {
644 	case SNDRV_PCM_TRIGGER_START:
645 		snd_printdd("SNDRV_PCM_TRIGGER_START\n");
646 		if (snd_pcm_stream_linked(subs)) {
647 			struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
648 			snd_pcm_group_for_each_entry(s, subs) {
649 				if (snd_pcm_substream_chip(s) != chip)
650 					continue;
651 				stream = s->runtime->private_data;
652 				stream->status =
653 					PCXHR_STREAM_STATUS_SCHEDULE_RUN;
654 				snd_pcm_trigger_done(s, subs);
655 			}
656 			tasklet_hi_schedule(&chip->mgr->trigger_taskq);
657 		} else {
658 			stream = subs->runtime->private_data;
659 			snd_printdd("Only one Substream %c %d\n",
660 				    stream->pipe->is_capture ? 'C' : 'P',
661 				    stream->pipe->first_audio);
662 			if (pcxhr_set_format(stream))
663 				return -EINVAL;
664 			if (pcxhr_update_r_buffer(stream))
665 				return -EINVAL;
666 
667 			stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN;
668 			if (pcxhr_set_stream_state(stream))
669 				return -EINVAL;
670 			stream->status = PCXHR_STREAM_STATUS_RUNNING;
671 		}
672 		break;
673 	case SNDRV_PCM_TRIGGER_STOP:
674 		snd_printdd("SNDRV_PCM_TRIGGER_STOP\n");
675 		snd_pcm_group_for_each_entry(s, subs) {
676 			stream = s->runtime->private_data;
677 			stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
678 			if (pcxhr_set_stream_state(stream))
679 				return -EINVAL;
680 			snd_pcm_trigger_done(s, subs);
681 		}
682 		break;
683 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
684 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
685 		/* TODO */
686 	default:
687 		return -EINVAL;
688 	}
689 	return 0;
690 }
691 
692 
693 static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
694 {
695 	struct pcxhr_rmh rmh;
696 	int err;
697 
698 	pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
699 	if (start) {
700 		mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID;	/* last dsp time invalid */
701 		rmh.cmd[0] |= PCXHR_GRANULARITY;
702 	}
703 	err = pcxhr_send_msg(mgr, &rmh);
704 	if (err < 0)
705 		snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n", err);
706 	return err;
707 }
708 
709 /*
710  *  prepare callback for all pcms
711  */
712 static int pcxhr_prepare(struct snd_pcm_substream *subs)
713 {
714 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
715 	struct pcxhr_mgr *mgr = chip->mgr;
716 	/*
717 	struct pcxhr_stream *stream = (pcxhr_stream_t*)subs->runtime->private_data;
718 	*/
719 	int err = 0;
720 
721 	snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n",
722 		    subs->runtime->period_size, subs->runtime->periods,
723 		    subs->runtime->buffer_size);
724 
725 	/*
726 	if(subs->runtime->period_size <= PCXHR_GRANULARITY) {
727 		snd_printk(KERN_ERR "pcxhr_prepare : error period_size too small (%x)\n",
728 			   (unsigned int)subs->runtime->period_size);
729 		return -EINVAL;
730 	}
731 	*/
732 
733 	mutex_lock(&mgr->setup_mutex);
734 
735 	do {
736 		/* if the stream was stopped before, format and buffer were reset */
737 		/*
738 		if(stream->status == PCXHR_STREAM_STATUS_STOPPED) {
739 			err = pcxhr_set_format(stream);
740 			if(err) break;
741 			err = pcxhr_update_r_buffer(stream);
742 			if(err) break;
743 		}
744 		*/
745 
746 		/* only the first stream can choose the sample rate */
747 		/* the further opened streams will be limited to its frequency (see open) */
748 		/* set the clock only once (first stream) */
749 		if (mgr->sample_rate != subs->runtime->rate) {
750 			err = pcxhr_set_clock(mgr, subs->runtime->rate);
751 			if (err)
752 				break;
753 			if (mgr->sample_rate == 0)
754 				/* start the DSP-timer */
755 				err = pcxhr_hardware_timer(mgr, 1);
756 			mgr->sample_rate = subs->runtime->rate;
757 		}
758 	} while(0);	/* do only once (so we can use break instead of goto) */
759 
760 	mutex_unlock(&mgr->setup_mutex);
761 
762 	return err;
763 }
764 
765 
766 /*
767  *  HW_PARAMS callback for all pcms
768  */
769 static int pcxhr_hw_params(struct snd_pcm_substream *subs,
770 			   struct snd_pcm_hw_params *hw)
771 {
772 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
773 	struct pcxhr_mgr *mgr = chip->mgr;
774 	struct pcxhr_stream *stream = subs->runtime->private_data;
775 	snd_pcm_format_t format;
776 	int err;
777 	int channels;
778 
779 	/* set up channels */
780 	channels = params_channels(hw);
781 
782 	/*  set up format for the stream */
783 	format = params_format(hw);
784 
785 	mutex_lock(&mgr->setup_mutex);
786 
787 	stream->channels = channels;
788 	stream->format = format;
789 
790 	/* set the format to the board */
791 	/*
792 	err = pcxhr_set_format(stream);
793 	if(err) {
794 		mutex_unlock(&mgr->setup_mutex);
795 		return err;
796 	}
797 	*/
798 	/* allocate buffer */
799 	err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw));
800 
801 	/*
802 	if (err > 0) {
803 		err = pcxhr_update_r_buffer(stream);
804 	}
805 	*/
806 	mutex_unlock(&mgr->setup_mutex);
807 
808 	return err;
809 }
810 
811 static int pcxhr_hw_free(struct snd_pcm_substream *subs)
812 {
813 	snd_pcm_lib_free_pages(subs);
814 	return 0;
815 }
816 
817 
818 /*
819  *  CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
820  */
821 static struct snd_pcm_hardware pcxhr_caps =
822 {
823 	.info             = ( SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
824 			      SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
825 			      0 /*SNDRV_PCM_INFO_PAUSE*/),
826 	.formats	  = ( SNDRV_PCM_FMTBIT_U8 |
827 			      SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE |
828 			      SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE |
829 			      SNDRV_PCM_FMTBIT_FLOAT_LE ),
830 	.rates            = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000,
831 	.rate_min         = 8000,
832 	.rate_max         = 192000,
833 	.channels_min     = 1,
834 	.channels_max     = 2,
835 	.buffer_bytes_max = (32*1024),
836 	/* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
837 	.period_bytes_min = (2*PCXHR_GRANULARITY),
838 	.period_bytes_max = (16*1024),
839 	.periods_min      = 2,
840 	.periods_max      = (32*1024/PCXHR_GRANULARITY),
841 };
842 
843 
844 static int pcxhr_open(struct snd_pcm_substream *subs)
845 {
846 	struct snd_pcxhr       *chip = snd_pcm_substream_chip(subs);
847 	struct pcxhr_mgr       *mgr = chip->mgr;
848 	struct snd_pcm_runtime *runtime = subs->runtime;
849 	struct pcxhr_stream    *stream;
850 
851 	mutex_lock(&mgr->setup_mutex);
852 
853 	/* copy the struct snd_pcm_hardware struct */
854 	runtime->hw = pcxhr_caps;
855 
856 	if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
857 		snd_printdd("pcxhr_open playback chip%d subs%d\n",
858 			    chip->chip_idx, subs->number);
859 		stream = &chip->playback_stream[subs->number];
860 	} else {
861 		snd_printdd("pcxhr_open capture chip%d subs%d\n",
862 			    chip->chip_idx, subs->number);
863 		if (mgr->mono_capture)
864 			runtime->hw.channels_max = 1;
865 		else
866 			runtime->hw.channels_min = 2;
867 		stream = &chip->capture_stream[subs->number];
868 	}
869 	if (stream->status != PCXHR_STREAM_STATUS_FREE){
870 		/* streams in use */
871 		snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n",
872 			   chip->chip_idx, subs->number);
873 		mutex_unlock(&mgr->setup_mutex);
874 		return -EBUSY;
875 	}
876 
877 	/* if a sample rate is already used or fixed by external clock,
878 	 * the stream cannot change
879 	 */
880 	if (mgr->sample_rate)
881 		runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
882 	else {
883 		if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
884 			int external_rate;
885 			if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
886 						     &external_rate) ||
887 			    external_rate == 0) {
888 				/* cannot detect the external clock rate */
889 				mutex_unlock(&mgr->setup_mutex);
890 				return -EBUSY;
891 			}
892 			runtime->hw.rate_min = runtime->hw.rate_max = external_rate;
893 		}
894 	}
895 
896 	stream->status      = PCXHR_STREAM_STATUS_OPEN;
897 	stream->substream   = subs;
898 	stream->channels    = 0; /* not configured yet */
899 
900 	runtime->private_data = stream;
901 
902 	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4);
903 	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 4);
904 
905 	snd_pcm_set_sync(subs);
906 
907 	mgr->ref_count_rate++;
908 
909 	mutex_unlock(&mgr->setup_mutex);
910 	return 0;
911 }
912 
913 
914 static int pcxhr_close(struct snd_pcm_substream *subs)
915 {
916 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
917 	struct pcxhr_mgr *mgr = chip->mgr;
918 	struct pcxhr_stream *stream = subs->runtime->private_data;
919 
920 	mutex_lock(&mgr->setup_mutex);
921 
922 	snd_printdd("pcxhr_close chip%d subs%d\n", chip->chip_idx, subs->number);
923 
924 	/* sample rate released */
925 	if (--mgr->ref_count_rate == 0) {
926 		mgr->sample_rate = 0;		/* the sample rate is no more locked */
927 		pcxhr_hardware_timer(mgr, 0);	/* stop the DSP-timer */
928 	}
929 
930 	stream->status    = PCXHR_STREAM_STATUS_FREE;
931 	stream->substream = NULL;
932 
933 	mutex_unlock(&mgr->setup_mutex);
934 
935 	return 0;
936 }
937 
938 
939 static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
940 {
941 	unsigned long flags;
942 	u_int32_t timer_period_frag;
943 	int timer_buf_periods;
944 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
945 	struct snd_pcm_runtime *runtime = subs->runtime;
946 	struct pcxhr_stream *stream  = runtime->private_data;
947 
948 	spin_lock_irqsave(&chip->mgr->lock, flags);
949 
950 	/* get the period fragment and the nb of periods in the buffer */
951 	timer_period_frag = stream->timer_period_frag;
952 	timer_buf_periods = stream->timer_buf_periods;
953 
954 	spin_unlock_irqrestore(&chip->mgr->lock, flags);
955 
956 	return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
957 				   timer_period_frag);
958 }
959 
960 
961 static struct snd_pcm_ops pcxhr_ops = {
962 	.open      = pcxhr_open,
963 	.close     = pcxhr_close,
964 	.ioctl     = snd_pcm_lib_ioctl,
965 	.prepare   = pcxhr_prepare,
966 	.hw_params = pcxhr_hw_params,
967 	.hw_free   = pcxhr_hw_free,
968 	.trigger   = pcxhr_trigger,
969 	.pointer   = pcxhr_stream_pointer,
970 };
971 
972 /*
973  */
974 int pcxhr_create_pcm(struct snd_pcxhr *chip)
975 {
976 	int err;
977 	struct snd_pcm *pcm;
978 	char name[32];
979 
980 	sprintf(name, "pcxhr %d", chip->chip_idx);
981 	if ((err = snd_pcm_new(chip->card, name, 0,
982 			       chip->nb_streams_play,
983 			       chip->nb_streams_capt, &pcm)) < 0) {
984 		snd_printk(KERN_ERR "cannot create pcm %s\n", name);
985 		return err;
986 	}
987 	pcm->private_data = chip;
988 
989 	if (chip->nb_streams_play)
990 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
991 	if (chip->nb_streams_capt)
992 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);
993 
994 	pcm->info_flags = 0;
995 	strcpy(pcm->name, name);
996 
997 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
998 					      snd_dma_pci_data(chip->mgr->pci),
999 					      32*1024, 32*1024);
1000 	chip->pcm = pcm;
1001 	return 0;
1002 }
1003 
1004 static int pcxhr_chip_free(struct snd_pcxhr *chip)
1005 {
1006 	kfree(chip);
1007 	return 0;
1008 }
1009 
1010 static int pcxhr_chip_dev_free(struct snd_device *device)
1011 {
1012 	struct snd_pcxhr *chip = device->device_data;
1013 	return pcxhr_chip_free(chip);
1014 }
1015 
1016 
1017 /*
1018  */
1019 static int __devinit pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx)
1020 {
1021 	int err;
1022 	struct snd_pcxhr *chip;
1023 	static struct snd_device_ops ops = {
1024 		.dev_free = pcxhr_chip_dev_free,
1025 	};
1026 
1027 	mgr->chip[idx] = chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1028 	if (! chip) {
1029 		snd_printk(KERN_ERR "cannot allocate chip\n");
1030 		return -ENOMEM;
1031 	}
1032 
1033 	chip->card = card;
1034 	chip->chip_idx = idx;
1035 	chip->mgr = mgr;
1036 
1037 	if (idx < mgr->playback_chips)
1038 		/* stereo or mono streams */
1039 		chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;
1040 
1041 	if (idx < mgr->capture_chips) {
1042 		if (mgr->mono_capture)
1043 			chip->nb_streams_capt = 2;	/* 2 mono streams (left+right) */
1044 		else
1045 			chip->nb_streams_capt = 1;	/* or 1 stereo stream */
1046 	}
1047 
1048 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1049 		pcxhr_chip_free(chip);
1050 		return err;
1051 	}
1052 
1053 	snd_card_set_dev(card, &mgr->pci->dev);
1054 
1055 	return 0;
1056 }
1057 
1058 /* proc interface */
1059 static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
1060 {
1061 	struct snd_pcxhr *chip = entry->private_data;
1062 	struct pcxhr_mgr *mgr = chip->mgr;
1063 
1064 	snd_iprintf(buffer, "\n%s\n", mgr->longname);
1065 
1066 	/* stats available when embedded DSP is running */
1067 	if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1068 		struct pcxhr_rmh rmh;
1069 		short ver_maj = (mgr->dsp_version >> 16) & 0xff;
1070 		short ver_min = (mgr->dsp_version >> 8) & 0xff;
1071 		short ver_build = mgr->dsp_version & 0xff;
1072 		snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING);
1073 		snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build);
1074 		if (mgr->board_has_analog)
1075 			snd_iprintf(buffer, "analog io available\n");
1076 		else
1077 			snd_iprintf(buffer, "digital only board\n");
1078 
1079 		/* calc cpu load of the dsp */
1080 		pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
1081 		if( ! pcxhr_send_msg(mgr, &rmh) ) {
1082 			int cur = rmh.stat[0];
1083 			int ref = rmh.stat[1];
1084 			if (ref > 0) {
1085 				if (mgr->sample_rate_real != 0 &&
1086 				    mgr->sample_rate_real != 48000) {
1087 					ref = (ref * 48000) / mgr->sample_rate_real;
1088 					if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ)
1089 						ref *= 2;
1090 				}
1091 				cur = 100 - (100 * cur) / ref;
1092 				snd_iprintf(buffer, "cpu load    %d%%\n", cur);
1093 				snd_iprintf(buffer, "buffer pool %d/%d kWords\n",
1094 					    rmh.stat[2], rmh.stat[3]);
1095 			}
1096 		}
1097 		snd_iprintf(buffer, "dma granularity : %d\n", PCXHR_GRANULARITY);
1098 		snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err);
1099 		snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
1100 			    mgr->async_err_pipe_xrun);
1101 		snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
1102 			    mgr->async_err_stream_xrun);
1103 		snd_iprintf(buffer, "dsp async last other error : %x\n",
1104 			    mgr->async_err_other_last);
1105 		/* debug zone dsp */
1106 		rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
1107 		rmh.cmd_len = 1;
1108 		rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
1109 		rmh.dsp_stat = 0;
1110 		rmh.cmd_idx = CMD_LAST_INDEX;
1111 		if( ! pcxhr_send_msg(mgr, &rmh) ) {
1112 			int i;
1113 			for (i = 0; i < rmh.stat_len; i++)
1114 				snd_iprintf(buffer, "debug[%02d] = %06x\n", i,  rmh.stat[i]);
1115 		}
1116 	} else
1117 		snd_iprintf(buffer, "no firmware loaded\n");
1118 	snd_iprintf(buffer, "\n");
1119 }
1120 static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
1121 {
1122 	struct snd_pcxhr *chip = entry->private_data;
1123 	struct pcxhr_mgr *mgr = chip->mgr;
1124 	static char *texts[7] = {
1125 		"Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4"
1126 	};
1127 
1128 	snd_iprintf(buffer, "\n%s\n", mgr->longname);
1129 	snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]);
1130 	snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real);
1131 
1132 	/* commands available when embedded DSP is running */
1133 	if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1134 		int i, err, sample_rate;
1135 		for (i = PCXHR_CLOCK_TYPE_WORD_CLOCK; i< (3 + mgr->capture_chips); i++) {
1136 			err = pcxhr_get_external_clock(mgr, i, &sample_rate);
1137 			if (err)
1138 				break;
1139 			snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate);
1140 		}
1141 	} else
1142 		snd_iprintf(buffer, "no firmware loaded\n");
1143 	snd_iprintf(buffer, "\n");
1144 }
1145 
1146 static void __devinit pcxhr_proc_init(struct snd_pcxhr *chip)
1147 {
1148 	struct snd_info_entry *entry;
1149 
1150 	if (! snd_card_proc_new(chip->card, "info", &entry))
1151 		snd_info_set_text_ops(entry, chip, pcxhr_proc_info);
1152 	if (! snd_card_proc_new(chip->card, "sync", &entry))
1153 		snd_info_set_text_ops(entry, chip, pcxhr_proc_sync);
1154 }
1155 /* end of proc interface */
1156 
1157 /*
1158  * release all the cards assigned to a manager instance
1159  */
1160 static int pcxhr_free(struct pcxhr_mgr *mgr)
1161 {
1162 	unsigned int i;
1163 
1164 	for (i = 0; i < mgr->num_cards; i++) {
1165 		if (mgr->chip[i])
1166 			snd_card_free(mgr->chip[i]->card);
1167 	}
1168 
1169 	/* reset board if some firmware was loaded */
1170 	if(mgr->dsp_loaded) {
1171 		pcxhr_reset_board(mgr);
1172 		snd_printdd("reset pcxhr !\n");
1173 	}
1174 
1175 	/* release irq  */
1176 	if (mgr->irq >= 0)
1177 		free_irq(mgr->irq, mgr);
1178 
1179 	pci_release_regions(mgr->pci);
1180 
1181 	/* free hostport purgebuffer */
1182 	if (mgr->hostport.area) {
1183 		snd_dma_free_pages(&mgr->hostport);
1184 		mgr->hostport.area = NULL;
1185 	}
1186 
1187 	kfree(mgr->prmh);
1188 
1189 	pci_disable_device(mgr->pci);
1190 	kfree(mgr);
1191 	return 0;
1192 }
1193 
1194 /*
1195  *    probe function - creates the card manager
1196  */
1197 static int __devinit pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1198 {
1199 	static int dev;
1200 	struct pcxhr_mgr *mgr;
1201 	unsigned int i;
1202 	int err;
1203 	size_t size;
1204 	char *card_name;
1205 
1206 	if (dev >= SNDRV_CARDS)
1207 		return -ENODEV;
1208 	if (! enable[dev]) {
1209 		dev++;
1210 		return -ENOENT;
1211 	}
1212 
1213 	/* enable PCI device */
1214 	if ((err = pci_enable_device(pci)) < 0)
1215 		return err;
1216 	pci_set_master(pci);
1217 
1218 	/* check if we can restrict PCI DMA transfers to 32 bits */
1219 	if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0) {
1220 		snd_printk(KERN_ERR "architecture does not support 32bit PCI busmaster DMA\n");
1221 		pci_disable_device(pci);
1222 		return -ENXIO;
1223 	}
1224 
1225 	/* alloc card manager */
1226 	mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
1227 	if (! mgr) {
1228 		pci_disable_device(pci);
1229 		return -ENOMEM;
1230 	}
1231 
1232 	if (snd_BUG_ON(pci_id->driver_data >= PCI_ID_LAST))
1233 		return -ENODEV;
1234 	card_name = pcxhr_board_params[pci_id->driver_data].board_name;
1235 	mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips;
1236 	mgr->capture_chips  = pcxhr_board_params[pci_id->driver_data].capture_chips;
1237 	mgr->firmware_num  = pcxhr_board_params[pci_id->driver_data].firmware_num;
1238 	mgr->mono_capture = mono[dev];
1239 
1240 	/* resource assignment */
1241 	if ((err = pci_request_regions(pci, card_name)) < 0) {
1242 		kfree(mgr);
1243 		pci_disable_device(pci);
1244 		return err;
1245 	}
1246 	for (i = 0; i < 3; i++)
1247 		mgr->port[i] = pci_resource_start(pci, i);
1248 
1249 	mgr->pci = pci;
1250 	mgr->irq = -1;
1251 
1252 	if (request_irq(pci->irq, pcxhr_interrupt, IRQF_SHARED,
1253 			card_name, mgr)) {
1254 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
1255 		pcxhr_free(mgr);
1256 		return -EBUSY;
1257 	}
1258 	mgr->irq = pci->irq;
1259 
1260 	sprintf(mgr->shortname, "Digigram %s", card_name);
1261 	sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->shortname,
1262 		mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);
1263 
1264 	/* ISR spinlock  */
1265 	spin_lock_init(&mgr->lock);
1266 	spin_lock_init(&mgr->msg_lock);
1267 
1268 	/* init setup mutex*/
1269 	mutex_init(&mgr->setup_mutex);
1270 
1271 	/* init taslket */
1272 	tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet, (unsigned long) mgr);
1273 	tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet, (unsigned long) mgr);
1274 	mgr->prmh = kmalloc(sizeof(*mgr->prmh) +
1275 			    sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS),
1276 			    GFP_KERNEL);
1277 	if (! mgr->prmh) {
1278 		pcxhr_free(mgr);
1279 		return -ENOMEM;
1280 	}
1281 
1282 	for (i=0; i < PCXHR_MAX_CARDS; i++) {
1283 		struct snd_card *card;
1284 		char tmpid[16];
1285 		int idx;
1286 
1287 		if (i >= max(mgr->playback_chips, mgr->capture_chips))
1288 			break;
1289 		mgr->num_cards++;
1290 
1291 		if (index[dev] < 0)
1292 			idx = index[dev];
1293 		else
1294 			idx = index[dev] + i;
1295 
1296 		snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i);
1297 		card = snd_card_new(idx, tmpid, THIS_MODULE, 0);
1298 
1299 		if (! card) {
1300 			snd_printk(KERN_ERR "cannot allocate the card %d\n", i);
1301 			pcxhr_free(mgr);
1302 			return -ENOMEM;
1303 		}
1304 
1305 		strcpy(card->driver, DRIVER_NAME);
1306 		sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i);
1307 		sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i);
1308 
1309 		if ((err = pcxhr_create(mgr, card, i)) < 0) {
1310 			pcxhr_free(mgr);
1311 			return err;
1312 		}
1313 
1314 		if (i == 0)
1315 			/* init proc interface only for chip0 */
1316 			pcxhr_proc_init(mgr->chip[i]);
1317 
1318 		if ((err = snd_card_register(card)) < 0) {
1319 			pcxhr_free(mgr);
1320 			return err;
1321 		}
1322 	}
1323 
1324 	/* create hostport purgebuffer */
1325 	size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
1326 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
1327 				size, &mgr->hostport) < 0) {
1328 		pcxhr_free(mgr);
1329 		return -ENOMEM;
1330 	}
1331 	/* init purgebuffer */
1332 	memset(mgr->hostport.area, 0, size);
1333 
1334 	/* create a DSP loader */
1335 	err = pcxhr_setup_firmware(mgr);
1336 	if (err < 0) {
1337 		pcxhr_free(mgr);
1338 		return err;
1339 	}
1340 
1341 	pci_set_drvdata(pci, mgr);
1342 	dev++;
1343 	return 0;
1344 }
1345 
1346 static void __devexit pcxhr_remove(struct pci_dev *pci)
1347 {
1348 	pcxhr_free(pci_get_drvdata(pci));
1349 	pci_set_drvdata(pci, NULL);
1350 }
1351 
1352 static struct pci_driver driver = {
1353 	.name = "Digigram pcxhr",
1354 	.id_table = pcxhr_ids,
1355 	.probe = pcxhr_probe,
1356 	.remove = __devexit_p(pcxhr_remove),
1357 };
1358 
1359 static int __init pcxhr_module_init(void)
1360 {
1361 	return pci_register_driver(&driver);
1362 }
1363 
1364 static void __exit pcxhr_module_exit(void)
1365 {
1366 	pci_unregister_driver(&driver);
1367 }
1368 
1369 module_init(pcxhr_module_init)
1370 module_exit(pcxhr_module_exit)
1371