1 /* 2 * card driver for models with CS4398/CS4362A DACs (Xonar D1/DX) 3 * 4 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 5 * 6 * 7 * This driver is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License, version 2. 9 * 10 * This driver is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this driver; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 /* 20 * Xonar D1/DX 21 * ----------- 22 * 23 * CMI8788: 24 * 25 * I²C <-> CS4398 (addr 1001111) (front) 26 * <-> CS4362A (addr 0011000) (surround, center/LFE, back) 27 * 28 * GPI 0 <- external power present (DX only) 29 * 30 * GPIO 0 -> enable output to speakers 31 * GPIO 1 -> route output to front panel 32 * GPIO 2 -> M0 of CS5361 33 * GPIO 3 -> M1 of CS5361 34 * GPIO 6 -> ? 35 * GPIO 7 -> ? 36 * GPIO 8 -> route input jack to line-in (0) or mic-in (1) 37 * 38 * CM9780: 39 * 40 * LINE_OUT -> input of ADC 41 * 42 * AUX_IN <- aux 43 * MIC_IN <- mic 44 * FMIC_IN <- front mic 45 * 46 * GPO 0 -> route line-in (0) or AC97 output (1) to CS5361 input 47 */ 48 49 #include <linux/pci.h> 50 #include <linux/delay.h> 51 #include <sound/ac97_codec.h> 52 #include <sound/control.h> 53 #include <sound/core.h> 54 #include <sound/pcm.h> 55 #include <sound/pcm_params.h> 56 #include <sound/tlv.h> 57 #include "xonar.h" 58 #include "cm9780.h" 59 #include "cs4398.h" 60 #include "cs4362a.h" 61 62 #define GPI_EXT_POWER 0x01 63 #define GPIO_D1_OUTPUT_ENABLE 0x0001 64 #define GPIO_D1_FRONT_PANEL 0x0002 65 #define GPIO_D1_MAGIC 0x00c0 66 #define GPIO_D1_INPUT_ROUTE 0x0100 67 68 #define I2C_DEVICE_CS4398 0x9e /* 10011, AD1=1, AD0=1, /W=0 */ 69 #define I2C_DEVICE_CS4362A 0x30 /* 001100, AD0=0, /W=0 */ 70 71 struct xonar_cs43xx { 72 struct xonar_generic generic; 73 u8 cs4398_regs[8]; 74 u8 cs4362a_regs[15]; 75 }; 76 77 static void cs4398_write(struct oxygen *chip, u8 reg, u8 value) 78 { 79 struct xonar_cs43xx *data = chip->model_data; 80 81 oxygen_write_i2c(chip, I2C_DEVICE_CS4398, reg, value); 82 if (reg < ARRAY_SIZE(data->cs4398_regs)) 83 data->cs4398_regs[reg] = value; 84 } 85 86 static void cs4398_write_cached(struct oxygen *chip, u8 reg, u8 value) 87 { 88 struct xonar_cs43xx *data = chip->model_data; 89 90 if (value != data->cs4398_regs[reg]) 91 cs4398_write(chip, reg, value); 92 } 93 94 static void cs4362a_write(struct oxygen *chip, u8 reg, u8 value) 95 { 96 struct xonar_cs43xx *data = chip->model_data; 97 98 oxygen_write_i2c(chip, I2C_DEVICE_CS4362A, reg, value); 99 if (reg < ARRAY_SIZE(data->cs4362a_regs)) 100 data->cs4362a_regs[reg] = value; 101 } 102 103 static void cs4362a_write_cached(struct oxygen *chip, u8 reg, u8 value) 104 { 105 struct xonar_cs43xx *data = chip->model_data; 106 107 if (value != data->cs4362a_regs[reg]) 108 cs4362a_write(chip, reg, value); 109 } 110 111 static void cs43xx_registers_init(struct oxygen *chip) 112 { 113 struct xonar_cs43xx *data = chip->model_data; 114 unsigned int i; 115 116 /* set CPEN (control port mode) and power down */ 117 cs4398_write(chip, 8, CS4398_CPEN | CS4398_PDN); 118 cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN); 119 /* configure */ 120 cs4398_write(chip, 2, data->cs4398_regs[2]); 121 cs4398_write(chip, 3, CS4398_ATAPI_B_R | CS4398_ATAPI_A_L); 122 cs4398_write(chip, 4, data->cs4398_regs[4]); 123 cs4398_write(chip, 5, data->cs4398_regs[5]); 124 cs4398_write(chip, 6, data->cs4398_regs[6]); 125 cs4398_write(chip, 7, data->cs4398_regs[7]); 126 cs4362a_write(chip, 0x02, CS4362A_DIF_LJUST); 127 cs4362a_write(chip, 0x03, CS4362A_MUTEC_6 | CS4362A_AMUTE | 128 CS4362A_RMP_UP | CS4362A_ZERO_CROSS | CS4362A_SOFT_RAMP); 129 cs4362a_write(chip, 0x04, data->cs4362a_regs[0x04]); 130 cs4362a_write(chip, 0x05, 0); 131 for (i = 6; i <= 14; ++i) 132 cs4362a_write(chip, i, data->cs4362a_regs[i]); 133 /* clear power down */ 134 cs4398_write(chip, 8, CS4398_CPEN); 135 cs4362a_write(chip, 0x01, CS4362A_CPEN); 136 } 137 138 static void xonar_d1_init(struct oxygen *chip) 139 { 140 struct xonar_cs43xx *data = chip->model_data; 141 142 data->generic.anti_pop_delay = 800; 143 data->generic.output_enable_bit = GPIO_D1_OUTPUT_ENABLE; 144 data->cs4398_regs[2] = 145 CS4398_FM_SINGLE | CS4398_DEM_NONE | CS4398_DIF_LJUST; 146 data->cs4398_regs[4] = CS4398_MUTEP_LOW | 147 CS4398_MUTE_B | CS4398_MUTE_A | CS4398_PAMUTE; 148 data->cs4398_regs[5] = 60 * 2; 149 data->cs4398_regs[6] = 60 * 2; 150 data->cs4398_regs[7] = CS4398_RMP_DN | CS4398_RMP_UP | 151 CS4398_ZERO_CROSS | CS4398_SOFT_RAMP; 152 data->cs4362a_regs[4] = CS4362A_RMP_DN | CS4362A_DEM_NONE; 153 data->cs4362a_regs[6] = CS4362A_FM_SINGLE | 154 CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L; 155 data->cs4362a_regs[7] = 60 | CS4362A_MUTE; 156 data->cs4362a_regs[8] = 60 | CS4362A_MUTE; 157 data->cs4362a_regs[9] = data->cs4362a_regs[6]; 158 data->cs4362a_regs[10] = 60 | CS4362A_MUTE; 159 data->cs4362a_regs[11] = 60 | CS4362A_MUTE; 160 data->cs4362a_regs[12] = data->cs4362a_regs[6]; 161 data->cs4362a_regs[13] = 60 | CS4362A_MUTE; 162 data->cs4362a_regs[14] = 60 | CS4362A_MUTE; 163 164 oxygen_write16(chip, OXYGEN_2WIRE_BUS_STATUS, 165 OXYGEN_2WIRE_LENGTH_8 | 166 OXYGEN_2WIRE_INTERRUPT_MASK | 167 OXYGEN_2WIRE_SPEED_FAST); 168 169 cs43xx_registers_init(chip); 170 171 oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, 172 GPIO_D1_FRONT_PANEL | 173 GPIO_D1_MAGIC | 174 GPIO_D1_INPUT_ROUTE); 175 oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, 176 GPIO_D1_FRONT_PANEL | GPIO_D1_INPUT_ROUTE); 177 178 xonar_init_cs53x1(chip); 179 xonar_enable_output(chip); 180 181 snd_component_add(chip->card, "CS4398"); 182 snd_component_add(chip->card, "CS4362A"); 183 snd_component_add(chip->card, "CS5361"); 184 } 185 186 static void xonar_dx_init(struct oxygen *chip) 187 { 188 struct xonar_cs43xx *data = chip->model_data; 189 190 data->generic.ext_power_reg = OXYGEN_GPI_DATA; 191 data->generic.ext_power_int_reg = OXYGEN_GPI_INTERRUPT_MASK; 192 data->generic.ext_power_bit = GPI_EXT_POWER; 193 xonar_init_ext_power(chip); 194 xonar_d1_init(chip); 195 } 196 197 static void xonar_d1_cleanup(struct oxygen *chip) 198 { 199 xonar_disable_output(chip); 200 cs4362a_write(chip, 0x01, CS4362A_PDN | CS4362A_CPEN); 201 oxygen_clear_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC); 202 } 203 204 static void xonar_d1_suspend(struct oxygen *chip) 205 { 206 xonar_d1_cleanup(chip); 207 } 208 209 static void xonar_d1_resume(struct oxygen *chip) 210 { 211 oxygen_set_bits8(chip, OXYGEN_FUNCTION, OXYGEN_FUNCTION_RESET_CODEC); 212 msleep(1); 213 cs43xx_registers_init(chip); 214 xonar_enable_output(chip); 215 } 216 217 static void set_cs43xx_params(struct oxygen *chip, 218 struct snd_pcm_hw_params *params) 219 { 220 struct xonar_cs43xx *data = chip->model_data; 221 u8 cs4398_fm, cs4362a_fm; 222 223 if (params_rate(params) <= 50000) { 224 cs4398_fm = CS4398_FM_SINGLE; 225 cs4362a_fm = CS4362A_FM_SINGLE; 226 } else if (params_rate(params) <= 100000) { 227 cs4398_fm = CS4398_FM_DOUBLE; 228 cs4362a_fm = CS4362A_FM_DOUBLE; 229 } else { 230 cs4398_fm = CS4398_FM_QUAD; 231 cs4362a_fm = CS4362A_FM_QUAD; 232 } 233 cs4398_fm |= CS4398_DEM_NONE | CS4398_DIF_LJUST; 234 cs4398_write_cached(chip, 2, cs4398_fm); 235 cs4362a_fm |= data->cs4362a_regs[6] & ~CS4362A_FM_MASK; 236 cs4362a_write_cached(chip, 6, cs4362a_fm); 237 cs4362a_write_cached(chip, 12, cs4362a_fm); 238 cs4362a_fm &= CS4362A_FM_MASK; 239 cs4362a_fm |= data->cs4362a_regs[9] & ~CS4362A_FM_MASK; 240 cs4362a_write_cached(chip, 9, cs4362a_fm); 241 } 242 243 static void update_cs4362a_volumes(struct oxygen *chip) 244 { 245 unsigned int i; 246 u8 mute; 247 248 mute = chip->dac_mute ? CS4362A_MUTE : 0; 249 for (i = 0; i < 6; ++i) 250 cs4362a_write_cached(chip, 7 + i + i / 2, 251 (127 - chip->dac_volume[2 + i]) | mute); 252 } 253 254 static void update_cs43xx_volume(struct oxygen *chip) 255 { 256 cs4398_write_cached(chip, 5, (127 - chip->dac_volume[0]) * 2); 257 cs4398_write_cached(chip, 6, (127 - chip->dac_volume[1]) * 2); 258 update_cs4362a_volumes(chip); 259 } 260 261 static void update_cs43xx_mute(struct oxygen *chip) 262 { 263 u8 reg; 264 265 reg = CS4398_MUTEP_LOW | CS4398_PAMUTE; 266 if (chip->dac_mute) 267 reg |= CS4398_MUTE_B | CS4398_MUTE_A; 268 cs4398_write_cached(chip, 4, reg); 269 update_cs4362a_volumes(chip); 270 } 271 272 static void update_cs43xx_center_lfe_mix(struct oxygen *chip, bool mixed) 273 { 274 struct xonar_cs43xx *data = chip->model_data; 275 u8 reg; 276 277 reg = data->cs4362a_regs[9] & ~CS4362A_ATAPI_MASK; 278 if (mixed) 279 reg |= CS4362A_ATAPI_B_LR | CS4362A_ATAPI_A_LR; 280 else 281 reg |= CS4362A_ATAPI_B_R | CS4362A_ATAPI_A_L; 282 cs4362a_write_cached(chip, 9, reg); 283 } 284 285 static const struct snd_kcontrol_new front_panel_switch = { 286 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 287 .name = "Front Panel Playback Switch", 288 .info = snd_ctl_boolean_mono_info, 289 .get = xonar_gpio_bit_switch_get, 290 .put = xonar_gpio_bit_switch_put, 291 .private_value = GPIO_D1_FRONT_PANEL, 292 }; 293 294 static int rolloff_info(struct snd_kcontrol *ctl, 295 struct snd_ctl_elem_info *info) 296 { 297 static const char *const names[2] = { 298 "Fast Roll-off", "Slow Roll-off" 299 }; 300 301 return snd_ctl_enum_info(info, 1, 2, names); 302 } 303 304 static int rolloff_get(struct snd_kcontrol *ctl, 305 struct snd_ctl_elem_value *value) 306 { 307 struct oxygen *chip = ctl->private_data; 308 struct xonar_cs43xx *data = chip->model_data; 309 310 value->value.enumerated.item[0] = 311 (data->cs4398_regs[7] & CS4398_FILT_SEL) != 0; 312 return 0; 313 } 314 315 static int rolloff_put(struct snd_kcontrol *ctl, 316 struct snd_ctl_elem_value *value) 317 { 318 struct oxygen *chip = ctl->private_data; 319 struct xonar_cs43xx *data = chip->model_data; 320 int changed; 321 u8 reg; 322 323 mutex_lock(&chip->mutex); 324 reg = data->cs4398_regs[7]; 325 if (value->value.enumerated.item[0]) 326 reg |= CS4398_FILT_SEL; 327 else 328 reg &= ~CS4398_FILT_SEL; 329 changed = reg != data->cs4398_regs[7]; 330 if (changed) { 331 cs4398_write(chip, 7, reg); 332 if (reg & CS4398_FILT_SEL) 333 reg = data->cs4362a_regs[0x04] | CS4362A_FILT_SEL; 334 else 335 reg = data->cs4362a_regs[0x04] & ~CS4362A_FILT_SEL; 336 cs4362a_write(chip, 0x04, reg); 337 } 338 mutex_unlock(&chip->mutex); 339 return changed; 340 } 341 342 static const struct snd_kcontrol_new rolloff_control = { 343 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 344 .name = "DAC Filter Playback Enum", 345 .info = rolloff_info, 346 .get = rolloff_get, 347 .put = rolloff_put, 348 }; 349 350 static void xonar_d1_line_mic_ac97_switch(struct oxygen *chip, 351 unsigned int reg, unsigned int mute) 352 { 353 if (reg == AC97_LINE) { 354 spin_lock_irq(&chip->reg_lock); 355 oxygen_write16_masked(chip, OXYGEN_GPIO_DATA, 356 mute ? GPIO_D1_INPUT_ROUTE : 0, 357 GPIO_D1_INPUT_ROUTE); 358 spin_unlock_irq(&chip->reg_lock); 359 } 360 } 361 362 static const DECLARE_TLV_DB_SCALE(cs4362a_db_scale, -6000, 100, 0); 363 364 static int xonar_d1_mixer_init(struct oxygen *chip) 365 { 366 int err; 367 368 err = snd_ctl_add(chip->card, snd_ctl_new1(&front_panel_switch, chip)); 369 if (err < 0) 370 return err; 371 err = snd_ctl_add(chip->card, snd_ctl_new1(&rolloff_control, chip)); 372 if (err < 0) 373 return err; 374 return 0; 375 } 376 377 static void dump_cs4362a_registers(struct xonar_cs43xx *data, 378 struct snd_info_buffer *buffer) 379 { 380 unsigned int i; 381 382 snd_iprintf(buffer, "\nCS4362A:"); 383 for (i = 1; i <= 14; ++i) 384 snd_iprintf(buffer, " %02x", data->cs4362a_regs[i]); 385 snd_iprintf(buffer, "\n"); 386 } 387 388 static void dump_d1_registers(struct oxygen *chip, 389 struct snd_info_buffer *buffer) 390 { 391 struct xonar_cs43xx *data = chip->model_data; 392 unsigned int i; 393 394 snd_iprintf(buffer, "\nCS4398: 7?"); 395 for (i = 2; i <= 8; ++i) 396 snd_iprintf(buffer, " %02x", data->cs4398_regs[i]); 397 snd_iprintf(buffer, "\n"); 398 dump_cs4362a_registers(data, buffer); 399 } 400 401 static const struct oxygen_model model_xonar_d1 = { 402 .longname = "Asus Virtuoso 100", 403 .chip = "AV200", 404 .init = xonar_d1_init, 405 .mixer_init = xonar_d1_mixer_init, 406 .cleanup = xonar_d1_cleanup, 407 .suspend = xonar_d1_suspend, 408 .resume = xonar_d1_resume, 409 .set_dac_params = set_cs43xx_params, 410 .set_adc_params = xonar_set_cs53x1_params, 411 .update_dac_volume = update_cs43xx_volume, 412 .update_dac_mute = update_cs43xx_mute, 413 .update_center_lfe_mix = update_cs43xx_center_lfe_mix, 414 .ac97_switch = xonar_d1_line_mic_ac97_switch, 415 .dump_registers = dump_d1_registers, 416 .dac_tlv = cs4362a_db_scale, 417 .model_data_size = sizeof(struct xonar_cs43xx), 418 .device_config = PLAYBACK_0_TO_I2S | 419 PLAYBACK_1_TO_SPDIF | 420 CAPTURE_0_FROM_I2S_2 | 421 AC97_FMIC_SWITCH, 422 .dac_channels_pcm = 8, 423 .dac_channels_mixer = 8, 424 .dac_volume_min = 127 - 60, 425 .dac_volume_max = 127, 426 .function_flags = OXYGEN_FUNCTION_2WIRE, 427 .dac_mclks = OXYGEN_MCLKS(256, 128, 128), 428 .adc_mclks = OXYGEN_MCLKS(256, 128, 128), 429 .dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST, 430 .adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST, 431 }; 432 433 int __devinit get_xonar_cs43xx_model(struct oxygen *chip, 434 const struct pci_device_id *id) 435 { 436 switch (id->subdevice) { 437 case 0x834f: 438 chip->model = model_xonar_d1; 439 chip->model.shortname = "Xonar D1"; 440 break; 441 case 0x8275: 442 case 0x8327: 443 chip->model = model_xonar_d1; 444 chip->model.shortname = "Xonar DX"; 445 chip->model.init = xonar_dx_init; 446 break; 447 default: 448 return -EINVAL; 449 } 450 return 0; 451 } 452