1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * ALSA driver for ICEnsemble VT1724 (Envy24HT) 4 * 5 * Lowlevel functions for Infrasonic Quartet 6 * 7 * Copyright (c) 2009 Pavel Hofman <pavel.hofman@ivitera.com> 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/interrupt.h> 12 #include <linux/init.h> 13 #include <linux/slab.h> 14 #include <linux/string.h> 15 #include <sound/core.h> 16 #include <sound/tlv.h> 17 #include <sound/info.h> 18 19 #include "ice1712.h" 20 #include "envy24ht.h" 21 #include <sound/ak4113.h> 22 #include "quartet.h" 23 24 struct qtet_spec { 25 struct ak4113 *ak4113; 26 unsigned int scr; /* system control register */ 27 unsigned int mcr; /* monitoring control register */ 28 unsigned int cpld; /* cpld register */ 29 }; 30 31 struct qtet_kcontrol_private { 32 unsigned int bit; 33 void (*set_register)(struct snd_ice1712 *ice, unsigned int val); 34 unsigned int (*get_register)(struct snd_ice1712 *ice); 35 const char * const texts[2]; 36 }; 37 38 enum { 39 IN12_SEL = 0, 40 IN34_SEL, 41 AIN34_SEL, 42 COAX_OUT, 43 IN12_MON12, 44 IN12_MON34, 45 IN34_MON12, 46 IN34_MON34, 47 OUT12_MON34, 48 OUT34_MON12, 49 }; 50 51 static const char * const ext_clock_names[3] = {"IEC958 In", "Word Clock 1xFS", 52 "Word Clock 256xFS"}; 53 54 /* chip address on I2C bus */ 55 #define AK4113_ADDR 0x26 /* S/PDIF receiver */ 56 57 /* chip address on SPI bus */ 58 #define AK4620_ADDR 0x02 /* ADC/DAC */ 59 60 61 /* 62 * GPIO pins 63 */ 64 65 /* GPIO0 - O - DATA0, def. 0 */ 66 #define GPIO_D0 (1<<0) 67 /* GPIO1 - I/O - DATA1, Jack Detect Input0 (0:present, 1:missing), def. 1 */ 68 #define GPIO_D1_JACKDTC0 (1<<1) 69 /* GPIO2 - I/O - DATA2, Jack Detect Input1 (0:present, 1:missing), def. 1 */ 70 #define GPIO_D2_JACKDTC1 (1<<2) 71 /* GPIO3 - I/O - DATA3, def. 1 */ 72 #define GPIO_D3 (1<<3) 73 /* GPIO4 - I/O - DATA4, SPI CDTO, def. 1 */ 74 #define GPIO_D4_SPI_CDTO (1<<4) 75 /* GPIO5 - I/O - DATA5, SPI CCLK, def. 1 */ 76 #define GPIO_D5_SPI_CCLK (1<<5) 77 /* GPIO6 - I/O - DATA6, Cable Detect Input (0:detected, 1:not detected */ 78 #define GPIO_D6_CD (1<<6) 79 /* GPIO7 - I/O - DATA7, Device Detect Input (0:detected, 1:not detected */ 80 #define GPIO_D7_DD (1<<7) 81 /* GPIO8 - O - CPLD Chip Select, def. 1 */ 82 #define GPIO_CPLD_CSN (1<<8) 83 /* GPIO9 - O - CPLD register read/write (0:write, 1:read), def. 0 */ 84 #define GPIO_CPLD_RW (1<<9) 85 /* GPIO10 - O - SPI Chip Select for CODEC#0, def. 1 */ 86 #define GPIO_SPI_CSN0 (1<<10) 87 /* GPIO11 - O - SPI Chip Select for CODEC#1, def. 1 */ 88 #define GPIO_SPI_CSN1 (1<<11) 89 /* GPIO12 - O - Ex. Register Output Enable (0:enable, 1:disable), def. 1, 90 * init 0 */ 91 #define GPIO_EX_GPIOE (1<<12) 92 /* GPIO13 - O - Ex. Register0 Chip Select for System Control Register, 93 * def. 1 */ 94 #define GPIO_SCR (1<<13) 95 /* GPIO14 - O - Ex. Register1 Chip Select for Monitor Control Register, 96 * def. 1 */ 97 #define GPIO_MCR (1<<14) 98 99 #define GPIO_SPI_ALL (GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK |\ 100 GPIO_SPI_CSN0 | GPIO_SPI_CSN1) 101 102 #define GPIO_DATA_MASK (GPIO_D0 | GPIO_D1_JACKDTC0 | \ 103 GPIO_D2_JACKDTC1 | GPIO_D3 | \ 104 GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK | \ 105 GPIO_D6_CD | GPIO_D7_DD) 106 107 /* System Control Register GPIO_SCR data bits */ 108 /* Mic/Line select relay (0:line, 1:mic) */ 109 #define SCR_RELAY GPIO_D0 110 /* Phantom power drive control (0:5V, 1:48V) */ 111 #define SCR_PHP_V GPIO_D1_JACKDTC0 112 /* H/W mute control (0:Normal, 1:Mute) */ 113 #define SCR_MUTE GPIO_D2_JACKDTC1 114 /* Phantom power control (0:Phantom on, 1:off) */ 115 #define SCR_PHP GPIO_D3 116 /* Analog input 1/2 Source Select */ 117 #define SCR_AIN12_SEL0 GPIO_D4_SPI_CDTO 118 #define SCR_AIN12_SEL1 GPIO_D5_SPI_CCLK 119 /* Analog input 3/4 Source Select (0:line, 1:hi-z) */ 120 #define SCR_AIN34_SEL GPIO_D6_CD 121 /* Codec Power Down (0:power down, 1:normal) */ 122 #define SCR_CODEC_PDN GPIO_D7_DD 123 124 #define SCR_AIN12_LINE (0) 125 #define SCR_AIN12_MIC (SCR_AIN12_SEL0) 126 #define SCR_AIN12_LOWCUT (SCR_AIN12_SEL1 | SCR_AIN12_SEL0) 127 128 /* Monitor Control Register GPIO_MCR data bits */ 129 /* Input 1/2 to Monitor 1/2 (0:off, 1:on) */ 130 #define MCR_IN12_MON12 GPIO_D0 131 /* Input 1/2 to Monitor 3/4 (0:off, 1:on) */ 132 #define MCR_IN12_MON34 GPIO_D1_JACKDTC0 133 /* Input 3/4 to Monitor 1/2 (0:off, 1:on) */ 134 #define MCR_IN34_MON12 GPIO_D2_JACKDTC1 135 /* Input 3/4 to Monitor 3/4 (0:off, 1:on) */ 136 #define MCR_IN34_MON34 GPIO_D3 137 /* Output to Monitor 1/2 (0:off, 1:on) */ 138 #define MCR_OUT34_MON12 GPIO_D4_SPI_CDTO 139 /* Output to Monitor 3/4 (0:off, 1:on) */ 140 #define MCR_OUT12_MON34 GPIO_D5_SPI_CCLK 141 142 /* CPLD Register DATA bits */ 143 /* Clock Rate Select */ 144 #define CPLD_CKS0 GPIO_D0 145 #define CPLD_CKS1 GPIO_D1_JACKDTC0 146 #define CPLD_CKS2 GPIO_D2_JACKDTC1 147 /* Sync Source Select (0:Internal, 1:External) */ 148 #define CPLD_SYNC_SEL GPIO_D3 149 /* Word Clock FS Select (0:FS, 1:256FS) */ 150 #define CPLD_WORD_SEL GPIO_D4_SPI_CDTO 151 /* Coaxial Output Source (IS-Link) (0:SPDIF, 1:I2S) */ 152 #define CPLD_COAX_OUT GPIO_D5_SPI_CCLK 153 /* Input 1/2 Source Select (0:Analog12, 1:An34) */ 154 #define CPLD_IN12_SEL GPIO_D6_CD 155 /* Input 3/4 Source Select (0:Analog34, 1:Digital In) */ 156 #define CPLD_IN34_SEL GPIO_D7_DD 157 158 /* internal clock (CPLD_SYNC_SEL = 0) options */ 159 #define CPLD_CKS_44100HZ (0) 160 #define CPLD_CKS_48000HZ (CPLD_CKS0) 161 #define CPLD_CKS_88200HZ (CPLD_CKS1) 162 #define CPLD_CKS_96000HZ (CPLD_CKS1 | CPLD_CKS0) 163 #define CPLD_CKS_176400HZ (CPLD_CKS2) 164 #define CPLD_CKS_192000HZ (CPLD_CKS2 | CPLD_CKS0) 165 166 #define CPLD_CKS_MASK (CPLD_CKS0 | CPLD_CKS1 | CPLD_CKS2) 167 168 /* external clock (CPLD_SYNC_SEL = 1) options */ 169 /* external clock - SPDIF */ 170 #define CPLD_EXT_SPDIF (0 | CPLD_SYNC_SEL) 171 /* external clock - WordClock 1xfs */ 172 #define CPLD_EXT_WORDCLOCK_1FS (CPLD_CKS1 | CPLD_SYNC_SEL) 173 /* external clock - WordClock 256xfs */ 174 #define CPLD_EXT_WORDCLOCK_256FS (CPLD_CKS1 | CPLD_WORD_SEL |\ 175 CPLD_SYNC_SEL) 176 177 #define EXT_SPDIF_TYPE 0 178 #define EXT_WORDCLOCK_1FS_TYPE 1 179 #define EXT_WORDCLOCK_256FS_TYPE 2 180 181 #define AK4620_DFS0 (1<<0) 182 #define AK4620_DFS1 (1<<1) 183 #define AK4620_CKS0 (1<<2) 184 #define AK4620_CKS1 (1<<3) 185 /* Clock and Format Control register */ 186 #define AK4620_DFS_REG 0x02 187 188 /* Deem and Volume Control register */ 189 #define AK4620_DEEMVOL_REG 0x03 190 #define AK4620_SMUTE (1<<7) 191 192 /* 193 * Conversion from int value to its binary form. Used for debugging. 194 * The output buffer must be allocated prior to calling the function. 195 */ 196 static char *get_binary(char *buffer, int value) 197 { 198 int i, j, pos; 199 pos = 0; 200 for (i = 0; i < 4; ++i) { 201 for (j = 0; j < 8; ++j) { 202 if (value & (1 << (31-(i*8 + j)))) 203 buffer[pos] = '1'; 204 else 205 buffer[pos] = '0'; 206 pos++; 207 } 208 if (i < 3) { 209 buffer[pos] = ' '; 210 pos++; 211 } 212 } 213 buffer[pos] = '\0'; 214 return buffer; 215 } 216 217 /* 218 * Initial setup of the conversion array GPIO <-> rate 219 */ 220 static const unsigned int qtet_rates[] = { 221 44100, 48000, 88200, 222 96000, 176400, 192000, 223 }; 224 225 static const unsigned int cks_vals[] = { 226 CPLD_CKS_44100HZ, CPLD_CKS_48000HZ, CPLD_CKS_88200HZ, 227 CPLD_CKS_96000HZ, CPLD_CKS_176400HZ, CPLD_CKS_192000HZ, 228 }; 229 230 static const struct snd_pcm_hw_constraint_list qtet_rates_info = { 231 .count = ARRAY_SIZE(qtet_rates), 232 .list = qtet_rates, 233 .mask = 0, 234 }; 235 236 static void qtet_ak4113_write(void *private_data, unsigned char reg, 237 unsigned char val) 238 { 239 snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4113_ADDR, 240 reg, val); 241 } 242 243 static unsigned char qtet_ak4113_read(void *private_data, unsigned char reg) 244 { 245 return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data, 246 AK4113_ADDR, reg); 247 } 248 249 250 /* 251 * AK4620 section 252 */ 253 254 /* 255 * Write data to addr register of ak4620 256 */ 257 static void qtet_akm_write(struct snd_akm4xxx *ak, int chip, 258 unsigned char addr, unsigned char data) 259 { 260 unsigned int tmp, orig_dir; 261 int idx; 262 unsigned int addrdata; 263 struct snd_ice1712 *ice = ak->private_data[0]; 264 265 if (snd_BUG_ON(chip < 0 || chip >= 4)) 266 return; 267 /*dev_dbg(ice->card->dev, "Writing to AK4620: chip=%d, addr=0x%x, 268 data=0x%x\n", chip, addr, data);*/ 269 orig_dir = ice->gpio.get_dir(ice); 270 ice->gpio.set_dir(ice, orig_dir | GPIO_SPI_ALL); 271 /* set mask - only SPI bits */ 272 ice->gpio.set_mask(ice, ~GPIO_SPI_ALL); 273 274 tmp = ice->gpio.get_data(ice); 275 /* high all */ 276 tmp |= GPIO_SPI_ALL; 277 ice->gpio.set_data(ice, tmp); 278 udelay(100); 279 /* drop chip select */ 280 if (chip) 281 /* CODEC 1 */ 282 tmp &= ~GPIO_SPI_CSN1; 283 else 284 tmp &= ~GPIO_SPI_CSN0; 285 ice->gpio.set_data(ice, tmp); 286 udelay(100); 287 288 /* build I2C address + data byte */ 289 addrdata = (AK4620_ADDR << 6) | 0x20 | (addr & 0x1f); 290 addrdata = (addrdata << 8) | data; 291 for (idx = 15; idx >= 0; idx--) { 292 /* drop clock */ 293 tmp &= ~GPIO_D5_SPI_CCLK; 294 ice->gpio.set_data(ice, tmp); 295 udelay(100); 296 /* set data */ 297 if (addrdata & (1 << idx)) 298 tmp |= GPIO_D4_SPI_CDTO; 299 else 300 tmp &= ~GPIO_D4_SPI_CDTO; 301 ice->gpio.set_data(ice, tmp); 302 udelay(100); 303 /* raise clock */ 304 tmp |= GPIO_D5_SPI_CCLK; 305 ice->gpio.set_data(ice, tmp); 306 udelay(100); 307 } 308 /* all back to 1 */ 309 tmp |= GPIO_SPI_ALL; 310 ice->gpio.set_data(ice, tmp); 311 udelay(100); 312 313 /* return all gpios to non-writable */ 314 ice->gpio.set_mask(ice, 0xffffff); 315 /* restore GPIOs direction */ 316 ice->gpio.set_dir(ice, orig_dir); 317 } 318 319 static void qtet_akm_set_regs(struct snd_akm4xxx *ak, unsigned char addr, 320 unsigned char mask, unsigned char value) 321 { 322 unsigned char tmp; 323 int chip; 324 for (chip = 0; chip < ak->num_chips; chip++) { 325 tmp = snd_akm4xxx_get(ak, chip, addr); 326 /* clear the bits */ 327 tmp &= ~mask; 328 /* set the new bits */ 329 tmp |= value; 330 snd_akm4xxx_write(ak, chip, addr, tmp); 331 } 332 } 333 334 /* 335 * change the rate of AK4620 336 */ 337 static void qtet_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate) 338 { 339 unsigned char ak4620_dfs; 340 341 if (rate == 0) /* no hint - S/PDIF input is master or the new spdif 342 input rate undetected, simply return */ 343 return; 344 345 /* adjust DFS on codecs - see datasheet */ 346 if (rate > 108000) 347 ak4620_dfs = AK4620_DFS1 | AK4620_CKS1; 348 else if (rate > 54000) 349 ak4620_dfs = AK4620_DFS0 | AK4620_CKS0; 350 else 351 ak4620_dfs = 0; 352 353 /* set new value */ 354 qtet_akm_set_regs(ak, AK4620_DFS_REG, AK4620_DFS0 | AK4620_DFS1 | 355 AK4620_CKS0 | AK4620_CKS1, ak4620_dfs); 356 } 357 358 #define AK_CONTROL(xname, xch) { .name = xname, .num_channels = xch } 359 360 #define PCM_12_PLAYBACK_VOLUME "PCM 1/2 Playback Volume" 361 #define PCM_34_PLAYBACK_VOLUME "PCM 3/4 Playback Volume" 362 #define PCM_12_CAPTURE_VOLUME "PCM 1/2 Capture Volume" 363 #define PCM_34_CAPTURE_VOLUME "PCM 3/4 Capture Volume" 364 365 static const struct snd_akm4xxx_dac_channel qtet_dac[] = { 366 AK_CONTROL(PCM_12_PLAYBACK_VOLUME, 2), 367 AK_CONTROL(PCM_34_PLAYBACK_VOLUME, 2), 368 }; 369 370 static const struct snd_akm4xxx_adc_channel qtet_adc[] = { 371 AK_CONTROL(PCM_12_CAPTURE_VOLUME, 2), 372 AK_CONTROL(PCM_34_CAPTURE_VOLUME, 2), 373 }; 374 375 static const struct snd_akm4xxx akm_qtet_dac = { 376 .type = SND_AK4620, 377 .num_dacs = 4, /* DAC1 - Output 12 378 */ 379 .num_adcs = 4, /* ADC1 - Input 12 380 */ 381 .ops = { 382 .write = qtet_akm_write, 383 .set_rate_val = qtet_akm_set_rate_val, 384 }, 385 .dac_info = qtet_dac, 386 .adc_info = qtet_adc, 387 }; 388 389 /* Communication routines with the CPLD */ 390 391 392 /* Writes data to external register reg, both reg and data are 393 * GPIO representations */ 394 static void reg_write(struct snd_ice1712 *ice, unsigned int reg, 395 unsigned int data) 396 { 397 unsigned int tmp; 398 399 mutex_lock(&ice->gpio_mutex); 400 /* set direction of used GPIOs*/ 401 /* all outputs */ 402 tmp = 0x00ffff; 403 ice->gpio.set_dir(ice, tmp); 404 /* mask - writable bits */ 405 ice->gpio.set_mask(ice, ~(tmp)); 406 /* write the data */ 407 tmp = ice->gpio.get_data(ice); 408 tmp &= ~GPIO_DATA_MASK; 409 tmp |= data; 410 ice->gpio.set_data(ice, tmp); 411 udelay(100); 412 /* drop output enable */ 413 tmp &= ~GPIO_EX_GPIOE; 414 ice->gpio.set_data(ice, tmp); 415 udelay(100); 416 /* drop the register gpio */ 417 tmp &= ~reg; 418 ice->gpio.set_data(ice, tmp); 419 udelay(100); 420 /* raise the register GPIO */ 421 tmp |= reg; 422 ice->gpio.set_data(ice, tmp); 423 udelay(100); 424 425 /* raise all data gpios */ 426 tmp |= GPIO_DATA_MASK; 427 ice->gpio.set_data(ice, tmp); 428 /* mask - immutable bits */ 429 ice->gpio.set_mask(ice, 0xffffff); 430 /* outputs only 8-15 */ 431 ice->gpio.set_dir(ice, 0x00ff00); 432 mutex_unlock(&ice->gpio_mutex); 433 } 434 435 static unsigned int get_scr(struct snd_ice1712 *ice) 436 { 437 struct qtet_spec *spec = ice->spec; 438 return spec->scr; 439 } 440 441 static unsigned int get_mcr(struct snd_ice1712 *ice) 442 { 443 struct qtet_spec *spec = ice->spec; 444 return spec->mcr; 445 } 446 447 static unsigned int get_cpld(struct snd_ice1712 *ice) 448 { 449 struct qtet_spec *spec = ice->spec; 450 return spec->cpld; 451 } 452 453 static void set_scr(struct snd_ice1712 *ice, unsigned int val) 454 { 455 struct qtet_spec *spec = ice->spec; 456 reg_write(ice, GPIO_SCR, val); 457 spec->scr = val; 458 } 459 460 static void set_mcr(struct snd_ice1712 *ice, unsigned int val) 461 { 462 struct qtet_spec *spec = ice->spec; 463 reg_write(ice, GPIO_MCR, val); 464 spec->mcr = val; 465 } 466 467 static void set_cpld(struct snd_ice1712 *ice, unsigned int val) 468 { 469 struct qtet_spec *spec = ice->spec; 470 reg_write(ice, GPIO_CPLD_CSN, val); 471 spec->cpld = val; 472 } 473 474 static void proc_regs_read(struct snd_info_entry *entry, 475 struct snd_info_buffer *buffer) 476 { 477 struct snd_ice1712 *ice = entry->private_data; 478 char bin_buffer[36]; 479 480 snd_iprintf(buffer, "SCR: %s\n", get_binary(bin_buffer, 481 get_scr(ice))); 482 snd_iprintf(buffer, "MCR: %s\n", get_binary(bin_buffer, 483 get_mcr(ice))); 484 snd_iprintf(buffer, "CPLD: %s\n", get_binary(bin_buffer, 485 get_cpld(ice))); 486 } 487 488 static void proc_init(struct snd_ice1712 *ice) 489 { 490 snd_card_ro_proc_new(ice->card, "quartet", ice, proc_regs_read); 491 } 492 493 static int qtet_mute_get(struct snd_kcontrol *kcontrol, 494 struct snd_ctl_elem_value *ucontrol) 495 { 496 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 497 unsigned int val; 498 val = get_scr(ice) & SCR_MUTE; 499 ucontrol->value.integer.value[0] = (val) ? 0 : 1; 500 return 0; 501 } 502 503 static int qtet_mute_put(struct snd_kcontrol *kcontrol, 504 struct snd_ctl_elem_value *ucontrol) 505 { 506 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 507 unsigned int old, new, smute; 508 old = get_scr(ice) & SCR_MUTE; 509 if (ucontrol->value.integer.value[0]) { 510 /* unmute */ 511 new = 0; 512 /* un-smuting DAC */ 513 smute = 0; 514 } else { 515 /* mute */ 516 new = SCR_MUTE; 517 /* smuting DAC */ 518 smute = AK4620_SMUTE; 519 } 520 if (old != new) { 521 struct snd_akm4xxx *ak = ice->akm; 522 set_scr(ice, (get_scr(ice) & ~SCR_MUTE) | new); 523 /* set smute */ 524 qtet_akm_set_regs(ak, AK4620_DEEMVOL_REG, AK4620_SMUTE, smute); 525 return 1; 526 } 527 /* no change */ 528 return 0; 529 } 530 531 static int qtet_ain12_enum_info(struct snd_kcontrol *kcontrol, 532 struct snd_ctl_elem_info *uinfo) 533 { 534 static const char * const texts[3] = 535 {"Line In 1/2", "Mic", "Mic + Low-cut"}; 536 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts); 537 } 538 539 static int qtet_ain12_sw_get(struct snd_kcontrol *kcontrol, 540 struct snd_ctl_elem_value *ucontrol) 541 { 542 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 543 unsigned int val, result; 544 val = get_scr(ice) & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0); 545 switch (val) { 546 case SCR_AIN12_LINE: 547 result = 0; 548 break; 549 case SCR_AIN12_MIC: 550 result = 1; 551 break; 552 case SCR_AIN12_LOWCUT: 553 result = 2; 554 break; 555 default: 556 /* BUG - no other combinations allowed */ 557 snd_BUG(); 558 result = 0; 559 } 560 ucontrol->value.integer.value[0] = result; 561 return 0; 562 } 563 564 static int qtet_ain12_sw_put(struct snd_kcontrol *kcontrol, 565 struct snd_ctl_elem_value *ucontrol) 566 { 567 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 568 unsigned int old, new, tmp, masked_old; 569 old = new = get_scr(ice); 570 masked_old = old & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0); 571 tmp = ucontrol->value.integer.value[0]; 572 if (tmp == 2) 573 tmp = 3; /* binary 10 is not supported */ 574 tmp <<= 4; /* shifting to SCR_AIN12_SEL0 */ 575 if (tmp != masked_old) { 576 /* change requested */ 577 switch (tmp) { 578 case SCR_AIN12_LINE: 579 new = old & ~(SCR_AIN12_SEL1 | SCR_AIN12_SEL0); 580 set_scr(ice, new); 581 /* turn off relay */ 582 new &= ~SCR_RELAY; 583 set_scr(ice, new); 584 break; 585 case SCR_AIN12_MIC: 586 /* turn on relay */ 587 new = old | SCR_RELAY; 588 set_scr(ice, new); 589 new = (new & ~SCR_AIN12_SEL1) | SCR_AIN12_SEL0; 590 set_scr(ice, new); 591 break; 592 case SCR_AIN12_LOWCUT: 593 /* turn on relay */ 594 new = old | SCR_RELAY; 595 set_scr(ice, new); 596 new |= SCR_AIN12_SEL1 | SCR_AIN12_SEL0; 597 set_scr(ice, new); 598 break; 599 default: 600 snd_BUG(); 601 } 602 return 1; 603 } 604 /* no change */ 605 return 0; 606 } 607 608 static int qtet_php_get(struct snd_kcontrol *kcontrol, 609 struct snd_ctl_elem_value *ucontrol) 610 { 611 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 612 unsigned int val; 613 /* if phantom voltage =48V, phantom on */ 614 val = get_scr(ice) & SCR_PHP_V; 615 ucontrol->value.integer.value[0] = val ? 1 : 0; 616 return 0; 617 } 618 619 static int qtet_php_put(struct snd_kcontrol *kcontrol, 620 struct snd_ctl_elem_value *ucontrol) 621 { 622 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 623 unsigned int old, new; 624 old = new = get_scr(ice); 625 if (ucontrol->value.integer.value[0] /* phantom on requested */ 626 && (~old & SCR_PHP_V)) /* 0 = voltage 5V */ { 627 /* is off, turn on */ 628 /* turn voltage on first, = 1 */ 629 new = old | SCR_PHP_V; 630 set_scr(ice, new); 631 /* turn phantom on, = 0 */ 632 new &= ~SCR_PHP; 633 set_scr(ice, new); 634 } else if (!ucontrol->value.integer.value[0] && (old & SCR_PHP_V)) { 635 /* phantom off requested and 1 = voltage 48V */ 636 /* is on, turn off */ 637 /* turn voltage off first, = 0 */ 638 new = old & ~SCR_PHP_V; 639 set_scr(ice, new); 640 /* turn phantom off, = 1 */ 641 new |= SCR_PHP; 642 set_scr(ice, new); 643 } 644 if (old != new) 645 return 1; 646 /* no change */ 647 return 0; 648 } 649 650 #define PRIV_SW(xid, xbit, xreg) [xid] = {.bit = xbit,\ 651 .set_register = set_##xreg,\ 652 .get_register = get_##xreg, } 653 654 655 #define PRIV_ENUM2(xid, xbit, xreg, xtext1, xtext2) [xid] = {.bit = xbit,\ 656 .set_register = set_##xreg,\ 657 .get_register = get_##xreg,\ 658 .texts = {xtext1, xtext2} } 659 660 static struct qtet_kcontrol_private qtet_privates[] = { 661 PRIV_ENUM2(IN12_SEL, CPLD_IN12_SEL, cpld, "An In 1/2", "An In 3/4"), 662 PRIV_ENUM2(IN34_SEL, CPLD_IN34_SEL, cpld, "An In 3/4", "IEC958 In"), 663 PRIV_ENUM2(AIN34_SEL, SCR_AIN34_SEL, scr, "Line In 3/4", "Hi-Z"), 664 PRIV_ENUM2(COAX_OUT, CPLD_COAX_OUT, cpld, "IEC958", "I2S"), 665 PRIV_SW(IN12_MON12, MCR_IN12_MON12, mcr), 666 PRIV_SW(IN12_MON34, MCR_IN12_MON34, mcr), 667 PRIV_SW(IN34_MON12, MCR_IN34_MON12, mcr), 668 PRIV_SW(IN34_MON34, MCR_IN34_MON34, mcr), 669 PRIV_SW(OUT12_MON34, MCR_OUT12_MON34, mcr), 670 PRIV_SW(OUT34_MON12, MCR_OUT34_MON12, mcr), 671 }; 672 673 static int qtet_enum_info(struct snd_kcontrol *kcontrol, 674 struct snd_ctl_elem_info *uinfo) 675 { 676 struct qtet_kcontrol_private private = 677 qtet_privates[kcontrol->private_value]; 678 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(private.texts), 679 private.texts); 680 } 681 682 static int qtet_sw_get(struct snd_kcontrol *kcontrol, 683 struct snd_ctl_elem_value *ucontrol) 684 { 685 struct qtet_kcontrol_private private = 686 qtet_privates[kcontrol->private_value]; 687 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 688 ucontrol->value.integer.value[0] = 689 (private.get_register(ice) & private.bit) ? 1 : 0; 690 return 0; 691 } 692 693 static int qtet_sw_put(struct snd_kcontrol *kcontrol, 694 struct snd_ctl_elem_value *ucontrol) 695 { 696 struct qtet_kcontrol_private private = 697 qtet_privates[kcontrol->private_value]; 698 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol); 699 unsigned int old, new; 700 old = private.get_register(ice); 701 if (ucontrol->value.integer.value[0]) 702 new = old | private.bit; 703 else 704 new = old & ~private.bit; 705 if (old != new) { 706 private.set_register(ice, new); 707 return 1; 708 } 709 /* no change */ 710 return 0; 711 } 712 713 #define qtet_sw_info snd_ctl_boolean_mono_info 714 715 #define QTET_CONTROL(xname, xtype, xpriv) \ 716 {.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\ 717 .name = xname,\ 718 .info = qtet_##xtype##_info,\ 719 .get = qtet_sw_get,\ 720 .put = qtet_sw_put,\ 721 .private_value = xpriv } 722 723 static struct snd_kcontrol_new qtet_controls[] = { 724 { 725 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 726 .name = "Master Playback Switch", 727 .info = qtet_sw_info, 728 .get = qtet_mute_get, 729 .put = qtet_mute_put, 730 .private_value = 0 731 }, 732 { 733 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 734 .name = "Phantom Power", 735 .info = qtet_sw_info, 736 .get = qtet_php_get, 737 .put = qtet_php_put, 738 .private_value = 0 739 }, 740 { 741 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 742 .name = "Analog In 1/2 Capture Switch", 743 .info = qtet_ain12_enum_info, 744 .get = qtet_ain12_sw_get, 745 .put = qtet_ain12_sw_put, 746 .private_value = 0 747 }, 748 QTET_CONTROL("Analog In 3/4 Capture Switch", enum, AIN34_SEL), 749 QTET_CONTROL("PCM In 1/2 Capture Switch", enum, IN12_SEL), 750 QTET_CONTROL("PCM In 3/4 Capture Switch", enum, IN34_SEL), 751 QTET_CONTROL("Coax Output Source", enum, COAX_OUT), 752 QTET_CONTROL("Analog In 1/2 to Monitor 1/2", sw, IN12_MON12), 753 QTET_CONTROL("Analog In 1/2 to Monitor 3/4", sw, IN12_MON34), 754 QTET_CONTROL("Analog In 3/4 to Monitor 1/2", sw, IN34_MON12), 755 QTET_CONTROL("Analog In 3/4 to Monitor 3/4", sw, IN34_MON34), 756 QTET_CONTROL("Output 1/2 to Monitor 3/4", sw, OUT12_MON34), 757 QTET_CONTROL("Output 3/4 to Monitor 1/2", sw, OUT34_MON12), 758 }; 759 760 static char *slave_vols[] = { 761 PCM_12_PLAYBACK_VOLUME, 762 PCM_34_PLAYBACK_VOLUME, 763 NULL 764 }; 765 766 static 767 DECLARE_TLV_DB_SCALE(qtet_master_db_scale, -6350, 50, 1); 768 769 static struct snd_kcontrol *ctl_find(struct snd_card *card, 770 const char *name) 771 { 772 struct snd_ctl_elem_id sid = {0}; 773 774 strlcpy(sid.name, name, sizeof(sid.name)); 775 sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 776 return snd_ctl_find_id(card, &sid); 777 } 778 779 static void add_slaves(struct snd_card *card, 780 struct snd_kcontrol *master, char * const *list) 781 { 782 for (; *list; list++) { 783 struct snd_kcontrol *slave = ctl_find(card, *list); 784 if (slave) 785 snd_ctl_add_slave(master, slave); 786 } 787 } 788 789 static int qtet_add_controls(struct snd_ice1712 *ice) 790 { 791 struct qtet_spec *spec = ice->spec; 792 int err, i; 793 struct snd_kcontrol *vmaster; 794 err = snd_ice1712_akm4xxx_build_controls(ice); 795 if (err < 0) 796 return err; 797 for (i = 0; i < ARRAY_SIZE(qtet_controls); i++) { 798 err = snd_ctl_add(ice->card, 799 snd_ctl_new1(&qtet_controls[i], ice)); 800 if (err < 0) 801 return err; 802 } 803 804 /* Create virtual master control */ 805 vmaster = snd_ctl_make_virtual_master("Master Playback Volume", 806 qtet_master_db_scale); 807 if (!vmaster) 808 return -ENOMEM; 809 add_slaves(ice->card, vmaster, slave_vols); 810 err = snd_ctl_add(ice->card, vmaster); 811 if (err < 0) 812 return err; 813 /* only capture SPDIF over AK4113 */ 814 return snd_ak4113_build(spec->ak4113, 815 ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream); 816 } 817 818 static inline int qtet_is_spdif_master(struct snd_ice1712 *ice) 819 { 820 /* CPLD_SYNC_SEL: 0 = internal, 1 = external (i.e. spdif master) */ 821 return (get_cpld(ice) & CPLD_SYNC_SEL) ? 1 : 0; 822 } 823 824 static unsigned int qtet_get_rate(struct snd_ice1712 *ice) 825 { 826 int i; 827 unsigned char result; 828 829 result = get_cpld(ice) & CPLD_CKS_MASK; 830 for (i = 0; i < ARRAY_SIZE(cks_vals); i++) 831 if (cks_vals[i] == result) 832 return qtet_rates[i]; 833 return 0; 834 } 835 836 static int get_cks_val(int rate) 837 { 838 int i; 839 for (i = 0; i < ARRAY_SIZE(qtet_rates); i++) 840 if (qtet_rates[i] == rate) 841 return cks_vals[i]; 842 return 0; 843 } 844 845 /* setting new rate */ 846 static void qtet_set_rate(struct snd_ice1712 *ice, unsigned int rate) 847 { 848 unsigned int new; 849 unsigned char val; 850 /* switching ice1724 to external clock - supplied by ext. circuits */ 851 val = inb(ICEMT1724(ice, RATE)); 852 outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); 853 854 new = (get_cpld(ice) & ~CPLD_CKS_MASK) | get_cks_val(rate); 855 /* switch to internal clock, drop CPLD_SYNC_SEL */ 856 new &= ~CPLD_SYNC_SEL; 857 /* dev_dbg(ice->card->dev, "QT - set_rate: old %x, new %x\n", 858 get_cpld(ice), new); */ 859 set_cpld(ice, new); 860 } 861 862 static inline unsigned char qtet_set_mclk(struct snd_ice1712 *ice, 863 unsigned int rate) 864 { 865 /* no change in master clock */ 866 return 0; 867 } 868 869 /* setting clock to external - SPDIF */ 870 static int qtet_set_spdif_clock(struct snd_ice1712 *ice, int type) 871 { 872 unsigned int old, new; 873 874 old = new = get_cpld(ice); 875 new &= ~(CPLD_CKS_MASK | CPLD_WORD_SEL); 876 switch (type) { 877 case EXT_SPDIF_TYPE: 878 new |= CPLD_EXT_SPDIF; 879 break; 880 case EXT_WORDCLOCK_1FS_TYPE: 881 new |= CPLD_EXT_WORDCLOCK_1FS; 882 break; 883 case EXT_WORDCLOCK_256FS_TYPE: 884 new |= CPLD_EXT_WORDCLOCK_256FS; 885 break; 886 default: 887 snd_BUG(); 888 } 889 if (old != new) { 890 set_cpld(ice, new); 891 /* changed */ 892 return 1; 893 } 894 return 0; 895 } 896 897 static int qtet_get_spdif_master_type(struct snd_ice1712 *ice) 898 { 899 unsigned int val; 900 int result; 901 val = get_cpld(ice); 902 /* checking only rate/clock-related bits */ 903 val &= (CPLD_CKS_MASK | CPLD_WORD_SEL | CPLD_SYNC_SEL); 904 if (!(val & CPLD_SYNC_SEL)) { 905 /* switched to internal clock, is not any external type */ 906 result = -1; 907 } else { 908 switch (val) { 909 case (CPLD_EXT_SPDIF): 910 result = EXT_SPDIF_TYPE; 911 break; 912 case (CPLD_EXT_WORDCLOCK_1FS): 913 result = EXT_WORDCLOCK_1FS_TYPE; 914 break; 915 case (CPLD_EXT_WORDCLOCK_256FS): 916 result = EXT_WORDCLOCK_256FS_TYPE; 917 break; 918 default: 919 /* undefined combination of external clock setup */ 920 snd_BUG(); 921 result = 0; 922 } 923 } 924 return result; 925 } 926 927 /* Called when ak4113 detects change in the input SPDIF stream */ 928 static void qtet_ak4113_change(struct ak4113 *ak4113, unsigned char c0, 929 unsigned char c1) 930 { 931 struct snd_ice1712 *ice = ak4113->change_callback_private; 932 int rate; 933 if ((qtet_get_spdif_master_type(ice) == EXT_SPDIF_TYPE) && 934 c1) { 935 /* only for SPDIF master mode, rate was changed */ 936 rate = snd_ak4113_external_rate(ak4113); 937 /* dev_dbg(ice->card->dev, "ak4113 - input rate changed to %d\n", 938 rate); */ 939 qtet_akm_set_rate_val(ice->akm, rate); 940 } 941 } 942 943 /* 944 * If clock slaved to SPDIF-IN, setting runtime rate 945 * to the detected external rate 946 */ 947 static void qtet_spdif_in_open(struct snd_ice1712 *ice, 948 struct snd_pcm_substream *substream) 949 { 950 struct qtet_spec *spec = ice->spec; 951 struct snd_pcm_runtime *runtime = substream->runtime; 952 int rate; 953 954 if (qtet_get_spdif_master_type(ice) != EXT_SPDIF_TYPE) 955 /* not external SPDIF, no rate limitation */ 956 return; 957 /* only external SPDIF can detect incoming sample rate */ 958 rate = snd_ak4113_external_rate(spec->ak4113); 959 if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) { 960 runtime->hw.rate_min = rate; 961 runtime->hw.rate_max = rate; 962 } 963 } 964 965 /* 966 * initialize the chip 967 */ 968 static int qtet_init(struct snd_ice1712 *ice) 969 { 970 static const unsigned char ak4113_init_vals[] = { 971 /* AK4113_REG_PWRDN */ AK4113_RST | AK4113_PWN | 972 AK4113_OCKS0 | AK4113_OCKS1, 973 /* AK4113_REQ_FORMAT */ AK4113_DIF_I24I2S | AK4113_VTX | 974 AK4113_DEM_OFF | AK4113_DEAU, 975 /* AK4113_REG_IO0 */ AK4113_OPS2 | AK4113_TXE | 976 AK4113_XTL_24_576M, 977 /* AK4113_REG_IO1 */ AK4113_EFH_1024LRCLK | AK4113_IPS(0), 978 /* AK4113_REG_INT0_MASK */ 0, 979 /* AK4113_REG_INT1_MASK */ 0, 980 /* AK4113_REG_DATDTS */ 0, 981 }; 982 int err; 983 struct qtet_spec *spec; 984 struct snd_akm4xxx *ak; 985 unsigned char val; 986 987 /* switching ice1724 to external clock - supplied by ext. circuits */ 988 val = inb(ICEMT1724(ice, RATE)); 989 outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE)); 990 991 spec = kzalloc(sizeof(*spec), GFP_KERNEL); 992 if (!spec) 993 return -ENOMEM; 994 /* qtet is clocked by Xilinx array */ 995 ice->hw_rates = &qtet_rates_info; 996 ice->is_spdif_master = qtet_is_spdif_master; 997 ice->get_rate = qtet_get_rate; 998 ice->set_rate = qtet_set_rate; 999 ice->set_mclk = qtet_set_mclk; 1000 ice->set_spdif_clock = qtet_set_spdif_clock; 1001 ice->get_spdif_master_type = qtet_get_spdif_master_type; 1002 ice->ext_clock_names = ext_clock_names; 1003 ice->ext_clock_count = ARRAY_SIZE(ext_clock_names); 1004 /* since Qtet can detect correct SPDIF-in rate, all streams can be 1005 * limited to this specific rate */ 1006 ice->spdif.ops.open = ice->pro_open = qtet_spdif_in_open; 1007 ice->spec = spec; 1008 1009 /* Mute Off */ 1010 /* SCR Initialize*/ 1011 /* keep codec power down first */ 1012 set_scr(ice, SCR_PHP); 1013 udelay(1); 1014 /* codec power up */ 1015 set_scr(ice, SCR_PHP | SCR_CODEC_PDN); 1016 1017 /* MCR Initialize */ 1018 set_mcr(ice, 0); 1019 1020 /* CPLD Initialize */ 1021 set_cpld(ice, 0); 1022 1023 1024 ice->num_total_dacs = 2; 1025 ice->num_total_adcs = 2; 1026 1027 ice->akm = kcalloc(2, sizeof(struct snd_akm4xxx), GFP_KERNEL); 1028 ak = ice->akm; 1029 if (!ak) 1030 return -ENOMEM; 1031 /* only one codec with two chips */ 1032 ice->akm_codecs = 1; 1033 err = snd_ice1712_akm4xxx_init(ak, &akm_qtet_dac, NULL, ice); 1034 if (err < 0) 1035 return err; 1036 err = snd_ak4113_create(ice->card, 1037 qtet_ak4113_read, 1038 qtet_ak4113_write, 1039 ak4113_init_vals, 1040 ice, &spec->ak4113); 1041 if (err < 0) 1042 return err; 1043 /* callback for codecs rate setting */ 1044 spec->ak4113->change_callback = qtet_ak4113_change; 1045 spec->ak4113->change_callback_private = ice; 1046 /* AK41143 in Quartet can detect external rate correctly 1047 * (i.e. check_flags = 0) */ 1048 spec->ak4113->check_flags = 0; 1049 1050 proc_init(ice); 1051 1052 qtet_set_rate(ice, 44100); 1053 return 0; 1054 } 1055 1056 static unsigned char qtet_eeprom[] = { 1057 [ICE_EEP2_SYSCONF] = 0x28, /* clock 256(24MHz), mpu401, 1xADC, 1058 1xDACs, SPDIF in */ 1059 [ICE_EEP2_ACLINK] = 0x80, /* I2S */ 1060 [ICE_EEP2_I2S] = 0x78, /* 96k, 24bit, 192k */ 1061 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, in, out-ext */ 1062 [ICE_EEP2_GPIO_DIR] = 0x00, /* 0-7 inputs, switched to output 1063 only during output operations */ 1064 [ICE_EEP2_GPIO_DIR1] = 0xff, /* 8-15 outputs */ 1065 [ICE_EEP2_GPIO_DIR2] = 0x00, 1066 [ICE_EEP2_GPIO_MASK] = 0xff, /* changed only for OUT operations */ 1067 [ICE_EEP2_GPIO_MASK1] = 0x00, 1068 [ICE_EEP2_GPIO_MASK2] = 0xff, 1069 1070 [ICE_EEP2_GPIO_STATE] = 0x00, /* inputs */ 1071 [ICE_EEP2_GPIO_STATE1] = 0x7d, /* all 1, but GPIO_CPLD_RW 1072 and GPIO15 always zero */ 1073 [ICE_EEP2_GPIO_STATE2] = 0x00, /* inputs */ 1074 }; 1075 1076 /* entry point */ 1077 struct snd_ice1712_card_info snd_vt1724_qtet_cards[] = { 1078 { 1079 .subvendor = VT1724_SUBDEVICE_QTET, 1080 .name = "Infrasonic Quartet", 1081 .model = "quartet", 1082 .chip_init = qtet_init, 1083 .build_controls = qtet_add_controls, 1084 .eeprom_size = sizeof(qtet_eeprom), 1085 .eeprom_data = qtet_eeprom, 1086 }, 1087 { } /* terminator */ 1088 }; 1089