1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ALSA driver for ICEnsemble VT1724 (Envy24HT)
4 *
5 * Lowlevel functions for Pontis MS300
6 *
7 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/mutex.h>
15
16 #include <sound/core.h>
17 #include <sound/info.h>
18 #include <sound/tlv.h>
19
20 #include "ice1712.h"
21 #include "envy24ht.h"
22 #include "pontis.h"
23
24 /* I2C addresses */
25 #define WM_DEV 0x34
26 #define CS_DEV 0x20
27
28 /* WM8776 registers */
29 #define WM_HP_ATTEN_L 0x00 /* headphone left attenuation */
30 #define WM_HP_ATTEN_R 0x01 /* headphone left attenuation */
31 #define WM_HP_MASTER 0x02 /* headphone master (both channels) */
32 /* override LLR */
33 #define WM_DAC_ATTEN_L 0x03 /* digital left attenuation */
34 #define WM_DAC_ATTEN_R 0x04
35 #define WM_DAC_MASTER 0x05
36 #define WM_PHASE_SWAP 0x06 /* DAC phase swap */
37 #define WM_DAC_CTRL1 0x07
38 #define WM_DAC_MUTE 0x08
39 #define WM_DAC_CTRL2 0x09
40 #define WM_DAC_INT 0x0a
41 #define WM_ADC_INT 0x0b
42 #define WM_MASTER_CTRL 0x0c
43 #define WM_POWERDOWN 0x0d
44 #define WM_ADC_ATTEN_L 0x0e
45 #define WM_ADC_ATTEN_R 0x0f
46 #define WM_ALC_CTRL1 0x10
47 #define WM_ALC_CTRL2 0x11
48 #define WM_ALC_CTRL3 0x12
49 #define WM_NOISE_GATE 0x13
50 #define WM_LIMITER 0x14
51 #define WM_ADC_MUX 0x15
52 #define WM_OUT_MUX 0x16
53 #define WM_RESET 0x17
54
55 /*
56 * GPIO
57 */
58 #define PONTIS_CS_CS (1<<4) /* CS */
59 #define PONTIS_CS_CLK (1<<5) /* CLK */
60 #define PONTIS_CS_RDATA (1<<6) /* CS8416 -> VT1720 */
61 #define PONTIS_CS_WDATA (1<<7) /* VT1720 -> CS8416 */
62
63
64 /*
65 * get the current register value of WM codec
66 */
wm_get(struct snd_ice1712 * ice,int reg)67 static unsigned short wm_get(struct snd_ice1712 *ice, int reg)
68 {
69 reg <<= 1;
70 return ((unsigned short)ice->akm[0].images[reg] << 8) |
71 ice->akm[0].images[reg + 1];
72 }
73
74 /*
75 * set the register value of WM codec and remember it
76 */
wm_put_nocache(struct snd_ice1712 * ice,int reg,unsigned short val)77 static void wm_put_nocache(struct snd_ice1712 *ice, int reg, unsigned short val)
78 {
79 unsigned short cval;
80 cval = (reg << 9) | val;
81 snd_vt1724_write_i2c(ice, WM_DEV, cval >> 8, cval & 0xff);
82 }
83
wm_put(struct snd_ice1712 * ice,int reg,unsigned short val)84 static void wm_put(struct snd_ice1712 *ice, int reg, unsigned short val)
85 {
86 wm_put_nocache(ice, reg, val);
87 reg <<= 1;
88 ice->akm[0].images[reg] = val >> 8;
89 ice->akm[0].images[reg + 1] = val;
90 }
91
92 /*
93 * DAC volume attenuation mixer control (-64dB to 0dB)
94 */
95
96 #define DAC_0dB 0xff
97 #define DAC_RES 128
98 #define DAC_MIN (DAC_0dB - DAC_RES)
99
wm_dac_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)100 static int wm_dac_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
101 {
102 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
103 uinfo->count = 2;
104 uinfo->value.integer.min = 0; /* mute */
105 uinfo->value.integer.max = DAC_RES; /* 0dB, 0.5dB step */
106 return 0;
107 }
108
wm_dac_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)109 static int wm_dac_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
110 {
111 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
112 unsigned short val;
113 int i;
114
115 mutex_lock(&ice->gpio_mutex);
116 for (i = 0; i < 2; i++) {
117 val = wm_get(ice, WM_DAC_ATTEN_L + i) & 0xff;
118 val = val > DAC_MIN ? (val - DAC_MIN) : 0;
119 ucontrol->value.integer.value[i] = val;
120 }
121 mutex_unlock(&ice->gpio_mutex);
122 return 0;
123 }
124
wm_dac_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)125 static int wm_dac_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
126 {
127 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
128 unsigned short oval, nval;
129 int i, idx, change = 0;
130
131 mutex_lock(&ice->gpio_mutex);
132 for (i = 0; i < 2; i++) {
133 nval = ucontrol->value.integer.value[i];
134 nval = (nval ? (nval + DAC_MIN) : 0) & 0xff;
135 idx = WM_DAC_ATTEN_L + i;
136 oval = wm_get(ice, idx) & 0xff;
137 if (oval != nval) {
138 wm_put(ice, idx, nval);
139 wm_put_nocache(ice, idx, nval | 0x100);
140 change = 1;
141 }
142 }
143 mutex_unlock(&ice->gpio_mutex);
144 return change;
145 }
146
147 /*
148 * ADC gain mixer control (-64dB to 0dB)
149 */
150
151 #define ADC_0dB 0xcf
152 #define ADC_RES 128
153 #define ADC_MIN (ADC_0dB - ADC_RES)
154
wm_adc_vol_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)155 static int wm_adc_vol_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
156 {
157 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
158 uinfo->count = 2;
159 uinfo->value.integer.min = 0; /* mute (-64dB) */
160 uinfo->value.integer.max = ADC_RES; /* 0dB, 0.5dB step */
161 return 0;
162 }
163
wm_adc_vol_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)164 static int wm_adc_vol_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
165 {
166 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
167 unsigned short val;
168 int i;
169
170 mutex_lock(&ice->gpio_mutex);
171 for (i = 0; i < 2; i++) {
172 val = wm_get(ice, WM_ADC_ATTEN_L + i) & 0xff;
173 val = val > ADC_MIN ? (val - ADC_MIN) : 0;
174 ucontrol->value.integer.value[i] = val;
175 }
176 mutex_unlock(&ice->gpio_mutex);
177 return 0;
178 }
179
wm_adc_vol_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)180 static int wm_adc_vol_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
181 {
182 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
183 unsigned short ovol, nvol;
184 int i, idx, change = 0;
185
186 mutex_lock(&ice->gpio_mutex);
187 for (i = 0; i < 2; i++) {
188 nvol = ucontrol->value.integer.value[i];
189 nvol = nvol ? (nvol + ADC_MIN) : 0;
190 idx = WM_ADC_ATTEN_L + i;
191 ovol = wm_get(ice, idx) & 0xff;
192 if (ovol != nvol) {
193 wm_put(ice, idx, nvol);
194 change = 1;
195 }
196 }
197 mutex_unlock(&ice->gpio_mutex);
198 return change;
199 }
200
201 /*
202 * ADC input mux mixer control
203 */
204 #define wm_adc_mux_info snd_ctl_boolean_mono_info
205
wm_adc_mux_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)206 static int wm_adc_mux_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
207 {
208 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
209 int bit = kcontrol->private_value;
210
211 mutex_lock(&ice->gpio_mutex);
212 ucontrol->value.integer.value[0] = (wm_get(ice, WM_ADC_MUX) & (1 << bit)) ? 1 : 0;
213 mutex_unlock(&ice->gpio_mutex);
214 return 0;
215 }
216
wm_adc_mux_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)217 static int wm_adc_mux_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
218 {
219 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
220 int bit = kcontrol->private_value;
221 unsigned short oval, nval;
222 int change;
223
224 mutex_lock(&ice->gpio_mutex);
225 nval = oval = wm_get(ice, WM_ADC_MUX);
226 if (ucontrol->value.integer.value[0])
227 nval |= (1 << bit);
228 else
229 nval &= ~(1 << bit);
230 change = nval != oval;
231 if (change) {
232 wm_put(ice, WM_ADC_MUX, nval);
233 }
234 mutex_unlock(&ice->gpio_mutex);
235 return change;
236 }
237
238 /*
239 * Analog bypass (In -> Out)
240 */
241 #define wm_bypass_info snd_ctl_boolean_mono_info
242
wm_bypass_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)243 static int wm_bypass_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
244 {
245 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
246
247 mutex_lock(&ice->gpio_mutex);
248 ucontrol->value.integer.value[0] = (wm_get(ice, WM_OUT_MUX) & 0x04) ? 1 : 0;
249 mutex_unlock(&ice->gpio_mutex);
250 return 0;
251 }
252
wm_bypass_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)253 static int wm_bypass_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
254 {
255 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
256 unsigned short val, oval;
257 int change = 0;
258
259 mutex_lock(&ice->gpio_mutex);
260 val = oval = wm_get(ice, WM_OUT_MUX);
261 if (ucontrol->value.integer.value[0])
262 val |= 0x04;
263 else
264 val &= ~0x04;
265 if (val != oval) {
266 wm_put(ice, WM_OUT_MUX, val);
267 change = 1;
268 }
269 mutex_unlock(&ice->gpio_mutex);
270 return change;
271 }
272
273 /*
274 * Left/Right swap
275 */
276 #define wm_chswap_info snd_ctl_boolean_mono_info
277
wm_chswap_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)278 static int wm_chswap_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
279 {
280 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
281
282 mutex_lock(&ice->gpio_mutex);
283 ucontrol->value.integer.value[0] = (wm_get(ice, WM_DAC_CTRL1) & 0xf0) != 0x90;
284 mutex_unlock(&ice->gpio_mutex);
285 return 0;
286 }
287
wm_chswap_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)288 static int wm_chswap_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
289 {
290 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
291 unsigned short val, oval;
292 int change = 0;
293
294 mutex_lock(&ice->gpio_mutex);
295 oval = wm_get(ice, WM_DAC_CTRL1);
296 val = oval & 0x0f;
297 if (ucontrol->value.integer.value[0])
298 val |= 0x60;
299 else
300 val |= 0x90;
301 if (val != oval) {
302 wm_put(ice, WM_DAC_CTRL1, val);
303 wm_put_nocache(ice, WM_DAC_CTRL1, val);
304 change = 1;
305 }
306 mutex_unlock(&ice->gpio_mutex);
307 return change;
308 }
309
310 /*
311 * write data in the SPI mode
312 */
set_gpio_bit(struct snd_ice1712 * ice,unsigned int bit,int val)313 static void set_gpio_bit(struct snd_ice1712 *ice, unsigned int bit, int val)
314 {
315 unsigned int tmp = snd_ice1712_gpio_read(ice);
316 if (val)
317 tmp |= bit;
318 else
319 tmp &= ~bit;
320 snd_ice1712_gpio_write(ice, tmp);
321 }
322
spi_send_byte(struct snd_ice1712 * ice,unsigned char data)323 static void spi_send_byte(struct snd_ice1712 *ice, unsigned char data)
324 {
325 int i;
326 for (i = 0; i < 8; i++) {
327 set_gpio_bit(ice, PONTIS_CS_CLK, 0);
328 udelay(1);
329 set_gpio_bit(ice, PONTIS_CS_WDATA, data & 0x80);
330 udelay(1);
331 set_gpio_bit(ice, PONTIS_CS_CLK, 1);
332 udelay(1);
333 data <<= 1;
334 }
335 }
336
spi_read_byte(struct snd_ice1712 * ice)337 static unsigned int spi_read_byte(struct snd_ice1712 *ice)
338 {
339 int i;
340 unsigned int val = 0;
341
342 for (i = 0; i < 8; i++) {
343 val <<= 1;
344 set_gpio_bit(ice, PONTIS_CS_CLK, 0);
345 udelay(1);
346 if (snd_ice1712_gpio_read(ice) & PONTIS_CS_RDATA)
347 val |= 1;
348 udelay(1);
349 set_gpio_bit(ice, PONTIS_CS_CLK, 1);
350 udelay(1);
351 }
352 return val;
353 }
354
355
spi_write(struct snd_ice1712 * ice,unsigned int dev,unsigned int reg,unsigned int data)356 static void spi_write(struct snd_ice1712 *ice, unsigned int dev, unsigned int reg, unsigned int data)
357 {
358 snd_ice1712_gpio_set_dir(ice, PONTIS_CS_CS|PONTIS_CS_WDATA|PONTIS_CS_CLK);
359 snd_ice1712_gpio_set_mask(ice, ~(PONTIS_CS_CS|PONTIS_CS_WDATA|PONTIS_CS_CLK));
360 set_gpio_bit(ice, PONTIS_CS_CS, 0);
361 spi_send_byte(ice, dev & ~1); /* WRITE */
362 spi_send_byte(ice, reg); /* MAP */
363 spi_send_byte(ice, data); /* DATA */
364 /* trigger */
365 set_gpio_bit(ice, PONTIS_CS_CS, 1);
366 udelay(1);
367 /* restore */
368 snd_ice1712_gpio_set_mask(ice, ice->gpio.write_mask);
369 snd_ice1712_gpio_set_dir(ice, ice->gpio.direction);
370 }
371
spi_read(struct snd_ice1712 * ice,unsigned int dev,unsigned int reg)372 static unsigned int spi_read(struct snd_ice1712 *ice, unsigned int dev, unsigned int reg)
373 {
374 unsigned int val;
375 snd_ice1712_gpio_set_dir(ice, PONTIS_CS_CS|PONTIS_CS_WDATA|PONTIS_CS_CLK);
376 snd_ice1712_gpio_set_mask(ice, ~(PONTIS_CS_CS|PONTIS_CS_WDATA|PONTIS_CS_CLK));
377 set_gpio_bit(ice, PONTIS_CS_CS, 0);
378 spi_send_byte(ice, dev & ~1); /* WRITE */
379 spi_send_byte(ice, reg); /* MAP */
380 /* trigger */
381 set_gpio_bit(ice, PONTIS_CS_CS, 1);
382 udelay(1);
383 set_gpio_bit(ice, PONTIS_CS_CS, 0);
384 spi_send_byte(ice, dev | 1); /* READ */
385 val = spi_read_byte(ice);
386 /* trigger */
387 set_gpio_bit(ice, PONTIS_CS_CS, 1);
388 udelay(1);
389 /* restore */
390 snd_ice1712_gpio_set_mask(ice, ice->gpio.write_mask);
391 snd_ice1712_gpio_set_dir(ice, ice->gpio.direction);
392 return val;
393 }
394
395
396 /*
397 * SPDIF input source
398 */
cs_source_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)399 static int cs_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
400 {
401 static const char * const texts[] = {
402 "Coax", /* RXP0 */
403 "Optical", /* RXP1 */
404 "CD", /* RXP2 */
405 };
406 return snd_ctl_enum_info(uinfo, 1, 3, texts);
407 }
408
cs_source_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)409 static int cs_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
410 {
411 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
412
413 mutex_lock(&ice->gpio_mutex);
414 ucontrol->value.enumerated.item[0] = ice->gpio.saved[0];
415 mutex_unlock(&ice->gpio_mutex);
416 return 0;
417 }
418
cs_source_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)419 static int cs_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
420 {
421 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
422 unsigned char val;
423 int change = 0;
424
425 mutex_lock(&ice->gpio_mutex);
426 if (ucontrol->value.enumerated.item[0] != ice->gpio.saved[0]) {
427 ice->gpio.saved[0] = ucontrol->value.enumerated.item[0] & 3;
428 val = 0x80 | (ice->gpio.saved[0] << 3);
429 spi_write(ice, CS_DEV, 0x04, val);
430 change = 1;
431 }
432 mutex_unlock(&ice->gpio_mutex);
433 return change;
434 }
435
436
437 /*
438 * GPIO controls
439 */
pontis_gpio_mask_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)440 static int pontis_gpio_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
441 {
442 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
443 uinfo->count = 1;
444 uinfo->value.integer.min = 0;
445 uinfo->value.integer.max = 0xffff; /* 16bit */
446 return 0;
447 }
448
pontis_gpio_mask_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)449 static int pontis_gpio_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
450 {
451 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
452 mutex_lock(&ice->gpio_mutex);
453 /* 4-7 reserved */
454 ucontrol->value.integer.value[0] = (~ice->gpio.write_mask & 0xffff) | 0x00f0;
455 mutex_unlock(&ice->gpio_mutex);
456 return 0;
457 }
458
pontis_gpio_mask_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)459 static int pontis_gpio_mask_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
460 {
461 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
462 unsigned int val;
463 int changed;
464 mutex_lock(&ice->gpio_mutex);
465 /* 4-7 reserved */
466 val = (~ucontrol->value.integer.value[0] & 0xffff) | 0x00f0;
467 changed = val != ice->gpio.write_mask;
468 ice->gpio.write_mask = val;
469 mutex_unlock(&ice->gpio_mutex);
470 return changed;
471 }
472
pontis_gpio_dir_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)473 static int pontis_gpio_dir_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
474 {
475 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
476 mutex_lock(&ice->gpio_mutex);
477 /* 4-7 reserved */
478 ucontrol->value.integer.value[0] = ice->gpio.direction & 0xff0f;
479 mutex_unlock(&ice->gpio_mutex);
480 return 0;
481 }
482
pontis_gpio_dir_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)483 static int pontis_gpio_dir_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
484 {
485 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
486 unsigned int val;
487 int changed;
488 mutex_lock(&ice->gpio_mutex);
489 /* 4-7 reserved */
490 val = ucontrol->value.integer.value[0] & 0xff0f;
491 changed = (val != ice->gpio.direction);
492 ice->gpio.direction = val;
493 mutex_unlock(&ice->gpio_mutex);
494 return changed;
495 }
496
pontis_gpio_data_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)497 static int pontis_gpio_data_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
498 {
499 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
500 mutex_lock(&ice->gpio_mutex);
501 snd_ice1712_gpio_set_dir(ice, ice->gpio.direction);
502 snd_ice1712_gpio_set_mask(ice, ice->gpio.write_mask);
503 ucontrol->value.integer.value[0] = snd_ice1712_gpio_read(ice) & 0xffff;
504 mutex_unlock(&ice->gpio_mutex);
505 return 0;
506 }
507
pontis_gpio_data_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)508 static int pontis_gpio_data_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
509 {
510 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
511 unsigned int val, nval;
512 int changed = 0;
513 mutex_lock(&ice->gpio_mutex);
514 snd_ice1712_gpio_set_dir(ice, ice->gpio.direction);
515 snd_ice1712_gpio_set_mask(ice, ice->gpio.write_mask);
516 val = snd_ice1712_gpio_read(ice) & 0xffff;
517 nval = ucontrol->value.integer.value[0] & 0xffff;
518 if (val != nval) {
519 snd_ice1712_gpio_write(ice, nval);
520 changed = 1;
521 }
522 mutex_unlock(&ice->gpio_mutex);
523 return changed;
524 }
525
526 static const DECLARE_TLV_DB_SCALE(db_scale_volume, -6400, 50, 1);
527
528 /*
529 * mixers
530 */
531
532 static const struct snd_kcontrol_new pontis_controls[] = {
533 {
534 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
535 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
536 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
537 .name = "PCM Playback Volume",
538 .info = wm_dac_vol_info,
539 .get = wm_dac_vol_get,
540 .put = wm_dac_vol_put,
541 .tlv = { .p = db_scale_volume },
542 },
543 {
544 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
545 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
546 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
547 .name = "Capture Volume",
548 .info = wm_adc_vol_info,
549 .get = wm_adc_vol_get,
550 .put = wm_adc_vol_put,
551 .tlv = { .p = db_scale_volume },
552 },
553 {
554 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
555 .name = "CD Capture Switch",
556 .info = wm_adc_mux_info,
557 .get = wm_adc_mux_get,
558 .put = wm_adc_mux_put,
559 .private_value = 0,
560 },
561 {
562 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
563 .name = "Line Capture Switch",
564 .info = wm_adc_mux_info,
565 .get = wm_adc_mux_get,
566 .put = wm_adc_mux_put,
567 .private_value = 1,
568 },
569 {
570 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
571 .name = "Analog Bypass Switch",
572 .info = wm_bypass_info,
573 .get = wm_bypass_get,
574 .put = wm_bypass_put,
575 },
576 {
577 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
578 .name = "Swap Output Channels",
579 .info = wm_chswap_info,
580 .get = wm_chswap_get,
581 .put = wm_chswap_put,
582 },
583 {
584 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
585 .name = "IEC958 Input Source",
586 .info = cs_source_info,
587 .get = cs_source_get,
588 .put = cs_source_put,
589 },
590 /* FIXME: which interface? */
591 {
592 .iface = SNDRV_CTL_ELEM_IFACE_CARD,
593 .name = "GPIO Mask",
594 .info = pontis_gpio_mask_info,
595 .get = pontis_gpio_mask_get,
596 .put = pontis_gpio_mask_put,
597 },
598 {
599 .iface = SNDRV_CTL_ELEM_IFACE_CARD,
600 .name = "GPIO Direction",
601 .info = pontis_gpio_mask_info,
602 .get = pontis_gpio_dir_get,
603 .put = pontis_gpio_dir_put,
604 },
605 {
606 .iface = SNDRV_CTL_ELEM_IFACE_CARD,
607 .name = "GPIO Data",
608 .info = pontis_gpio_mask_info,
609 .get = pontis_gpio_data_get,
610 .put = pontis_gpio_data_put,
611 },
612 };
613
614
615 /*
616 * WM codec registers
617 */
wm_proc_regs_write(struct snd_info_entry * entry,struct snd_info_buffer * buffer)618 static void wm_proc_regs_write(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
619 {
620 struct snd_ice1712 *ice = entry->private_data;
621 char line[64];
622 unsigned int reg, val;
623 mutex_lock(&ice->gpio_mutex);
624 while (!snd_info_get_line(buffer, line, sizeof(line))) {
625 if (sscanf(line, "%x %x", ®, &val) != 2)
626 continue;
627 if (reg <= 0x17 && val <= 0xffff)
628 wm_put(ice, reg, val);
629 }
630 mutex_unlock(&ice->gpio_mutex);
631 }
632
wm_proc_regs_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)633 static void wm_proc_regs_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
634 {
635 struct snd_ice1712 *ice = entry->private_data;
636 int reg, val;
637
638 mutex_lock(&ice->gpio_mutex);
639 for (reg = 0; reg <= 0x17; reg++) {
640 val = wm_get(ice, reg);
641 snd_iprintf(buffer, "%02x = %04x\n", reg, val);
642 }
643 mutex_unlock(&ice->gpio_mutex);
644 }
645
wm_proc_init(struct snd_ice1712 * ice)646 static void wm_proc_init(struct snd_ice1712 *ice)
647 {
648 snd_card_rw_proc_new(ice->card, "wm_codec", ice, wm_proc_regs_read,
649 wm_proc_regs_write);
650 }
651
cs_proc_regs_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)652 static void cs_proc_regs_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
653 {
654 struct snd_ice1712 *ice = entry->private_data;
655 int reg, val;
656
657 mutex_lock(&ice->gpio_mutex);
658 for (reg = 0; reg <= 0x26; reg++) {
659 val = spi_read(ice, CS_DEV, reg);
660 snd_iprintf(buffer, "%02x = %02x\n", reg, val);
661 }
662 val = spi_read(ice, CS_DEV, 0x7f);
663 snd_iprintf(buffer, "%02x = %02x\n", 0x7f, val);
664 mutex_unlock(&ice->gpio_mutex);
665 }
666
cs_proc_init(struct snd_ice1712 * ice)667 static void cs_proc_init(struct snd_ice1712 *ice)
668 {
669 snd_card_ro_proc_new(ice->card, "cs_codec", ice, cs_proc_regs_read);
670 }
671
672
pontis_add_controls(struct snd_ice1712 * ice)673 static int pontis_add_controls(struct snd_ice1712 *ice)
674 {
675 unsigned int i;
676 int err;
677
678 for (i = 0; i < ARRAY_SIZE(pontis_controls); i++) {
679 err = snd_ctl_add(ice->card, snd_ctl_new1(&pontis_controls[i], ice));
680 if (err < 0)
681 return err;
682 }
683
684 wm_proc_init(ice);
685 cs_proc_init(ice);
686
687 return 0;
688 }
689
690
691 /*
692 * initialize the chip
693 */
pontis_init(struct snd_ice1712 * ice)694 static int pontis_init(struct snd_ice1712 *ice)
695 {
696 static const unsigned short wm_inits[] = {
697 /* These come first to reduce init pop noise */
698 WM_ADC_MUX, 0x00c0, /* ADC mute */
699 WM_DAC_MUTE, 0x0001, /* DAC softmute */
700 WM_DAC_CTRL1, 0x0000, /* DAC mute */
701
702 WM_POWERDOWN, 0x0008, /* All power-up except HP */
703 WM_RESET, 0x0000, /* reset */
704 };
705 static const unsigned short wm_inits2[] = {
706 WM_MASTER_CTRL, 0x0022, /* 256fs, slave mode */
707 WM_DAC_INT, 0x0022, /* I2S, normal polarity, 24bit */
708 WM_ADC_INT, 0x0022, /* I2S, normal polarity, 24bit */
709 WM_DAC_CTRL1, 0x0090, /* DAC L/R */
710 WM_OUT_MUX, 0x0001, /* OUT DAC */
711 WM_HP_ATTEN_L, 0x0179, /* HP 0dB */
712 WM_HP_ATTEN_R, 0x0179, /* HP 0dB */
713 WM_DAC_ATTEN_L, 0x0000, /* DAC 0dB */
714 WM_DAC_ATTEN_L, 0x0100, /* DAC 0dB */
715 WM_DAC_ATTEN_R, 0x0000, /* DAC 0dB */
716 WM_DAC_ATTEN_R, 0x0100, /* DAC 0dB */
717 /* WM_DAC_MASTER, 0x0100, */ /* DAC master muted */
718 WM_PHASE_SWAP, 0x0000, /* phase normal */
719 WM_DAC_CTRL2, 0x0000, /* no deemphasis, no ZFLG */
720 WM_ADC_ATTEN_L, 0x0000, /* ADC muted */
721 WM_ADC_ATTEN_R, 0x0000, /* ADC muted */
722 #if 0
723 WM_ALC_CTRL1, 0x007b, /* */
724 WM_ALC_CTRL2, 0x0000, /* */
725 WM_ALC_CTRL3, 0x0000, /* */
726 WM_NOISE_GATE, 0x0000, /* */
727 #endif
728 WM_DAC_MUTE, 0x0000, /* DAC unmute */
729 WM_ADC_MUX, 0x0003, /* ADC unmute, both CD/Line On */
730 };
731 static const unsigned char cs_inits[] = {
732 0x04, 0x80, /* RUN, RXP0 */
733 0x05, 0x05, /* slave, 24bit */
734 0x01, 0x00,
735 0x02, 0x00,
736 0x03, 0x00,
737 };
738 unsigned int i;
739
740 ice->vt1720 = 1;
741 ice->num_total_dacs = 2;
742 ice->num_total_adcs = 2;
743
744 /* to remember the register values */
745 ice->akm = kzalloc(sizeof(struct snd_akm4xxx), GFP_KERNEL);
746 if (! ice->akm)
747 return -ENOMEM;
748 ice->akm_codecs = 1;
749
750 /* HACK - use this as the SPDIF source.
751 * don't call snd_ice1712_gpio_get/put(), otherwise it's overwritten
752 */
753 ice->gpio.saved[0] = 0;
754
755 /* initialize WM8776 codec */
756 for (i = 0; i < ARRAY_SIZE(wm_inits); i += 2)
757 wm_put(ice, wm_inits[i], wm_inits[i+1]);
758 schedule_timeout_uninterruptible(1);
759 for (i = 0; i < ARRAY_SIZE(wm_inits2); i += 2)
760 wm_put(ice, wm_inits2[i], wm_inits2[i+1]);
761
762 /* initialize CS8416 codec */
763 /* assert PRST#; MT05 bit 7 */
764 outb(inb(ICEMT1724(ice, AC97_CMD)) | 0x80, ICEMT1724(ice, AC97_CMD));
765 mdelay(5);
766 /* deassert PRST# */
767 outb(inb(ICEMT1724(ice, AC97_CMD)) & ~0x80, ICEMT1724(ice, AC97_CMD));
768
769 for (i = 0; i < ARRAY_SIZE(cs_inits); i += 2)
770 spi_write(ice, CS_DEV, cs_inits[i], cs_inits[i+1]);
771
772 return 0;
773 }
774
775
776 /*
777 * Pontis boards don't provide the EEPROM data at all.
778 * hence the driver needs to sets up it properly.
779 */
780
781 static const unsigned char pontis_eeprom[] = {
782 [ICE_EEP2_SYSCONF] = 0x08, /* clock 256, mpu401, spdif-in/ADC, 1DAC */
783 [ICE_EEP2_ACLINK] = 0x80, /* I2S */
784 [ICE_EEP2_I2S] = 0xf8, /* vol, 96k, 24bit, 192k */
785 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, spdif-in */
786 [ICE_EEP2_GPIO_DIR] = 0x07,
787 [ICE_EEP2_GPIO_DIR1] = 0x00,
788 [ICE_EEP2_GPIO_DIR2] = 0x00, /* ignored */
789 [ICE_EEP2_GPIO_MASK] = 0x0f, /* 4-7 reserved for CS8416 */
790 [ICE_EEP2_GPIO_MASK1] = 0xff,
791 [ICE_EEP2_GPIO_MASK2] = 0x00, /* ignored */
792 [ICE_EEP2_GPIO_STATE] = 0x06, /* 0-low, 1-high, 2-high */
793 [ICE_EEP2_GPIO_STATE1] = 0x00,
794 [ICE_EEP2_GPIO_STATE2] = 0x00, /* ignored */
795 };
796
797 /* entry point */
798 struct snd_ice1712_card_info snd_vt1720_pontis_cards[] = {
799 {
800 .subvendor = VT1720_SUBDEVICE_PONTIS_MS300,
801 .name = "Pontis MS300",
802 .model = "ms300",
803 .chip_init = pontis_init,
804 .build_controls = pontis_add_controls,
805 .eeprom_size = sizeof(pontis_eeprom),
806 .eeprom_data = pontis_eeprom,
807 },
808 { } /* terminator */
809 };
810