xref: /linux/sound/pci/fm801.c (revision 6e8331ac6973435b1e7604c30f2ad394035b46e1)
1 /*
2  *  The driver for the ForteMedia FM801 based soundcards
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *
5  *
6  *   This program is free software; you can redistribute it and/or modify
7  *   it under the terms of the GNU General Public License as published by
8  *   the Free Software Foundation; either version 2 of the License, or
9  *   (at your option) any later version.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *   GNU General Public License for more details.
15  *
16  *   You should have received a copy of the GNU General Public License
17  *   along with this program; if not, write to the Free Software
18  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
19  *
20  */
21 
22 #include <sound/driver.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <linux/moduleparam.h>
29 #include <sound/core.h>
30 #include <sound/pcm.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/mpu401.h>
33 #include <sound/opl3.h>
34 #include <sound/initval.h>
35 
36 #include <asm/io.h>
37 
38 #ifdef CONFIG_SND_FM801_TEA575X_BOOL
39 #include <sound/tea575x-tuner.h>
40 #define TEA575X_RADIO 1
41 #endif
42 
43 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>");
44 MODULE_DESCRIPTION("ForteMedia FM801");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
47 		"{Genius,SoundMaker Live 5.1}}");
48 
49 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
50 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
51 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
52 /*
53  *  Enable TEA575x tuner
54  *    1 = MediaForte 256-PCS
55  *    2 = MediaForte 256-PCPR
56  *    3 = MediaForte 64-PCR
57  *  High 16-bits are video (radio) device number + 1
58  */
59 static int tea575x_tuner[SNDRV_CARDS];
60 
61 module_param_array(index, int, NULL, 0444);
62 MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
63 module_param_array(id, charp, NULL, 0444);
64 MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
65 module_param_array(enable, bool, NULL, 0444);
66 MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
67 module_param_array(tea575x_tuner, int, NULL, 0444);
68 MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");
69 
70 /*
71  *  Direct registers
72  */
73 
74 #define FM801_REG(chip, reg)	(chip->port + FM801_##reg)
75 
76 #define FM801_PCM_VOL		0x00	/* PCM Output Volume */
77 #define FM801_FM_VOL		0x02	/* FM Output Volume */
78 #define FM801_I2S_VOL		0x04	/* I2S Volume */
79 #define FM801_REC_SRC		0x06	/* Record Source */
80 #define FM801_PLY_CTRL		0x08	/* Playback Control */
81 #define FM801_PLY_COUNT		0x0a	/* Playback Count */
82 #define FM801_PLY_BUF1		0x0c	/* Playback Bufer I */
83 #define FM801_PLY_BUF2		0x10	/* Playback Buffer II */
84 #define FM801_CAP_CTRL		0x14	/* Capture Control */
85 #define FM801_CAP_COUNT		0x16	/* Capture Count */
86 #define FM801_CAP_BUF1		0x18	/* Capture Buffer I */
87 #define FM801_CAP_BUF2		0x1c	/* Capture Buffer II */
88 #define FM801_CODEC_CTRL	0x22	/* Codec Control */
89 #define FM801_I2S_MODE		0x24	/* I2S Mode Control */
90 #define FM801_VOLUME		0x26	/* Volume Up/Down/Mute Status */
91 #define FM801_I2C_CTRL		0x29	/* I2C Control */
92 #define FM801_AC97_CMD		0x2a	/* AC'97 Command */
93 #define FM801_AC97_DATA		0x2c	/* AC'97 Data */
94 #define FM801_MPU401_DATA	0x30	/* MPU401 Data */
95 #define FM801_MPU401_CMD	0x31	/* MPU401 Command */
96 #define FM801_GPIO_CTRL		0x52	/* General Purpose I/O Control */
97 #define FM801_GEN_CTRL		0x54	/* General Control */
98 #define FM801_IRQ_MASK		0x56	/* Interrupt Mask */
99 #define FM801_IRQ_STATUS	0x5a	/* Interrupt Status */
100 #define FM801_OPL3_BANK0	0x68	/* OPL3 Status Read / Bank 0 Write */
101 #define FM801_OPL3_DATA0	0x69	/* OPL3 Data 0 Write */
102 #define FM801_OPL3_BANK1	0x6a	/* OPL3 Bank 1 Write */
103 #define FM801_OPL3_DATA1	0x6b	/* OPL3 Bank 1 Write */
104 #define FM801_POWERDOWN		0x70	/* Blocks Power Down Control */
105 
106 /* codec access */
107 #define FM801_AC97_READ		(1<<7)	/* read=1, write=0 */
108 #define FM801_AC97_VALID	(1<<8)	/* port valid=1 */
109 #define FM801_AC97_BUSY		(1<<9)	/* busy=1 */
110 #define FM801_AC97_ADDR_SHIFT	10	/* codec id (2bit) */
111 
112 /* playback and record control register bits */
113 #define FM801_BUF1_LAST		(1<<1)
114 #define FM801_BUF2_LAST		(1<<2)
115 #define FM801_START		(1<<5)
116 #define FM801_PAUSE		(1<<6)
117 #define FM801_IMMED_STOP	(1<<7)
118 #define FM801_RATE_SHIFT	8
119 #define FM801_RATE_MASK		(15 << FM801_RATE_SHIFT)
120 #define FM801_CHANNELS_4	(1<<12)	/* playback only */
121 #define FM801_CHANNELS_6	(2<<12)	/* playback only */
122 #define FM801_CHANNELS_6MS	(3<<12)	/* playback only */
123 #define FM801_CHANNELS_MASK	(3<<12)
124 #define FM801_16BIT		(1<<14)
125 #define FM801_STEREO		(1<<15)
126 
127 /* IRQ status bits */
128 #define FM801_IRQ_PLAYBACK	(1<<8)
129 #define FM801_IRQ_CAPTURE	(1<<9)
130 #define FM801_IRQ_VOLUME	(1<<14)
131 #define FM801_IRQ_MPU		(1<<15)
132 
133 /* GPIO control register */
134 #define FM801_GPIO_GP0		(1<<0)	/* read/write */
135 #define FM801_GPIO_GP1		(1<<1)
136 #define FM801_GPIO_GP2		(1<<2)
137 #define FM801_GPIO_GP3		(1<<3)
138 #define FM801_GPIO_GP(x)	(1<<(0+(x)))
139 #define FM801_GPIO_GD0		(1<<8)	/* directions: 1 = input, 0 = output*/
140 #define FM801_GPIO_GD1		(1<<9)
141 #define FM801_GPIO_GD2		(1<<10)
142 #define FM801_GPIO_GD3		(1<<11)
143 #define FM801_GPIO_GD(x)	(1<<(8+(x)))
144 #define FM801_GPIO_GS0		(1<<12)	/* function select: */
145 #define FM801_GPIO_GS1		(1<<13)	/*    1 = GPIO */
146 #define FM801_GPIO_GS2		(1<<14)	/*    0 = other (S/PDIF, VOL) */
147 #define FM801_GPIO_GS3		(1<<15)
148 #define FM801_GPIO_GS(x)	(1<<(12+(x)))
149 
150 /*
151 
152  */
153 
154 struct fm801 {
155 	int irq;
156 
157 	unsigned long port;	/* I/O port number */
158 	unsigned int multichannel: 1,	/* multichannel support */
159 		     secondary: 1;	/* secondary codec */
160 	unsigned char secondary_addr;	/* address of the secondary codec */
161 
162 	unsigned short ply_ctrl; /* playback control */
163 	unsigned short cap_ctrl; /* capture control */
164 
165 	unsigned long ply_buffer;
166 	unsigned int ply_buf;
167 	unsigned int ply_count;
168 	unsigned int ply_size;
169 	unsigned int ply_pos;
170 
171 	unsigned long cap_buffer;
172 	unsigned int cap_buf;
173 	unsigned int cap_count;
174 	unsigned int cap_size;
175 	unsigned int cap_pos;
176 
177 	struct snd_ac97_bus *ac97_bus;
178 	struct snd_ac97 *ac97;
179 	struct snd_ac97 *ac97_sec;
180 
181 	struct pci_dev *pci;
182 	struct snd_card *card;
183 	struct snd_pcm *pcm;
184 	struct snd_rawmidi *rmidi;
185 	struct snd_pcm_substream *playback_substream;
186 	struct snd_pcm_substream *capture_substream;
187 	unsigned int p_dma_size;
188 	unsigned int c_dma_size;
189 
190 	spinlock_t reg_lock;
191 	struct snd_info_entry *proc_entry;
192 
193 #ifdef TEA575X_RADIO
194 	struct snd_tea575x tea;
195 #endif
196 
197 #ifdef CONFIG_PM
198 	u16 saved_regs[0x20];
199 #endif
200 };
201 
202 static struct pci_device_id snd_fm801_ids[] = {
203 	{ 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
204 	{ 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
205 	{ 0, }
206 };
207 
208 MODULE_DEVICE_TABLE(pci, snd_fm801_ids);
209 
210 /*
211  *  common I/O routines
212  */
213 
214 static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
215 				 unsigned short mask, unsigned short value)
216 {
217 	int change;
218 	unsigned long flags;
219 	unsigned short old, new;
220 
221 	spin_lock_irqsave(&chip->reg_lock, flags);
222 	old = inw(chip->port + reg);
223 	new = (old & ~mask) | value;
224 	change = old != new;
225 	if (change)
226 		outw(new, chip->port + reg);
227 	spin_unlock_irqrestore(&chip->reg_lock, flags);
228 	return change;
229 }
230 
231 static void snd_fm801_codec_write(struct snd_ac97 *ac97,
232 				  unsigned short reg,
233 				  unsigned short val)
234 {
235 	struct fm801 *chip = ac97->private_data;
236 	int idx;
237 
238 	/*
239 	 *  Wait until the codec interface is not ready..
240 	 */
241 	for (idx = 0; idx < 100; idx++) {
242 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
243 			goto ok1;
244 		udelay(10);
245 	}
246 	snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
247 	return;
248 
249  ok1:
250 	/* write data and address */
251 	outw(val, FM801_REG(chip, AC97_DATA));
252 	outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
253 	/*
254 	 *  Wait until the write command is not completed..
255          */
256 	for (idx = 0; idx < 1000; idx++) {
257 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
258 			return;
259 		udelay(10);
260 	}
261 	snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
262 }
263 
264 static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
265 {
266 	struct fm801 *chip = ac97->private_data;
267 	int idx;
268 
269 	/*
270 	 *  Wait until the codec interface is not ready..
271 	 */
272 	for (idx = 0; idx < 100; idx++) {
273 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
274 			goto ok1;
275 		udelay(10);
276 	}
277 	snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
278 	return 0;
279 
280  ok1:
281 	/* read command */
282 	outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
283 	     FM801_REG(chip, AC97_CMD));
284 	for (idx = 0; idx < 100; idx++) {
285 		if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
286 			goto ok2;
287 		udelay(10);
288 	}
289 	snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
290 	return 0;
291 
292  ok2:
293 	for (idx = 0; idx < 1000; idx++) {
294 		if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
295 			goto ok3;
296 		udelay(10);
297 	}
298 	snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
299 	return 0;
300 
301  ok3:
302 	return inw(FM801_REG(chip, AC97_DATA));
303 }
304 
305 static unsigned int rates[] = {
306   5500,  8000,  9600, 11025,
307   16000, 19200, 22050, 32000,
308   38400, 44100, 48000
309 };
310 
311 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
312 	.count = ARRAY_SIZE(rates),
313 	.list = rates,
314 	.mask = 0,
315 };
316 
317 static unsigned int channels[] = {
318   2, 4, 6
319 };
320 
321 #define CHANNELS sizeof(channels) / sizeof(channels[0])
322 
323 static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
324 	.count = CHANNELS,
325 	.list = channels,
326 	.mask = 0,
327 };
328 
329 /*
330  *  Sample rate routines
331  */
332 
333 static unsigned short snd_fm801_rate_bits(unsigned int rate)
334 {
335 	unsigned int idx;
336 
337 	for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
338 		if (rates[idx] == rate)
339 			return idx;
340 	snd_BUG();
341 	return ARRAY_SIZE(rates) - 1;
342 }
343 
344 /*
345  *  PCM part
346  */
347 
348 static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
349 				      int cmd)
350 {
351 	struct fm801 *chip = snd_pcm_substream_chip(substream);
352 
353 	spin_lock(&chip->reg_lock);
354 	switch (cmd) {
355 	case SNDRV_PCM_TRIGGER_START:
356 		chip->ply_ctrl &= ~(FM801_BUF1_LAST |
357 				     FM801_BUF2_LAST |
358 				     FM801_PAUSE);
359 		chip->ply_ctrl |= FM801_START |
360 				   FM801_IMMED_STOP;
361 		break;
362 	case SNDRV_PCM_TRIGGER_STOP:
363 		chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
364 		break;
365 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
366 	case SNDRV_PCM_TRIGGER_SUSPEND:
367 		chip->ply_ctrl |= FM801_PAUSE;
368 		break;
369 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
370 	case SNDRV_PCM_TRIGGER_RESUME:
371 		chip->ply_ctrl &= ~FM801_PAUSE;
372 		break;
373 	default:
374 		spin_unlock(&chip->reg_lock);
375 		snd_BUG();
376 		return -EINVAL;
377 	}
378 	outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
379 	spin_unlock(&chip->reg_lock);
380 	return 0;
381 }
382 
383 static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
384 				     int cmd)
385 {
386 	struct fm801 *chip = snd_pcm_substream_chip(substream);
387 
388 	spin_lock(&chip->reg_lock);
389 	switch (cmd) {
390 	case SNDRV_PCM_TRIGGER_START:
391 		chip->cap_ctrl &= ~(FM801_BUF1_LAST |
392 				     FM801_BUF2_LAST |
393 				     FM801_PAUSE);
394 		chip->cap_ctrl |= FM801_START |
395 				   FM801_IMMED_STOP;
396 		break;
397 	case SNDRV_PCM_TRIGGER_STOP:
398 		chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
399 		break;
400 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
401 	case SNDRV_PCM_TRIGGER_SUSPEND:
402 		chip->cap_ctrl |= FM801_PAUSE;
403 		break;
404 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
405 	case SNDRV_PCM_TRIGGER_RESUME:
406 		chip->cap_ctrl &= ~FM801_PAUSE;
407 		break;
408 	default:
409 		spin_unlock(&chip->reg_lock);
410 		snd_BUG();
411 		return -EINVAL;
412 	}
413 	outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
414 	spin_unlock(&chip->reg_lock);
415 	return 0;
416 }
417 
418 static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
419 			       struct snd_pcm_hw_params *hw_params)
420 {
421 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
422 }
423 
424 static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
425 {
426 	return snd_pcm_lib_free_pages(substream);
427 }
428 
429 static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
430 {
431 	struct fm801 *chip = snd_pcm_substream_chip(substream);
432 	struct snd_pcm_runtime *runtime = substream->runtime;
433 
434 	chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
435 	chip->ply_count = snd_pcm_lib_period_bytes(substream);
436 	spin_lock_irq(&chip->reg_lock);
437 	chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
438 			     FM801_STEREO | FM801_RATE_MASK |
439 			     FM801_CHANNELS_MASK);
440 	if (snd_pcm_format_width(runtime->format) == 16)
441 		chip->ply_ctrl |= FM801_16BIT;
442 	if (runtime->channels > 1) {
443 		chip->ply_ctrl |= FM801_STEREO;
444 		if (runtime->channels == 4)
445 			chip->ply_ctrl |= FM801_CHANNELS_4;
446 		else if (runtime->channels == 6)
447 			chip->ply_ctrl |= FM801_CHANNELS_6;
448 	}
449 	chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
450 	chip->ply_buf = 0;
451 	outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
452 	outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
453 	chip->ply_buffer = runtime->dma_addr;
454 	chip->ply_pos = 0;
455 	outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
456 	outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
457 	spin_unlock_irq(&chip->reg_lock);
458 	return 0;
459 }
460 
461 static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
462 {
463 	struct fm801 *chip = snd_pcm_substream_chip(substream);
464 	struct snd_pcm_runtime *runtime = substream->runtime;
465 
466 	chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
467 	chip->cap_count = snd_pcm_lib_period_bytes(substream);
468 	spin_lock_irq(&chip->reg_lock);
469 	chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
470 			     FM801_STEREO | FM801_RATE_MASK);
471 	if (snd_pcm_format_width(runtime->format) == 16)
472 		chip->cap_ctrl |= FM801_16BIT;
473 	if (runtime->channels > 1)
474 		chip->cap_ctrl |= FM801_STEREO;
475 	chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
476 	chip->cap_buf = 0;
477 	outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
478 	outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
479 	chip->cap_buffer = runtime->dma_addr;
480 	chip->cap_pos = 0;
481 	outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
482 	outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
483 	spin_unlock_irq(&chip->reg_lock);
484 	return 0;
485 }
486 
487 static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
488 {
489 	struct fm801 *chip = snd_pcm_substream_chip(substream);
490 	size_t ptr;
491 
492 	if (!(chip->ply_ctrl & FM801_START))
493 		return 0;
494 	spin_lock(&chip->reg_lock);
495 	ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
496 	if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
497 		ptr += chip->ply_count;
498 		ptr %= chip->ply_size;
499 	}
500 	spin_unlock(&chip->reg_lock);
501 	return bytes_to_frames(substream->runtime, ptr);
502 }
503 
504 static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
505 {
506 	struct fm801 *chip = snd_pcm_substream_chip(substream);
507 	size_t ptr;
508 
509 	if (!(chip->cap_ctrl & FM801_START))
510 		return 0;
511 	spin_lock(&chip->reg_lock);
512 	ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
513 	if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
514 		ptr += chip->cap_count;
515 		ptr %= chip->cap_size;
516 	}
517 	spin_unlock(&chip->reg_lock);
518 	return bytes_to_frames(substream->runtime, ptr);
519 }
520 
521 static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id, struct pt_regs *regs)
522 {
523 	struct fm801 *chip = dev_id;
524 	unsigned short status;
525 	unsigned int tmp;
526 
527 	status = inw(FM801_REG(chip, IRQ_STATUS));
528 	status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
529 	if (! status)
530 		return IRQ_NONE;
531 	/* ack first */
532 	outw(status, FM801_REG(chip, IRQ_STATUS));
533 	if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
534 		spin_lock(&chip->reg_lock);
535 		chip->ply_buf++;
536 		chip->ply_pos += chip->ply_count;
537 		chip->ply_pos %= chip->ply_size;
538 		tmp = chip->ply_pos + chip->ply_count;
539 		tmp %= chip->ply_size;
540 		outl(chip->ply_buffer + tmp,
541 				(chip->ply_buf & 1) ?
542 					FM801_REG(chip, PLY_BUF1) :
543 					FM801_REG(chip, PLY_BUF2));
544 		spin_unlock(&chip->reg_lock);
545 		snd_pcm_period_elapsed(chip->playback_substream);
546 	}
547 	if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
548 		spin_lock(&chip->reg_lock);
549 		chip->cap_buf++;
550 		chip->cap_pos += chip->cap_count;
551 		chip->cap_pos %= chip->cap_size;
552 		tmp = chip->cap_pos + chip->cap_count;
553 		tmp %= chip->cap_size;
554 		outl(chip->cap_buffer + tmp,
555 				(chip->cap_buf & 1) ?
556 					FM801_REG(chip, CAP_BUF1) :
557 					FM801_REG(chip, CAP_BUF2));
558 		spin_unlock(&chip->reg_lock);
559 		snd_pcm_period_elapsed(chip->capture_substream);
560 	}
561 	if (chip->rmidi && (status & FM801_IRQ_MPU))
562 		snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data, regs);
563 	if (status & FM801_IRQ_VOLUME)
564 		;/* TODO */
565 
566 	return IRQ_HANDLED;
567 }
568 
569 static struct snd_pcm_hardware snd_fm801_playback =
570 {
571 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
572 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
573 				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
574 				 SNDRV_PCM_INFO_MMAP_VALID),
575 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
576 	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
577 	.rate_min =		5500,
578 	.rate_max =		48000,
579 	.channels_min =		1,
580 	.channels_max =		2,
581 	.buffer_bytes_max =	(128*1024),
582 	.period_bytes_min =	64,
583 	.period_bytes_max =	(128*1024),
584 	.periods_min =		1,
585 	.periods_max =		1024,
586 	.fifo_size =		0,
587 };
588 
589 static struct snd_pcm_hardware snd_fm801_capture =
590 {
591 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
592 				 SNDRV_PCM_INFO_BLOCK_TRANSFER |
593 				 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
594 				 SNDRV_PCM_INFO_MMAP_VALID),
595 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
596 	.rates =		SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
597 	.rate_min =		5500,
598 	.rate_max =		48000,
599 	.channels_min =		1,
600 	.channels_max =		2,
601 	.buffer_bytes_max =	(128*1024),
602 	.period_bytes_min =	64,
603 	.period_bytes_max =	(128*1024),
604 	.periods_min =		1,
605 	.periods_max =		1024,
606 	.fifo_size =		0,
607 };
608 
609 static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
610 {
611 	struct fm801 *chip = snd_pcm_substream_chip(substream);
612 	struct snd_pcm_runtime *runtime = substream->runtime;
613 	int err;
614 
615 	chip->playback_substream = substream;
616 	runtime->hw = snd_fm801_playback;
617 	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
618 				   &hw_constraints_rates);
619 	if (chip->multichannel) {
620 		runtime->hw.channels_max = 6;
621 		snd_pcm_hw_constraint_list(runtime, 0,
622 					   SNDRV_PCM_HW_PARAM_CHANNELS,
623 					   &hw_constraints_channels);
624 	}
625 	if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
626 		return err;
627 	return 0;
628 }
629 
630 static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
631 {
632 	struct fm801 *chip = snd_pcm_substream_chip(substream);
633 	struct snd_pcm_runtime *runtime = substream->runtime;
634 	int err;
635 
636 	chip->capture_substream = substream;
637 	runtime->hw = snd_fm801_capture;
638 	snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
639 				   &hw_constraints_rates);
640 	if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
641 		return err;
642 	return 0;
643 }
644 
645 static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
646 {
647 	struct fm801 *chip = snd_pcm_substream_chip(substream);
648 
649 	chip->playback_substream = NULL;
650 	return 0;
651 }
652 
653 static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
654 {
655 	struct fm801 *chip = snd_pcm_substream_chip(substream);
656 
657 	chip->capture_substream = NULL;
658 	return 0;
659 }
660 
661 static struct snd_pcm_ops snd_fm801_playback_ops = {
662 	.open =		snd_fm801_playback_open,
663 	.close =	snd_fm801_playback_close,
664 	.ioctl =	snd_pcm_lib_ioctl,
665 	.hw_params =	snd_fm801_hw_params,
666 	.hw_free =	snd_fm801_hw_free,
667 	.prepare =	snd_fm801_playback_prepare,
668 	.trigger =	snd_fm801_playback_trigger,
669 	.pointer =	snd_fm801_playback_pointer,
670 };
671 
672 static struct snd_pcm_ops snd_fm801_capture_ops = {
673 	.open =		snd_fm801_capture_open,
674 	.close =	snd_fm801_capture_close,
675 	.ioctl =	snd_pcm_lib_ioctl,
676 	.hw_params =	snd_fm801_hw_params,
677 	.hw_free =	snd_fm801_hw_free,
678 	.prepare =	snd_fm801_capture_prepare,
679 	.trigger =	snd_fm801_capture_trigger,
680 	.pointer =	snd_fm801_capture_pointer,
681 };
682 
683 static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
684 {
685 	struct snd_pcm *pcm;
686 	int err;
687 
688 	if (rpcm)
689 		*rpcm = NULL;
690 	if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
691 		return err;
692 
693 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
694 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);
695 
696 	pcm->private_data = chip;
697 	pcm->info_flags = 0;
698 	strcpy(pcm->name, "FM801");
699 	chip->pcm = pcm;
700 
701 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
702 					      snd_dma_pci_data(chip->pci),
703 					      chip->multichannel ? 128*1024 : 64*1024, 128*1024);
704 
705 	if (rpcm)
706 		*rpcm = pcm;
707 	return 0;
708 }
709 
710 /*
711  *  TEA5757 radio
712  */
713 
714 #ifdef TEA575X_RADIO
715 
716 /* 256PCS GPIO numbers */
717 #define TEA_256PCS_DATA			1
718 #define TEA_256PCS_WRITE_ENABLE		2	/* inverted */
719 #define TEA_256PCS_BUS_CLOCK		3
720 
721 static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
722 {
723 	struct fm801 *chip = tea->private_data;
724 	unsigned short reg;
725 	int i = 25;
726 
727 	spin_lock_irq(&chip->reg_lock);
728 	reg = inw(FM801_REG(chip, GPIO_CTRL));
729 	/* use GPIO lines and set write enable bit */
730 	reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
731 	       FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
732 	       FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
733 	/* all of lines are in the write direction */
734 	/* clear data and clock lines */
735 	reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
736 	         FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
737 	         FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
738 	         FM801_GPIO_GP(TEA_256PCS_DATA) |
739 	         FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
740 		 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
741 	outw(reg, FM801_REG(chip, GPIO_CTRL));
742 	udelay(1);
743 
744 	while (i--) {
745 		if (val & (1 << i))
746 			reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
747 		else
748 			reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
749 		outw(reg, FM801_REG(chip, GPIO_CTRL));
750 		udelay(1);
751 		reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
752 		outw(reg, FM801_REG(chip, GPIO_CTRL));
753 		reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
754 		outw(reg, FM801_REG(chip, GPIO_CTRL));
755 		udelay(1);
756 	}
757 
758 	/* and reset the write enable bit */
759 	reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
760 	       FM801_GPIO_GP(TEA_256PCS_DATA);
761 	outw(reg, FM801_REG(chip, GPIO_CTRL));
762 	spin_unlock_irq(&chip->reg_lock);
763 }
764 
765 static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
766 {
767 	struct fm801 *chip = tea->private_data;
768 	unsigned short reg;
769 	unsigned int val = 0;
770 	int i;
771 
772 	spin_lock_irq(&chip->reg_lock);
773 	reg = inw(FM801_REG(chip, GPIO_CTRL));
774 	/* use GPIO lines, set data direction to input */
775 	reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
776 	       FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
777 	       FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
778 	       FM801_GPIO_GD(TEA_256PCS_DATA) |
779 	       FM801_GPIO_GP(TEA_256PCS_DATA) |
780 	       FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
781 	/* all of lines are in the write direction, except data */
782 	/* clear data, write enable and clock lines */
783 	reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
784 	         FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
785 	         FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));
786 
787 	for (i = 0; i < 24; i++) {
788 		reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
789 		outw(reg, FM801_REG(chip, GPIO_CTRL));
790 		udelay(1);
791 		reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
792 		outw(reg, FM801_REG(chip, GPIO_CTRL));
793 		udelay(1);
794 		val <<= 1;
795 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
796 			val |= 1;
797 	}
798 
799 	spin_unlock_irq(&chip->reg_lock);
800 
801 	return val;
802 }
803 
804 /* 256PCPR GPIO numbers */
805 #define TEA_256PCPR_BUS_CLOCK		0
806 #define TEA_256PCPR_DATA		1
807 #define TEA_256PCPR_WRITE_ENABLE	2	/* inverted */
808 
809 static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
810 {
811 	struct fm801 *chip = tea->private_data;
812 	unsigned short reg;
813 	int i = 25;
814 
815 	spin_lock_irq(&chip->reg_lock);
816 	reg = inw(FM801_REG(chip, GPIO_CTRL));
817 	/* use GPIO lines and set write enable bit */
818 	reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
819 	       FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
820 	       FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
821 	/* all of lines are in the write direction */
822 	/* clear data and clock lines */
823 	reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
824 	         FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
825 	         FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
826 	         FM801_GPIO_GP(TEA_256PCPR_DATA) |
827 	         FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
828 		 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
829 	outw(reg, FM801_REG(chip, GPIO_CTRL));
830 	udelay(1);
831 
832 	while (i--) {
833 		if (val & (1 << i))
834 			reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
835 		else
836 			reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
837 		outw(reg, FM801_REG(chip, GPIO_CTRL));
838 		udelay(1);
839 		reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
840 		outw(reg, FM801_REG(chip, GPIO_CTRL));
841 		reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
842 		outw(reg, FM801_REG(chip, GPIO_CTRL));
843 		udelay(1);
844 	}
845 
846 	/* and reset the write enable bit */
847 	reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
848 	       FM801_GPIO_GP(TEA_256PCPR_DATA);
849 	outw(reg, FM801_REG(chip, GPIO_CTRL));
850 	spin_unlock_irq(&chip->reg_lock);
851 }
852 
853 static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
854 {
855 	struct fm801 *chip = tea->private_data;
856 	unsigned short reg;
857 	unsigned int val = 0;
858 	int i;
859 
860 	spin_lock_irq(&chip->reg_lock);
861 	reg = inw(FM801_REG(chip, GPIO_CTRL));
862 	/* use GPIO lines, set data direction to input */
863 	reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
864 	       FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
865 	       FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
866 	       FM801_GPIO_GD(TEA_256PCPR_DATA) |
867 	       FM801_GPIO_GP(TEA_256PCPR_DATA) |
868 	       FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
869 	/* all of lines are in the write direction, except data */
870 	/* clear data, write enable and clock lines */
871 	reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
872 	         FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
873 	         FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));
874 
875 	for (i = 0; i < 24; i++) {
876 		reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
877 		outw(reg, FM801_REG(chip, GPIO_CTRL));
878 		udelay(1);
879 		reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
880 		outw(reg, FM801_REG(chip, GPIO_CTRL));
881 		udelay(1);
882 		val <<= 1;
883 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
884 			val |= 1;
885 	}
886 
887 	spin_unlock_irq(&chip->reg_lock);
888 
889 	return val;
890 }
891 
892 /* 64PCR GPIO numbers */
893 #define TEA_64PCR_BUS_CLOCK		0
894 #define TEA_64PCR_WRITE_ENABLE		1	/* inverted */
895 #define TEA_64PCR_DATA			2
896 
897 static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
898 {
899 	struct fm801 *chip = tea->private_data;
900 	unsigned short reg;
901 	int i = 25;
902 
903 	spin_lock_irq(&chip->reg_lock);
904 	reg = inw(FM801_REG(chip, GPIO_CTRL));
905 	/* use GPIO lines and set write enable bit */
906 	reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
907 	       FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
908 	       FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
909 	/* all of lines are in the write direction */
910 	/* clear data and clock lines */
911 	reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
912 	         FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
913 	         FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
914 	         FM801_GPIO_GP(TEA_64PCR_DATA) |
915 	         FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
916 		 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
917 	outw(reg, FM801_REG(chip, GPIO_CTRL));
918 	udelay(1);
919 
920 	while (i--) {
921 		if (val & (1 << i))
922 			reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
923 		else
924 			reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
925 		outw(reg, FM801_REG(chip, GPIO_CTRL));
926 		udelay(1);
927 		reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
928 		outw(reg, FM801_REG(chip, GPIO_CTRL));
929 		reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
930 		outw(reg, FM801_REG(chip, GPIO_CTRL));
931 		udelay(1);
932 	}
933 
934 	/* and reset the write enable bit */
935 	reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
936 	       FM801_GPIO_GP(TEA_64PCR_DATA);
937 	outw(reg, FM801_REG(chip, GPIO_CTRL));
938 	spin_unlock_irq(&chip->reg_lock);
939 }
940 
941 static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
942 {
943 	struct fm801 *chip = tea->private_data;
944 	unsigned short reg;
945 	unsigned int val = 0;
946 	int i;
947 
948 	spin_lock_irq(&chip->reg_lock);
949 	reg = inw(FM801_REG(chip, GPIO_CTRL));
950 	/* use GPIO lines, set data direction to input */
951 	reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
952 	       FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
953 	       FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
954 	       FM801_GPIO_GD(TEA_64PCR_DATA) |
955 	       FM801_GPIO_GP(TEA_64PCR_DATA) |
956 	       FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
957 	/* all of lines are in the write direction, except data */
958 	/* clear data, write enable and clock lines */
959 	reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
960 	         FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
961 	         FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));
962 
963 	for (i = 0; i < 24; i++) {
964 		reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
965 		outw(reg, FM801_REG(chip, GPIO_CTRL));
966 		udelay(1);
967 		reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
968 		outw(reg, FM801_REG(chip, GPIO_CTRL));
969 		udelay(1);
970 		val <<= 1;
971 		if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
972 			val |= 1;
973 	}
974 
975 	spin_unlock_irq(&chip->reg_lock);
976 
977 	return val;
978 }
979 
980 static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
981 	{
982 		/* 1 = MediaForte 256-PCS */
983 		.write = snd_fm801_tea575x_256pcs_write,
984 		.read = snd_fm801_tea575x_256pcs_read,
985 	},
986 	{
987 		/* 2 = MediaForte 256-PCPR */
988 		.write = snd_fm801_tea575x_256pcpr_write,
989 		.read = snd_fm801_tea575x_256pcpr_read,
990 	},
991 	{
992 		/* 3 = MediaForte 64-PCR */
993 		.write = snd_fm801_tea575x_64pcr_write,
994 		.read = snd_fm801_tea575x_64pcr_read,
995 	}
996 };
997 #endif
998 
999 /*
1000  *  Mixer routines
1001  */
1002 
1003 #define FM801_SINGLE(xname, reg, shift, mask, invert) \
1004 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
1005   .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
1006   .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }
1007 
1008 static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
1009 				 struct snd_ctl_elem_info *uinfo)
1010 {
1011 	int mask = (kcontrol->private_value >> 16) & 0xff;
1012 
1013 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1014 	uinfo->count = 1;
1015 	uinfo->value.integer.min = 0;
1016 	uinfo->value.integer.max = mask;
1017 	return 0;
1018 }
1019 
1020 static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
1021 				struct snd_ctl_elem_value *ucontrol)
1022 {
1023 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1024 	int reg = kcontrol->private_value & 0xff;
1025 	int shift = (kcontrol->private_value >> 8) & 0xff;
1026 	int mask = (kcontrol->private_value >> 16) & 0xff;
1027 	int invert = (kcontrol->private_value >> 24) & 0xff;
1028 
1029 	ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
1030 	if (invert)
1031 		ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1032 	return 0;
1033 }
1034 
1035 static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
1036 				struct snd_ctl_elem_value *ucontrol)
1037 {
1038 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1039 	int reg = kcontrol->private_value & 0xff;
1040 	int shift = (kcontrol->private_value >> 8) & 0xff;
1041 	int mask = (kcontrol->private_value >> 16) & 0xff;
1042 	int invert = (kcontrol->private_value >> 24) & 0xff;
1043 	unsigned short val;
1044 
1045 	val = (ucontrol->value.integer.value[0] & mask);
1046 	if (invert)
1047 		val = mask - val;
1048 	return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
1049 }
1050 
1051 #define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
1052 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
1053   .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
1054   .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
1055 
1056 static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
1057 				 struct snd_ctl_elem_info *uinfo)
1058 {
1059 	int mask = (kcontrol->private_value >> 16) & 0xff;
1060 
1061 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1062 	uinfo->count = 2;
1063 	uinfo->value.integer.min = 0;
1064 	uinfo->value.integer.max = mask;
1065 	return 0;
1066 }
1067 
1068 static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
1069 				struct snd_ctl_elem_value *ucontrol)
1070 {
1071 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1072         int reg = kcontrol->private_value & 0xff;
1073 	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1074 	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1075 	int mask = (kcontrol->private_value >> 16) & 0xff;
1076 	int invert = (kcontrol->private_value >> 24) & 0xff;
1077 
1078 	spin_lock_irq(&chip->reg_lock);
1079 	ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
1080 	ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
1081 	spin_unlock_irq(&chip->reg_lock);
1082 	if (invert) {
1083 		ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
1084 		ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
1085 	}
1086 	return 0;
1087 }
1088 
1089 static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
1090 				struct snd_ctl_elem_value *ucontrol)
1091 {
1092 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1093 	int reg = kcontrol->private_value & 0xff;
1094 	int shift_left = (kcontrol->private_value >> 8) & 0x0f;
1095 	int shift_right = (kcontrol->private_value >> 12) & 0x0f;
1096 	int mask = (kcontrol->private_value >> 16) & 0xff;
1097 	int invert = (kcontrol->private_value >> 24) & 0xff;
1098 	unsigned short val1, val2;
1099 
1100 	val1 = ucontrol->value.integer.value[0] & mask;
1101 	val2 = ucontrol->value.integer.value[1] & mask;
1102 	if (invert) {
1103 		val1 = mask - val1;
1104 		val2 = mask - val2;
1105 	}
1106 	return snd_fm801_update_bits(chip, reg,
1107 				     (mask << shift_left) | (mask << shift_right),
1108 				     (val1 << shift_left ) | (val2 << shift_right));
1109 }
1110 
1111 static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
1112 			      struct snd_ctl_elem_info *uinfo)
1113 {
1114 	static char *texts[5] = {
1115 		"AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
1116 	};
1117 
1118 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1119 	uinfo->count = 1;
1120 	uinfo->value.enumerated.items = 5;
1121 	if (uinfo->value.enumerated.item > 4)
1122 		uinfo->value.enumerated.item = 4;
1123 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
1124 	return 0;
1125 }
1126 
1127 static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
1128 			     struct snd_ctl_elem_value *ucontrol)
1129 {
1130 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1131         unsigned short val;
1132 
1133 	val = inw(FM801_REG(chip, REC_SRC)) & 7;
1134 	if (val > 4)
1135 		val = 4;
1136         ucontrol->value.enumerated.item[0] = val;
1137         return 0;
1138 }
1139 
1140 static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
1141 			     struct snd_ctl_elem_value *ucontrol)
1142 {
1143 	struct fm801 *chip = snd_kcontrol_chip(kcontrol);
1144         unsigned short val;
1145 
1146         if ((val = ucontrol->value.enumerated.item[0]) > 4)
1147                 return -EINVAL;
1148 	return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
1149 }
1150 
1151 #define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)
1152 
1153 static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
1154 FM801_DOUBLE("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1),
1155 FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
1156 FM801_DOUBLE("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1),
1157 FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
1158 FM801_DOUBLE("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1),
1159 FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
1160 {
1161 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1162 	.name = "Digital Capture Source",
1163 	.info = snd_fm801_info_mux,
1164 	.get = snd_fm801_get_mux,
1165 	.put = snd_fm801_put_mux,
1166 }
1167 };
1168 
1169 #define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)
1170 
1171 static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
1172 FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
1173 FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
1174 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
1175 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
1176 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
1177 FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
1178 };
1179 
1180 static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
1181 {
1182 	struct fm801 *chip = bus->private_data;
1183 	chip->ac97_bus = NULL;
1184 }
1185 
1186 static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
1187 {
1188 	struct fm801 *chip = ac97->private_data;
1189 	if (ac97->num == 0) {
1190 		chip->ac97 = NULL;
1191 	} else {
1192 		chip->ac97_sec = NULL;
1193 	}
1194 }
1195 
1196 static int __devinit snd_fm801_mixer(struct fm801 *chip)
1197 {
1198 	struct snd_ac97_template ac97;
1199 	unsigned int i;
1200 	int err;
1201 	static struct snd_ac97_bus_ops ops = {
1202 		.write = snd_fm801_codec_write,
1203 		.read = snd_fm801_codec_read,
1204 	};
1205 
1206 	if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
1207 		return err;
1208 	chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;
1209 
1210 	memset(&ac97, 0, sizeof(ac97));
1211 	ac97.private_data = chip;
1212 	ac97.private_free = snd_fm801_mixer_free_ac97;
1213 	if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
1214 		return err;
1215 	if (chip->secondary) {
1216 		ac97.num = 1;
1217 		ac97.addr = chip->secondary_addr;
1218 		if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
1219 			return err;
1220 	}
1221 	for (i = 0; i < FM801_CONTROLS; i++)
1222 		snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
1223 	if (chip->multichannel) {
1224 		for (i = 0; i < FM801_CONTROLS_MULTI; i++)
1225 			snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
1226 	}
1227 	return 0;
1228 }
1229 
1230 /*
1231  *  initialization routines
1232  */
1233 
1234 static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
1235 			  unsigned short reg, unsigned long waits)
1236 {
1237 	unsigned long timeout = jiffies + waits;
1238 
1239 	outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
1240 	     FM801_REG(chip, AC97_CMD));
1241 	udelay(5);
1242 	do {
1243 		if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
1244 		    == FM801_AC97_VALID)
1245 			return 0;
1246 		schedule_timeout_uninterruptible(1);
1247 	} while (time_after(timeout, jiffies));
1248 	return -EIO;
1249 }
1250 
1251 static int snd_fm801_chip_init(struct fm801 *chip, int resume)
1252 {
1253 	int id;
1254 	unsigned short cmdw;
1255 
1256 	/* codec cold reset + AC'97 warm reset */
1257 	outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
1258 	inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
1259 	udelay(100);
1260 	outw(0, FM801_REG(chip, CODEC_CTRL));
1261 
1262 	if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
1263 		snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
1264 		if (! resume)
1265 			return -EIO;
1266 	}
1267 
1268 	if (chip->multichannel) {
1269 		if (chip->secondary_addr) {
1270 			wait_for_codec(chip, chip->secondary_addr,
1271 				       AC97_VENDOR_ID1, msecs_to_jiffies(50));
1272 		} else {
1273 			/* my card has the secondary codec */
1274 			/* at address #3, so the loop is inverted */
1275 			for (id = 3; id > 0; id--) {
1276 				if (! wait_for_codec(chip, id, AC97_VENDOR_ID1,
1277 						     msecs_to_jiffies(50))) {
1278 					cmdw = inw(FM801_REG(chip, AC97_DATA));
1279 					if (cmdw != 0xffff && cmdw != 0) {
1280 						chip->secondary = 1;
1281 						chip->secondary_addr = id;
1282 						break;
1283 					}
1284 				}
1285 			}
1286 		}
1287 
1288 		/* the recovery phase, it seems that probing for non-existing codec might */
1289 		/* cause timeout problems */
1290 		wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
1291 	}
1292 
1293 	/* init volume */
1294 	outw(0x0808, FM801_REG(chip, PCM_VOL));
1295 	outw(0x9f1f, FM801_REG(chip, FM_VOL));
1296 	outw(0x8808, FM801_REG(chip, I2S_VOL));
1297 
1298 	/* I2S control - I2S mode */
1299 	outw(0x0003, FM801_REG(chip, I2S_MODE));
1300 
1301 	/* interrupt setup - unmask MPU, PLAYBACK & CAPTURE */
1302 	cmdw = inw(FM801_REG(chip, IRQ_MASK));
1303 	cmdw &= ~0x0083;
1304 	outw(cmdw, FM801_REG(chip, IRQ_MASK));
1305 
1306 	/* interrupt clear */
1307 	outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));
1308 
1309 	return 0;
1310 }
1311 
1312 
1313 static int snd_fm801_free(struct fm801 *chip)
1314 {
1315 	unsigned short cmdw;
1316 
1317 	if (chip->irq < 0)
1318 		goto __end_hw;
1319 
1320 	/* interrupt setup - mask everything */
1321 	cmdw = inw(FM801_REG(chip, IRQ_MASK));
1322 	cmdw |= 0x00c3;
1323 	outw(cmdw, FM801_REG(chip, IRQ_MASK));
1324 
1325       __end_hw:
1326 #ifdef TEA575X_RADIO
1327 	snd_tea575x_exit(&chip->tea);
1328 #endif
1329 	if (chip->irq >= 0)
1330 		free_irq(chip->irq, chip);
1331 	pci_release_regions(chip->pci);
1332 	pci_disable_device(chip->pci);
1333 
1334 	kfree(chip);
1335 	return 0;
1336 }
1337 
1338 static int snd_fm801_dev_free(struct snd_device *device)
1339 {
1340 	struct fm801 *chip = device->device_data;
1341 	return snd_fm801_free(chip);
1342 }
1343 
1344 static int __devinit snd_fm801_create(struct snd_card *card,
1345 				      struct pci_dev * pci,
1346 				      int tea575x_tuner,
1347 				      struct fm801 ** rchip)
1348 {
1349 	struct fm801 *chip;
1350 	unsigned char rev;
1351 	int err;
1352 	static struct snd_device_ops ops = {
1353 		.dev_free =	snd_fm801_dev_free,
1354 	};
1355 
1356 	*rchip = NULL;
1357 	if ((err = pci_enable_device(pci)) < 0)
1358 		return err;
1359 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1360 	if (chip == NULL) {
1361 		pci_disable_device(pci);
1362 		return -ENOMEM;
1363 	}
1364 	spin_lock_init(&chip->reg_lock);
1365 	chip->card = card;
1366 	chip->pci = pci;
1367 	chip->irq = -1;
1368 	if ((err = pci_request_regions(pci, "FM801")) < 0) {
1369 		kfree(chip);
1370 		pci_disable_device(pci);
1371 		return err;
1372 	}
1373 	chip->port = pci_resource_start(pci, 0);
1374 	if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_DISABLED|IRQF_SHARED,
1375 			"FM801", chip)) {
1376 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
1377 		snd_fm801_free(chip);
1378 		return -EBUSY;
1379 	}
1380 	chip->irq = pci->irq;
1381 	pci_set_master(pci);
1382 
1383 	pci_read_config_byte(pci, PCI_REVISION_ID, &rev);
1384 	if (rev >= 0xb1)	/* FM801-AU */
1385 		chip->multichannel = 1;
1386 
1387 	snd_fm801_chip_init(chip, 0);
1388 
1389 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1390 		snd_fm801_free(chip);
1391 		return err;
1392 	}
1393 
1394 	snd_card_set_dev(card, &pci->dev);
1395 
1396 #ifdef TEA575X_RADIO
1397 	if (tea575x_tuner > 0 && (tea575x_tuner & 0xffff) < 4) {
1398 		chip->tea.dev_nr = tea575x_tuner >> 16;
1399 		chip->tea.card = card;
1400 		chip->tea.freq_fixup = 10700;
1401 		chip->tea.private_data = chip;
1402 		chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0xffff) - 1];
1403 		snd_tea575x_init(&chip->tea);
1404 	}
1405 #endif
1406 
1407 	*rchip = chip;
1408 	return 0;
1409 }
1410 
1411 static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
1412 					  const struct pci_device_id *pci_id)
1413 {
1414 	static int dev;
1415 	struct snd_card *card;
1416 	struct fm801 *chip;
1417 	struct snd_opl3 *opl3;
1418 	int err;
1419 
1420         if (dev >= SNDRV_CARDS)
1421                 return -ENODEV;
1422 	if (!enable[dev]) {
1423 		dev++;
1424 		return -ENOENT;
1425 	}
1426 
1427 	card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1428 	if (card == NULL)
1429 		return -ENOMEM;
1430 	if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
1431 		snd_card_free(card);
1432 		return err;
1433 	}
1434 	card->private_data = chip;
1435 
1436 	strcpy(card->driver, "FM801");
1437 	strcpy(card->shortname, "ForteMedia FM801-");
1438 	strcat(card->shortname, chip->multichannel ? "AU" : "AS");
1439 	sprintf(card->longname, "%s at 0x%lx, irq %i",
1440 		card->shortname, chip->port, chip->irq);
1441 
1442 	if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
1443 		snd_card_free(card);
1444 		return err;
1445 	}
1446 	if ((err = snd_fm801_mixer(chip)) < 0) {
1447 		snd_card_free(card);
1448 		return err;
1449 	}
1450 	if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
1451 				       FM801_REG(chip, MPU401_DATA),
1452 				       MPU401_INFO_INTEGRATED,
1453 				       chip->irq, 0, &chip->rmidi)) < 0) {
1454 		snd_card_free(card);
1455 		return err;
1456 	}
1457 	if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
1458 				   FM801_REG(chip, OPL3_BANK1),
1459 				   OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
1460 		snd_card_free(card);
1461 		return err;
1462 	}
1463 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
1464 		snd_card_free(card);
1465 		return err;
1466 	}
1467 
1468 	if ((err = snd_card_register(card)) < 0) {
1469 		snd_card_free(card);
1470 		return err;
1471 	}
1472 	pci_set_drvdata(pci, card);
1473 	dev++;
1474 	return 0;
1475 }
1476 
1477 static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
1478 {
1479 	snd_card_free(pci_get_drvdata(pci));
1480 	pci_set_drvdata(pci, NULL);
1481 }
1482 
1483 #ifdef CONFIG_PM
1484 static unsigned char saved_regs[] = {
1485 	FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
1486 	FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
1487 	FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
1488 	FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
1489 };
1490 
1491 static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
1492 {
1493 	struct snd_card *card = pci_get_drvdata(pci);
1494 	struct fm801 *chip = card->private_data;
1495 	int i;
1496 
1497 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1498 	snd_pcm_suspend_all(chip->pcm);
1499 	snd_ac97_suspend(chip->ac97);
1500 	snd_ac97_suspend(chip->ac97_sec);
1501 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1502 		chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
1503 	/* FIXME: tea575x suspend */
1504 
1505 	pci_set_power_state(pci, PCI_D3hot);
1506 	pci_disable_device(pci);
1507 	pci_save_state(pci);
1508 	return 0;
1509 }
1510 
1511 static int snd_fm801_resume(struct pci_dev *pci)
1512 {
1513 	struct snd_card *card = pci_get_drvdata(pci);
1514 	struct fm801 *chip = card->private_data;
1515 	int i;
1516 
1517 	pci_restore_state(pci);
1518 	pci_enable_device(pci);
1519 	pci_set_power_state(pci, PCI_D0);
1520 	pci_set_master(pci);
1521 
1522 	snd_fm801_chip_init(chip, 1);
1523 	snd_ac97_resume(chip->ac97);
1524 	snd_ac97_resume(chip->ac97_sec);
1525 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
1526 		outw(chip->saved_regs[i], chip->port + saved_regs[i]);
1527 
1528 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1529 	return 0;
1530 }
1531 #endif
1532 
1533 static struct pci_driver driver = {
1534 	.name = "FM801",
1535 	.id_table = snd_fm801_ids,
1536 	.probe = snd_card_fm801_probe,
1537 	.remove = __devexit_p(snd_card_fm801_remove),
1538 #ifdef CONFIG_PM
1539 	.suspend = snd_fm801_suspend,
1540 	.resume = snd_fm801_resume,
1541 #endif
1542 };
1543 
1544 static int __init alsa_card_fm801_init(void)
1545 {
1546 	return pci_register_driver(&driver);
1547 }
1548 
1549 static void __exit alsa_card_fm801_exit(void)
1550 {
1551 	pci_unregister_driver(&driver);
1552 }
1553 
1554 module_init(alsa_card_fm801_init)
1555 module_exit(alsa_card_fm801_exit)
1556