1 /* 2 * Driver for Ensoniq ES1370/ES1371 AudioPCI soundcard 3 * Copyright (c) by Jaroslav Kysela <perex@suse.cz>, 4 * Thomas Sailer <sailer@ife.ee.ethz.ch> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 /* Power-Management-Code ( CONFIG_PM ) 23 * for ens1371 only ( FIXME ) 24 * derived from cs4281.c, atiixp.c and via82xx.c 25 * using http://www.alsa-project.org/~iwai/writing-an-alsa-driver/c1540.htm 26 * by Kurt J. Bosch 27 */ 28 29 #include <sound/driver.h> 30 #include <asm/io.h> 31 #include <linux/delay.h> 32 #include <linux/interrupt.h> 33 #include <linux/init.h> 34 #include <linux/pci.h> 35 #include <linux/slab.h> 36 #include <linux/gameport.h> 37 #include <linux/moduleparam.h> 38 #include <linux/mutex.h> 39 40 #include <sound/core.h> 41 #include <sound/control.h> 42 #include <sound/pcm.h> 43 #include <sound/rawmidi.h> 44 #ifdef CHIP1371 45 #include <sound/ac97_codec.h> 46 #else 47 #include <sound/ak4531_codec.h> 48 #endif 49 #include <sound/initval.h> 50 #include <sound/asoundef.h> 51 52 #ifndef CHIP1371 53 #undef CHIP1370 54 #define CHIP1370 55 #endif 56 57 #ifdef CHIP1370 58 #define DRIVER_NAME "ENS1370" 59 #else 60 #define DRIVER_NAME "ENS1371" 61 #endif 62 63 64 MODULE_AUTHOR("Jaroslav Kysela <perex@suse.cz>, Thomas Sailer <sailer@ife.ee.ethz.ch>"); 65 MODULE_LICENSE("GPL"); 66 #ifdef CHIP1370 67 MODULE_DESCRIPTION("Ensoniq AudioPCI ES1370"); 68 MODULE_SUPPORTED_DEVICE("{{Ensoniq,AudioPCI-97 ES1370}," 69 "{Creative Labs,SB PCI64/128 (ES1370)}}"); 70 #endif 71 #ifdef CHIP1371 72 MODULE_DESCRIPTION("Ensoniq/Creative AudioPCI ES1371+"); 73 MODULE_SUPPORTED_DEVICE("{{Ensoniq,AudioPCI ES1371/73}," 74 "{Ensoniq,AudioPCI ES1373}," 75 "{Creative Labs,Ectiva EV1938}," 76 "{Creative Labs,SB PCI64/128 (ES1371/73)}," 77 "{Creative Labs,Vibra PCI128}," 78 "{Ectiva,EV1938}}"); 79 #endif 80 81 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) 82 #define SUPPORT_JOYSTICK 83 #endif 84 85 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 86 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 87 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 88 #ifdef SUPPORT_JOYSTICK 89 #ifdef CHIP1371 90 static int joystick_port[SNDRV_CARDS]; 91 #else 92 static int joystick[SNDRV_CARDS]; 93 #endif 94 #endif 95 #ifdef CHIP1371 96 static int spdif[SNDRV_CARDS]; 97 static int lineio[SNDRV_CARDS]; 98 #endif 99 100 module_param_array(index, int, NULL, 0444); 101 MODULE_PARM_DESC(index, "Index value for Ensoniq AudioPCI soundcard."); 102 module_param_array(id, charp, NULL, 0444); 103 MODULE_PARM_DESC(id, "ID string for Ensoniq AudioPCI soundcard."); 104 module_param_array(enable, bool, NULL, 0444); 105 MODULE_PARM_DESC(enable, "Enable Ensoniq AudioPCI soundcard."); 106 #ifdef SUPPORT_JOYSTICK 107 #ifdef CHIP1371 108 module_param_array(joystick_port, int, NULL, 0444); 109 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 110 #else 111 module_param_array(joystick, bool, NULL, 0444); 112 MODULE_PARM_DESC(joystick, "Enable joystick."); 113 #endif 114 #endif /* SUPPORT_JOYSTICK */ 115 #ifdef CHIP1371 116 module_param_array(spdif, int, NULL, 0444); 117 MODULE_PARM_DESC(spdif, "S/PDIF output (-1 = none, 0 = auto, 1 = force)."); 118 module_param_array(lineio, int, NULL, 0444); 119 MODULE_PARM_DESC(lineio, "Line In to Rear Out (0 = auto, 1 = force)."); 120 #endif 121 122 /* ES1371 chip ID */ 123 /* This is a little confusing because all ES1371 compatible chips have the 124 same DEVICE_ID, the only thing differentiating them is the REV_ID field. 125 This is only significant if you want to enable features on the later parts. 126 Yes, I know it's stupid and why didn't we use the sub IDs? 127 */ 128 #define ES1371REV_ES1373_A 0x04 129 #define ES1371REV_ES1373_B 0x06 130 #define ES1371REV_CT5880_A 0x07 131 #define CT5880REV_CT5880_C 0x02 132 #define CT5880REV_CT5880_D 0x03 /* ??? -jk */ 133 #define CT5880REV_CT5880_E 0x04 /* mw */ 134 #define ES1371REV_ES1371_B 0x09 135 #define EV1938REV_EV1938_A 0x00 136 #define ES1371REV_ES1373_8 0x08 137 138 /* 139 * Direct registers 140 */ 141 142 #define ES_REG(ensoniq, x) ((ensoniq)->port + ES_REG_##x) 143 144 #define ES_REG_CONTROL 0x00 /* R/W: Interrupt/Chip select control register */ 145 #define ES_1370_ADC_STOP (1<<31) /* disable capture buffer transfers */ 146 #define ES_1370_XCTL1 (1<<30) /* general purpose output bit */ 147 #define ES_1373_BYPASS_P1 (1<<31) /* bypass SRC for PB1 */ 148 #define ES_1373_BYPASS_P2 (1<<30) /* bypass SRC for PB2 */ 149 #define ES_1373_BYPASS_R (1<<29) /* bypass SRC for REC */ 150 #define ES_1373_TEST_BIT (1<<28) /* should be set to 0 for normal operation */ 151 #define ES_1373_RECEN_B (1<<27) /* mix record with playback for I2S/SPDIF out */ 152 #define ES_1373_SPDIF_THRU (1<<26) /* 0 = SPDIF thru mode, 1 = SPDIF == dig out */ 153 #define ES_1371_JOY_ASEL(o) (((o)&0x03)<<24)/* joystick port mapping */ 154 #define ES_1371_JOY_ASELM (0x03<<24) /* mask for above */ 155 #define ES_1371_JOY_ASELI(i) (((i)>>24)&0x03) 156 #define ES_1371_GPIO_IN(i) (((i)>>20)&0x0f)/* GPIO in [3:0] pins - R/O */ 157 #define ES_1370_PCLKDIVO(o) (((o)&0x1fff)<<16)/* clock divide ratio for DAC2 */ 158 #define ES_1370_PCLKDIVM ((0x1fff)<<16) /* mask for above */ 159 #define ES_1370_PCLKDIVI(i) (((i)>>16)&0x1fff)/* clock divide ratio for DAC2 */ 160 #define ES_1371_GPIO_OUT(o) (((o)&0x0f)<<16)/* GPIO out [3:0] pins - W/R */ 161 #define ES_1371_GPIO_OUTM (0x0f<<16) /* mask for above */ 162 #define ES_MSFMTSEL (1<<15) /* MPEG serial data format; 0 = SONY, 1 = I2S */ 163 #define ES_1370_M_SBB (1<<14) /* clock source for DAC - 0 = clock generator; 1 = MPEG clocks */ 164 #define ES_1371_SYNC_RES (1<<14) /* Warm AC97 reset */ 165 #define ES_1370_WTSRSEL(o) (((o)&0x03)<<12)/* fixed frequency clock for DAC1 */ 166 #define ES_1370_WTSRSELM (0x03<<12) /* mask for above */ 167 #define ES_1371_ADC_STOP (1<<13) /* disable CCB transfer capture information */ 168 #define ES_1371_PWR_INTRM (1<<12) /* power level change interrupts enable */ 169 #define ES_1370_DAC_SYNC (1<<11) /* DAC's are synchronous */ 170 #define ES_1371_M_CB (1<<11) /* capture clock source; 0 = AC'97 ADC; 1 = I2S */ 171 #define ES_CCB_INTRM (1<<10) /* CCB voice interrupts enable */ 172 #define ES_1370_M_CB (1<<9) /* capture clock source; 0 = ADC; 1 = MPEG */ 173 #define ES_1370_XCTL0 (1<<8) /* generap purpose output bit */ 174 #define ES_1371_PDLEV(o) (((o)&0x03)<<8) /* current power down level */ 175 #define ES_1371_PDLEVM (0x03<<8) /* mask for above */ 176 #define ES_BREQ (1<<7) /* memory bus request enable */ 177 #define ES_DAC1_EN (1<<6) /* DAC1 playback channel enable */ 178 #define ES_DAC2_EN (1<<5) /* DAC2 playback channel enable */ 179 #define ES_ADC_EN (1<<4) /* ADC capture channel enable */ 180 #define ES_UART_EN (1<<3) /* UART enable */ 181 #define ES_JYSTK_EN (1<<2) /* Joystick module enable */ 182 #define ES_1370_CDC_EN (1<<1) /* Codec interface enable */ 183 #define ES_1371_XTALCKDIS (1<<1) /* Xtal clock disable */ 184 #define ES_1370_SERR_DISABLE (1<<0) /* PCI serr signal disable */ 185 #define ES_1371_PCICLKDIS (1<<0) /* PCI clock disable */ 186 #define ES_REG_STATUS 0x04 /* R/O: Interrupt/Chip select status register */ 187 #define ES_INTR (1<<31) /* Interrupt is pending */ 188 #define ES_1371_ST_AC97_RST (1<<29) /* CT5880 AC'97 Reset bit */ 189 #define ES_1373_REAR_BIT27 (1<<27) /* rear bits: 000 - front, 010 - mirror, 101 - separate */ 190 #define ES_1373_REAR_BIT26 (1<<26) 191 #define ES_1373_REAR_BIT24 (1<<24) 192 #define ES_1373_GPIO_INT_EN(o)(((o)&0x0f)<<20)/* GPIO [3:0] pins - interrupt enable */ 193 #define ES_1373_SPDIF_EN (1<<18) /* SPDIF enable */ 194 #define ES_1373_SPDIF_TEST (1<<17) /* SPDIF test */ 195 #define ES_1371_TEST (1<<16) /* test ASIC */ 196 #define ES_1373_GPIO_INT(i) (((i)&0x0f)>>12)/* GPIO [3:0] pins - interrupt pending */ 197 #define ES_1370_CSTAT (1<<10) /* CODEC is busy or register write in progress */ 198 #define ES_1370_CBUSY (1<<9) /* CODEC is busy */ 199 #define ES_1370_CWRIP (1<<8) /* CODEC register write in progress */ 200 #define ES_1371_SYNC_ERR (1<<8) /* CODEC synchronization error occurred */ 201 #define ES_1371_VC(i) (((i)>>6)&0x03) /* voice code from CCB module */ 202 #define ES_1370_VC(i) (((i)>>5)&0x03) /* voice code from CCB module */ 203 #define ES_1371_MPWR (1<<5) /* power level interrupt pending */ 204 #define ES_MCCB (1<<4) /* CCB interrupt pending */ 205 #define ES_UART (1<<3) /* UART interrupt pending */ 206 #define ES_DAC1 (1<<2) /* DAC1 channel interrupt pending */ 207 #define ES_DAC2 (1<<1) /* DAC2 channel interrupt pending */ 208 #define ES_ADC (1<<0) /* ADC channel interrupt pending */ 209 #define ES_REG_UART_DATA 0x08 /* R/W: UART data register */ 210 #define ES_REG_UART_STATUS 0x09 /* R/O: UART status register */ 211 #define ES_RXINT (1<<7) /* RX interrupt occurred */ 212 #define ES_TXINT (1<<2) /* TX interrupt occurred */ 213 #define ES_TXRDY (1<<1) /* transmitter ready */ 214 #define ES_RXRDY (1<<0) /* receiver ready */ 215 #define ES_REG_UART_CONTROL 0x09 /* W/O: UART control register */ 216 #define ES_RXINTEN (1<<7) /* RX interrupt enable */ 217 #define ES_TXINTENO(o) (((o)&0x03)<<5) /* TX interrupt enable */ 218 #define ES_TXINTENM (0x03<<5) /* mask for above */ 219 #define ES_TXINTENI(i) (((i)>>5)&0x03) 220 #define ES_CNTRL(o) (((o)&0x03)<<0) /* control */ 221 #define ES_CNTRLM (0x03<<0) /* mask for above */ 222 #define ES_REG_UART_RES 0x0a /* R/W: UART reserver register */ 223 #define ES_TEST_MODE (1<<0) /* test mode enabled */ 224 #define ES_REG_MEM_PAGE 0x0c /* R/W: Memory page register */ 225 #define ES_MEM_PAGEO(o) (((o)&0x0f)<<0) /* memory page select - out */ 226 #define ES_MEM_PAGEM (0x0f<<0) /* mask for above */ 227 #define ES_MEM_PAGEI(i) (((i)>>0)&0x0f) /* memory page select - in */ 228 #define ES_REG_1370_CODEC 0x10 /* W/O: Codec write register address */ 229 #define ES_1370_CODEC_WRITE(a,d) ((((a)&0xff)<<8)|(((d)&0xff)<<0)) 230 #define ES_REG_1371_CODEC 0x14 /* W/R: Codec Read/Write register address */ 231 #define ES_1371_CODEC_RDY (1<<31) /* codec ready */ 232 #define ES_1371_CODEC_WIP (1<<30) /* codec register access in progress */ 233 #define ES_1371_CODEC_PIRD (1<<23) /* codec read/write select register */ 234 #define ES_1371_CODEC_WRITE(a,d) ((((a)&0x7f)<<16)|(((d)&0xffff)<<0)) 235 #define ES_1371_CODEC_READS(a) ((((a)&0x7f)<<16)|ES_1371_CODEC_PIRD) 236 #define ES_1371_CODEC_READ(i) (((i)>>0)&0xffff) 237 238 #define ES_REG_1371_SMPRATE 0x10 /* W/R: Codec rate converter interface register */ 239 #define ES_1371_SRC_RAM_ADDRO(o) (((o)&0x7f)<<25)/* address of the sample rate converter */ 240 #define ES_1371_SRC_RAM_ADDRM (0x7f<<25) /* mask for above */ 241 #define ES_1371_SRC_RAM_ADDRI(i) (((i)>>25)&0x7f)/* address of the sample rate converter */ 242 #define ES_1371_SRC_RAM_WE (1<<24) /* R/W: read/write control for sample rate converter */ 243 #define ES_1371_SRC_RAM_BUSY (1<<23) /* R/O: sample rate memory is busy */ 244 #define ES_1371_SRC_DISABLE (1<<22) /* sample rate converter disable */ 245 #define ES_1371_DIS_P1 (1<<21) /* playback channel 1 accumulator update disable */ 246 #define ES_1371_DIS_P2 (1<<20) /* playback channel 1 accumulator update disable */ 247 #define ES_1371_DIS_R1 (1<<19) /* capture channel accumulator update disable */ 248 #define ES_1371_SRC_RAM_DATAO(o) (((o)&0xffff)<<0)/* current value of the sample rate converter */ 249 #define ES_1371_SRC_RAM_DATAM (0xffff<<0) /* mask for above */ 250 #define ES_1371_SRC_RAM_DATAI(i) (((i)>>0)&0xffff)/* current value of the sample rate converter */ 251 252 #define ES_REG_1371_LEGACY 0x18 /* W/R: Legacy control/status register */ 253 #define ES_1371_JFAST (1<<31) /* fast joystick timing */ 254 #define ES_1371_HIB (1<<30) /* host interrupt blocking enable */ 255 #define ES_1371_VSB (1<<29) /* SB; 0 = addr 0x220xH, 1 = 0x22FxH */ 256 #define ES_1371_VMPUO(o) (((o)&0x03)<<27)/* base register address; 0 = 0x320xH; 1 = 0x330xH; 2 = 0x340xH; 3 = 0x350xH */ 257 #define ES_1371_VMPUM (0x03<<27) /* mask for above */ 258 #define ES_1371_VMPUI(i) (((i)>>27)&0x03)/* base register address */ 259 #define ES_1371_VCDCO(o) (((o)&0x03)<<25)/* CODEC; 0 = 0x530xH; 1 = undefined; 2 = 0xe80xH; 3 = 0xF40xH */ 260 #define ES_1371_VCDCM (0x03<<25) /* mask for above */ 261 #define ES_1371_VCDCI(i) (((i)>>25)&0x03)/* CODEC address */ 262 #define ES_1371_FIRQ (1<<24) /* force an interrupt */ 263 #define ES_1371_SDMACAP (1<<23) /* enable event capture for slave DMA controller */ 264 #define ES_1371_SPICAP (1<<22) /* enable event capture for slave IRQ controller */ 265 #define ES_1371_MDMACAP (1<<21) /* enable event capture for master DMA controller */ 266 #define ES_1371_MPICAP (1<<20) /* enable event capture for master IRQ controller */ 267 #define ES_1371_ADCAP (1<<19) /* enable event capture for ADLIB register; 0x388xH */ 268 #define ES_1371_SVCAP (1<<18) /* enable event capture for SB registers */ 269 #define ES_1371_CDCCAP (1<<17) /* enable event capture for CODEC registers */ 270 #define ES_1371_BACAP (1<<16) /* enable event capture for SoundScape base address */ 271 #define ES_1371_EXI(i) (((i)>>8)&0x07) /* event number */ 272 #define ES_1371_AI(i) (((i)>>3)&0x1f) /* event significant I/O address */ 273 #define ES_1371_WR (1<<2) /* event capture; 0 = read; 1 = write */ 274 #define ES_1371_LEGINT (1<<0) /* interrupt for legacy events; 0 = interrupt did occur */ 275 276 #define ES_REG_CHANNEL_STATUS 0x1c /* R/W: first 32-bits from S/PDIF channel status block, es1373 */ 277 278 #define ES_REG_SERIAL 0x20 /* R/W: Serial interface control register */ 279 #define ES_1371_DAC_TEST (1<<22) /* DAC test mode enable */ 280 #define ES_P2_END_INCO(o) (((o)&0x07)<<19)/* binary offset value to increment / loop end */ 281 #define ES_P2_END_INCM (0x07<<19) /* mask for above */ 282 #define ES_P2_END_INCI(i) (((i)>>16)&0x07)/* binary offset value to increment / loop end */ 283 #define ES_P2_ST_INCO(o) (((o)&0x07)<<16)/* binary offset value to increment / start */ 284 #define ES_P2_ST_INCM (0x07<<16) /* mask for above */ 285 #define ES_P2_ST_INCI(i) (((i)<<16)&0x07)/* binary offset value to increment / start */ 286 #define ES_R1_LOOP_SEL (1<<15) /* ADC; 0 - loop mode; 1 = stop mode */ 287 #define ES_P2_LOOP_SEL (1<<14) /* DAC2; 0 - loop mode; 1 = stop mode */ 288 #define ES_P1_LOOP_SEL (1<<13) /* DAC1; 0 - loop mode; 1 = stop mode */ 289 #define ES_P2_PAUSE (1<<12) /* DAC2; 0 - play mode; 1 = pause mode */ 290 #define ES_P1_PAUSE (1<<11) /* DAC1; 0 - play mode; 1 = pause mode */ 291 #define ES_R1_INT_EN (1<<10) /* ADC interrupt enable */ 292 #define ES_P2_INT_EN (1<<9) /* DAC2 interrupt enable */ 293 #define ES_P1_INT_EN (1<<8) /* DAC1 interrupt enable */ 294 #define ES_P1_SCT_RLD (1<<7) /* force sample counter reload for DAC1 */ 295 #define ES_P2_DAC_SEN (1<<6) /* when stop mode: 0 - DAC2 play back zeros; 1 = DAC2 play back last sample */ 296 #define ES_R1_MODEO(o) (((o)&0x03)<<4) /* ADC mode; 0 = 8-bit mono; 1 = 8-bit stereo; 2 = 16-bit mono; 3 = 16-bit stereo */ 297 #define ES_R1_MODEM (0x03<<4) /* mask for above */ 298 #define ES_R1_MODEI(i) (((i)>>4)&0x03) 299 #define ES_P2_MODEO(o) (((o)&0x03)<<2) /* DAC2 mode; -- '' -- */ 300 #define ES_P2_MODEM (0x03<<2) /* mask for above */ 301 #define ES_P2_MODEI(i) (((i)>>2)&0x03) 302 #define ES_P1_MODEO(o) (((o)&0x03)<<0) /* DAC1 mode; -- '' -- */ 303 #define ES_P1_MODEM (0x03<<0) /* mask for above */ 304 #define ES_P1_MODEI(i) (((i)>>0)&0x03) 305 306 #define ES_REG_DAC1_COUNT 0x24 /* R/W: DAC1 sample count register */ 307 #define ES_REG_DAC2_COUNT 0x28 /* R/W: DAC2 sample count register */ 308 #define ES_REG_ADC_COUNT 0x2c /* R/W: ADC sample count register */ 309 #define ES_REG_CURR_COUNT(i) (((i)>>16)&0xffff) 310 #define ES_REG_COUNTO(o) (((o)&0xffff)<<0) 311 #define ES_REG_COUNTM (0xffff<<0) 312 #define ES_REG_COUNTI(i) (((i)>>0)&0xffff) 313 314 #define ES_REG_DAC1_FRAME 0x30 /* R/W: PAGE 0x0c; DAC1 frame address */ 315 #define ES_REG_DAC1_SIZE 0x34 /* R/W: PAGE 0x0c; DAC1 frame size */ 316 #define ES_REG_DAC2_FRAME 0x38 /* R/W: PAGE 0x0c; DAC2 frame address */ 317 #define ES_REG_DAC2_SIZE 0x3c /* R/W: PAGE 0x0c; DAC2 frame size */ 318 #define ES_REG_ADC_FRAME 0x30 /* R/W: PAGE 0x0d; ADC frame address */ 319 #define ES_REG_ADC_SIZE 0x34 /* R/W: PAGE 0x0d; ADC frame size */ 320 #define ES_REG_FCURR_COUNTO(o) (((o)&0xffff)<<16) 321 #define ES_REG_FCURR_COUNTM (0xffff<<16) 322 #define ES_REG_FCURR_COUNTI(i) (((i)>>14)&0x3fffc) 323 #define ES_REG_FSIZEO(o) (((o)&0xffff)<<0) 324 #define ES_REG_FSIZEM (0xffff<<0) 325 #define ES_REG_FSIZEI(i) (((i)>>0)&0xffff) 326 #define ES_REG_PHANTOM_FRAME 0x38 /* R/W: PAGE 0x0d: phantom frame address */ 327 #define ES_REG_PHANTOM_COUNT 0x3c /* R/W: PAGE 0x0d: phantom frame count */ 328 329 #define ES_REG_UART_FIFO 0x30 /* R/W: PAGE 0x0e; UART FIFO register */ 330 #define ES_REG_UF_VALID (1<<8) 331 #define ES_REG_UF_BYTEO(o) (((o)&0xff)<<0) 332 #define ES_REG_UF_BYTEM (0xff<<0) 333 #define ES_REG_UF_BYTEI(i) (((i)>>0)&0xff) 334 335 336 /* 337 * Pages 338 */ 339 340 #define ES_PAGE_DAC 0x0c 341 #define ES_PAGE_ADC 0x0d 342 #define ES_PAGE_UART 0x0e 343 #define ES_PAGE_UART1 0x0f 344 345 /* 346 * Sample rate converter addresses 347 */ 348 349 #define ES_SMPREG_DAC1 0x70 350 #define ES_SMPREG_DAC2 0x74 351 #define ES_SMPREG_ADC 0x78 352 #define ES_SMPREG_VOL_ADC 0x6c 353 #define ES_SMPREG_VOL_DAC1 0x7c 354 #define ES_SMPREG_VOL_DAC2 0x7e 355 #define ES_SMPREG_TRUNC_N 0x00 356 #define ES_SMPREG_INT_REGS 0x01 357 #define ES_SMPREG_ACCUM_FRAC 0x02 358 #define ES_SMPREG_VFREQ_FRAC 0x03 359 360 /* 361 * Some contants 362 */ 363 364 #define ES_1370_SRCLOCK 1411200 365 #define ES_1370_SRTODIV(x) (ES_1370_SRCLOCK/(x)-2) 366 367 /* 368 * Open modes 369 */ 370 371 #define ES_MODE_PLAY1 0x0001 372 #define ES_MODE_PLAY2 0x0002 373 #define ES_MODE_CAPTURE 0x0004 374 375 #define ES_MODE_OUTPUT 0x0001 /* for MIDI */ 376 #define ES_MODE_INPUT 0x0002 /* for MIDI */ 377 378 /* 379 380 */ 381 382 struct ensoniq { 383 spinlock_t reg_lock; 384 struct mutex src_mutex; 385 386 int irq; 387 388 unsigned long playback1size; 389 unsigned long playback2size; 390 unsigned long capture3size; 391 392 unsigned long port; 393 unsigned int mode; 394 unsigned int uartm; /* UART mode */ 395 396 unsigned int ctrl; /* control register */ 397 unsigned int sctrl; /* serial control register */ 398 unsigned int cssr; /* control status register */ 399 unsigned int uartc; /* uart control register */ 400 unsigned int rev; /* chip revision */ 401 402 union { 403 #ifdef CHIP1371 404 struct { 405 struct snd_ac97 *ac97; 406 } es1371; 407 #else 408 struct { 409 int pclkdiv_lock; 410 struct snd_ak4531 *ak4531; 411 } es1370; 412 #endif 413 } u; 414 415 struct pci_dev *pci; 416 unsigned short subsystem_vendor_id; 417 unsigned short subsystem_device_id; 418 struct snd_card *card; 419 struct snd_pcm *pcm1; /* DAC1/ADC PCM */ 420 struct snd_pcm *pcm2; /* DAC2 PCM */ 421 struct snd_pcm_substream *playback1_substream; 422 struct snd_pcm_substream *playback2_substream; 423 struct snd_pcm_substream *capture_substream; 424 unsigned int p1_dma_size; 425 unsigned int p2_dma_size; 426 unsigned int c_dma_size; 427 unsigned int p1_period_size; 428 unsigned int p2_period_size; 429 unsigned int c_period_size; 430 struct snd_rawmidi *rmidi; 431 struct snd_rawmidi_substream *midi_input; 432 struct snd_rawmidi_substream *midi_output; 433 434 unsigned int spdif; 435 unsigned int spdif_default; 436 unsigned int spdif_stream; 437 438 #ifdef CHIP1370 439 struct snd_dma_buffer dma_bug; 440 #endif 441 442 #ifdef SUPPORT_JOYSTICK 443 struct gameport *gameport; 444 #endif 445 }; 446 447 static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id, struct pt_regs *regs); 448 449 static struct pci_device_id snd_audiopci_ids[] = { 450 #ifdef CHIP1370 451 { 0x1274, 0x5000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ES1370 */ 452 #endif 453 #ifdef CHIP1371 454 { 0x1274, 0x1371, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ES1371 */ 455 { 0x1274, 0x5880, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* ES1373 - CT5880 */ 456 { 0x1102, 0x8938, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, /* Ectiva EV1938 */ 457 #endif 458 { 0, } 459 }; 460 461 MODULE_DEVICE_TABLE(pci, snd_audiopci_ids); 462 463 /* 464 * constants 465 */ 466 467 #define POLL_COUNT 0xa000 468 469 #ifdef CHIP1370 470 static unsigned int snd_es1370_fixed_rates[] = 471 {5512, 11025, 22050, 44100}; 472 static struct snd_pcm_hw_constraint_list snd_es1370_hw_constraints_rates = { 473 .count = 4, 474 .list = snd_es1370_fixed_rates, 475 .mask = 0, 476 }; 477 static struct snd_ratnum es1370_clock = { 478 .num = ES_1370_SRCLOCK, 479 .den_min = 29, 480 .den_max = 353, 481 .den_step = 1, 482 }; 483 static struct snd_pcm_hw_constraint_ratnums snd_es1370_hw_constraints_clock = { 484 .nrats = 1, 485 .rats = &es1370_clock, 486 }; 487 #else 488 static struct snd_ratden es1371_dac_clock = { 489 .num_min = 3000 * (1 << 15), 490 .num_max = 48000 * (1 << 15), 491 .num_step = 3000, 492 .den = 1 << 15, 493 }; 494 static struct snd_pcm_hw_constraint_ratdens snd_es1371_hw_constraints_dac_clock = { 495 .nrats = 1, 496 .rats = &es1371_dac_clock, 497 }; 498 static struct snd_ratnum es1371_adc_clock = { 499 .num = 48000 << 15, 500 .den_min = 32768, 501 .den_max = 393216, 502 .den_step = 1, 503 }; 504 static struct snd_pcm_hw_constraint_ratnums snd_es1371_hw_constraints_adc_clock = { 505 .nrats = 1, 506 .rats = &es1371_adc_clock, 507 }; 508 #endif 509 static const unsigned int snd_ensoniq_sample_shift[] = 510 {0, 1, 1, 2}; 511 512 /* 513 * common I/O routines 514 */ 515 516 #ifdef CHIP1371 517 518 static unsigned int snd_es1371_wait_src_ready(struct ensoniq * ensoniq) 519 { 520 unsigned int t, r = 0; 521 522 for (t = 0; t < POLL_COUNT; t++) { 523 r = inl(ES_REG(ensoniq, 1371_SMPRATE)); 524 if ((r & ES_1371_SRC_RAM_BUSY) == 0) 525 return r; 526 cond_resched(); 527 } 528 snd_printk(KERN_ERR "wait source ready timeout 0x%lx [0x%x]\n", 529 ES_REG(ensoniq, 1371_SMPRATE), r); 530 return 0; 531 } 532 533 static unsigned int snd_es1371_src_read(struct ensoniq * ensoniq, unsigned short reg) 534 { 535 unsigned int temp, i, orig, r; 536 537 /* wait for ready */ 538 temp = orig = snd_es1371_wait_src_ready(ensoniq); 539 540 /* expose the SRC state bits */ 541 r = temp & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | 542 ES_1371_DIS_P2 | ES_1371_DIS_R1); 543 r |= ES_1371_SRC_RAM_ADDRO(reg) | 0x10000; 544 outl(r, ES_REG(ensoniq, 1371_SMPRATE)); 545 546 /* now, wait for busy and the correct time to read */ 547 temp = snd_es1371_wait_src_ready(ensoniq); 548 549 if ((temp & 0x00870000) != 0x00010000) { 550 /* wait for the right state */ 551 for (i = 0; i < POLL_COUNT; i++) { 552 temp = inl(ES_REG(ensoniq, 1371_SMPRATE)); 553 if ((temp & 0x00870000) == 0x00010000) 554 break; 555 } 556 } 557 558 /* hide the state bits */ 559 r = orig & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | 560 ES_1371_DIS_P2 | ES_1371_DIS_R1); 561 r |= ES_1371_SRC_RAM_ADDRO(reg); 562 outl(r, ES_REG(ensoniq, 1371_SMPRATE)); 563 564 return temp; 565 } 566 567 static void snd_es1371_src_write(struct ensoniq * ensoniq, 568 unsigned short reg, unsigned short data) 569 { 570 unsigned int r; 571 572 r = snd_es1371_wait_src_ready(ensoniq) & 573 (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | 574 ES_1371_DIS_P2 | ES_1371_DIS_R1); 575 r |= ES_1371_SRC_RAM_ADDRO(reg) | ES_1371_SRC_RAM_DATAO(data); 576 outl(r | ES_1371_SRC_RAM_WE, ES_REG(ensoniq, 1371_SMPRATE)); 577 } 578 579 #endif /* CHIP1371 */ 580 581 #ifdef CHIP1370 582 583 static void snd_es1370_codec_write(struct snd_ak4531 *ak4531, 584 unsigned short reg, unsigned short val) 585 { 586 struct ensoniq *ensoniq = ak4531->private_data; 587 unsigned long end_time = jiffies + HZ / 10; 588 589 #if 0 590 printk("CODEC WRITE: reg = 0x%x, val = 0x%x (0x%x), creg = 0x%x\n", 591 reg, val, ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC)); 592 #endif 593 do { 594 if (!(inl(ES_REG(ensoniq, STATUS)) & ES_1370_CSTAT)) { 595 outw(ES_1370_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1370_CODEC)); 596 return; 597 } 598 schedule_timeout_uninterruptible(1); 599 } while (time_after(end_time, jiffies)); 600 snd_printk(KERN_ERR "codec write timeout, status = 0x%x\n", 601 inl(ES_REG(ensoniq, STATUS))); 602 } 603 604 #endif /* CHIP1370 */ 605 606 #ifdef CHIP1371 607 608 static void snd_es1371_codec_write(struct snd_ac97 *ac97, 609 unsigned short reg, unsigned short val) 610 { 611 struct ensoniq *ensoniq = ac97->private_data; 612 unsigned int t, x; 613 614 mutex_lock(&ensoniq->src_mutex); 615 for (t = 0; t < POLL_COUNT; t++) { 616 if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) { 617 /* save the current state for latter */ 618 x = snd_es1371_wait_src_ready(ensoniq); 619 outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | 620 ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000, 621 ES_REG(ensoniq, 1371_SMPRATE)); 622 /* wait for not busy (state 0) first to avoid 623 transition states */ 624 for (t = 0; t < POLL_COUNT; t++) { 625 if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 626 0x00000000) 627 break; 628 } 629 /* wait for a SAFE time to write addr/data and then do it, dammit */ 630 for (t = 0; t < POLL_COUNT; t++) { 631 if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 632 0x00010000) 633 break; 634 } 635 outl(ES_1371_CODEC_WRITE(reg, val), ES_REG(ensoniq, 1371_CODEC)); 636 /* restore SRC reg */ 637 snd_es1371_wait_src_ready(ensoniq); 638 outl(x, ES_REG(ensoniq, 1371_SMPRATE)); 639 mutex_unlock(&ensoniq->src_mutex); 640 return; 641 } 642 } 643 mutex_unlock(&ensoniq->src_mutex); 644 snd_printk(KERN_ERR "codec write timeout at 0x%lx [0x%x]\n", 645 ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC))); 646 } 647 648 static unsigned short snd_es1371_codec_read(struct snd_ac97 *ac97, 649 unsigned short reg) 650 { 651 struct ensoniq *ensoniq = ac97->private_data; 652 unsigned int t, x, fail = 0; 653 654 __again: 655 mutex_lock(&ensoniq->src_mutex); 656 for (t = 0; t < POLL_COUNT; t++) { 657 if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) { 658 /* save the current state for latter */ 659 x = snd_es1371_wait_src_ready(ensoniq); 660 outl((x & (ES_1371_SRC_DISABLE | ES_1371_DIS_P1 | 661 ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 0x00010000, 662 ES_REG(ensoniq, 1371_SMPRATE)); 663 /* wait for not busy (state 0) first to avoid 664 transition states */ 665 for (t = 0; t < POLL_COUNT; t++) { 666 if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 667 0x00000000) 668 break; 669 } 670 /* wait for a SAFE time to write addr/data and then do it, dammit */ 671 for (t = 0; t < POLL_COUNT; t++) { 672 if ((inl(ES_REG(ensoniq, 1371_SMPRATE)) & 0x00870000) == 673 0x00010000) 674 break; 675 } 676 outl(ES_1371_CODEC_READS(reg), ES_REG(ensoniq, 1371_CODEC)); 677 /* restore SRC reg */ 678 snd_es1371_wait_src_ready(ensoniq); 679 outl(x, ES_REG(ensoniq, 1371_SMPRATE)); 680 /* wait for WIP again */ 681 for (t = 0; t < POLL_COUNT; t++) { 682 if (!(inl(ES_REG(ensoniq, 1371_CODEC)) & ES_1371_CODEC_WIP)) 683 break; 684 } 685 /* now wait for the stinkin' data (RDY) */ 686 for (t = 0; t < POLL_COUNT; t++) { 687 if ((x = inl(ES_REG(ensoniq, 1371_CODEC))) & ES_1371_CODEC_RDY) { 688 mutex_unlock(&ensoniq->src_mutex); 689 return ES_1371_CODEC_READ(x); 690 } 691 } 692 mutex_unlock(&ensoniq->src_mutex); 693 if (++fail > 10) { 694 snd_printk(KERN_ERR "codec read timeout (final) " 695 "at 0x%lx, reg = 0x%x [0x%x]\n", 696 ES_REG(ensoniq, 1371_CODEC), reg, 697 inl(ES_REG(ensoniq, 1371_CODEC))); 698 return 0; 699 } 700 goto __again; 701 } 702 } 703 mutex_unlock(&ensoniq->src_mutex); 704 snd_printk(KERN_ERR "es1371: codec read timeout at 0x%lx [0x%x]\n", 705 ES_REG(ensoniq, 1371_CODEC), inl(ES_REG(ensoniq, 1371_CODEC))); 706 return 0; 707 } 708 709 static void snd_es1371_codec_wait(struct snd_ac97 *ac97) 710 { 711 msleep(750); 712 snd_es1371_codec_read(ac97, AC97_RESET); 713 snd_es1371_codec_read(ac97, AC97_VENDOR_ID1); 714 snd_es1371_codec_read(ac97, AC97_VENDOR_ID2); 715 msleep(50); 716 } 717 718 static void snd_es1371_adc_rate(struct ensoniq * ensoniq, unsigned int rate) 719 { 720 unsigned int n, truncm, freq, result; 721 722 mutex_lock(&ensoniq->src_mutex); 723 n = rate / 3000; 724 if ((1 << n) & ((1 << 15) | (1 << 13) | (1 << 11) | (1 << 9))) 725 n--; 726 truncm = (21 * n - 1) | 1; 727 freq = ((48000UL << 15) / rate) * n; 728 result = (48000UL << 15) / (freq / n); 729 if (rate >= 24000) { 730 if (truncm > 239) 731 truncm = 239; 732 snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N, 733 (((239 - truncm) >> 1) << 9) | (n << 4)); 734 } else { 735 if (truncm > 119) 736 truncm = 119; 737 snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_TRUNC_N, 738 0x8000 | (((119 - truncm) >> 1) << 9) | (n << 4)); 739 } 740 snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_INT_REGS, 741 (snd_es1371_src_read(ensoniq, ES_SMPREG_ADC + 742 ES_SMPREG_INT_REGS) & 0x00ff) | 743 ((freq >> 5) & 0xfc00)); 744 snd_es1371_src_write(ensoniq, ES_SMPREG_ADC + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); 745 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, n << 8); 746 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, n << 8); 747 mutex_unlock(&ensoniq->src_mutex); 748 } 749 750 static void snd_es1371_dac1_rate(struct ensoniq * ensoniq, unsigned int rate) 751 { 752 unsigned int freq, r; 753 754 mutex_lock(&ensoniq->src_mutex); 755 freq = ((rate << 15) + 1500) / 3000; 756 r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | 757 ES_1371_DIS_P2 | ES_1371_DIS_R1)) | 758 ES_1371_DIS_P1; 759 outl(r, ES_REG(ensoniq, 1371_SMPRATE)); 760 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, 761 (snd_es1371_src_read(ensoniq, ES_SMPREG_DAC1 + 762 ES_SMPREG_INT_REGS) & 0x00ff) | 763 ((freq >> 5) & 0xfc00)); 764 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_VFREQ_FRAC, freq & 0x7fff); 765 r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | 766 ES_1371_DIS_P2 | ES_1371_DIS_R1)); 767 outl(r, ES_REG(ensoniq, 1371_SMPRATE)); 768 mutex_unlock(&ensoniq->src_mutex); 769 } 770 771 static void snd_es1371_dac2_rate(struct ensoniq * ensoniq, unsigned int rate) 772 { 773 unsigned int freq, r; 774 775 mutex_lock(&ensoniq->src_mutex); 776 freq = ((rate << 15) + 1500) / 3000; 777 r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | 778 ES_1371_DIS_P1 | ES_1371_DIS_R1)) | 779 ES_1371_DIS_P2; 780 outl(r, ES_REG(ensoniq, 1371_SMPRATE)); 781 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, 782 (snd_es1371_src_read(ensoniq, ES_SMPREG_DAC2 + 783 ES_SMPREG_INT_REGS) & 0x00ff) | 784 ((freq >> 5) & 0xfc00)); 785 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_VFREQ_FRAC, 786 freq & 0x7fff); 787 r = (snd_es1371_wait_src_ready(ensoniq) & (ES_1371_SRC_DISABLE | 788 ES_1371_DIS_P1 | ES_1371_DIS_R1)); 789 outl(r, ES_REG(ensoniq, 1371_SMPRATE)); 790 mutex_unlock(&ensoniq->src_mutex); 791 } 792 793 #endif /* CHIP1371 */ 794 795 static int snd_ensoniq_trigger(struct snd_pcm_substream *substream, int cmd) 796 { 797 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 798 switch (cmd) { 799 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 800 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 801 { 802 unsigned int what = 0; 803 struct list_head *pos; 804 struct snd_pcm_substream *s; 805 snd_pcm_group_for_each(pos, substream) { 806 s = snd_pcm_group_substream_entry(pos); 807 if (s == ensoniq->playback1_substream) { 808 what |= ES_P1_PAUSE; 809 snd_pcm_trigger_done(s, substream); 810 } else if (s == ensoniq->playback2_substream) { 811 what |= ES_P2_PAUSE; 812 snd_pcm_trigger_done(s, substream); 813 } else if (s == ensoniq->capture_substream) 814 return -EINVAL; 815 } 816 spin_lock(&ensoniq->reg_lock); 817 if (cmd == SNDRV_PCM_TRIGGER_PAUSE_PUSH) 818 ensoniq->sctrl |= what; 819 else 820 ensoniq->sctrl &= ~what; 821 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 822 spin_unlock(&ensoniq->reg_lock); 823 break; 824 } 825 case SNDRV_PCM_TRIGGER_START: 826 case SNDRV_PCM_TRIGGER_STOP: 827 { 828 unsigned int what = 0; 829 struct list_head *pos; 830 struct snd_pcm_substream *s; 831 snd_pcm_group_for_each(pos, substream) { 832 s = snd_pcm_group_substream_entry(pos); 833 if (s == ensoniq->playback1_substream) { 834 what |= ES_DAC1_EN; 835 snd_pcm_trigger_done(s, substream); 836 } else if (s == ensoniq->playback2_substream) { 837 what |= ES_DAC2_EN; 838 snd_pcm_trigger_done(s, substream); 839 } else if (s == ensoniq->capture_substream) { 840 what |= ES_ADC_EN; 841 snd_pcm_trigger_done(s, substream); 842 } 843 } 844 spin_lock(&ensoniq->reg_lock); 845 if (cmd == SNDRV_PCM_TRIGGER_START) 846 ensoniq->ctrl |= what; 847 else 848 ensoniq->ctrl &= ~what; 849 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 850 spin_unlock(&ensoniq->reg_lock); 851 break; 852 } 853 default: 854 return -EINVAL; 855 } 856 return 0; 857 } 858 859 /* 860 * PCM part 861 */ 862 863 static int snd_ensoniq_hw_params(struct snd_pcm_substream *substream, 864 struct snd_pcm_hw_params *hw_params) 865 { 866 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 867 } 868 869 static int snd_ensoniq_hw_free(struct snd_pcm_substream *substream) 870 { 871 return snd_pcm_lib_free_pages(substream); 872 } 873 874 static int snd_ensoniq_playback1_prepare(struct snd_pcm_substream *substream) 875 { 876 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 877 struct snd_pcm_runtime *runtime = substream->runtime; 878 unsigned int mode = 0; 879 880 ensoniq->p1_dma_size = snd_pcm_lib_buffer_bytes(substream); 881 ensoniq->p1_period_size = snd_pcm_lib_period_bytes(substream); 882 if (snd_pcm_format_width(runtime->format) == 16) 883 mode |= 0x02; 884 if (runtime->channels > 1) 885 mode |= 0x01; 886 spin_lock_irq(&ensoniq->reg_lock); 887 ensoniq->ctrl &= ~ES_DAC1_EN; 888 #ifdef CHIP1371 889 /* 48k doesn't need SRC (it breaks AC3-passthru) */ 890 if (runtime->rate == 48000) 891 ensoniq->ctrl |= ES_1373_BYPASS_P1; 892 else 893 ensoniq->ctrl &= ~ES_1373_BYPASS_P1; 894 #endif 895 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 896 outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); 897 outl(runtime->dma_addr, ES_REG(ensoniq, DAC1_FRAME)); 898 outl((ensoniq->p1_dma_size >> 2) - 1, ES_REG(ensoniq, DAC1_SIZE)); 899 ensoniq->sctrl &= ~(ES_P1_LOOP_SEL | ES_P1_PAUSE | ES_P1_SCT_RLD | ES_P1_MODEM); 900 ensoniq->sctrl |= ES_P1_INT_EN | ES_P1_MODEO(mode); 901 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 902 outl((ensoniq->p1_period_size >> snd_ensoniq_sample_shift[mode]) - 1, 903 ES_REG(ensoniq, DAC1_COUNT)); 904 #ifdef CHIP1370 905 ensoniq->ctrl &= ~ES_1370_WTSRSELM; 906 switch (runtime->rate) { 907 case 5512: ensoniq->ctrl |= ES_1370_WTSRSEL(0); break; 908 case 11025: ensoniq->ctrl |= ES_1370_WTSRSEL(1); break; 909 case 22050: ensoniq->ctrl |= ES_1370_WTSRSEL(2); break; 910 case 44100: ensoniq->ctrl |= ES_1370_WTSRSEL(3); break; 911 default: snd_BUG(); 912 } 913 #endif 914 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 915 spin_unlock_irq(&ensoniq->reg_lock); 916 #ifndef CHIP1370 917 snd_es1371_dac1_rate(ensoniq, runtime->rate); 918 #endif 919 return 0; 920 } 921 922 static int snd_ensoniq_playback2_prepare(struct snd_pcm_substream *substream) 923 { 924 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 925 struct snd_pcm_runtime *runtime = substream->runtime; 926 unsigned int mode = 0; 927 928 ensoniq->p2_dma_size = snd_pcm_lib_buffer_bytes(substream); 929 ensoniq->p2_period_size = snd_pcm_lib_period_bytes(substream); 930 if (snd_pcm_format_width(runtime->format) == 16) 931 mode |= 0x02; 932 if (runtime->channels > 1) 933 mode |= 0x01; 934 spin_lock_irq(&ensoniq->reg_lock); 935 ensoniq->ctrl &= ~ES_DAC2_EN; 936 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 937 outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); 938 outl(runtime->dma_addr, ES_REG(ensoniq, DAC2_FRAME)); 939 outl((ensoniq->p2_dma_size >> 2) - 1, ES_REG(ensoniq, DAC2_SIZE)); 940 ensoniq->sctrl &= ~(ES_P2_LOOP_SEL | ES_P2_PAUSE | ES_P2_DAC_SEN | 941 ES_P2_END_INCM | ES_P2_ST_INCM | ES_P2_MODEM); 942 ensoniq->sctrl |= ES_P2_INT_EN | ES_P2_MODEO(mode) | 943 ES_P2_END_INCO(mode & 2 ? 2 : 1) | ES_P2_ST_INCO(0); 944 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 945 outl((ensoniq->p2_period_size >> snd_ensoniq_sample_shift[mode]) - 1, 946 ES_REG(ensoniq, DAC2_COUNT)); 947 #ifdef CHIP1370 948 if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_CAPTURE)) { 949 ensoniq->ctrl &= ~ES_1370_PCLKDIVM; 950 ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate)); 951 ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_PLAY2; 952 } 953 #endif 954 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 955 spin_unlock_irq(&ensoniq->reg_lock); 956 #ifndef CHIP1370 957 snd_es1371_dac2_rate(ensoniq, runtime->rate); 958 #endif 959 return 0; 960 } 961 962 static int snd_ensoniq_capture_prepare(struct snd_pcm_substream *substream) 963 { 964 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 965 struct snd_pcm_runtime *runtime = substream->runtime; 966 unsigned int mode = 0; 967 968 ensoniq->c_dma_size = snd_pcm_lib_buffer_bytes(substream); 969 ensoniq->c_period_size = snd_pcm_lib_period_bytes(substream); 970 if (snd_pcm_format_width(runtime->format) == 16) 971 mode |= 0x02; 972 if (runtime->channels > 1) 973 mode |= 0x01; 974 spin_lock_irq(&ensoniq->reg_lock); 975 ensoniq->ctrl &= ~ES_ADC_EN; 976 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 977 outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); 978 outl(runtime->dma_addr, ES_REG(ensoniq, ADC_FRAME)); 979 outl((ensoniq->c_dma_size >> 2) - 1, ES_REG(ensoniq, ADC_SIZE)); 980 ensoniq->sctrl &= ~(ES_R1_LOOP_SEL | ES_R1_MODEM); 981 ensoniq->sctrl |= ES_R1_INT_EN | ES_R1_MODEO(mode); 982 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 983 outl((ensoniq->c_period_size >> snd_ensoniq_sample_shift[mode]) - 1, 984 ES_REG(ensoniq, ADC_COUNT)); 985 #ifdef CHIP1370 986 if (!(ensoniq->u.es1370.pclkdiv_lock & ES_MODE_PLAY2)) { 987 ensoniq->ctrl &= ~ES_1370_PCLKDIVM; 988 ensoniq->ctrl |= ES_1370_PCLKDIVO(ES_1370_SRTODIV(runtime->rate)); 989 ensoniq->u.es1370.pclkdiv_lock |= ES_MODE_CAPTURE; 990 } 991 #endif 992 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 993 spin_unlock_irq(&ensoniq->reg_lock); 994 #ifndef CHIP1370 995 snd_es1371_adc_rate(ensoniq, runtime->rate); 996 #endif 997 return 0; 998 } 999 1000 static snd_pcm_uframes_t snd_ensoniq_playback1_pointer(struct snd_pcm_substream *substream) 1001 { 1002 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1003 size_t ptr; 1004 1005 spin_lock(&ensoniq->reg_lock); 1006 if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC1_EN) { 1007 outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); 1008 ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC1_SIZE))); 1009 ptr = bytes_to_frames(substream->runtime, ptr); 1010 } else { 1011 ptr = 0; 1012 } 1013 spin_unlock(&ensoniq->reg_lock); 1014 return ptr; 1015 } 1016 1017 static snd_pcm_uframes_t snd_ensoniq_playback2_pointer(struct snd_pcm_substream *substream) 1018 { 1019 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1020 size_t ptr; 1021 1022 spin_lock(&ensoniq->reg_lock); 1023 if (inl(ES_REG(ensoniq, CONTROL)) & ES_DAC2_EN) { 1024 outl(ES_MEM_PAGEO(ES_PAGE_DAC), ES_REG(ensoniq, MEM_PAGE)); 1025 ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, DAC2_SIZE))); 1026 ptr = bytes_to_frames(substream->runtime, ptr); 1027 } else { 1028 ptr = 0; 1029 } 1030 spin_unlock(&ensoniq->reg_lock); 1031 return ptr; 1032 } 1033 1034 static snd_pcm_uframes_t snd_ensoniq_capture_pointer(struct snd_pcm_substream *substream) 1035 { 1036 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1037 size_t ptr; 1038 1039 spin_lock(&ensoniq->reg_lock); 1040 if (inl(ES_REG(ensoniq, CONTROL)) & ES_ADC_EN) { 1041 outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); 1042 ptr = ES_REG_FCURR_COUNTI(inl(ES_REG(ensoniq, ADC_SIZE))); 1043 ptr = bytes_to_frames(substream->runtime, ptr); 1044 } else { 1045 ptr = 0; 1046 } 1047 spin_unlock(&ensoniq->reg_lock); 1048 return ptr; 1049 } 1050 1051 static struct snd_pcm_hardware snd_ensoniq_playback1 = 1052 { 1053 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1054 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1055 SNDRV_PCM_INFO_MMAP_VALID | 1056 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_SYNC_START), 1057 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1058 .rates = 1059 #ifndef CHIP1370 1060 SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 1061 #else 1062 (SNDRV_PCM_RATE_KNOT | /* 5512Hz rate */ 1063 SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_22050 | 1064 SNDRV_PCM_RATE_44100), 1065 #endif 1066 .rate_min = 4000, 1067 .rate_max = 48000, 1068 .channels_min = 1, 1069 .channels_max = 2, 1070 .buffer_bytes_max = (128*1024), 1071 .period_bytes_min = 64, 1072 .period_bytes_max = (128*1024), 1073 .periods_min = 1, 1074 .periods_max = 1024, 1075 .fifo_size = 0, 1076 }; 1077 1078 static struct snd_pcm_hardware snd_ensoniq_playback2 = 1079 { 1080 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1081 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1082 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE | 1083 SNDRV_PCM_INFO_SYNC_START), 1084 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1085 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 1086 .rate_min = 4000, 1087 .rate_max = 48000, 1088 .channels_min = 1, 1089 .channels_max = 2, 1090 .buffer_bytes_max = (128*1024), 1091 .period_bytes_min = 64, 1092 .period_bytes_max = (128*1024), 1093 .periods_min = 1, 1094 .periods_max = 1024, 1095 .fifo_size = 0, 1096 }; 1097 1098 static struct snd_pcm_hardware snd_ensoniq_capture = 1099 { 1100 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1101 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1102 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START), 1103 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1104 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000, 1105 .rate_min = 4000, 1106 .rate_max = 48000, 1107 .channels_min = 1, 1108 .channels_max = 2, 1109 .buffer_bytes_max = (128*1024), 1110 .period_bytes_min = 64, 1111 .period_bytes_max = (128*1024), 1112 .periods_min = 1, 1113 .periods_max = 1024, 1114 .fifo_size = 0, 1115 }; 1116 1117 static int snd_ensoniq_playback1_open(struct snd_pcm_substream *substream) 1118 { 1119 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1120 struct snd_pcm_runtime *runtime = substream->runtime; 1121 1122 ensoniq->mode |= ES_MODE_PLAY1; 1123 ensoniq->playback1_substream = substream; 1124 runtime->hw = snd_ensoniq_playback1; 1125 snd_pcm_set_sync(substream); 1126 spin_lock_irq(&ensoniq->reg_lock); 1127 if (ensoniq->spdif && ensoniq->playback2_substream == NULL) 1128 ensoniq->spdif_stream = ensoniq->spdif_default; 1129 spin_unlock_irq(&ensoniq->reg_lock); 1130 #ifdef CHIP1370 1131 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 1132 &snd_es1370_hw_constraints_rates); 1133 #else 1134 snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 1135 &snd_es1371_hw_constraints_dac_clock); 1136 #endif 1137 return 0; 1138 } 1139 1140 static int snd_ensoniq_playback2_open(struct snd_pcm_substream *substream) 1141 { 1142 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1143 struct snd_pcm_runtime *runtime = substream->runtime; 1144 1145 ensoniq->mode |= ES_MODE_PLAY2; 1146 ensoniq->playback2_substream = substream; 1147 runtime->hw = snd_ensoniq_playback2; 1148 snd_pcm_set_sync(substream); 1149 spin_lock_irq(&ensoniq->reg_lock); 1150 if (ensoniq->spdif && ensoniq->playback1_substream == NULL) 1151 ensoniq->spdif_stream = ensoniq->spdif_default; 1152 spin_unlock_irq(&ensoniq->reg_lock); 1153 #ifdef CHIP1370 1154 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 1155 &snd_es1370_hw_constraints_clock); 1156 #else 1157 snd_pcm_hw_constraint_ratdens(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 1158 &snd_es1371_hw_constraints_dac_clock); 1159 #endif 1160 return 0; 1161 } 1162 1163 static int snd_ensoniq_capture_open(struct snd_pcm_substream *substream) 1164 { 1165 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1166 struct snd_pcm_runtime *runtime = substream->runtime; 1167 1168 ensoniq->mode |= ES_MODE_CAPTURE; 1169 ensoniq->capture_substream = substream; 1170 runtime->hw = snd_ensoniq_capture; 1171 snd_pcm_set_sync(substream); 1172 #ifdef CHIP1370 1173 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 1174 &snd_es1370_hw_constraints_clock); 1175 #else 1176 snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 1177 &snd_es1371_hw_constraints_adc_clock); 1178 #endif 1179 return 0; 1180 } 1181 1182 static int snd_ensoniq_playback1_close(struct snd_pcm_substream *substream) 1183 { 1184 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1185 1186 ensoniq->playback1_substream = NULL; 1187 ensoniq->mode &= ~ES_MODE_PLAY1; 1188 return 0; 1189 } 1190 1191 static int snd_ensoniq_playback2_close(struct snd_pcm_substream *substream) 1192 { 1193 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1194 1195 ensoniq->playback2_substream = NULL; 1196 spin_lock_irq(&ensoniq->reg_lock); 1197 #ifdef CHIP1370 1198 ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_PLAY2; 1199 #endif 1200 ensoniq->mode &= ~ES_MODE_PLAY2; 1201 spin_unlock_irq(&ensoniq->reg_lock); 1202 return 0; 1203 } 1204 1205 static int snd_ensoniq_capture_close(struct snd_pcm_substream *substream) 1206 { 1207 struct ensoniq *ensoniq = snd_pcm_substream_chip(substream); 1208 1209 ensoniq->capture_substream = NULL; 1210 spin_lock_irq(&ensoniq->reg_lock); 1211 #ifdef CHIP1370 1212 ensoniq->u.es1370.pclkdiv_lock &= ~ES_MODE_CAPTURE; 1213 #endif 1214 ensoniq->mode &= ~ES_MODE_CAPTURE; 1215 spin_unlock_irq(&ensoniq->reg_lock); 1216 return 0; 1217 } 1218 1219 static struct snd_pcm_ops snd_ensoniq_playback1_ops = { 1220 .open = snd_ensoniq_playback1_open, 1221 .close = snd_ensoniq_playback1_close, 1222 .ioctl = snd_pcm_lib_ioctl, 1223 .hw_params = snd_ensoniq_hw_params, 1224 .hw_free = snd_ensoniq_hw_free, 1225 .prepare = snd_ensoniq_playback1_prepare, 1226 .trigger = snd_ensoniq_trigger, 1227 .pointer = snd_ensoniq_playback1_pointer, 1228 }; 1229 1230 static struct snd_pcm_ops snd_ensoniq_playback2_ops = { 1231 .open = snd_ensoniq_playback2_open, 1232 .close = snd_ensoniq_playback2_close, 1233 .ioctl = snd_pcm_lib_ioctl, 1234 .hw_params = snd_ensoniq_hw_params, 1235 .hw_free = snd_ensoniq_hw_free, 1236 .prepare = snd_ensoniq_playback2_prepare, 1237 .trigger = snd_ensoniq_trigger, 1238 .pointer = snd_ensoniq_playback2_pointer, 1239 }; 1240 1241 static struct snd_pcm_ops snd_ensoniq_capture_ops = { 1242 .open = snd_ensoniq_capture_open, 1243 .close = snd_ensoniq_capture_close, 1244 .ioctl = snd_pcm_lib_ioctl, 1245 .hw_params = snd_ensoniq_hw_params, 1246 .hw_free = snd_ensoniq_hw_free, 1247 .prepare = snd_ensoniq_capture_prepare, 1248 .trigger = snd_ensoniq_trigger, 1249 .pointer = snd_ensoniq_capture_pointer, 1250 }; 1251 1252 static int __devinit snd_ensoniq_pcm(struct ensoniq * ensoniq, int device, 1253 struct snd_pcm ** rpcm) 1254 { 1255 struct snd_pcm *pcm; 1256 int err; 1257 1258 if (rpcm) 1259 *rpcm = NULL; 1260 #ifdef CHIP1370 1261 err = snd_pcm_new(ensoniq->card, "ES1370/1", device, 1, 1, &pcm); 1262 #else 1263 err = snd_pcm_new(ensoniq->card, "ES1371/1", device, 1, 1, &pcm); 1264 #endif 1265 if (err < 0) 1266 return err; 1267 1268 #ifdef CHIP1370 1269 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops); 1270 #else 1271 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops); 1272 #endif 1273 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ensoniq_capture_ops); 1274 1275 pcm->private_data = ensoniq; 1276 pcm->info_flags = 0; 1277 #ifdef CHIP1370 1278 strcpy(pcm->name, "ES1370 DAC2/ADC"); 1279 #else 1280 strcpy(pcm->name, "ES1371 DAC2/ADC"); 1281 #endif 1282 ensoniq->pcm1 = pcm; 1283 1284 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1285 snd_dma_pci_data(ensoniq->pci), 64*1024, 128*1024); 1286 1287 if (rpcm) 1288 *rpcm = pcm; 1289 return 0; 1290 } 1291 1292 static int __devinit snd_ensoniq_pcm2(struct ensoniq * ensoniq, int device, 1293 struct snd_pcm ** rpcm) 1294 { 1295 struct snd_pcm *pcm; 1296 int err; 1297 1298 if (rpcm) 1299 *rpcm = NULL; 1300 #ifdef CHIP1370 1301 err = snd_pcm_new(ensoniq->card, "ES1370/2", device, 1, 0, &pcm); 1302 #else 1303 err = snd_pcm_new(ensoniq->card, "ES1371/2", device, 1, 0, &pcm); 1304 #endif 1305 if (err < 0) 1306 return err; 1307 1308 #ifdef CHIP1370 1309 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback1_ops); 1310 #else 1311 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ensoniq_playback2_ops); 1312 #endif 1313 pcm->private_data = ensoniq; 1314 pcm->info_flags = 0; 1315 #ifdef CHIP1370 1316 strcpy(pcm->name, "ES1370 DAC1"); 1317 #else 1318 strcpy(pcm->name, "ES1371 DAC1"); 1319 #endif 1320 ensoniq->pcm2 = pcm; 1321 1322 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1323 snd_dma_pci_data(ensoniq->pci), 64*1024, 128*1024); 1324 1325 if (rpcm) 1326 *rpcm = pcm; 1327 return 0; 1328 } 1329 1330 /* 1331 * Mixer section 1332 */ 1333 1334 /* 1335 * ENS1371 mixer (including SPDIF interface) 1336 */ 1337 #ifdef CHIP1371 1338 static int snd_ens1373_spdif_info(struct snd_kcontrol *kcontrol, 1339 struct snd_ctl_elem_info *uinfo) 1340 { 1341 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1342 uinfo->count = 1; 1343 return 0; 1344 } 1345 1346 static int snd_ens1373_spdif_default_get(struct snd_kcontrol *kcontrol, 1347 struct snd_ctl_elem_value *ucontrol) 1348 { 1349 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1350 spin_lock_irq(&ensoniq->reg_lock); 1351 ucontrol->value.iec958.status[0] = (ensoniq->spdif_default >> 0) & 0xff; 1352 ucontrol->value.iec958.status[1] = (ensoniq->spdif_default >> 8) & 0xff; 1353 ucontrol->value.iec958.status[2] = (ensoniq->spdif_default >> 16) & 0xff; 1354 ucontrol->value.iec958.status[3] = (ensoniq->spdif_default >> 24) & 0xff; 1355 spin_unlock_irq(&ensoniq->reg_lock); 1356 return 0; 1357 } 1358 1359 static int snd_ens1373_spdif_default_put(struct snd_kcontrol *kcontrol, 1360 struct snd_ctl_elem_value *ucontrol) 1361 { 1362 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1363 unsigned int val; 1364 int change; 1365 1366 val = ((u32)ucontrol->value.iec958.status[0] << 0) | 1367 ((u32)ucontrol->value.iec958.status[1] << 8) | 1368 ((u32)ucontrol->value.iec958.status[2] << 16) | 1369 ((u32)ucontrol->value.iec958.status[3] << 24); 1370 spin_lock_irq(&ensoniq->reg_lock); 1371 change = ensoniq->spdif_default != val; 1372 ensoniq->spdif_default = val; 1373 if (change && ensoniq->playback1_substream == NULL && 1374 ensoniq->playback2_substream == NULL) 1375 outl(val, ES_REG(ensoniq, CHANNEL_STATUS)); 1376 spin_unlock_irq(&ensoniq->reg_lock); 1377 return change; 1378 } 1379 1380 static int snd_ens1373_spdif_mask_get(struct snd_kcontrol *kcontrol, 1381 struct snd_ctl_elem_value *ucontrol) 1382 { 1383 ucontrol->value.iec958.status[0] = 0xff; 1384 ucontrol->value.iec958.status[1] = 0xff; 1385 ucontrol->value.iec958.status[2] = 0xff; 1386 ucontrol->value.iec958.status[3] = 0xff; 1387 return 0; 1388 } 1389 1390 static int snd_ens1373_spdif_stream_get(struct snd_kcontrol *kcontrol, 1391 struct snd_ctl_elem_value *ucontrol) 1392 { 1393 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1394 spin_lock_irq(&ensoniq->reg_lock); 1395 ucontrol->value.iec958.status[0] = (ensoniq->spdif_stream >> 0) & 0xff; 1396 ucontrol->value.iec958.status[1] = (ensoniq->spdif_stream >> 8) & 0xff; 1397 ucontrol->value.iec958.status[2] = (ensoniq->spdif_stream >> 16) & 0xff; 1398 ucontrol->value.iec958.status[3] = (ensoniq->spdif_stream >> 24) & 0xff; 1399 spin_unlock_irq(&ensoniq->reg_lock); 1400 return 0; 1401 } 1402 1403 static int snd_ens1373_spdif_stream_put(struct snd_kcontrol *kcontrol, 1404 struct snd_ctl_elem_value *ucontrol) 1405 { 1406 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1407 unsigned int val; 1408 int change; 1409 1410 val = ((u32)ucontrol->value.iec958.status[0] << 0) | 1411 ((u32)ucontrol->value.iec958.status[1] << 8) | 1412 ((u32)ucontrol->value.iec958.status[2] << 16) | 1413 ((u32)ucontrol->value.iec958.status[3] << 24); 1414 spin_lock_irq(&ensoniq->reg_lock); 1415 change = ensoniq->spdif_stream != val; 1416 ensoniq->spdif_stream = val; 1417 if (change && (ensoniq->playback1_substream != NULL || 1418 ensoniq->playback2_substream != NULL)) 1419 outl(val, ES_REG(ensoniq, CHANNEL_STATUS)); 1420 spin_unlock_irq(&ensoniq->reg_lock); 1421 return change; 1422 } 1423 1424 #define ES1371_SPDIF(xname) \ 1425 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_es1371_spdif_info, \ 1426 .get = snd_es1371_spdif_get, .put = snd_es1371_spdif_put } 1427 1428 static int snd_es1371_spdif_info(struct snd_kcontrol *kcontrol, 1429 struct snd_ctl_elem_info *uinfo) 1430 { 1431 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1432 uinfo->count = 1; 1433 uinfo->value.integer.min = 0; 1434 uinfo->value.integer.max = 1; 1435 return 0; 1436 } 1437 1438 static int snd_es1371_spdif_get(struct snd_kcontrol *kcontrol, 1439 struct snd_ctl_elem_value *ucontrol) 1440 { 1441 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1442 1443 spin_lock_irq(&ensoniq->reg_lock); 1444 ucontrol->value.integer.value[0] = ensoniq->ctrl & ES_1373_SPDIF_THRU ? 1 : 0; 1445 spin_unlock_irq(&ensoniq->reg_lock); 1446 return 0; 1447 } 1448 1449 static int snd_es1371_spdif_put(struct snd_kcontrol *kcontrol, 1450 struct snd_ctl_elem_value *ucontrol) 1451 { 1452 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1453 unsigned int nval1, nval2; 1454 int change; 1455 1456 nval1 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_THRU : 0; 1457 nval2 = ucontrol->value.integer.value[0] ? ES_1373_SPDIF_EN : 0; 1458 spin_lock_irq(&ensoniq->reg_lock); 1459 change = (ensoniq->ctrl & ES_1373_SPDIF_THRU) != nval1; 1460 ensoniq->ctrl &= ~ES_1373_SPDIF_THRU; 1461 ensoniq->ctrl |= nval1; 1462 ensoniq->cssr &= ~ES_1373_SPDIF_EN; 1463 ensoniq->cssr |= nval2; 1464 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 1465 outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); 1466 spin_unlock_irq(&ensoniq->reg_lock); 1467 return change; 1468 } 1469 1470 1471 /* spdif controls */ 1472 static struct snd_kcontrol_new snd_es1371_mixer_spdif[] __devinitdata = { 1473 ES1371_SPDIF(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH)), 1474 { 1475 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1476 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1477 .info = snd_ens1373_spdif_info, 1478 .get = snd_ens1373_spdif_default_get, 1479 .put = snd_ens1373_spdif_default_put, 1480 }, 1481 { 1482 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1483 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1484 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), 1485 .info = snd_ens1373_spdif_info, 1486 .get = snd_ens1373_spdif_mask_get 1487 }, 1488 { 1489 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1490 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1491 .info = snd_ens1373_spdif_info, 1492 .get = snd_ens1373_spdif_stream_get, 1493 .put = snd_ens1373_spdif_stream_put 1494 }, 1495 }; 1496 1497 1498 static int snd_es1373_rear_info(struct snd_kcontrol *kcontrol, 1499 struct snd_ctl_elem_info *uinfo) 1500 { 1501 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1502 uinfo->count = 1; 1503 uinfo->value.integer.min = 0; 1504 uinfo->value.integer.max = 1; 1505 return 0; 1506 } 1507 1508 static int snd_es1373_rear_get(struct snd_kcontrol *kcontrol, 1509 struct snd_ctl_elem_value *ucontrol) 1510 { 1511 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1512 int val = 0; 1513 1514 spin_lock_irq(&ensoniq->reg_lock); 1515 if ((ensoniq->cssr & (ES_1373_REAR_BIT27|ES_1373_REAR_BIT26| 1516 ES_1373_REAR_BIT24)) == ES_1373_REAR_BIT26) 1517 val = 1; 1518 ucontrol->value.integer.value[0] = val; 1519 spin_unlock_irq(&ensoniq->reg_lock); 1520 return 0; 1521 } 1522 1523 static int snd_es1373_rear_put(struct snd_kcontrol *kcontrol, 1524 struct snd_ctl_elem_value *ucontrol) 1525 { 1526 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1527 unsigned int nval1; 1528 int change; 1529 1530 nval1 = ucontrol->value.integer.value[0] ? 1531 ES_1373_REAR_BIT26 : (ES_1373_REAR_BIT27|ES_1373_REAR_BIT24); 1532 spin_lock_irq(&ensoniq->reg_lock); 1533 change = (ensoniq->cssr & (ES_1373_REAR_BIT27| 1534 ES_1373_REAR_BIT26|ES_1373_REAR_BIT24)) != nval1; 1535 ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT26|ES_1373_REAR_BIT24); 1536 ensoniq->cssr |= nval1; 1537 outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); 1538 spin_unlock_irq(&ensoniq->reg_lock); 1539 return change; 1540 } 1541 1542 static struct snd_kcontrol_new snd_ens1373_rear __devinitdata = 1543 { 1544 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1545 .name = "AC97 2ch->4ch Copy Switch", 1546 .info = snd_es1373_rear_info, 1547 .get = snd_es1373_rear_get, 1548 .put = snd_es1373_rear_put, 1549 }; 1550 1551 static int snd_es1373_line_info(struct snd_kcontrol *kcontrol, 1552 struct snd_ctl_elem_info *uinfo) 1553 { 1554 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1555 uinfo->count = 1; 1556 uinfo->value.integer.min = 0; 1557 uinfo->value.integer.max = 1; 1558 return 0; 1559 } 1560 1561 static int snd_es1373_line_get(struct snd_kcontrol *kcontrol, 1562 struct snd_ctl_elem_value *ucontrol) 1563 { 1564 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1565 int val = 0; 1566 1567 spin_lock_irq(&ensoniq->reg_lock); 1568 if ((ensoniq->ctrl & ES_1371_GPIO_OUTM) >= 4) 1569 val = 1; 1570 ucontrol->value.integer.value[0] = val; 1571 spin_unlock_irq(&ensoniq->reg_lock); 1572 return 0; 1573 } 1574 1575 static int snd_es1373_line_put(struct snd_kcontrol *kcontrol, 1576 struct snd_ctl_elem_value *ucontrol) 1577 { 1578 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1579 int changed; 1580 unsigned int ctrl; 1581 1582 spin_lock_irq(&ensoniq->reg_lock); 1583 ctrl = ensoniq->ctrl; 1584 if (ucontrol->value.integer.value[0]) 1585 ensoniq->ctrl |= ES_1371_GPIO_OUT(4); /* switch line-in -> rear out */ 1586 else 1587 ensoniq->ctrl &= ~ES_1371_GPIO_OUT(4); 1588 changed = (ctrl != ensoniq->ctrl); 1589 if (changed) 1590 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 1591 spin_unlock_irq(&ensoniq->reg_lock); 1592 return changed; 1593 } 1594 1595 static struct snd_kcontrol_new snd_ens1373_line __devinitdata = 1596 { 1597 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 1598 .name = "Line In->Rear Out Switch", 1599 .info = snd_es1373_line_info, 1600 .get = snd_es1373_line_get, 1601 .put = snd_es1373_line_put, 1602 }; 1603 1604 static void snd_ensoniq_mixer_free_ac97(struct snd_ac97 *ac97) 1605 { 1606 struct ensoniq *ensoniq = ac97->private_data; 1607 ensoniq->u.es1371.ac97 = NULL; 1608 } 1609 1610 static struct { 1611 unsigned short vid; /* vendor ID */ 1612 unsigned short did; /* device ID */ 1613 unsigned char rev; /* revision */ 1614 } es1371_spdif_present[] __devinitdata = { 1615 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C }, 1616 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D }, 1617 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E }, 1618 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A }, 1619 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 }, 1620 { .vid = PCI_ANY_ID, .did = PCI_ANY_ID } 1621 }; 1622 1623 static int snd_ensoniq_1371_mixer(struct ensoniq * ensoniq, int has_spdif, int has_line) 1624 { 1625 struct snd_card *card = ensoniq->card; 1626 struct snd_ac97_bus *pbus; 1627 struct snd_ac97_template ac97; 1628 int err, idx; 1629 static struct snd_ac97_bus_ops ops = { 1630 .write = snd_es1371_codec_write, 1631 .read = snd_es1371_codec_read, 1632 .wait = snd_es1371_codec_wait, 1633 }; 1634 1635 if ((err = snd_ac97_bus(card, 0, &ops, NULL, &pbus)) < 0) 1636 return err; 1637 1638 memset(&ac97, 0, sizeof(ac97)); 1639 ac97.private_data = ensoniq; 1640 ac97.private_free = snd_ensoniq_mixer_free_ac97; 1641 ac97.scaps = AC97_SCAP_AUDIO; 1642 if ((err = snd_ac97_mixer(pbus, &ac97, &ensoniq->u.es1371.ac97)) < 0) 1643 return err; 1644 for (idx = 0; es1371_spdif_present[idx].vid != (unsigned short)PCI_ANY_ID; idx++) 1645 if ((ensoniq->pci->vendor == es1371_spdif_present[idx].vid && 1646 ensoniq->pci->device == es1371_spdif_present[idx].did && 1647 ensoniq->rev == es1371_spdif_present[idx].rev) || has_spdif > 0) { 1648 struct snd_kcontrol *kctl; 1649 int i, index = 0; 1650 1651 if (has_spdif < 0) 1652 break; 1653 1654 ensoniq->spdif_default = ensoniq->spdif_stream = 1655 SNDRV_PCM_DEFAULT_CON_SPDIF; 1656 outl(ensoniq->spdif_default, ES_REG(ensoniq, CHANNEL_STATUS)); 1657 1658 if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SPDIF) 1659 index++; 1660 1661 for (i = 0; i < (int)ARRAY_SIZE(snd_es1371_mixer_spdif); i++) { 1662 kctl = snd_ctl_new1(&snd_es1371_mixer_spdif[i], ensoniq); 1663 if (! kctl) 1664 return -ENOMEM; 1665 kctl->id.index = index; 1666 if ((err = snd_ctl_add(card, kctl)) < 0) 1667 return err; 1668 } 1669 break; 1670 } 1671 if (ensoniq->u.es1371.ac97->ext_id & AC97_EI_SDAC) { 1672 /* mirror rear to front speakers */ 1673 ensoniq->cssr &= ~(ES_1373_REAR_BIT27|ES_1373_REAR_BIT24); 1674 ensoniq->cssr |= ES_1373_REAR_BIT26; 1675 err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_rear, ensoniq)); 1676 if (err < 0) 1677 return err; 1678 } 1679 if (((ensoniq->subsystem_vendor_id == 0x1274) && 1680 (ensoniq->subsystem_device_id == 0x2000)) || /* GA-7DXR */ 1681 ((ensoniq->subsystem_vendor_id == 0x1458) && 1682 (ensoniq->subsystem_device_id == 0xa000)) || /* GA-8IEXP */ 1683 has_line > 0) { 1684 err = snd_ctl_add(card, snd_ctl_new1(&snd_ens1373_line, ensoniq)); 1685 if (err < 0) 1686 return err; 1687 } 1688 1689 return 0; 1690 } 1691 1692 #endif /* CHIP1371 */ 1693 1694 /* generic control callbacks for ens1370 */ 1695 #ifdef CHIP1370 1696 #define ENSONIQ_CONTROL(xname, mask) \ 1697 { .iface = SNDRV_CTL_ELEM_IFACE_CARD, .name = xname, .info = snd_ensoniq_control_info, \ 1698 .get = snd_ensoniq_control_get, .put = snd_ensoniq_control_put, \ 1699 .private_value = mask } 1700 1701 static int snd_ensoniq_control_info(struct snd_kcontrol *kcontrol, 1702 struct snd_ctl_elem_info *uinfo) 1703 { 1704 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1705 uinfo->count = 1; 1706 uinfo->value.integer.min = 0; 1707 uinfo->value.integer.max = 1; 1708 return 0; 1709 } 1710 1711 static int snd_ensoniq_control_get(struct snd_kcontrol *kcontrol, 1712 struct snd_ctl_elem_value *ucontrol) 1713 { 1714 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1715 int mask = kcontrol->private_value; 1716 1717 spin_lock_irq(&ensoniq->reg_lock); 1718 ucontrol->value.integer.value[0] = ensoniq->ctrl & mask ? 1 : 0; 1719 spin_unlock_irq(&ensoniq->reg_lock); 1720 return 0; 1721 } 1722 1723 static int snd_ensoniq_control_put(struct snd_kcontrol *kcontrol, 1724 struct snd_ctl_elem_value *ucontrol) 1725 { 1726 struct ensoniq *ensoniq = snd_kcontrol_chip(kcontrol); 1727 int mask = kcontrol->private_value; 1728 unsigned int nval; 1729 int change; 1730 1731 nval = ucontrol->value.integer.value[0] ? mask : 0; 1732 spin_lock_irq(&ensoniq->reg_lock); 1733 change = (ensoniq->ctrl & mask) != nval; 1734 ensoniq->ctrl &= ~mask; 1735 ensoniq->ctrl |= nval; 1736 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 1737 spin_unlock_irq(&ensoniq->reg_lock); 1738 return change; 1739 } 1740 1741 /* 1742 * ENS1370 mixer 1743 */ 1744 1745 static struct snd_kcontrol_new snd_es1370_controls[2] __devinitdata = { 1746 ENSONIQ_CONTROL("PCM 0 Output also on Line-In Jack", ES_1370_XCTL0), 1747 ENSONIQ_CONTROL("Mic +5V bias", ES_1370_XCTL1) 1748 }; 1749 1750 #define ES1370_CONTROLS ARRAY_SIZE(snd_es1370_controls) 1751 1752 static void snd_ensoniq_mixer_free_ak4531(struct snd_ak4531 *ak4531) 1753 { 1754 struct ensoniq *ensoniq = ak4531->private_data; 1755 ensoniq->u.es1370.ak4531 = NULL; 1756 } 1757 1758 static int __devinit snd_ensoniq_1370_mixer(struct ensoniq * ensoniq) 1759 { 1760 struct snd_card *card = ensoniq->card; 1761 struct snd_ak4531 ak4531; 1762 unsigned int idx; 1763 int err; 1764 1765 /* try reset AK4531 */ 1766 outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC)); 1767 inw(ES_REG(ensoniq, 1370_CODEC)); 1768 udelay(100); 1769 outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC)); 1770 inw(ES_REG(ensoniq, 1370_CODEC)); 1771 udelay(100); 1772 1773 memset(&ak4531, 0, sizeof(ak4531)); 1774 ak4531.write = snd_es1370_codec_write; 1775 ak4531.private_data = ensoniq; 1776 ak4531.private_free = snd_ensoniq_mixer_free_ak4531; 1777 if ((err = snd_ak4531_mixer(card, &ak4531, &ensoniq->u.es1370.ak4531)) < 0) 1778 return err; 1779 for (idx = 0; idx < ES1370_CONTROLS; idx++) { 1780 err = snd_ctl_add(card, snd_ctl_new1(&snd_es1370_controls[idx], ensoniq)); 1781 if (err < 0) 1782 return err; 1783 } 1784 return 0; 1785 } 1786 1787 #endif /* CHIP1370 */ 1788 1789 #ifdef SUPPORT_JOYSTICK 1790 1791 #ifdef CHIP1371 1792 static int __devinit snd_ensoniq_get_joystick_port(int dev) 1793 { 1794 switch (joystick_port[dev]) { 1795 case 0: /* disabled */ 1796 case 1: /* auto-detect */ 1797 case 0x200: 1798 case 0x208: 1799 case 0x210: 1800 case 0x218: 1801 return joystick_port[dev]; 1802 1803 default: 1804 printk(KERN_ERR "ens1371: invalid joystick port %#x", joystick_port[dev]); 1805 return 0; 1806 } 1807 } 1808 #else 1809 static inline int snd_ensoniq_get_joystick_port(int dev) 1810 { 1811 return joystick[dev] ? 0x200 : 0; 1812 } 1813 #endif 1814 1815 static int __devinit snd_ensoniq_create_gameport(struct ensoniq *ensoniq, int dev) 1816 { 1817 struct gameport *gp; 1818 int io_port; 1819 1820 io_port = snd_ensoniq_get_joystick_port(dev); 1821 1822 switch (io_port) { 1823 case 0: 1824 return -ENOSYS; 1825 1826 case 1: /* auto_detect */ 1827 for (io_port = 0x200; io_port <= 0x218; io_port += 8) 1828 if (request_region(io_port, 8, "ens137x: gameport")) 1829 break; 1830 if (io_port > 0x218) { 1831 printk(KERN_WARNING "ens137x: no gameport ports available\n"); 1832 return -EBUSY; 1833 } 1834 break; 1835 1836 default: 1837 if (!request_region(io_port, 8, "ens137x: gameport")) { 1838 printk(KERN_WARNING "ens137x: gameport io port 0x%#x in use\n", 1839 io_port); 1840 return -EBUSY; 1841 } 1842 break; 1843 } 1844 1845 ensoniq->gameport = gp = gameport_allocate_port(); 1846 if (!gp) { 1847 printk(KERN_ERR "ens137x: cannot allocate memory for gameport\n"); 1848 release_region(io_port, 8); 1849 return -ENOMEM; 1850 } 1851 1852 gameport_set_name(gp, "ES137x"); 1853 gameport_set_phys(gp, "pci%s/gameport0", pci_name(ensoniq->pci)); 1854 gameport_set_dev_parent(gp, &ensoniq->pci->dev); 1855 gp->io = io_port; 1856 1857 ensoniq->ctrl |= ES_JYSTK_EN; 1858 #ifdef CHIP1371 1859 ensoniq->ctrl &= ~ES_1371_JOY_ASELM; 1860 ensoniq->ctrl |= ES_1371_JOY_ASEL((io_port - 0x200) / 8); 1861 #endif 1862 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 1863 1864 gameport_register_port(ensoniq->gameport); 1865 1866 return 0; 1867 } 1868 1869 static void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) 1870 { 1871 if (ensoniq->gameport) { 1872 int port = ensoniq->gameport->io; 1873 1874 gameport_unregister_port(ensoniq->gameport); 1875 ensoniq->gameport = NULL; 1876 ensoniq->ctrl &= ~ES_JYSTK_EN; 1877 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 1878 release_region(port, 8); 1879 } 1880 } 1881 #else 1882 static inline int snd_ensoniq_create_gameport(struct ensoniq *ensoniq, long port) { return -ENOSYS; } 1883 static inline void snd_ensoniq_free_gameport(struct ensoniq *ensoniq) { } 1884 #endif /* SUPPORT_JOYSTICK */ 1885 1886 /* 1887 1888 */ 1889 1890 static void snd_ensoniq_proc_read(struct snd_info_entry *entry, 1891 struct snd_info_buffer *buffer) 1892 { 1893 struct ensoniq *ensoniq = entry->private_data; 1894 1895 #ifdef CHIP1370 1896 snd_iprintf(buffer, "Ensoniq AudioPCI ES1370\n\n"); 1897 #else 1898 snd_iprintf(buffer, "Ensoniq AudioPCI ES1371\n\n"); 1899 #endif 1900 snd_iprintf(buffer, "Joystick enable : %s\n", 1901 ensoniq->ctrl & ES_JYSTK_EN ? "on" : "off"); 1902 #ifdef CHIP1370 1903 snd_iprintf(buffer, "MIC +5V bias : %s\n", 1904 ensoniq->ctrl & ES_1370_XCTL1 ? "on" : "off"); 1905 snd_iprintf(buffer, "Line In to AOUT : %s\n", 1906 ensoniq->ctrl & ES_1370_XCTL0 ? "on" : "off"); 1907 #else 1908 snd_iprintf(buffer, "Joystick port : 0x%x\n", 1909 (ES_1371_JOY_ASELI(ensoniq->ctrl) * 8) + 0x200); 1910 #endif 1911 } 1912 1913 static void __devinit snd_ensoniq_proc_init(struct ensoniq * ensoniq) 1914 { 1915 struct snd_info_entry *entry; 1916 1917 if (! snd_card_proc_new(ensoniq->card, "audiopci", &entry)) 1918 snd_info_set_text_ops(entry, ensoniq, snd_ensoniq_proc_read); 1919 } 1920 1921 /* 1922 1923 */ 1924 1925 static int snd_ensoniq_free(struct ensoniq *ensoniq) 1926 { 1927 snd_ensoniq_free_gameport(ensoniq); 1928 if (ensoniq->irq < 0) 1929 goto __hw_end; 1930 #ifdef CHIP1370 1931 outl(ES_1370_SERR_DISABLE, ES_REG(ensoniq, CONTROL)); /* switch everything off */ 1932 outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */ 1933 #else 1934 outl(0, ES_REG(ensoniq, CONTROL)); /* switch everything off */ 1935 outl(0, ES_REG(ensoniq, SERIAL)); /* clear serial interface */ 1936 #endif 1937 synchronize_irq(ensoniq->irq); 1938 pci_set_power_state(ensoniq->pci, 3); 1939 __hw_end: 1940 #ifdef CHIP1370 1941 if (ensoniq->dma_bug.area) 1942 snd_dma_free_pages(&ensoniq->dma_bug); 1943 #endif 1944 if (ensoniq->irq >= 0) 1945 free_irq(ensoniq->irq, ensoniq); 1946 pci_release_regions(ensoniq->pci); 1947 pci_disable_device(ensoniq->pci); 1948 kfree(ensoniq); 1949 return 0; 1950 } 1951 1952 static int snd_ensoniq_dev_free(struct snd_device *device) 1953 { 1954 struct ensoniq *ensoniq = device->device_data; 1955 return snd_ensoniq_free(ensoniq); 1956 } 1957 1958 #ifdef CHIP1371 1959 static struct { 1960 unsigned short svid; /* subsystem vendor ID */ 1961 unsigned short sdid; /* subsystem device ID */ 1962 } es1371_amplifier_hack[] = { 1963 { .svid = 0x107b, .sdid = 0x2150 }, /* Gateway Solo 2150 */ 1964 { .svid = 0x13bd, .sdid = 0x100c }, /* EV1938 on Mebius PC-MJ100V */ 1965 { .svid = 0x1102, .sdid = 0x5938 }, /* Targa Xtender300 */ 1966 { .svid = 0x1102, .sdid = 0x8938 }, /* IPC Topnote G notebook */ 1967 { .svid = PCI_ANY_ID, .sdid = PCI_ANY_ID } 1968 }; 1969 static struct { 1970 unsigned short vid; /* vendor ID */ 1971 unsigned short did; /* device ID */ 1972 unsigned char rev; /* revision */ 1973 } es1371_ac97_reset_hack[] = { 1974 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_C }, 1975 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_D }, 1976 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_CT5880, .rev = CT5880REV_CT5880_E }, 1977 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_CT5880_A }, 1978 { .vid = PCI_VENDOR_ID_ENSONIQ, .did = PCI_DEVICE_ID_ENSONIQ_ES1371, .rev = ES1371REV_ES1373_8 }, 1979 { .vid = PCI_ANY_ID, .did = PCI_ANY_ID } 1980 }; 1981 #endif 1982 1983 static void snd_ensoniq_chip_init(struct ensoniq *ensoniq) 1984 { 1985 #ifdef CHIP1371 1986 int idx; 1987 struct pci_dev *pci = ensoniq->pci; 1988 #endif 1989 /* this code was part of snd_ensoniq_create before intruduction 1990 * of suspend/resume 1991 */ 1992 #ifdef CHIP1370 1993 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 1994 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 1995 outl(ES_MEM_PAGEO(ES_PAGE_ADC), ES_REG(ensoniq, MEM_PAGE)); 1996 outl(ensoniq->dma_bug.addr, ES_REG(ensoniq, PHANTOM_FRAME)); 1997 outl(0, ES_REG(ensoniq, PHANTOM_COUNT)); 1998 #else 1999 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 2000 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 2001 outl(0, ES_REG(ensoniq, 1371_LEGACY)); 2002 for (idx = 0; es1371_ac97_reset_hack[idx].vid != (unsigned short)PCI_ANY_ID; idx++) 2003 if (pci->vendor == es1371_ac97_reset_hack[idx].vid && 2004 pci->device == es1371_ac97_reset_hack[idx].did && 2005 ensoniq->rev == es1371_ac97_reset_hack[idx].rev) { 2006 outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); 2007 /* need to delay around 20ms(bleech) to give 2008 some CODECs enough time to wakeup */ 2009 msleep(20); 2010 break; 2011 } 2012 /* AC'97 warm reset to start the bitclk */ 2013 outl(ensoniq->ctrl | ES_1371_SYNC_RES, ES_REG(ensoniq, CONTROL)); 2014 inl(ES_REG(ensoniq, CONTROL)); 2015 udelay(20); 2016 outl(ensoniq->ctrl, ES_REG(ensoniq, CONTROL)); 2017 /* Init the sample rate converter */ 2018 snd_es1371_wait_src_ready(ensoniq); 2019 outl(ES_1371_SRC_DISABLE, ES_REG(ensoniq, 1371_SMPRATE)); 2020 for (idx = 0; idx < 0x80; idx++) 2021 snd_es1371_src_write(ensoniq, idx, 0); 2022 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_TRUNC_N, 16 << 4); 2023 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC1 + ES_SMPREG_INT_REGS, 16 << 10); 2024 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_TRUNC_N, 16 << 4); 2025 snd_es1371_src_write(ensoniq, ES_SMPREG_DAC2 + ES_SMPREG_INT_REGS, 16 << 10); 2026 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC, 1 << 12); 2027 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_ADC + 1, 1 << 12); 2028 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1, 1 << 12); 2029 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC1 + 1, 1 << 12); 2030 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2, 1 << 12); 2031 snd_es1371_src_write(ensoniq, ES_SMPREG_VOL_DAC2 + 1, 1 << 12); 2032 snd_es1371_adc_rate(ensoniq, 22050); 2033 snd_es1371_dac1_rate(ensoniq, 22050); 2034 snd_es1371_dac2_rate(ensoniq, 22050); 2035 /* WARNING: 2036 * enabling the sample rate converter without properly programming 2037 * its parameters causes the chip to lock up (the SRC busy bit will 2038 * be stuck high, and I've found no way to rectify this other than 2039 * power cycle) - Thomas Sailer 2040 */ 2041 snd_es1371_wait_src_ready(ensoniq); 2042 outl(0, ES_REG(ensoniq, 1371_SMPRATE)); 2043 /* try reset codec directly */ 2044 outl(ES_1371_CODEC_WRITE(0, 0), ES_REG(ensoniq, 1371_CODEC)); 2045 #endif 2046 outb(ensoniq->uartc = 0x00, ES_REG(ensoniq, UART_CONTROL)); 2047 outb(0x00, ES_REG(ensoniq, UART_RES)); 2048 outl(ensoniq->cssr, ES_REG(ensoniq, STATUS)); 2049 synchronize_irq(ensoniq->irq); 2050 } 2051 2052 #ifdef CONFIG_PM 2053 static int snd_ensoniq_suspend(struct pci_dev *pci, pm_message_t state) 2054 { 2055 struct snd_card *card = pci_get_drvdata(pci); 2056 struct ensoniq *ensoniq = card->private_data; 2057 2058 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 2059 2060 snd_pcm_suspend_all(ensoniq->pcm1); 2061 snd_pcm_suspend_all(ensoniq->pcm2); 2062 2063 #ifdef CHIP1371 2064 snd_ac97_suspend(ensoniq->u.es1371.ac97); 2065 #else 2066 /* try to reset AK4531 */ 2067 outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x02), ES_REG(ensoniq, 1370_CODEC)); 2068 inw(ES_REG(ensoniq, 1370_CODEC)); 2069 udelay(100); 2070 outw(ES_1370_CODEC_WRITE(AK4531_RESET, 0x03), ES_REG(ensoniq, 1370_CODEC)); 2071 inw(ES_REG(ensoniq, 1370_CODEC)); 2072 udelay(100); 2073 snd_ak4531_suspend(ensoniq->u.es1370.ak4531); 2074 #endif 2075 pci_set_power_state(pci, PCI_D3hot); 2076 pci_disable_device(pci); 2077 pci_save_state(pci); 2078 return 0; 2079 } 2080 2081 static int snd_ensoniq_resume(struct pci_dev *pci) 2082 { 2083 struct snd_card *card = pci_get_drvdata(pci); 2084 struct ensoniq *ensoniq = card->private_data; 2085 2086 pci_restore_state(pci); 2087 pci_enable_device(pci); 2088 pci_set_power_state(pci, PCI_D0); 2089 pci_set_master(pci); 2090 2091 snd_ensoniq_chip_init(ensoniq); 2092 2093 #ifdef CHIP1371 2094 snd_ac97_resume(ensoniq->u.es1371.ac97); 2095 #else 2096 snd_ak4531_resume(ensoniq->u.es1370.ak4531); 2097 #endif 2098 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 2099 return 0; 2100 } 2101 #endif /* CONFIG_PM */ 2102 2103 2104 static int __devinit snd_ensoniq_create(struct snd_card *card, 2105 struct pci_dev *pci, 2106 struct ensoniq ** rensoniq) 2107 { 2108 struct ensoniq *ensoniq; 2109 unsigned short cmdw; 2110 unsigned char cmdb; 2111 #ifdef CHIP1371 2112 int idx; 2113 #endif 2114 int err; 2115 static struct snd_device_ops ops = { 2116 .dev_free = snd_ensoniq_dev_free, 2117 }; 2118 2119 *rensoniq = NULL; 2120 if ((err = pci_enable_device(pci)) < 0) 2121 return err; 2122 ensoniq = kzalloc(sizeof(*ensoniq), GFP_KERNEL); 2123 if (ensoniq == NULL) { 2124 pci_disable_device(pci); 2125 return -ENOMEM; 2126 } 2127 spin_lock_init(&ensoniq->reg_lock); 2128 mutex_init(&ensoniq->src_mutex); 2129 ensoniq->card = card; 2130 ensoniq->pci = pci; 2131 ensoniq->irq = -1; 2132 if ((err = pci_request_regions(pci, "Ensoniq AudioPCI")) < 0) { 2133 kfree(ensoniq); 2134 pci_disable_device(pci); 2135 return err; 2136 } 2137 ensoniq->port = pci_resource_start(pci, 0); 2138 if (request_irq(pci->irq, snd_audiopci_interrupt, IRQF_DISABLED|IRQF_SHARED, 2139 "Ensoniq AudioPCI", ensoniq)) { 2140 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 2141 snd_ensoniq_free(ensoniq); 2142 return -EBUSY; 2143 } 2144 ensoniq->irq = pci->irq; 2145 #ifdef CHIP1370 2146 if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci), 2147 16, &ensoniq->dma_bug) < 0) { 2148 snd_printk(KERN_ERR "unable to allocate space for phantom area - dma_bug\n"); 2149 snd_ensoniq_free(ensoniq); 2150 return -EBUSY; 2151 } 2152 #endif 2153 pci_set_master(pci); 2154 pci_read_config_byte(pci, PCI_REVISION_ID, &cmdb); 2155 ensoniq->rev = cmdb; 2156 pci_read_config_word(pci, PCI_SUBSYSTEM_VENDOR_ID, &cmdw); 2157 ensoniq->subsystem_vendor_id = cmdw; 2158 pci_read_config_word(pci, PCI_SUBSYSTEM_ID, &cmdw); 2159 ensoniq->subsystem_device_id = cmdw; 2160 #ifdef CHIP1370 2161 #if 0 2162 ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_SERR_DISABLE | 2163 ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000)); 2164 #else /* get microphone working */ 2165 ensoniq->ctrl = ES_1370_CDC_EN | ES_1370_PCLKDIVO(ES_1370_SRTODIV(8000)); 2166 #endif 2167 ensoniq->sctrl = 0; 2168 #else 2169 ensoniq->ctrl = 0; 2170 ensoniq->sctrl = 0; 2171 ensoniq->cssr = 0; 2172 for (idx = 0; es1371_amplifier_hack[idx].svid != (unsigned short)PCI_ANY_ID; idx++) 2173 if (ensoniq->subsystem_vendor_id == es1371_amplifier_hack[idx].svid && 2174 ensoniq->subsystem_device_id == es1371_amplifier_hack[idx].sdid) { 2175 ensoniq->ctrl |= ES_1371_GPIO_OUT(1); /* turn amplifier on */ 2176 break; 2177 } 2178 for (idx = 0; es1371_ac97_reset_hack[idx].vid != (unsigned short)PCI_ANY_ID; idx++) 2179 if (pci->vendor == es1371_ac97_reset_hack[idx].vid && 2180 pci->device == es1371_ac97_reset_hack[idx].did && 2181 ensoniq->rev == es1371_ac97_reset_hack[idx].rev) { 2182 ensoniq->cssr |= ES_1371_ST_AC97_RST; 2183 break; 2184 } 2185 #endif 2186 2187 snd_ensoniq_chip_init(ensoniq); 2188 2189 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, ensoniq, &ops)) < 0) { 2190 snd_ensoniq_free(ensoniq); 2191 return err; 2192 } 2193 2194 snd_ensoniq_proc_init(ensoniq); 2195 2196 snd_card_set_dev(card, &pci->dev); 2197 2198 *rensoniq = ensoniq; 2199 return 0; 2200 } 2201 2202 /* 2203 * MIDI section 2204 */ 2205 2206 static void snd_ensoniq_midi_interrupt(struct ensoniq * ensoniq) 2207 { 2208 struct snd_rawmidi *rmidi = ensoniq->rmidi; 2209 unsigned char status, mask, byte; 2210 2211 if (rmidi == NULL) 2212 return; 2213 /* do Rx at first */ 2214 spin_lock(&ensoniq->reg_lock); 2215 mask = ensoniq->uartm & ES_MODE_INPUT ? ES_RXRDY : 0; 2216 while (mask) { 2217 status = inb(ES_REG(ensoniq, UART_STATUS)); 2218 if ((status & mask) == 0) 2219 break; 2220 byte = inb(ES_REG(ensoniq, UART_DATA)); 2221 snd_rawmidi_receive(ensoniq->midi_input, &byte, 1); 2222 } 2223 spin_unlock(&ensoniq->reg_lock); 2224 2225 /* do Tx at second */ 2226 spin_lock(&ensoniq->reg_lock); 2227 mask = ensoniq->uartm & ES_MODE_OUTPUT ? ES_TXRDY : 0; 2228 while (mask) { 2229 status = inb(ES_REG(ensoniq, UART_STATUS)); 2230 if ((status & mask) == 0) 2231 break; 2232 if (snd_rawmidi_transmit(ensoniq->midi_output, &byte, 1) != 1) { 2233 ensoniq->uartc &= ~ES_TXINTENM; 2234 outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); 2235 mask &= ~ES_TXRDY; 2236 } else { 2237 outb(byte, ES_REG(ensoniq, UART_DATA)); 2238 } 2239 } 2240 spin_unlock(&ensoniq->reg_lock); 2241 } 2242 2243 static int snd_ensoniq_midi_input_open(struct snd_rawmidi_substream *substream) 2244 { 2245 struct ensoniq *ensoniq = substream->rmidi->private_data; 2246 2247 spin_lock_irq(&ensoniq->reg_lock); 2248 ensoniq->uartm |= ES_MODE_INPUT; 2249 ensoniq->midi_input = substream; 2250 if (!(ensoniq->uartm & ES_MODE_OUTPUT)) { 2251 outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL)); 2252 outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); 2253 outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL)); 2254 } 2255 spin_unlock_irq(&ensoniq->reg_lock); 2256 return 0; 2257 } 2258 2259 static int snd_ensoniq_midi_input_close(struct snd_rawmidi_substream *substream) 2260 { 2261 struct ensoniq *ensoniq = substream->rmidi->private_data; 2262 2263 spin_lock_irq(&ensoniq->reg_lock); 2264 if (!(ensoniq->uartm & ES_MODE_OUTPUT)) { 2265 outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); 2266 outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL)); 2267 } else { 2268 outb(ensoniq->uartc &= ~ES_RXINTEN, ES_REG(ensoniq, UART_CONTROL)); 2269 } 2270 ensoniq->midi_input = NULL; 2271 ensoniq->uartm &= ~ES_MODE_INPUT; 2272 spin_unlock_irq(&ensoniq->reg_lock); 2273 return 0; 2274 } 2275 2276 static int snd_ensoniq_midi_output_open(struct snd_rawmidi_substream *substream) 2277 { 2278 struct ensoniq *ensoniq = substream->rmidi->private_data; 2279 2280 spin_lock_irq(&ensoniq->reg_lock); 2281 ensoniq->uartm |= ES_MODE_OUTPUT; 2282 ensoniq->midi_output = substream; 2283 if (!(ensoniq->uartm & ES_MODE_INPUT)) { 2284 outb(ES_CNTRL(3), ES_REG(ensoniq, UART_CONTROL)); 2285 outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); 2286 outl(ensoniq->ctrl |= ES_UART_EN, ES_REG(ensoniq, CONTROL)); 2287 } 2288 spin_unlock_irq(&ensoniq->reg_lock); 2289 return 0; 2290 } 2291 2292 static int snd_ensoniq_midi_output_close(struct snd_rawmidi_substream *substream) 2293 { 2294 struct ensoniq *ensoniq = substream->rmidi->private_data; 2295 2296 spin_lock_irq(&ensoniq->reg_lock); 2297 if (!(ensoniq->uartm & ES_MODE_INPUT)) { 2298 outb(ensoniq->uartc = 0, ES_REG(ensoniq, UART_CONTROL)); 2299 outl(ensoniq->ctrl &= ~ES_UART_EN, ES_REG(ensoniq, CONTROL)); 2300 } else { 2301 outb(ensoniq->uartc &= ~ES_TXINTENM, ES_REG(ensoniq, UART_CONTROL)); 2302 } 2303 ensoniq->midi_output = NULL; 2304 ensoniq->uartm &= ~ES_MODE_OUTPUT; 2305 spin_unlock_irq(&ensoniq->reg_lock); 2306 return 0; 2307 } 2308 2309 static void snd_ensoniq_midi_input_trigger(struct snd_rawmidi_substream *substream, int up) 2310 { 2311 unsigned long flags; 2312 struct ensoniq *ensoniq = substream->rmidi->private_data; 2313 int idx; 2314 2315 spin_lock_irqsave(&ensoniq->reg_lock, flags); 2316 if (up) { 2317 if ((ensoniq->uartc & ES_RXINTEN) == 0) { 2318 /* empty input FIFO */ 2319 for (idx = 0; idx < 32; idx++) 2320 inb(ES_REG(ensoniq, UART_DATA)); 2321 ensoniq->uartc |= ES_RXINTEN; 2322 outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); 2323 } 2324 } else { 2325 if (ensoniq->uartc & ES_RXINTEN) { 2326 ensoniq->uartc &= ~ES_RXINTEN; 2327 outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); 2328 } 2329 } 2330 spin_unlock_irqrestore(&ensoniq->reg_lock, flags); 2331 } 2332 2333 static void snd_ensoniq_midi_output_trigger(struct snd_rawmidi_substream *substream, int up) 2334 { 2335 unsigned long flags; 2336 struct ensoniq *ensoniq = substream->rmidi->private_data; 2337 unsigned char byte; 2338 2339 spin_lock_irqsave(&ensoniq->reg_lock, flags); 2340 if (up) { 2341 if (ES_TXINTENI(ensoniq->uartc) == 0) { 2342 ensoniq->uartc |= ES_TXINTENO(1); 2343 /* fill UART FIFO buffer at first, and turn Tx interrupts only if necessary */ 2344 while (ES_TXINTENI(ensoniq->uartc) == 1 && 2345 (inb(ES_REG(ensoniq, UART_STATUS)) & ES_TXRDY)) { 2346 if (snd_rawmidi_transmit(substream, &byte, 1) != 1) { 2347 ensoniq->uartc &= ~ES_TXINTENM; 2348 } else { 2349 outb(byte, ES_REG(ensoniq, UART_DATA)); 2350 } 2351 } 2352 outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); 2353 } 2354 } else { 2355 if (ES_TXINTENI(ensoniq->uartc) == 1) { 2356 ensoniq->uartc &= ~ES_TXINTENM; 2357 outb(ensoniq->uartc, ES_REG(ensoniq, UART_CONTROL)); 2358 } 2359 } 2360 spin_unlock_irqrestore(&ensoniq->reg_lock, flags); 2361 } 2362 2363 static struct snd_rawmidi_ops snd_ensoniq_midi_output = 2364 { 2365 .open = snd_ensoniq_midi_output_open, 2366 .close = snd_ensoniq_midi_output_close, 2367 .trigger = snd_ensoniq_midi_output_trigger, 2368 }; 2369 2370 static struct snd_rawmidi_ops snd_ensoniq_midi_input = 2371 { 2372 .open = snd_ensoniq_midi_input_open, 2373 .close = snd_ensoniq_midi_input_close, 2374 .trigger = snd_ensoniq_midi_input_trigger, 2375 }; 2376 2377 static int __devinit snd_ensoniq_midi(struct ensoniq * ensoniq, int device, 2378 struct snd_rawmidi **rrawmidi) 2379 { 2380 struct snd_rawmidi *rmidi; 2381 int err; 2382 2383 if (rrawmidi) 2384 *rrawmidi = NULL; 2385 if ((err = snd_rawmidi_new(ensoniq->card, "ES1370/1", device, 1, 1, &rmidi)) < 0) 2386 return err; 2387 #ifdef CHIP1370 2388 strcpy(rmidi->name, "ES1370"); 2389 #else 2390 strcpy(rmidi->name, "ES1371"); 2391 #endif 2392 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_ensoniq_midi_output); 2393 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_ensoniq_midi_input); 2394 rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT | SNDRV_RAWMIDI_INFO_INPUT | 2395 SNDRV_RAWMIDI_INFO_DUPLEX; 2396 rmidi->private_data = ensoniq; 2397 ensoniq->rmidi = rmidi; 2398 if (rrawmidi) 2399 *rrawmidi = rmidi; 2400 return 0; 2401 } 2402 2403 /* 2404 * Interrupt handler 2405 */ 2406 2407 static irqreturn_t snd_audiopci_interrupt(int irq, void *dev_id, struct pt_regs *regs) 2408 { 2409 struct ensoniq *ensoniq = dev_id; 2410 unsigned int status, sctrl; 2411 2412 if (ensoniq == NULL) 2413 return IRQ_NONE; 2414 2415 status = inl(ES_REG(ensoniq, STATUS)); 2416 if (!(status & ES_INTR)) 2417 return IRQ_NONE; 2418 2419 spin_lock(&ensoniq->reg_lock); 2420 sctrl = ensoniq->sctrl; 2421 if (status & ES_DAC1) 2422 sctrl &= ~ES_P1_INT_EN; 2423 if (status & ES_DAC2) 2424 sctrl &= ~ES_P2_INT_EN; 2425 if (status & ES_ADC) 2426 sctrl &= ~ES_R1_INT_EN; 2427 outl(sctrl, ES_REG(ensoniq, SERIAL)); 2428 outl(ensoniq->sctrl, ES_REG(ensoniq, SERIAL)); 2429 spin_unlock(&ensoniq->reg_lock); 2430 2431 if (status & ES_UART) 2432 snd_ensoniq_midi_interrupt(ensoniq); 2433 if ((status & ES_DAC2) && ensoniq->playback2_substream) 2434 snd_pcm_period_elapsed(ensoniq->playback2_substream); 2435 if ((status & ES_ADC) && ensoniq->capture_substream) 2436 snd_pcm_period_elapsed(ensoniq->capture_substream); 2437 if ((status & ES_DAC1) && ensoniq->playback1_substream) 2438 snd_pcm_period_elapsed(ensoniq->playback1_substream); 2439 return IRQ_HANDLED; 2440 } 2441 2442 static int __devinit snd_audiopci_probe(struct pci_dev *pci, 2443 const struct pci_device_id *pci_id) 2444 { 2445 static int dev; 2446 struct snd_card *card; 2447 struct ensoniq *ensoniq; 2448 int err, pcm_devs[2]; 2449 2450 if (dev >= SNDRV_CARDS) 2451 return -ENODEV; 2452 if (!enable[dev]) { 2453 dev++; 2454 return -ENOENT; 2455 } 2456 2457 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); 2458 if (card == NULL) 2459 return -ENOMEM; 2460 2461 if ((err = snd_ensoniq_create(card, pci, &ensoniq)) < 0) { 2462 snd_card_free(card); 2463 return err; 2464 } 2465 card->private_data = ensoniq; 2466 2467 pcm_devs[0] = 0; pcm_devs[1] = 1; 2468 #ifdef CHIP1370 2469 if ((err = snd_ensoniq_1370_mixer(ensoniq)) < 0) { 2470 snd_card_free(card); 2471 return err; 2472 } 2473 #endif 2474 #ifdef CHIP1371 2475 if ((err = snd_ensoniq_1371_mixer(ensoniq, spdif[dev], lineio[dev])) < 0) { 2476 snd_card_free(card); 2477 return err; 2478 } 2479 #endif 2480 if ((err = snd_ensoniq_pcm(ensoniq, 0, NULL)) < 0) { 2481 snd_card_free(card); 2482 return err; 2483 } 2484 if ((err = snd_ensoniq_pcm2(ensoniq, 1, NULL)) < 0) { 2485 snd_card_free(card); 2486 return err; 2487 } 2488 if ((err = snd_ensoniq_midi(ensoniq, 0, NULL)) < 0) { 2489 snd_card_free(card); 2490 return err; 2491 } 2492 2493 snd_ensoniq_create_gameport(ensoniq, dev); 2494 2495 strcpy(card->driver, DRIVER_NAME); 2496 2497 strcpy(card->shortname, "Ensoniq AudioPCI"); 2498 sprintf(card->longname, "%s %s at 0x%lx, irq %i", 2499 card->shortname, 2500 card->driver, 2501 ensoniq->port, 2502 ensoniq->irq); 2503 2504 if ((err = snd_card_register(card)) < 0) { 2505 snd_card_free(card); 2506 return err; 2507 } 2508 2509 pci_set_drvdata(pci, card); 2510 dev++; 2511 return 0; 2512 } 2513 2514 static void __devexit snd_audiopci_remove(struct pci_dev *pci) 2515 { 2516 snd_card_free(pci_get_drvdata(pci)); 2517 pci_set_drvdata(pci, NULL); 2518 } 2519 2520 static struct pci_driver driver = { 2521 .name = DRIVER_NAME, 2522 .id_table = snd_audiopci_ids, 2523 .probe = snd_audiopci_probe, 2524 .remove = __devexit_p(snd_audiopci_remove), 2525 #ifdef CONFIG_PM 2526 .suspend = snd_ensoniq_suspend, 2527 .resume = snd_ensoniq_resume, 2528 #endif 2529 }; 2530 2531 static int __init alsa_card_ens137x_init(void) 2532 { 2533 return pci_register_driver(&driver); 2534 } 2535 2536 static void __exit alsa_card_ens137x_exit(void) 2537 { 2538 pci_unregister_driver(&driver); 2539 } 2540 2541 module_init(alsa_card_ens137x_init) 2542 module_exit(alsa_card_ens137x_exit) 2543