xref: /linux/sound/pci/emu10k1/io.c (revision 96f30c8f0aa9923aa39b30bcaefeacf88b490231)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Lee Revell <rlrevell@joe-job.com>
5  *                   James Courtier-Dutton <James@superbug.co.uk>
6  *                   Oswald Buddenhagen <oswald.buddenhagen@gmx.de>
7  *                   Creative Labs, Inc.
8  *
9  *  Routines for control of EMU10K1 chips
10  */
11 
12 #include <linux/time.h>
13 #include <sound/core.h>
14 #include <sound/emu10k1.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include "p17v.h"
18 
19 static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg)
20 {
21 	if (snd_BUG_ON(!emu))
22 		return false;
23 	if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK)
24 					  : (0xffff0000 & ~PTR_ADDRESS_MASK))))
25 		return false;
26 	if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK))
27 		return false;
28 	return true;
29 }
30 
31 unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn)
32 {
33 	unsigned long flags;
34 	unsigned int regptr, val;
35 	unsigned int mask;
36 
37 	regptr = (reg << 16) | chn;
38 	if (!check_ptr_reg(emu, regptr))
39 		return 0;
40 
41 	spin_lock_irqsave(&emu->emu_lock, flags);
42 	outl(regptr, emu->port + PTR);
43 	val = inl(emu->port + DATA);
44 	spin_unlock_irqrestore(&emu->emu_lock, flags);
45 
46 	if (reg & 0xff000000) {
47 		unsigned char size, offset;
48 
49 		size = (reg >> 24) & 0x3f;
50 		offset = (reg >> 16) & 0x1f;
51 		mask = (1 << size) - 1;
52 
53 		return (val >> offset) & mask;
54 	} else {
55 		return val;
56 	}
57 }
58 
59 EXPORT_SYMBOL(snd_emu10k1_ptr_read);
60 
61 void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data)
62 {
63 	unsigned int regptr;
64 	unsigned long flags;
65 	unsigned int mask;
66 
67 	regptr = (reg << 16) | chn;
68 	if (!check_ptr_reg(emu, regptr))
69 		return;
70 
71 	if (reg & 0xff000000) {
72 		unsigned char size, offset;
73 
74 		size = (reg >> 24) & 0x3f;
75 		offset = (reg >> 16) & 0x1f;
76 		mask = (1 << size) - 1;
77 		if (snd_BUG_ON(data & ~mask))
78 			return;
79 		mask <<= offset;
80 		data <<= offset;
81 
82 		spin_lock_irqsave(&emu->emu_lock, flags);
83 		outl(regptr, emu->port + PTR);
84 		data |= inl(emu->port + DATA) & ~mask;
85 	} else {
86 		spin_lock_irqsave(&emu->emu_lock, flags);
87 		outl(regptr, emu->port + PTR);
88 	}
89 	outl(data, emu->port + DATA);
90 	spin_unlock_irqrestore(&emu->emu_lock, flags);
91 }
92 
93 EXPORT_SYMBOL(snd_emu10k1_ptr_write);
94 
95 void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...)
96 {
97 	va_list va;
98 	u32 addr_mask;
99 	unsigned long flags;
100 
101 	if (snd_BUG_ON(!emu))
102 		return;
103 	if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK))
104 		return;
105 	addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16);
106 
107 	va_start(va, chn);
108 	spin_lock_irqsave(&emu->emu_lock, flags);
109 	for (;;) {
110 		u32 data;
111 		u32 reg = va_arg(va, u32);
112 		if (reg == REGLIST_END)
113 			break;
114 		data = va_arg(va, u32);
115 		if (snd_BUG_ON(reg & addr_mask))  // Only raw registers supported here
116 			continue;
117 		outl((reg << 16) | chn, emu->port + PTR);
118 		outl(data, emu->port + DATA);
119 	}
120 	spin_unlock_irqrestore(&emu->emu_lock, flags);
121 	va_end(va);
122 }
123 
124 EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple);
125 
126 unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu,
127 					  unsigned int reg,
128 					  unsigned int chn)
129 {
130 	unsigned long flags;
131 	unsigned int regptr, val;
132 
133 	regptr = (reg << 16) | chn;
134 
135 	spin_lock_irqsave(&emu->emu_lock, flags);
136 	outl(regptr, emu->port + PTR2);
137 	val = inl(emu->port + DATA2);
138 	spin_unlock_irqrestore(&emu->emu_lock, flags);
139 	return val;
140 }
141 
142 void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu,
143 				   unsigned int reg,
144 				   unsigned int chn,
145 				   unsigned int data)
146 {
147 	unsigned int regptr;
148 	unsigned long flags;
149 
150 	regptr = (reg << 16) | chn;
151 
152 	spin_lock_irqsave(&emu->emu_lock, flags);
153 	outl(regptr, emu->port + PTR2);
154 	outl(data, emu->port + DATA2);
155 	spin_unlock_irqrestore(&emu->emu_lock, flags);
156 }
157 
158 int snd_emu10k1_spi_write(struct snd_emu10k1 * emu,
159 				   unsigned int data)
160 {
161 	unsigned int reset, set;
162 	unsigned int reg, tmp;
163 	int n, result;
164 	int err = 0;
165 
166 	/* This function is not re-entrant, so protect against it. */
167 	spin_lock(&emu->spi_lock);
168 	if (emu->card_capabilities->ca0108_chip)
169 		reg = P17V_SPI;
170 	else {
171 		/* For other chip types the SPI register
172 		 * is currently unknown. */
173 		err = 1;
174 		goto spi_write_exit;
175 	}
176 	if (data > 0xffff) {
177 		/* Only 16bit values allowed */
178 		err = 1;
179 		goto spi_write_exit;
180 	}
181 
182 	tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
183 	reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */
184 	set = reset | 0x10000; /* Set xxx1xxxx */
185 	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
186 	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */
187 	snd_emu10k1_ptr20_write(emu, reg, 0, set | data);
188 	result = 1;
189 	/* Wait for status bit to return to 0 */
190 	for (n = 0; n < 100; n++) {
191 		udelay(10);
192 		tmp = snd_emu10k1_ptr20_read(emu, reg, 0);
193 		if (!(tmp & 0x10000)) {
194 			result = 0;
195 			break;
196 		}
197 	}
198 	if (result) {
199 		/* Timed out */
200 		err = 1;
201 		goto spi_write_exit;
202 	}
203 	snd_emu10k1_ptr20_write(emu, reg, 0, reset | data);
204 	tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */
205 	err = 0;
206 spi_write_exit:
207 	spin_unlock(&emu->spi_lock);
208 	return err;
209 }
210 
211 /* The ADC does not support i2c read, so only write is implemented */
212 int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu,
213 				u32 reg,
214 				u32 value)
215 {
216 	u32 tmp;
217 	int timeout = 0;
218 	int status;
219 	int retry;
220 	int err = 0;
221 
222 	if ((reg > 0x7f) || (value > 0x1ff)) {
223 		dev_err(emu->card->dev, "i2c_write: invalid values.\n");
224 		return -EINVAL;
225 	}
226 
227 	/* This function is not re-entrant, so protect against it. */
228 	spin_lock(&emu->i2c_lock);
229 
230 	tmp = reg << 25 | value << 16;
231 
232 	/* This controls the I2C connected to the WM8775 ADC Codec */
233 	snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp);
234 	tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */
235 
236 	for (retry = 0; retry < 10; retry++) {
237 		/* Send the data to i2c */
238 		tmp = 0;
239 		tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD);
240 		snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp);
241 
242 		/* Wait till the transaction ends */
243 		while (1) {
244 			mdelay(1);
245 			status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0);
246 			timeout++;
247 			if ((status & I2C_A_ADC_START) == 0)
248 				break;
249 
250 			if (timeout > 1000) {
251 				dev_warn(emu->card->dev,
252 					   "emu10k1:I2C:timeout status=0x%x\n",
253 					   status);
254 				break;
255 			}
256 		}
257 		//Read back and see if the transaction is successful
258 		if ((status & I2C_A_ADC_ABORT) == 0)
259 			break;
260 	}
261 
262 	if (retry == 10) {
263 		dev_err(emu->card->dev, "Writing to ADC failed!\n");
264 		dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n",
265 			status, reg, value);
266 		/* dump_stack(); */
267 		err = -EINVAL;
268 	}
269 
270 	spin_unlock(&emu->i2c_lock);
271 	return err;
272 }
273 
274 static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value)
275 {
276 	if (snd_BUG_ON(reg > 0x3f))
277 		return;
278 	reg += 0x40; /* 0x40 upwards are registers. */
279 	if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */
280 		return;
281 	outw(reg, emu->port + A_GPIO);
282 	udelay(10);
283 	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
284 	udelay(10);
285 	outw(value, emu->port + A_GPIO);
286 	udelay(10);
287 	outw(value | 0x80 , emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
288 	udelay(10);
289 }
290 
291 void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value)
292 {
293 	if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
294 		return;
295 	snd_emu1010_fpga_write_locked(emu, reg, value);
296 }
297 
298 void snd_emu1010_fpga_write_lock(struct snd_emu10k1 *emu, u32 reg, u32 value)
299 {
300 	snd_emu1010_fpga_lock(emu);
301 	snd_emu1010_fpga_write_locked(emu, reg, value);
302 	snd_emu1010_fpga_unlock(emu);
303 }
304 
305 void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value)
306 {
307 	// The higest input pin is used as the designated interrupt trigger,
308 	// so it needs to be masked out.
309 	// But note that any other input pin change will also cause an IRQ,
310 	// so using this function often causes an IRQ as a side effect.
311 	u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f;
312 
313 	if (snd_BUG_ON(!mutex_is_locked(&emu->emu1010.lock)))
314 		return;
315 	if (snd_BUG_ON(reg > 0x3f))
316 		return;
317 	reg += 0x40; /* 0x40 upwards are registers. */
318 	outw(reg, emu->port + A_GPIO);
319 	udelay(10);
320 	outw(reg | 0x80, emu->port + A_GPIO);  /* High bit clocks the value into the fpga. */
321 	udelay(10);
322 	*value = ((inw(emu->port + A_GPIO) >> 8) & mask);
323 }
324 
325 /* Each Destination has one and only one Source,
326  * but one Source can feed any number of Destinations simultaneously.
327  */
328 void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src)
329 {
330 	if (snd_BUG_ON(dst & ~0x71f))
331 		return;
332 	if (snd_BUG_ON(src & ~0x71f))
333 		return;
334 	snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
335 	snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
336 	snd_emu1010_fpga_write(emu, EMU_HANA_SRCHI, src >> 8);
337 	snd_emu1010_fpga_write(emu, EMU_HANA_SRCLO, src & 0x1f);
338 }
339 
340 u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst)
341 {
342 	u32 hi, lo;
343 
344 	if (snd_BUG_ON(dst & ~0x71f))
345 		return 0;
346 	snd_emu1010_fpga_write(emu, EMU_HANA_DESTHI, dst >> 8);
347 	snd_emu1010_fpga_write(emu, EMU_HANA_DESTLO, dst & 0x1f);
348 	snd_emu1010_fpga_read(emu, EMU_HANA_SRCHI, &hi);
349 	snd_emu1010_fpga_read(emu, EMU_HANA_SRCLO, &lo);
350 	return (hi << 8) | lo;
351 }
352 
353 int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src)
354 {
355 	u32 reg_lo, reg_hi, value, value2;
356 
357 	switch (src) {
358 	case EMU_HANA_WCLOCK_HANA_SPDIF_IN:
359 		snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value);
360 		if (value & EMU_HANA_SPDIF_MODE_RX_INVALID)
361 			return 0;
362 		reg_lo = EMU_HANA_WC_SPDIF_LO;
363 		reg_hi = EMU_HANA_WC_SPDIF_HI;
364 		break;
365 	case EMU_HANA_WCLOCK_HANA_ADAT_IN:
366 		reg_lo = EMU_HANA_WC_ADAT_LO;
367 		reg_hi = EMU_HANA_WC_ADAT_HI;
368 		break;
369 	case EMU_HANA_WCLOCK_SYNC_BNC:
370 		reg_lo = EMU_HANA_WC_BNC_LO;
371 		reg_hi = EMU_HANA_WC_BNC_HI;
372 		break;
373 	case EMU_HANA_WCLOCK_2ND_HANA:
374 		reg_lo = EMU_HANA2_WC_SPDIF_LO;
375 		reg_hi = EMU_HANA2_WC_SPDIF_HI;
376 		break;
377 	default:
378 		return 0;
379 	}
380 	snd_emu1010_fpga_read(emu, reg_hi, &value);
381 	snd_emu1010_fpga_read(emu, reg_lo, &value2);
382 	// FIXME: The /4 is valid for 0404b, but contradicts all other info.
383 	return 0x1770000 / 4 / (((value << 5) | value2) + 1);
384 }
385 
386 void snd_emu1010_update_clock(struct snd_emu10k1 *emu)
387 {
388 	int clock;
389 	u32 leds;
390 
391 	switch (emu->emu1010.wclock) {
392 	case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X:
393 		clock = 44100;
394 		leds = EMU_HANA_DOCK_LEDS_2_44K;
395 		break;
396 	case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X:
397 		clock = 48000;
398 		leds = EMU_HANA_DOCK_LEDS_2_48K;
399 		break;
400 	default:
401 		clock = snd_emu1010_get_raw_rate(
402 				emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK);
403 		// The raw rate reading is rather coarse (it cannot accurately
404 		// represent 44.1 kHz) and fluctuates slightly. Luckily, the
405 		// clock comes from digital inputs, which use standardized rates.
406 		// So we round to the closest standard rate and ignore discrepancies.
407 		if (clock < 46000) {
408 			clock = 44100;
409 			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K;
410 		} else {
411 			clock = 48000;
412 			leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K;
413 		}
414 		break;
415 	}
416 	emu->emu1010.word_clock = clock;
417 
418 	// FIXME: this should probably represent the AND of all currently
419 	// used sources' lock status. But we don't know how to get that ...
420 	leds |= EMU_HANA_DOCK_LEDS_2_LOCK;
421 
422 	snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds);
423 }
424 
425 void snd_emu1010_load_firmware_entry(struct snd_emu10k1 *emu, int dock,
426 				     const struct firmware *fw_entry)
427 {
428 	__always_unused u16 write_post;
429 
430 	// On E-MU 1010 rev1 the FPGA is a Xilinx Spartan IIE XC2S50E.
431 	// On E-MU 0404b it is a Xilinx Spartan III XC3S50.
432 	// The wiring is as follows:
433 	// GPO7 -> FPGA input & 1K resistor -> FPGA /PGMN <- FPGA output
434 	//   In normal operation, the active low reset line is held up by
435 	//   an FPGA output, while the GPO pin performs its duty as control
436 	//   register access strobe signal. Writing the respective bit to
437 	//   EMU_HANA_FPGA_CONFIG puts the FPGA output into high-Z mode, at
438 	//   which point the GPO pin can control the reset line through the
439 	//   resistor.
440 	// GPO6 -> FPGA CCLK & FPGA input
441 	// GPO5 -> FPGA DIN (dual function)
442 
443 	// If the FPGA is already programmed, return it to programming mode
444 	snd_emu1010_fpga_write(emu, EMU_HANA_FPGA_CONFIG,
445 			       dock ? EMU_HANA_FPGA_CONFIG_AUDIODOCK :
446 				      EMU_HANA_FPGA_CONFIG_HANA);
447 
448 	// Assert reset line for 100uS
449 	outw(0x00, emu->port + A_GPIO);
450 	write_post = inw(emu->port + A_GPIO);
451 	udelay(100);
452 	outw(0x80, emu->port + A_GPIO);
453 	write_post = inw(emu->port + A_GPIO);
454 	udelay(100);  // Allow FPGA memory to clean
455 
456 	// Upload the netlist. Keep reset line high!
457 	for (int n = 0; n < fw_entry->size; n++) {
458 		u8 value = fw_entry->data[n];
459 		for (int i = 0; i < 8; i++) {
460 			u16 reg = 0x80;
461 			if (value & 1)
462 				reg |= 0x20;
463 			value >>= 1;
464 			outw(reg, emu->port + A_GPIO);
465 			write_post = inw(emu->port + A_GPIO);
466 			outw(reg | 0x40, emu->port + A_GPIO);
467 			write_post = inw(emu->port + A_GPIO);
468 		}
469 	}
470 
471 	// After programming, set GPIO bit 4 high again.
472 	// This appears to be a config word that the rev1 Hana
473 	// firmware reads; weird things happen without this.
474 	outw(0x10, emu->port + A_GPIO);
475 	write_post = inw(emu->port + A_GPIO);
476 }
477 
478 void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb)
479 {
480 	unsigned long flags;
481 	unsigned int enable;
482 
483 	spin_lock_irqsave(&emu->emu_lock, flags);
484 	enable = inl(emu->port + INTE) | intrenb;
485 	outl(enable, emu->port + INTE);
486 	spin_unlock_irqrestore(&emu->emu_lock, flags);
487 }
488 
489 void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb)
490 {
491 	unsigned long flags;
492 	unsigned int enable;
493 
494 	spin_lock_irqsave(&emu->emu_lock, flags);
495 	enable = inl(emu->port + INTE) & ~intrenb;
496 	outl(enable, emu->port + INTE);
497 	spin_unlock_irqrestore(&emu->emu_lock, flags);
498 }
499 
500 void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
501 {
502 	unsigned long flags;
503 	unsigned int val;
504 
505 	spin_lock_irqsave(&emu->emu_lock, flags);
506 	if (voicenum >= 32) {
507 		outl(CLIEH << 16, emu->port + PTR);
508 		val = inl(emu->port + DATA);
509 		val |= 1 << (voicenum - 32);
510 	} else {
511 		outl(CLIEL << 16, emu->port + PTR);
512 		val = inl(emu->port + DATA);
513 		val |= 1 << voicenum;
514 	}
515 	outl(val, emu->port + DATA);
516 	spin_unlock_irqrestore(&emu->emu_lock, flags);
517 }
518 
519 void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
520 {
521 	unsigned long flags;
522 	unsigned int val;
523 
524 	spin_lock_irqsave(&emu->emu_lock, flags);
525 	if (voicenum >= 32) {
526 		outl(CLIEH << 16, emu->port + PTR);
527 		val = inl(emu->port + DATA);
528 		val &= ~(1 << (voicenum - 32));
529 	} else {
530 		outl(CLIEL << 16, emu->port + PTR);
531 		val = inl(emu->port + DATA);
532 		val &= ~(1 << voicenum);
533 	}
534 	outl(val, emu->port + DATA);
535 	spin_unlock_irqrestore(&emu->emu_lock, flags);
536 }
537 
538 void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
539 {
540 	unsigned long flags;
541 
542 	spin_lock_irqsave(&emu->emu_lock, flags);
543 	if (voicenum >= 32) {
544 		outl(CLIPH << 16, emu->port + PTR);
545 		voicenum = 1 << (voicenum - 32);
546 	} else {
547 		outl(CLIPL << 16, emu->port + PTR);
548 		voicenum = 1 << voicenum;
549 	}
550 	outl(voicenum, emu->port + DATA);
551 	spin_unlock_irqrestore(&emu->emu_lock, flags);
552 }
553 
554 void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum)
555 {
556 	unsigned long flags;
557 	unsigned int val;
558 
559 	spin_lock_irqsave(&emu->emu_lock, flags);
560 	if (voicenum >= 32) {
561 		outl(HLIEH << 16, emu->port + PTR);
562 		val = inl(emu->port + DATA);
563 		val |= 1 << (voicenum - 32);
564 	} else {
565 		outl(HLIEL << 16, emu->port + PTR);
566 		val = inl(emu->port + DATA);
567 		val |= 1 << voicenum;
568 	}
569 	outl(val, emu->port + DATA);
570 	spin_unlock_irqrestore(&emu->emu_lock, flags);
571 }
572 
573 void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum)
574 {
575 	unsigned long flags;
576 	unsigned int val;
577 
578 	spin_lock_irqsave(&emu->emu_lock, flags);
579 	if (voicenum >= 32) {
580 		outl(HLIEH << 16, emu->port + PTR);
581 		val = inl(emu->port + DATA);
582 		val &= ~(1 << (voicenum - 32));
583 	} else {
584 		outl(HLIEL << 16, emu->port + PTR);
585 		val = inl(emu->port + DATA);
586 		val &= ~(1 << voicenum);
587 	}
588 	outl(val, emu->port + DATA);
589 	spin_unlock_irqrestore(&emu->emu_lock, flags);
590 }
591 
592 void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum)
593 {
594 	unsigned long flags;
595 
596 	spin_lock_irqsave(&emu->emu_lock, flags);
597 	if (voicenum >= 32) {
598 		outl(HLIPH << 16, emu->port + PTR);
599 		voicenum = 1 << (voicenum - 32);
600 	} else {
601 		outl(HLIPL << 16, emu->port + PTR);
602 		voicenum = 1 << voicenum;
603 	}
604 	outl(voicenum, emu->port + DATA);
605 	spin_unlock_irqrestore(&emu->emu_lock, flags);
606 }
607 
608 #if 0
609 void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
610 {
611 	unsigned long flags;
612 	unsigned int sol;
613 
614 	spin_lock_irqsave(&emu->emu_lock, flags);
615 	if (voicenum >= 32) {
616 		outl(SOLEH << 16, emu->port + PTR);
617 		sol = inl(emu->port + DATA);
618 		sol |= 1 << (voicenum - 32);
619 	} else {
620 		outl(SOLEL << 16, emu->port + PTR);
621 		sol = inl(emu->port + DATA);
622 		sol |= 1 << voicenum;
623 	}
624 	outl(sol, emu->port + DATA);
625 	spin_unlock_irqrestore(&emu->emu_lock, flags);
626 }
627 
628 void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum)
629 {
630 	unsigned long flags;
631 	unsigned int sol;
632 
633 	spin_lock_irqsave(&emu->emu_lock, flags);
634 	if (voicenum >= 32) {
635 		outl(SOLEH << 16, emu->port + PTR);
636 		sol = inl(emu->port + DATA);
637 		sol &= ~(1 << (voicenum - 32));
638 	} else {
639 		outl(SOLEL << 16, emu->port + PTR);
640 		sol = inl(emu->port + DATA);
641 		sol &= ~(1 << voicenum);
642 	}
643 	outl(sol, emu->port + DATA);
644 	spin_unlock_irqrestore(&emu->emu_lock, flags);
645 }
646 #endif
647 
648 void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
649 {
650 	unsigned long flags;
651 
652 	spin_lock_irqsave(&emu->emu_lock, flags);
653 	outl(SOLEL << 16, emu->port + PTR);
654 	outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA);
655 	outl(SOLEH << 16, emu->port + PTR);
656 	outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA);
657 	spin_unlock_irqrestore(&emu->emu_lock, flags);
658 }
659 
660 void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices)
661 {
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&emu->emu_lock, flags);
665 	outl(SOLEL << 16, emu->port + PTR);
666 	outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA);
667 	outl(SOLEH << 16, emu->port + PTR);
668 	outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA);
669 	spin_unlock_irqrestore(&emu->emu_lock, flags);
670 }
671 
672 int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices)
673 {
674 	unsigned long flags;
675 	u32 soll, solh;
676 	int ret = -EIO;
677 
678 	spin_lock_irqsave(&emu->emu_lock, flags);
679 
680 	outl(SOLEL << 16, emu->port + PTR);
681 	soll = inl(emu->port + DATA);
682 	outl(SOLEH << 16, emu->port + PTR);
683 	solh = inl(emu->port + DATA);
684 
685 	soll &= (u32)~voices;
686 	solh &= (u32)(~voices >> 32);
687 
688 	for (int tries = 0; tries < 1000; tries++) {
689 		const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2);
690 		// First we wait for the third quarter of the sample cycle ...
691 		u32 wc = inl(emu->port + WC);
692 		u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc);
693 		if (cc >= quart * 2 && cc < quart * 3) {
694 			// ... and release the low voices, while the high ones are serviced.
695 			outl(SOLEL << 16, emu->port + PTR);
696 			outl(soll, emu->port + DATA);
697 			// Then we wait for the first quarter of the next sample cycle ...
698 			for (; tries < 1000; tries++) {
699 				cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC));
700 				if (cc < quart)
701 					goto good;
702 				// We will block for 10+ us with interrupts disabled. This is
703 				// not nice at all, but necessary for reasonable reliability.
704 				udelay(1);
705 			}
706 			break;
707 		good:
708 			// ... and release the high voices, while the low ones are serviced.
709 			outl(SOLEH << 16, emu->port + PTR);
710 			outl(solh, emu->port + DATA);
711 			// Finally we verify that nothing interfered in fact.
712 			if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) ==
713 			    ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) {
714 				ret = 0;
715 			} else {
716 				ret = -EAGAIN;
717 			}
718 			break;
719 		}
720 		// Don't block for too long
721 		spin_unlock_irqrestore(&emu->emu_lock, flags);
722 		udelay(1);
723 		spin_lock_irqsave(&emu->emu_lock, flags);
724 	}
725 
726 	spin_unlock_irqrestore(&emu->emu_lock, flags);
727 	return ret;
728 }
729 
730 void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait)
731 {
732 	volatile unsigned count;
733 	unsigned int newtime = 0, curtime;
734 
735 	curtime = inl(emu->port + WC) >> 6;
736 	while (wait-- > 0) {
737 		count = 0;
738 		while (count++ < 16384) {
739 			newtime = inl(emu->port + WC) >> 6;
740 			if (newtime != curtime)
741 				break;
742 		}
743 		if (count > 16384)
744 			break;
745 		curtime = newtime;
746 	}
747 }
748 
749 unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
750 {
751 	struct snd_emu10k1 *emu = ac97->private_data;
752 	unsigned long flags;
753 	unsigned short val;
754 
755 	spin_lock_irqsave(&emu->emu_lock, flags);
756 	outb(reg, emu->port + AC97ADDRESS);
757 	val = inw(emu->port + AC97DATA);
758 	spin_unlock_irqrestore(&emu->emu_lock, flags);
759 	return val;
760 }
761 
762 void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data)
763 {
764 	struct snd_emu10k1 *emu = ac97->private_data;
765 	unsigned long flags;
766 
767 	spin_lock_irqsave(&emu->emu_lock, flags);
768 	outb(reg, emu->port + AC97ADDRESS);
769 	outw(data, emu->port + AC97DATA);
770 	spin_unlock_irqrestore(&emu->emu_lock, flags);
771 }
772