1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Creative Labs, Inc. 5 * Routines for control of EMU10K1 chips 6 * 7 * BUGS: 8 * -- 9 * 10 * TODO: 11 * -- 12 */ 13 14 #include <linux/time.h> 15 #include <sound/core.h> 16 #include <sound/emu10k1.h> 17 #include <linux/delay.h> 18 #include <linux/export.h> 19 #include "p17v.h" 20 21 static inline bool check_ptr_reg(struct snd_emu10k1 *emu, unsigned int reg) 22 { 23 if (snd_BUG_ON(!emu)) 24 return false; 25 if (snd_BUG_ON(reg & (emu->audigy ? (0xffff0000 & ~A_PTR_ADDRESS_MASK) 26 : (0xffff0000 & ~PTR_ADDRESS_MASK)))) 27 return false; 28 if (snd_BUG_ON(reg & 0x0000ffff & ~PTR_CHANNELNUM_MASK)) 29 return false; 30 return true; 31 } 32 33 unsigned int snd_emu10k1_ptr_read(struct snd_emu10k1 * emu, unsigned int reg, unsigned int chn) 34 { 35 unsigned long flags; 36 unsigned int regptr, val; 37 unsigned int mask; 38 39 regptr = (reg << 16) | chn; 40 if (!check_ptr_reg(emu, regptr)) 41 return 0; 42 43 spin_lock_irqsave(&emu->emu_lock, flags); 44 outl(regptr, emu->port + PTR); 45 val = inl(emu->port + DATA); 46 spin_unlock_irqrestore(&emu->emu_lock, flags); 47 48 if (reg & 0xff000000) { 49 unsigned char size, offset; 50 51 size = (reg >> 24) & 0x3f; 52 offset = (reg >> 16) & 0x1f; 53 mask = (1 << size) - 1; 54 55 return (val >> offset) & mask; 56 } else { 57 return val; 58 } 59 } 60 61 EXPORT_SYMBOL(snd_emu10k1_ptr_read); 62 63 void snd_emu10k1_ptr_write(struct snd_emu10k1 *emu, unsigned int reg, unsigned int chn, unsigned int data) 64 { 65 unsigned int regptr; 66 unsigned long flags; 67 unsigned int mask; 68 69 regptr = (reg << 16) | chn; 70 if (!check_ptr_reg(emu, regptr)) 71 return; 72 73 if (reg & 0xff000000) { 74 unsigned char size, offset; 75 76 size = (reg >> 24) & 0x3f; 77 offset = (reg >> 16) & 0x1f; 78 mask = (1 << size) - 1; 79 if (snd_BUG_ON(data & ~mask)) 80 return; 81 mask <<= offset; 82 data <<= offset; 83 84 spin_lock_irqsave(&emu->emu_lock, flags); 85 outl(regptr, emu->port + PTR); 86 data |= inl(emu->port + DATA) & ~mask; 87 } else { 88 spin_lock_irqsave(&emu->emu_lock, flags); 89 outl(regptr, emu->port + PTR); 90 } 91 outl(data, emu->port + DATA); 92 spin_unlock_irqrestore(&emu->emu_lock, flags); 93 } 94 95 EXPORT_SYMBOL(snd_emu10k1_ptr_write); 96 97 void snd_emu10k1_ptr_write_multiple(struct snd_emu10k1 *emu, unsigned int chn, ...) 98 { 99 va_list va; 100 u32 addr_mask; 101 unsigned long flags; 102 103 if (snd_BUG_ON(!emu)) 104 return; 105 if (snd_BUG_ON(chn & ~PTR_CHANNELNUM_MASK)) 106 return; 107 addr_mask = ~((emu->audigy ? A_PTR_ADDRESS_MASK : PTR_ADDRESS_MASK) >> 16); 108 109 va_start(va, chn); 110 spin_lock_irqsave(&emu->emu_lock, flags); 111 for (;;) { 112 u32 data; 113 u32 reg = va_arg(va, u32); 114 if (reg == REGLIST_END) 115 break; 116 data = va_arg(va, u32); 117 if (snd_BUG_ON(reg & addr_mask)) // Only raw registers supported here 118 continue; 119 outl((reg << 16) | chn, emu->port + PTR); 120 outl(data, emu->port + DATA); 121 } 122 spin_unlock_irqrestore(&emu->emu_lock, flags); 123 va_end(va); 124 } 125 126 EXPORT_SYMBOL(snd_emu10k1_ptr_write_multiple); 127 128 unsigned int snd_emu10k1_ptr20_read(struct snd_emu10k1 * emu, 129 unsigned int reg, 130 unsigned int chn) 131 { 132 unsigned long flags; 133 unsigned int regptr, val; 134 135 regptr = (reg << 16) | chn; 136 137 spin_lock_irqsave(&emu->emu_lock, flags); 138 outl(regptr, emu->port + PTR2); 139 val = inl(emu->port + DATA2); 140 spin_unlock_irqrestore(&emu->emu_lock, flags); 141 return val; 142 } 143 144 void snd_emu10k1_ptr20_write(struct snd_emu10k1 *emu, 145 unsigned int reg, 146 unsigned int chn, 147 unsigned int data) 148 { 149 unsigned int regptr; 150 unsigned long flags; 151 152 regptr = (reg << 16) | chn; 153 154 spin_lock_irqsave(&emu->emu_lock, flags); 155 outl(regptr, emu->port + PTR2); 156 outl(data, emu->port + DATA2); 157 spin_unlock_irqrestore(&emu->emu_lock, flags); 158 } 159 160 int snd_emu10k1_spi_write(struct snd_emu10k1 * emu, 161 unsigned int data) 162 { 163 unsigned int reset, set; 164 unsigned int reg, tmp; 165 int n, result; 166 int err = 0; 167 168 /* This function is not re-entrant, so protect against it. */ 169 spin_lock(&emu->spi_lock); 170 if (emu->card_capabilities->ca0108_chip) 171 reg = P17V_SPI; 172 else { 173 /* For other chip types the SPI register 174 * is currently unknown. */ 175 err = 1; 176 goto spi_write_exit; 177 } 178 if (data > 0xffff) { 179 /* Only 16bit values allowed */ 180 err = 1; 181 goto spi_write_exit; 182 } 183 184 tmp = snd_emu10k1_ptr20_read(emu, reg, 0); 185 reset = (tmp & ~0x3ffff) | 0x20000; /* Set xxx20000 */ 186 set = reset | 0x10000; /* Set xxx1xxxx */ 187 snd_emu10k1_ptr20_write(emu, reg, 0, reset | data); 188 tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* write post */ 189 snd_emu10k1_ptr20_write(emu, reg, 0, set | data); 190 result = 1; 191 /* Wait for status bit to return to 0 */ 192 for (n = 0; n < 100; n++) { 193 udelay(10); 194 tmp = snd_emu10k1_ptr20_read(emu, reg, 0); 195 if (!(tmp & 0x10000)) { 196 result = 0; 197 break; 198 } 199 } 200 if (result) { 201 /* Timed out */ 202 err = 1; 203 goto spi_write_exit; 204 } 205 snd_emu10k1_ptr20_write(emu, reg, 0, reset | data); 206 tmp = snd_emu10k1_ptr20_read(emu, reg, 0); /* Write post */ 207 err = 0; 208 spi_write_exit: 209 spin_unlock(&emu->spi_lock); 210 return err; 211 } 212 213 /* The ADC does not support i2c read, so only write is implemented */ 214 int snd_emu10k1_i2c_write(struct snd_emu10k1 *emu, 215 u32 reg, 216 u32 value) 217 { 218 u32 tmp; 219 int timeout = 0; 220 int status; 221 int retry; 222 int err = 0; 223 224 if ((reg > 0x7f) || (value > 0x1ff)) { 225 dev_err(emu->card->dev, "i2c_write: invalid values.\n"); 226 return -EINVAL; 227 } 228 229 /* This function is not re-entrant, so protect against it. */ 230 spin_lock(&emu->i2c_lock); 231 232 tmp = reg << 25 | value << 16; 233 234 /* This controls the I2C connected to the WM8775 ADC Codec */ 235 snd_emu10k1_ptr20_write(emu, P17V_I2C_1, 0, tmp); 236 tmp = snd_emu10k1_ptr20_read(emu, P17V_I2C_1, 0); /* write post */ 237 238 for (retry = 0; retry < 10; retry++) { 239 /* Send the data to i2c */ 240 tmp = 0; 241 tmp = tmp | (I2C_A_ADC_LAST|I2C_A_ADC_START|I2C_A_ADC_ADD); 242 snd_emu10k1_ptr20_write(emu, P17V_I2C_ADDR, 0, tmp); 243 244 /* Wait till the transaction ends */ 245 while (1) { 246 mdelay(1); 247 status = snd_emu10k1_ptr20_read(emu, P17V_I2C_ADDR, 0); 248 timeout++; 249 if ((status & I2C_A_ADC_START) == 0) 250 break; 251 252 if (timeout > 1000) { 253 dev_warn(emu->card->dev, 254 "emu10k1:I2C:timeout status=0x%x\n", 255 status); 256 break; 257 } 258 } 259 //Read back and see if the transaction is successful 260 if ((status & I2C_A_ADC_ABORT) == 0) 261 break; 262 } 263 264 if (retry == 10) { 265 dev_err(emu->card->dev, "Writing to ADC failed!\n"); 266 dev_err(emu->card->dev, "status=0x%x, reg=%d, value=%d\n", 267 status, reg, value); 268 /* dump_stack(); */ 269 err = -EINVAL; 270 } 271 272 spin_unlock(&emu->i2c_lock); 273 return err; 274 } 275 276 static void snd_emu1010_fpga_write_locked(struct snd_emu10k1 *emu, u32 reg, u32 value) 277 { 278 if (snd_BUG_ON(reg > 0x3f)) 279 return; 280 reg += 0x40; /* 0x40 upwards are registers. */ 281 if (snd_BUG_ON(value > 0x3f)) /* 0 to 0x3f are values */ 282 return; 283 outw(reg, emu->port + A_GPIO); 284 udelay(10); 285 outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */ 286 udelay(10); 287 outw(value, emu->port + A_GPIO); 288 udelay(10); 289 outw(value | 0x80 , emu->port + A_GPIO); /* High bit clocks the value into the fpga. */ 290 } 291 292 void snd_emu1010_fpga_write(struct snd_emu10k1 *emu, u32 reg, u32 value) 293 { 294 unsigned long flags; 295 296 spin_lock_irqsave(&emu->emu_lock, flags); 297 snd_emu1010_fpga_write_locked(emu, reg, value); 298 spin_unlock_irqrestore(&emu->emu_lock, flags); 299 } 300 301 static void snd_emu1010_fpga_read_locked(struct snd_emu10k1 *emu, u32 reg, u32 *value) 302 { 303 // The higest input pin is used as the designated interrupt trigger, 304 // so it needs to be masked out. 305 u32 mask = emu->card_capabilities->ca0108_chip ? 0x1f : 0x7f; 306 if (snd_BUG_ON(reg > 0x3f)) 307 return; 308 reg += 0x40; /* 0x40 upwards are registers. */ 309 outw(reg, emu->port + A_GPIO); 310 udelay(10); 311 outw(reg | 0x80, emu->port + A_GPIO); /* High bit clocks the value into the fpga. */ 312 udelay(10); 313 *value = ((inw(emu->port + A_GPIO) >> 8) & mask); 314 } 315 316 void snd_emu1010_fpga_read(struct snd_emu10k1 *emu, u32 reg, u32 *value) 317 { 318 unsigned long flags; 319 320 spin_lock_irqsave(&emu->emu_lock, flags); 321 snd_emu1010_fpga_read_locked(emu, reg, value); 322 spin_unlock_irqrestore(&emu->emu_lock, flags); 323 } 324 325 /* Each Destination has one and only one Source, 326 * but one Source can feed any number of Destinations simultaneously. 327 */ 328 void snd_emu1010_fpga_link_dst_src_write(struct snd_emu10k1 *emu, u32 dst, u32 src) 329 { 330 unsigned long flags; 331 332 if (snd_BUG_ON(dst & ~0x71f)) 333 return; 334 if (snd_BUG_ON(src & ~0x71f)) 335 return; 336 spin_lock_irqsave(&emu->emu_lock, flags); 337 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8); 338 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f); 339 snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCHI, src >> 8); 340 snd_emu1010_fpga_write_locked(emu, EMU_HANA_SRCLO, src & 0x1f); 341 spin_unlock_irqrestore(&emu->emu_lock, flags); 342 } 343 344 u32 snd_emu1010_fpga_link_dst_src_read(struct snd_emu10k1 *emu, u32 dst) 345 { 346 unsigned long flags; 347 u32 hi, lo; 348 349 if (snd_BUG_ON(dst & ~0x71f)) 350 return 0; 351 spin_lock_irqsave(&emu->emu_lock, flags); 352 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTHI, dst >> 8); 353 snd_emu1010_fpga_write_locked(emu, EMU_HANA_DESTLO, dst & 0x1f); 354 snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCHI, &hi); 355 snd_emu1010_fpga_read_locked(emu, EMU_HANA_SRCLO, &lo); 356 spin_unlock_irqrestore(&emu->emu_lock, flags); 357 return (hi << 8) | lo; 358 } 359 360 int snd_emu1010_get_raw_rate(struct snd_emu10k1 *emu, u8 src) 361 { 362 u32 reg_lo, reg_hi, value, value2; 363 364 switch (src) { 365 case EMU_HANA_WCLOCK_HANA_SPDIF_IN: 366 snd_emu1010_fpga_read(emu, EMU_HANA_SPDIF_MODE, &value); 367 if (value & EMU_HANA_SPDIF_MODE_RX_INVALID) 368 return 0; 369 reg_lo = EMU_HANA_WC_SPDIF_LO; 370 reg_hi = EMU_HANA_WC_SPDIF_HI; 371 break; 372 case EMU_HANA_WCLOCK_HANA_ADAT_IN: 373 reg_lo = EMU_HANA_WC_ADAT_LO; 374 reg_hi = EMU_HANA_WC_ADAT_HI; 375 break; 376 case EMU_HANA_WCLOCK_SYNC_BNC: 377 reg_lo = EMU_HANA_WC_BNC_LO; 378 reg_hi = EMU_HANA_WC_BNC_HI; 379 break; 380 case EMU_HANA_WCLOCK_2ND_HANA: 381 reg_lo = EMU_HANA2_WC_SPDIF_LO; 382 reg_hi = EMU_HANA2_WC_SPDIF_HI; 383 break; 384 default: 385 return 0; 386 } 387 snd_emu1010_fpga_read(emu, reg_hi, &value); 388 snd_emu1010_fpga_read(emu, reg_lo, &value2); 389 // FIXME: The /4 is valid for 0404b, but contradicts all other info. 390 return 0x1770000 / 4 / (((value << 5) | value2) + 1); 391 } 392 393 void snd_emu1010_update_clock(struct snd_emu10k1 *emu) 394 { 395 int clock; 396 u32 leds; 397 398 switch (emu->emu1010.wclock) { 399 case EMU_HANA_WCLOCK_INT_44_1K | EMU_HANA_WCLOCK_1X: 400 clock = 44100; 401 leds = EMU_HANA_DOCK_LEDS_2_44K; 402 break; 403 case EMU_HANA_WCLOCK_INT_48K | EMU_HANA_WCLOCK_1X: 404 clock = 48000; 405 leds = EMU_HANA_DOCK_LEDS_2_48K; 406 break; 407 default: 408 clock = snd_emu1010_get_raw_rate( 409 emu, emu->emu1010.wclock & EMU_HANA_WCLOCK_SRC_MASK); 410 // The raw rate reading is rather coarse (it cannot accurately 411 // represent 44.1 kHz) and fluctuates slightly. Luckily, the 412 // clock comes from digital inputs, which use standardized rates. 413 // So we round to the closest standard rate and ignore discrepancies. 414 if (clock < 46000) { 415 clock = 44100; 416 leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_44K; 417 } else { 418 clock = 48000; 419 leds = EMU_HANA_DOCK_LEDS_2_EXT | EMU_HANA_DOCK_LEDS_2_48K; 420 } 421 break; 422 } 423 emu->emu1010.word_clock = clock; 424 425 // FIXME: this should probably represent the AND of all currently 426 // used sources' lock status. But we don't know how to get that ... 427 leds |= EMU_HANA_DOCK_LEDS_2_LOCK; 428 429 snd_emu1010_fpga_write(emu, EMU_HANA_DOCK_LEDS_2, leds); 430 } 431 432 void snd_emu10k1_intr_enable(struct snd_emu10k1 *emu, unsigned int intrenb) 433 { 434 unsigned long flags; 435 unsigned int enable; 436 437 spin_lock_irqsave(&emu->emu_lock, flags); 438 enable = inl(emu->port + INTE) | intrenb; 439 outl(enable, emu->port + INTE); 440 spin_unlock_irqrestore(&emu->emu_lock, flags); 441 } 442 443 void snd_emu10k1_intr_disable(struct snd_emu10k1 *emu, unsigned int intrenb) 444 { 445 unsigned long flags; 446 unsigned int enable; 447 448 spin_lock_irqsave(&emu->emu_lock, flags); 449 enable = inl(emu->port + INTE) & ~intrenb; 450 outl(enable, emu->port + INTE); 451 spin_unlock_irqrestore(&emu->emu_lock, flags); 452 } 453 454 void snd_emu10k1_voice_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum) 455 { 456 unsigned long flags; 457 unsigned int val; 458 459 spin_lock_irqsave(&emu->emu_lock, flags); 460 if (voicenum >= 32) { 461 outl(CLIEH << 16, emu->port + PTR); 462 val = inl(emu->port + DATA); 463 val |= 1 << (voicenum - 32); 464 } else { 465 outl(CLIEL << 16, emu->port + PTR); 466 val = inl(emu->port + DATA); 467 val |= 1 << voicenum; 468 } 469 outl(val, emu->port + DATA); 470 spin_unlock_irqrestore(&emu->emu_lock, flags); 471 } 472 473 void snd_emu10k1_voice_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum) 474 { 475 unsigned long flags; 476 unsigned int val; 477 478 spin_lock_irqsave(&emu->emu_lock, flags); 479 if (voicenum >= 32) { 480 outl(CLIEH << 16, emu->port + PTR); 481 val = inl(emu->port + DATA); 482 val &= ~(1 << (voicenum - 32)); 483 } else { 484 outl(CLIEL << 16, emu->port + PTR); 485 val = inl(emu->port + DATA); 486 val &= ~(1 << voicenum); 487 } 488 outl(val, emu->port + DATA); 489 spin_unlock_irqrestore(&emu->emu_lock, flags); 490 } 491 492 void snd_emu10k1_voice_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum) 493 { 494 unsigned long flags; 495 496 spin_lock_irqsave(&emu->emu_lock, flags); 497 if (voicenum >= 32) { 498 outl(CLIPH << 16, emu->port + PTR); 499 voicenum = 1 << (voicenum - 32); 500 } else { 501 outl(CLIPL << 16, emu->port + PTR); 502 voicenum = 1 << voicenum; 503 } 504 outl(voicenum, emu->port + DATA); 505 spin_unlock_irqrestore(&emu->emu_lock, flags); 506 } 507 508 void snd_emu10k1_voice_half_loop_intr_enable(struct snd_emu10k1 *emu, unsigned int voicenum) 509 { 510 unsigned long flags; 511 unsigned int val; 512 513 spin_lock_irqsave(&emu->emu_lock, flags); 514 if (voicenum >= 32) { 515 outl(HLIEH << 16, emu->port + PTR); 516 val = inl(emu->port + DATA); 517 val |= 1 << (voicenum - 32); 518 } else { 519 outl(HLIEL << 16, emu->port + PTR); 520 val = inl(emu->port + DATA); 521 val |= 1 << voicenum; 522 } 523 outl(val, emu->port + DATA); 524 spin_unlock_irqrestore(&emu->emu_lock, flags); 525 } 526 527 void snd_emu10k1_voice_half_loop_intr_disable(struct snd_emu10k1 *emu, unsigned int voicenum) 528 { 529 unsigned long flags; 530 unsigned int val; 531 532 spin_lock_irqsave(&emu->emu_lock, flags); 533 if (voicenum >= 32) { 534 outl(HLIEH << 16, emu->port + PTR); 535 val = inl(emu->port + DATA); 536 val &= ~(1 << (voicenum - 32)); 537 } else { 538 outl(HLIEL << 16, emu->port + PTR); 539 val = inl(emu->port + DATA); 540 val &= ~(1 << voicenum); 541 } 542 outl(val, emu->port + DATA); 543 spin_unlock_irqrestore(&emu->emu_lock, flags); 544 } 545 546 void snd_emu10k1_voice_half_loop_intr_ack(struct snd_emu10k1 *emu, unsigned int voicenum) 547 { 548 unsigned long flags; 549 550 spin_lock_irqsave(&emu->emu_lock, flags); 551 if (voicenum >= 32) { 552 outl(HLIPH << 16, emu->port + PTR); 553 voicenum = 1 << (voicenum - 32); 554 } else { 555 outl(HLIPL << 16, emu->port + PTR); 556 voicenum = 1 << voicenum; 557 } 558 outl(voicenum, emu->port + DATA); 559 spin_unlock_irqrestore(&emu->emu_lock, flags); 560 } 561 562 #if 0 563 void snd_emu10k1_voice_set_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum) 564 { 565 unsigned long flags; 566 unsigned int sol; 567 568 spin_lock_irqsave(&emu->emu_lock, flags); 569 if (voicenum >= 32) { 570 outl(SOLEH << 16, emu->port + PTR); 571 sol = inl(emu->port + DATA); 572 sol |= 1 << (voicenum - 32); 573 } else { 574 outl(SOLEL << 16, emu->port + PTR); 575 sol = inl(emu->port + DATA); 576 sol |= 1 << voicenum; 577 } 578 outl(sol, emu->port + DATA); 579 spin_unlock_irqrestore(&emu->emu_lock, flags); 580 } 581 582 void snd_emu10k1_voice_clear_loop_stop(struct snd_emu10k1 *emu, unsigned int voicenum) 583 { 584 unsigned long flags; 585 unsigned int sol; 586 587 spin_lock_irqsave(&emu->emu_lock, flags); 588 if (voicenum >= 32) { 589 outl(SOLEH << 16, emu->port + PTR); 590 sol = inl(emu->port + DATA); 591 sol &= ~(1 << (voicenum - 32)); 592 } else { 593 outl(SOLEL << 16, emu->port + PTR); 594 sol = inl(emu->port + DATA); 595 sol &= ~(1 << voicenum); 596 } 597 outl(sol, emu->port + DATA); 598 spin_unlock_irqrestore(&emu->emu_lock, flags); 599 } 600 #endif 601 602 void snd_emu10k1_voice_set_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices) 603 { 604 unsigned long flags; 605 606 spin_lock_irqsave(&emu->emu_lock, flags); 607 outl(SOLEL << 16, emu->port + PTR); 608 outl(inl(emu->port + DATA) | (u32)voices, emu->port + DATA); 609 outl(SOLEH << 16, emu->port + PTR); 610 outl(inl(emu->port + DATA) | (u32)(voices >> 32), emu->port + DATA); 611 spin_unlock_irqrestore(&emu->emu_lock, flags); 612 } 613 614 void snd_emu10k1_voice_clear_loop_stop_multiple(struct snd_emu10k1 *emu, u64 voices) 615 { 616 unsigned long flags; 617 618 spin_lock_irqsave(&emu->emu_lock, flags); 619 outl(SOLEL << 16, emu->port + PTR); 620 outl(inl(emu->port + DATA) & (u32)~voices, emu->port + DATA); 621 outl(SOLEH << 16, emu->port + PTR); 622 outl(inl(emu->port + DATA) & (u32)(~voices >> 32), emu->port + DATA); 623 spin_unlock_irqrestore(&emu->emu_lock, flags); 624 } 625 626 int snd_emu10k1_voice_clear_loop_stop_multiple_atomic(struct snd_emu10k1 *emu, u64 voices) 627 { 628 unsigned long flags; 629 u32 soll, solh; 630 int ret = -EIO; 631 632 spin_lock_irqsave(&emu->emu_lock, flags); 633 634 outl(SOLEL << 16, emu->port + PTR); 635 soll = inl(emu->port + DATA); 636 outl(SOLEH << 16, emu->port + PTR); 637 solh = inl(emu->port + DATA); 638 639 soll &= (u32)~voices; 640 solh &= (u32)(~voices >> 32); 641 642 for (int tries = 0; tries < 1000; tries++) { 643 const u32 quart = 1U << (REG_SIZE(WC_CURRENTCHANNEL) - 2); 644 // First we wait for the third quarter of the sample cycle ... 645 u32 wc = inl(emu->port + WC); 646 u32 cc = REG_VAL_GET(WC_CURRENTCHANNEL, wc); 647 if (cc >= quart * 2 && cc < quart * 3) { 648 // ... and release the low voices, while the high ones are serviced. 649 outl(SOLEL << 16, emu->port + PTR); 650 outl(soll, emu->port + DATA); 651 // Then we wait for the first quarter of the next sample cycle ... 652 for (; tries < 1000; tries++) { 653 cc = REG_VAL_GET(WC_CURRENTCHANNEL, inl(emu->port + WC)); 654 if (cc < quart) 655 goto good; 656 // We will block for 10+ us with interrupts disabled. This is 657 // not nice at all, but necessary for reasonable reliability. 658 udelay(1); 659 } 660 break; 661 good: 662 // ... and release the high voices, while the low ones are serviced. 663 outl(SOLEH << 16, emu->port + PTR); 664 outl(solh, emu->port + DATA); 665 // Finally we verify that nothing interfered in fact. 666 if (REG_VAL_GET(WC_SAMPLECOUNTER, inl(emu->port + WC)) == 667 ((REG_VAL_GET(WC_SAMPLECOUNTER, wc) + 1) & REG_MASK0(WC_SAMPLECOUNTER))) { 668 ret = 0; 669 } else { 670 ret = -EAGAIN; 671 } 672 break; 673 } 674 // Don't block for too long 675 spin_unlock_irqrestore(&emu->emu_lock, flags); 676 udelay(1); 677 spin_lock_irqsave(&emu->emu_lock, flags); 678 } 679 680 spin_unlock_irqrestore(&emu->emu_lock, flags); 681 return ret; 682 } 683 684 void snd_emu10k1_wait(struct snd_emu10k1 *emu, unsigned int wait) 685 { 686 volatile unsigned count; 687 unsigned int newtime = 0, curtime; 688 689 curtime = inl(emu->port + WC) >> 6; 690 while (wait-- > 0) { 691 count = 0; 692 while (count++ < 16384) { 693 newtime = inl(emu->port + WC) >> 6; 694 if (newtime != curtime) 695 break; 696 } 697 if (count > 16384) 698 break; 699 curtime = newtime; 700 } 701 } 702 703 unsigned short snd_emu10k1_ac97_read(struct snd_ac97 *ac97, unsigned short reg) 704 { 705 struct snd_emu10k1 *emu = ac97->private_data; 706 unsigned long flags; 707 unsigned short val; 708 709 spin_lock_irqsave(&emu->emu_lock, flags); 710 outb(reg, emu->port + AC97ADDRESS); 711 val = inw(emu->port + AC97DATA); 712 spin_unlock_irqrestore(&emu->emu_lock, flags); 713 return val; 714 } 715 716 void snd_emu10k1_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short data) 717 { 718 struct snd_emu10k1 *emu = ac97->private_data; 719 unsigned long flags; 720 721 spin_lock_irqsave(&emu->emu_lock, flags); 722 outb(reg, emu->port + AC97ADDRESS); 723 outw(data, emu->port + AC97DATA); 724 spin_unlock_irqrestore(&emu->emu_lock, flags); 725 } 726