1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Lee Revell <rlrevell@joe-job.com> 5 * James Courtier-Dutton <James@superbug.co.uk> 6 * Oswald Buddenhagen <oswald.buddenhagen@gmx.de> 7 * Creative Labs, Inc. 8 * 9 * Routines for control of EMU10K1 chips / PCM routines 10 */ 11 12 #include <linux/pci.h> 13 #include <linux/delay.h> 14 #include <linux/slab.h> 15 #include <linux/time.h> 16 #include <linux/init.h> 17 #include <sound/core.h> 18 #include <sound/emu10k1.h> 19 20 static void snd_emu10k1_pcm_interrupt(struct snd_emu10k1 *emu, 21 struct snd_emu10k1_voice *voice) 22 { 23 struct snd_emu10k1_pcm *epcm; 24 25 epcm = voice->epcm; 26 if (!epcm) 27 return; 28 if (epcm->substream == NULL) 29 return; 30 #if 0 31 dev_dbg(emu->card->dev, 32 "IRQ: position = 0x%x, period = 0x%x, size = 0x%x\n", 33 epcm->substream->runtime->hw->pointer(emu, epcm->substream), 34 snd_pcm_lib_period_bytes(epcm->substream), 35 snd_pcm_lib_buffer_bytes(epcm->substream)); 36 #endif 37 snd_pcm_period_elapsed(epcm->substream); 38 } 39 40 static void snd_emu10k1_pcm_ac97adc_interrupt(struct snd_emu10k1 *emu, 41 unsigned int status) 42 { 43 #if 0 44 if (status & IPR_ADCBUFHALFFULL) { 45 if (emu->pcm_capture_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) 46 return; 47 } 48 #endif 49 snd_pcm_period_elapsed(emu->pcm_capture_substream); 50 } 51 52 static void snd_emu10k1_pcm_ac97mic_interrupt(struct snd_emu10k1 *emu, 53 unsigned int status) 54 { 55 #if 0 56 if (status & IPR_MICBUFHALFFULL) { 57 if (emu->pcm_capture_mic_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) 58 return; 59 } 60 #endif 61 snd_pcm_period_elapsed(emu->pcm_capture_mic_substream); 62 } 63 64 static void snd_emu10k1_pcm_efx_interrupt(struct snd_emu10k1 *emu, 65 unsigned int status) 66 { 67 #if 0 68 if (status & IPR_EFXBUFHALFFULL) { 69 if (emu->pcm_capture_efx_substream->runtime->mode == SNDRV_PCM_MODE_FRAME) 70 return; 71 } 72 #endif 73 snd_pcm_period_elapsed(emu->pcm_capture_efx_substream); 74 } 75 76 static void snd_emu10k1_pcm_free_voices(struct snd_emu10k1_pcm *epcm) 77 { 78 for (unsigned i = 0; i < ARRAY_SIZE(epcm->voices); i++) { 79 if (epcm->voices[i]) { 80 snd_emu10k1_voice_free(epcm->emu, epcm->voices[i]); 81 epcm->voices[i] = NULL; 82 } 83 } 84 } 85 86 static int snd_emu10k1_pcm_channel_alloc(struct snd_emu10k1_pcm *epcm, 87 int type, int count, int channels) 88 { 89 int err; 90 91 snd_emu10k1_pcm_free_voices(epcm); 92 93 err = snd_emu10k1_voice_alloc(epcm->emu, 94 type, count, channels, 95 epcm, &epcm->voices[0]); 96 if (err < 0) 97 return err; 98 99 if (epcm->extra == NULL) { 100 // The hardware supports only (half-)loop interrupts, so to support an 101 // arbitrary number of periods per buffer, we use an extra voice with a 102 // period-sized loop as the interrupt source. Additionally, the interrupt 103 // timing of the hardware is "suboptimal" and needs some compensation. 104 err = snd_emu10k1_voice_alloc(epcm->emu, 105 type + 1, 1, 1, 106 epcm, &epcm->extra); 107 if (err < 0) { 108 /* 109 dev_dbg(emu->card->dev, "pcm_channel_alloc: " 110 "failed extra: voices=%d, frame=%d\n", 111 voices, frame); 112 */ 113 snd_emu10k1_pcm_free_voices(epcm); 114 return err; 115 } 116 epcm->extra->interrupt = snd_emu10k1_pcm_interrupt; 117 } 118 119 return 0; 120 } 121 122 // Primes 2-7 and 2^n multiples thereof, up to 16. 123 static const unsigned int efx_capture_channels[] = { 124 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16 125 }; 126 127 static const struct snd_pcm_hw_constraint_list hw_constraints_efx_capture_channels = { 128 .count = ARRAY_SIZE(efx_capture_channels), 129 .list = efx_capture_channels, 130 .mask = 0 131 }; 132 133 static const unsigned int capture_buffer_sizes[31] = { 134 384, 448, 512, 640, 135 384*2, 448*2, 512*2, 640*2, 136 384*4, 448*4, 512*4, 640*4, 137 384*8, 448*8, 512*8, 640*8, 138 384*16, 448*16, 512*16, 640*16, 139 384*32, 448*32, 512*32, 640*32, 140 384*64, 448*64, 512*64, 640*64, 141 384*128,448*128,512*128 142 }; 143 144 static const struct snd_pcm_hw_constraint_list hw_constraints_capture_buffer_sizes = { 145 .count = 31, 146 .list = capture_buffer_sizes, 147 .mask = 0 148 }; 149 150 static const unsigned int capture_rates[8] = { 151 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000 152 }; 153 154 static const struct snd_pcm_hw_constraint_list hw_constraints_capture_rates = { 155 .count = 8, 156 .list = capture_rates, 157 .mask = 0 158 }; 159 160 static unsigned int snd_emu10k1_capture_rate_reg(unsigned int rate) 161 { 162 switch (rate) { 163 case 8000: return ADCCR_SAMPLERATE_8; 164 case 11025: return ADCCR_SAMPLERATE_11; 165 case 16000: return ADCCR_SAMPLERATE_16; 166 case 22050: return ADCCR_SAMPLERATE_22; 167 case 24000: return ADCCR_SAMPLERATE_24; 168 case 32000: return ADCCR_SAMPLERATE_32; 169 case 44100: return ADCCR_SAMPLERATE_44; 170 case 48000: return ADCCR_SAMPLERATE_48; 171 default: 172 snd_BUG(); 173 return ADCCR_SAMPLERATE_8; 174 } 175 } 176 177 static const unsigned int audigy_capture_rates[9] = { 178 8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000 179 }; 180 181 static const struct snd_pcm_hw_constraint_list hw_constraints_audigy_capture_rates = { 182 .count = 9, 183 .list = audigy_capture_rates, 184 .mask = 0 185 }; 186 187 static unsigned int snd_emu10k1_audigy_capture_rate_reg(unsigned int rate) 188 { 189 switch (rate) { 190 case 8000: return A_ADCCR_SAMPLERATE_8; 191 case 11025: return A_ADCCR_SAMPLERATE_11; 192 case 12000: return A_ADCCR_SAMPLERATE_12; 193 case 16000: return ADCCR_SAMPLERATE_16; 194 case 22050: return ADCCR_SAMPLERATE_22; 195 case 24000: return ADCCR_SAMPLERATE_24; 196 case 32000: return ADCCR_SAMPLERATE_32; 197 case 44100: return ADCCR_SAMPLERATE_44; 198 case 48000: return ADCCR_SAMPLERATE_48; 199 default: 200 snd_BUG(); 201 return A_ADCCR_SAMPLERATE_8; 202 } 203 } 204 205 static void snd_emu10k1_constrain_capture_rates(struct snd_emu10k1 *emu, 206 struct snd_pcm_runtime *runtime) 207 { 208 if (emu->card_capabilities->emu_model && 209 emu->emu1010.word_clock == 44100) { 210 // This also sets the rate constraint by deleting SNDRV_PCM_RATE_KNOT 211 runtime->hw.rates = SNDRV_PCM_RATE_11025 | \ 212 SNDRV_PCM_RATE_22050 | \ 213 SNDRV_PCM_RATE_44100; 214 runtime->hw.rate_min = 11025; 215 runtime->hw.rate_max = 44100; 216 return; 217 } 218 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 219 emu->audigy ? &hw_constraints_audigy_capture_rates : 220 &hw_constraints_capture_rates); 221 } 222 223 static void snd_emu1010_constrain_efx_rate(struct snd_emu10k1 *emu, 224 struct snd_pcm_runtime *runtime) 225 { 226 int rate; 227 228 rate = emu->emu1010.word_clock; 229 runtime->hw.rate_min = runtime->hw.rate_max = rate; 230 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); 231 } 232 233 static unsigned int emu10k1_calc_pitch_target(unsigned int rate) 234 { 235 unsigned int pitch_target; 236 237 pitch_target = (rate << 8) / 375; 238 pitch_target = (pitch_target >> 1) + (pitch_target & 1); 239 return pitch_target; 240 } 241 242 #define PITCH_48000 0x00004000 243 #define PITCH_96000 0x00008000 244 #define PITCH_85000 0x00007155 245 #define PITCH_80726 0x00006ba2 246 #define PITCH_67882 0x00005a82 247 #define PITCH_57081 0x00004c1c 248 249 static unsigned int emu10k1_select_interprom(unsigned int pitch_target) 250 { 251 if (pitch_target == PITCH_48000) 252 return CCCA_INTERPROM_0; 253 else if (pitch_target < PITCH_48000) 254 return CCCA_INTERPROM_1; 255 else if (pitch_target >= PITCH_96000) 256 return CCCA_INTERPROM_0; 257 else if (pitch_target >= PITCH_85000) 258 return CCCA_INTERPROM_6; 259 else if (pitch_target >= PITCH_80726) 260 return CCCA_INTERPROM_5; 261 else if (pitch_target >= PITCH_67882) 262 return CCCA_INTERPROM_4; 263 else if (pitch_target >= PITCH_57081) 264 return CCCA_INTERPROM_3; 265 else 266 return CCCA_INTERPROM_2; 267 } 268 269 static u16 emu10k1_send_target_from_amount(u8 amount) 270 { 271 static const u8 shifts[8] = { 4, 4, 5, 6, 7, 8, 9, 10 }; 272 static const u16 offsets[8] = { 0, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000 }; 273 u8 exp; 274 275 if (amount == 0xff) 276 return 0xffff; 277 exp = amount >> 5; 278 return ((amount & 0x1f) << shifts[exp]) + offsets[exp]; 279 } 280 281 static void snd_emu10k1_pcm_init_voice(struct snd_emu10k1 *emu, 282 struct snd_emu10k1_voice *evoice, 283 bool w_16, bool stereo, 284 unsigned int start_addr, 285 unsigned int end_addr, 286 const unsigned char *send_routing, 287 const unsigned char *send_amount) 288 { 289 unsigned int silent_page; 290 int voice; 291 292 voice = evoice->number; 293 294 silent_page = ((unsigned int)emu->silent_page.addr << emu->address_mode) | 295 (emu->address_mode ? MAP_PTI_MASK1 : MAP_PTI_MASK0); 296 snd_emu10k1_ptr_write_multiple(emu, voice, 297 // Not really necessary for the slave, but it doesn't hurt 298 CPF, stereo ? CPF_STEREO_MASK : 0, 299 // Assumption that PT is already 0 so no harm overwriting 300 PTRX, (send_amount[0] << 8) | send_amount[1], 301 // Stereo slaves don't need to have the addresses set, but it doesn't hurt 302 DSL, end_addr | (send_amount[3] << 24), 303 PSST, start_addr | (send_amount[2] << 24), 304 CCCA, emu10k1_select_interprom(evoice->epcm->pitch_target) | 305 (w_16 ? 0 : CCCA_8BITSELECT), 306 // Clear filter delay memory 307 Z1, 0, 308 Z2, 0, 309 // Invalidate maps 310 MAPA, silent_page, 311 MAPB, silent_page, 312 // Disable filter (in conjunction with CCCA_RESONANCE == 0) 313 VTFT, VTFT_FILTERTARGET_MASK, 314 CVCF, CVCF_CURRENTFILTER_MASK, 315 REGLIST_END); 316 // Setup routing 317 if (emu->audigy) { 318 snd_emu10k1_ptr_write_multiple(emu, voice, 319 A_FXRT1, snd_emu10k1_compose_audigy_fxrt1(send_routing), 320 A_FXRT2, snd_emu10k1_compose_audigy_fxrt2(send_routing), 321 A_SENDAMOUNTS, snd_emu10k1_compose_audigy_sendamounts(send_amount), 322 REGLIST_END); 323 for (int i = 0; i < 4; i++) { 324 u32 aml = emu10k1_send_target_from_amount(send_amount[2 * i]); 325 u32 amh = emu10k1_send_target_from_amount(send_amount[2 * i + 1]); 326 snd_emu10k1_ptr_write(emu, A_CSBA + i, voice, (amh << 16) | aml); 327 } 328 } else { 329 snd_emu10k1_ptr_write(emu, FXRT, voice, 330 snd_emu10k1_compose_send_routing(send_routing)); 331 } 332 333 emu->voices[voice].dirty = 1; 334 } 335 336 static void snd_emu10k1_pcm_init_voices(struct snd_emu10k1 *emu, 337 struct snd_emu10k1_voice *evoice, 338 bool w_16, bool stereo, 339 unsigned int start_addr, 340 unsigned int end_addr, 341 struct snd_emu10k1_pcm_mixer *mix) 342 { 343 spin_lock_irq(&emu->reg_lock); 344 snd_emu10k1_pcm_init_voice(emu, evoice, w_16, stereo, 345 start_addr, end_addr, 346 &mix->send_routing[stereo][0], 347 &mix->send_volume[stereo][0]); 348 if (stereo) 349 snd_emu10k1_pcm_init_voice(emu, evoice + 1, w_16, true, 350 start_addr, end_addr, 351 &mix->send_routing[2][0], 352 &mix->send_volume[2][0]); 353 spin_unlock_irq(&emu->reg_lock); 354 } 355 356 static void snd_emu10k1_pcm_init_extra_voice(struct snd_emu10k1 *emu, 357 struct snd_emu10k1_voice *evoice, 358 bool w_16, 359 unsigned int start_addr, 360 unsigned int end_addr) 361 { 362 static const unsigned char send_routing[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; 363 static const unsigned char send_amount[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 364 365 snd_emu10k1_pcm_init_voice(emu, evoice, w_16, false, 366 start_addr, end_addr, 367 send_routing, send_amount); 368 } 369 370 static int snd_emu10k1_playback_hw_params(struct snd_pcm_substream *substream, 371 struct snd_pcm_hw_params *hw_params) 372 { 373 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 374 struct snd_pcm_runtime *runtime = substream->runtime; 375 struct snd_emu10k1_pcm *epcm = runtime->private_data; 376 size_t alloc_size; 377 int type, channels, count; 378 int err; 379 380 if (epcm->type == PLAYBACK_EMUVOICE) { 381 type = EMU10K1_PCM; 382 channels = 1; 383 count = params_channels(hw_params); 384 } else { 385 type = EMU10K1_EFX; 386 channels = params_channels(hw_params); 387 count = 1; 388 } 389 err = snd_emu10k1_pcm_channel_alloc(epcm, type, count, channels); 390 if (err < 0) 391 return err; 392 393 alloc_size = params_buffer_bytes(hw_params); 394 if (emu->iommu_workaround) 395 alloc_size += EMUPAGESIZE; 396 err = snd_pcm_lib_malloc_pages(substream, alloc_size); 397 if (err < 0) 398 return err; 399 if (emu->iommu_workaround && runtime->dma_bytes >= EMUPAGESIZE) 400 runtime->dma_bytes -= EMUPAGESIZE; 401 if (err > 0) { /* change */ 402 int mapped; 403 if (epcm->memblk != NULL) 404 snd_emu10k1_free_pages(emu, epcm->memblk); 405 epcm->memblk = snd_emu10k1_alloc_pages(emu, substream); 406 epcm->start_addr = 0; 407 if (! epcm->memblk) 408 return -ENOMEM; 409 mapped = ((struct snd_emu10k1_memblk *)epcm->memblk)->mapped_page; 410 if (mapped < 0) 411 return -ENOMEM; 412 epcm->start_addr = mapped << PAGE_SHIFT; 413 } 414 return 0; 415 } 416 417 static int snd_emu10k1_playback_hw_free(struct snd_pcm_substream *substream) 418 { 419 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 420 struct snd_pcm_runtime *runtime = substream->runtime; 421 struct snd_emu10k1_pcm *epcm; 422 423 if (runtime->private_data == NULL) 424 return 0; 425 epcm = runtime->private_data; 426 if (epcm->extra) { 427 snd_emu10k1_voice_free(epcm->emu, epcm->extra); 428 epcm->extra = NULL; 429 } 430 snd_emu10k1_pcm_free_voices(epcm); 431 if (epcm->memblk) { 432 snd_emu10k1_free_pages(emu, epcm->memblk); 433 epcm->memblk = NULL; 434 epcm->start_addr = 0; 435 } 436 snd_pcm_lib_free_pages(substream); 437 return 0; 438 } 439 440 static int snd_emu10k1_playback_prepare(struct snd_pcm_substream *substream) 441 { 442 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 443 struct snd_pcm_runtime *runtime = substream->runtime; 444 struct snd_emu10k1_pcm *epcm = runtime->private_data; 445 bool w_16 = snd_pcm_format_width(runtime->format) == 16; 446 bool stereo = runtime->channels == 2; 447 unsigned int start_addr, end_addr; 448 unsigned int rate; 449 450 rate = runtime->rate; 451 if (emu->card_capabilities->emu_model && 452 emu->emu1010.word_clock == 44100) 453 rate = rate * 480 / 441; 454 epcm->pitch_target = emu10k1_calc_pitch_target(rate); 455 456 start_addr = epcm->start_addr >> w_16; 457 end_addr = start_addr + runtime->period_size; 458 snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, w_16, 459 start_addr, end_addr); 460 start_addr >>= stereo; 461 epcm->ccca_start_addr = start_addr; 462 end_addr = start_addr + runtime->buffer_size; 463 snd_emu10k1_pcm_init_voices(emu, epcm->voices[0], w_16, stereo, 464 start_addr, end_addr, 465 &emu->pcm_mixer[substream->number]); 466 467 return 0; 468 } 469 470 static int snd_emu10k1_efx_playback_prepare(struct snd_pcm_substream *substream) 471 { 472 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 473 struct snd_pcm_runtime *runtime = substream->runtime; 474 struct snd_emu10k1_pcm *epcm = runtime->private_data; 475 unsigned int start_addr; 476 unsigned int extra_size, channel_size; 477 unsigned int i; 478 479 epcm->pitch_target = PITCH_48000; 480 481 start_addr = epcm->start_addr >> 1; // 16-bit voices 482 483 extra_size = runtime->period_size; 484 channel_size = runtime->buffer_size; 485 486 snd_emu10k1_pcm_init_extra_voice(emu, epcm->extra, true, 487 start_addr, start_addr + extra_size); 488 489 epcm->ccca_start_addr = start_addr; 490 for (i = 0; i < runtime->channels; i++) { 491 snd_emu10k1_pcm_init_voices(emu, epcm->voices[i], true, false, 492 start_addr, start_addr + channel_size, 493 &emu->efx_pcm_mixer[i]); 494 start_addr += channel_size; 495 } 496 497 return 0; 498 } 499 500 static const struct snd_pcm_hardware snd_emu10k1_efx_playback = 501 { 502 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_NONINTERLEAVED | 503 SNDRV_PCM_INFO_BLOCK_TRANSFER | 504 SNDRV_PCM_INFO_RESUME | 505 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE), 506 .formats = SNDRV_PCM_FMTBIT_S16_LE, 507 .rates = SNDRV_PCM_RATE_48000, 508 .rate_min = 48000, 509 .rate_max = 48000, 510 .channels_min = 1, 511 .channels_max = NUM_EFX_PLAYBACK, 512 .buffer_bytes_max = (128*1024), 513 .period_bytes_max = (128*1024), 514 .periods_min = 2, 515 .periods_max = 1024, 516 .fifo_size = 0, 517 }; 518 519 static int snd_emu10k1_capture_prepare(struct snd_pcm_substream *substream) 520 { 521 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 522 struct snd_pcm_runtime *runtime = substream->runtime; 523 struct snd_emu10k1_pcm *epcm = runtime->private_data; 524 int idx; 525 526 /* zeroing the buffer size will stop capture */ 527 snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0); 528 switch (epcm->type) { 529 case CAPTURE_AC97ADC: 530 snd_emu10k1_ptr_write(emu, ADCCR, 0, 0); 531 break; 532 case CAPTURE_EFX: 533 if (emu->card_capabilities->emu_model) { 534 // The upper 32 16-bit capture voices, two for each of the 16 32-bit channels. 535 // The lower voices are occupied by A_EXTOUT_*_CAP*. 536 epcm->capture_cr_val = 0; 537 epcm->capture_cr_val2 = 0xffffffff >> (32 - runtime->channels * 2); 538 } 539 if (emu->audigy) { 540 snd_emu10k1_ptr_write_multiple(emu, 0, 541 A_FXWC1, 0, 542 A_FXWC2, 0, 543 REGLIST_END); 544 } else 545 snd_emu10k1_ptr_write(emu, FXWC, 0, 0); 546 break; 547 default: 548 break; 549 } 550 snd_emu10k1_ptr_write(emu, epcm->capture_ba_reg, 0, runtime->dma_addr); 551 epcm->capture_bufsize = snd_pcm_lib_buffer_bytes(substream); 552 epcm->capture_bs_val = 0; 553 for (idx = 0; idx < 31; idx++) { 554 if (capture_buffer_sizes[idx] == epcm->capture_bufsize) { 555 epcm->capture_bs_val = idx + 1; 556 break; 557 } 558 } 559 if (epcm->capture_bs_val == 0) { 560 snd_BUG(); 561 epcm->capture_bs_val++; 562 } 563 if (epcm->type == CAPTURE_AC97ADC) { 564 unsigned rate = runtime->rate; 565 if (!(runtime->hw.rates & SNDRV_PCM_RATE_48000)) 566 rate = rate * 480 / 441; 567 568 epcm->capture_cr_val = emu->audigy ? A_ADCCR_LCHANENABLE : ADCCR_LCHANENABLE; 569 if (runtime->channels > 1) 570 epcm->capture_cr_val |= emu->audigy ? A_ADCCR_RCHANENABLE : ADCCR_RCHANENABLE; 571 epcm->capture_cr_val |= emu->audigy ? 572 snd_emu10k1_audigy_capture_rate_reg(rate) : 573 snd_emu10k1_capture_rate_reg(rate); 574 } 575 return 0; 576 } 577 578 static void snd_emu10k1_playback_fill_cache(struct snd_emu10k1 *emu, 579 unsigned voice, 580 u32 sample, bool stereo) 581 { 582 u32 ccr; 583 584 // We assume that the cache is resting at this point (i.e., 585 // CCR_CACHEINVALIDSIZE is very small). 586 587 // Clear leading frames. For simplicitly, this does too much, 588 // except for 16-bit stereo. And the interpolator will actually 589 // access them at all only when we're pitch-shifting. 590 for (int i = 0; i < 3; i++) 591 snd_emu10k1_ptr_write(emu, CD0 + i, voice, sample); 592 593 // Fill cache 594 ccr = (64 - 3) << REG_SHIFT(CCR_CACHEINVALIDSIZE); 595 if (stereo) { 596 // The engine goes haywire if CCR_READADDRESS is out of sync 597 snd_emu10k1_ptr_write(emu, CCR, voice + 1, ccr); 598 } 599 snd_emu10k1_ptr_write(emu, CCR, voice, ccr); 600 } 601 602 static void snd_emu10k1_playback_prepare_voices(struct snd_emu10k1 *emu, 603 struct snd_emu10k1_pcm *epcm, 604 bool w_16, bool stereo, 605 int channels) 606 { 607 struct snd_pcm_substream *substream = epcm->substream; 608 struct snd_pcm_runtime *runtime = substream->runtime; 609 unsigned eloop_start = epcm->start_addr >> w_16; 610 unsigned loop_start = eloop_start >> stereo; 611 unsigned eloop_size = runtime->period_size; 612 unsigned loop_size = runtime->buffer_size; 613 u32 sample = w_16 ? 0 : 0x80808080; 614 615 // To make the playback actually start at the 1st frame, 616 // we need to compensate for two circumstances: 617 // - The actual position is delayed by the cache size (64 frames) 618 // - The interpolator is centered around the 4th frame 619 loop_start += (epcm->resume_pos + 64 - 3) % loop_size; 620 for (int i = 0; i < channels; i++) { 621 unsigned voice = epcm->voices[i]->number; 622 snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, voice, loop_start); 623 loop_start += loop_size; 624 snd_emu10k1_playback_fill_cache(emu, voice, sample, stereo); 625 } 626 627 // The interrupt is triggered when CCCA_CURRADDR (CA) wraps around, 628 // which is ahead of the actual playback position, so the interrupt 629 // source needs to be delayed. 630 // 631 // In principle, this wouldn't need to be the cache's entire size - in 632 // practice, CCR_CACHEINVALIDSIZE (CIS) > `fetch threshold` has never 633 // been observed, and assuming 40 _bytes_ should be safe. 634 // 635 // The cache fills are somewhat random, which makes it impossible to 636 // align them with the interrupts. This makes a non-delayed interrupt 637 // source not practical, as the interrupt handler would have to wait 638 // for (CA - CIS) >= period_boundary for every channel in the stream. 639 // 640 // This is why all other (open) drivers for these chips use timer-based 641 // interrupts. 642 // 643 eloop_start += (epcm->resume_pos + eloop_size - 3) % eloop_size; 644 snd_emu10k1_ptr_write(emu, CCCA_CURRADDR, epcm->extra->number, eloop_start); 645 646 // It takes a moment until the cache fills complete, 647 // but the unmuting takes long enough for that. 648 } 649 650 static void snd_emu10k1_playback_commit_volume(struct snd_emu10k1 *emu, 651 struct snd_emu10k1_voice *evoice, 652 unsigned int vattn) 653 { 654 snd_emu10k1_ptr_write_multiple(emu, evoice->number, 655 VTFT, vattn | VTFT_FILTERTARGET_MASK, 656 CVCF, vattn | CVCF_CURRENTFILTER_MASK, 657 REGLIST_END); 658 } 659 660 static void snd_emu10k1_playback_unmute_voice(struct snd_emu10k1 *emu, 661 struct snd_emu10k1_voice *evoice, 662 bool stereo, bool master, 663 struct snd_emu10k1_pcm_mixer *mix) 664 { 665 unsigned int vattn; 666 unsigned int tmp; 667 668 tmp = stereo ? (master ? 1 : 2) : 0; 669 vattn = mix->attn[tmp] << 16; 670 snd_emu10k1_playback_commit_volume(emu, evoice, vattn); 671 } 672 673 static void snd_emu10k1_playback_unmute_voices(struct snd_emu10k1 *emu, 674 struct snd_emu10k1_voice *evoice, 675 bool stereo, 676 struct snd_emu10k1_pcm_mixer *mix) 677 { 678 snd_emu10k1_playback_unmute_voice(emu, evoice, stereo, true, mix); 679 if (stereo) 680 snd_emu10k1_playback_unmute_voice(emu, evoice + 1, true, false, mix); 681 } 682 683 static void snd_emu10k1_playback_mute_voice(struct snd_emu10k1 *emu, 684 struct snd_emu10k1_voice *evoice) 685 { 686 snd_emu10k1_playback_commit_volume(emu, evoice, 0); 687 } 688 689 static void snd_emu10k1_playback_mute_voices(struct snd_emu10k1 *emu, 690 struct snd_emu10k1_voice *evoice, 691 bool stereo) 692 { 693 snd_emu10k1_playback_mute_voice(emu, evoice); 694 if (stereo) 695 snd_emu10k1_playback_mute_voice(emu, evoice + 1); 696 } 697 698 static void snd_emu10k1_playback_commit_pitch(struct snd_emu10k1 *emu, 699 u32 voice, u32 pitch_target) 700 { 701 u32 ptrx = snd_emu10k1_ptr_read(emu, PTRX, voice); 702 u32 cpf = snd_emu10k1_ptr_read(emu, CPF, voice); 703 snd_emu10k1_ptr_write_multiple(emu, voice, 704 PTRX, (ptrx & ~PTRX_PITCHTARGET_MASK) | pitch_target, 705 CPF, (cpf & ~(CPF_CURRENTPITCH_MASK | CPF_FRACADDRESS_MASK)) | pitch_target, 706 REGLIST_END); 707 } 708 709 static void snd_emu10k1_playback_trigger_voice(struct snd_emu10k1 *emu, 710 struct snd_emu10k1_voice *evoice) 711 { 712 unsigned int voice; 713 714 voice = evoice->number; 715 snd_emu10k1_playback_commit_pitch(emu, voice, evoice->epcm->pitch_target << 16); 716 } 717 718 static void snd_emu10k1_playback_stop_voice(struct snd_emu10k1 *emu, 719 struct snd_emu10k1_voice *evoice) 720 { 721 unsigned int voice; 722 723 voice = evoice->number; 724 snd_emu10k1_playback_commit_pitch(emu, voice, 0); 725 } 726 727 static void snd_emu10k1_playback_set_running(struct snd_emu10k1 *emu, 728 struct snd_emu10k1_pcm *epcm) 729 { 730 epcm->running = 1; 731 snd_emu10k1_voice_intr_enable(emu, epcm->extra->number); 732 } 733 734 static void snd_emu10k1_playback_set_stopped(struct snd_emu10k1 *emu, 735 struct snd_emu10k1_pcm *epcm) 736 { 737 snd_emu10k1_voice_intr_disable(emu, epcm->extra->number); 738 epcm->running = 0; 739 } 740 741 static int snd_emu10k1_playback_trigger(struct snd_pcm_substream *substream, 742 int cmd) 743 { 744 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 745 struct snd_pcm_runtime *runtime = substream->runtime; 746 struct snd_emu10k1_pcm *epcm = runtime->private_data; 747 struct snd_emu10k1_pcm_mixer *mix; 748 bool w_16 = snd_pcm_format_width(runtime->format) == 16; 749 bool stereo = runtime->channels == 2; 750 int result = 0; 751 752 /* 753 dev_dbg(emu->card->dev, 754 "trigger - emu10k1 = 0x%x, cmd = %i, pointer = %i\n", 755 (int)emu, cmd, substream->ops->pointer(substream)) 756 */ 757 spin_lock(&emu->reg_lock); 758 switch (cmd) { 759 case SNDRV_PCM_TRIGGER_START: 760 snd_emu10k1_playback_prepare_voices(emu, epcm, w_16, stereo, 1); 761 fallthrough; 762 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 763 case SNDRV_PCM_TRIGGER_RESUME: 764 mix = &emu->pcm_mixer[substream->number]; 765 snd_emu10k1_playback_unmute_voices(emu, epcm->voices[0], stereo, mix); 766 snd_emu10k1_playback_set_running(emu, epcm); 767 snd_emu10k1_playback_trigger_voice(emu, epcm->voices[0]); 768 snd_emu10k1_playback_trigger_voice(emu, epcm->extra); 769 break; 770 case SNDRV_PCM_TRIGGER_STOP: 771 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 772 case SNDRV_PCM_TRIGGER_SUSPEND: 773 snd_emu10k1_playback_stop_voice(emu, epcm->voices[0]); 774 snd_emu10k1_playback_stop_voice(emu, epcm->extra); 775 snd_emu10k1_playback_set_stopped(emu, epcm); 776 snd_emu10k1_playback_mute_voices(emu, epcm->voices[0], stereo); 777 break; 778 default: 779 result = -EINVAL; 780 break; 781 } 782 spin_unlock(&emu->reg_lock); 783 return result; 784 } 785 786 static int snd_emu10k1_capture_trigger(struct snd_pcm_substream *substream, 787 int cmd) 788 { 789 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 790 struct snd_pcm_runtime *runtime = substream->runtime; 791 struct snd_emu10k1_pcm *epcm = runtime->private_data; 792 int result = 0; 793 794 spin_lock(&emu->reg_lock); 795 switch (cmd) { 796 case SNDRV_PCM_TRIGGER_START: 797 case SNDRV_PCM_TRIGGER_RESUME: 798 /* hmm this should cause full and half full interrupt to be raised? */ 799 outl(epcm->capture_ipr, emu->port + IPR); 800 snd_emu10k1_intr_enable(emu, epcm->capture_inte); 801 /* 802 dev_dbg(emu->card->dev, "adccr = 0x%x, adcbs = 0x%x\n", 803 epcm->adccr, epcm->adcbs); 804 */ 805 switch (epcm->type) { 806 case CAPTURE_AC97ADC: 807 snd_emu10k1_ptr_write(emu, ADCCR, 0, epcm->capture_cr_val); 808 break; 809 case CAPTURE_EFX: 810 if (emu->audigy) { 811 snd_emu10k1_ptr_write_multiple(emu, 0, 812 A_FXWC1, epcm->capture_cr_val, 813 A_FXWC2, epcm->capture_cr_val2, 814 REGLIST_END); 815 dev_dbg(emu->card->dev, 816 "cr_val=0x%x, cr_val2=0x%x\n", 817 epcm->capture_cr_val, 818 epcm->capture_cr_val2); 819 } else 820 snd_emu10k1_ptr_write(emu, FXWC, 0, epcm->capture_cr_val); 821 break; 822 default: 823 break; 824 } 825 snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, epcm->capture_bs_val); 826 epcm->running = 1; 827 epcm->first_ptr = 1; 828 break; 829 case SNDRV_PCM_TRIGGER_STOP: 830 case SNDRV_PCM_TRIGGER_SUSPEND: 831 epcm->running = 0; 832 snd_emu10k1_intr_disable(emu, epcm->capture_inte); 833 outl(epcm->capture_ipr, emu->port + IPR); 834 snd_emu10k1_ptr_write(emu, epcm->capture_bs_reg, 0, 0); 835 switch (epcm->type) { 836 case CAPTURE_AC97ADC: 837 snd_emu10k1_ptr_write(emu, ADCCR, 0, 0); 838 break; 839 case CAPTURE_EFX: 840 if (emu->audigy) { 841 snd_emu10k1_ptr_write_multiple(emu, 0, 842 A_FXWC1, 0, 843 A_FXWC2, 0, 844 REGLIST_END); 845 } else 846 snd_emu10k1_ptr_write(emu, FXWC, 0, 0); 847 break; 848 default: 849 break; 850 } 851 break; 852 default: 853 result = -EINVAL; 854 } 855 spin_unlock(&emu->reg_lock); 856 return result; 857 } 858 859 static snd_pcm_uframes_t snd_emu10k1_playback_pointer(struct snd_pcm_substream *substream) 860 { 861 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 862 struct snd_pcm_runtime *runtime = substream->runtime; 863 struct snd_emu10k1_pcm *epcm = runtime->private_data; 864 int ptr; 865 866 if (!epcm->running) 867 return 0; 868 869 ptr = snd_emu10k1_ptr_read(emu, CCCA, epcm->voices[0]->number) & 0x00ffffff; 870 ptr -= epcm->ccca_start_addr; 871 872 // This is the size of the whole cache minus the interpolator read-ahead, 873 // which leads us to the actual playback position. 874 // 875 // The cache is constantly kept mostly filled, so in principle we could 876 // return a more advanced position representing how far the hardware has 877 // already read the buffer, and set runtime->delay accordingly. However, 878 // this would be slightly different for every channel (and remarkably slow 879 // to obtain), so only a fixed worst-case value would be practical. 880 // 881 ptr -= 64 - 3; 882 if (ptr < 0) 883 ptr += runtime->buffer_size; 884 885 /* 886 dev_dbg(emu->card->dev, 887 "ptr = 0x%lx, buffer_size = 0x%lx, period_size = 0x%lx\n", 888 (long)ptr, (long)runtime->buffer_size, 889 (long)runtime->period_size); 890 */ 891 return ptr; 892 } 893 894 static u64 snd_emu10k1_efx_playback_voice_mask(struct snd_emu10k1_pcm *epcm, 895 int channels) 896 { 897 u64 mask = 0; 898 899 for (int i = 0; i < channels; i++) { 900 int voice = epcm->voices[i]->number; 901 mask |= 1ULL << voice; 902 } 903 return mask; 904 } 905 906 static void snd_emu10k1_efx_playback_freeze_voices(struct snd_emu10k1 *emu, 907 struct snd_emu10k1_pcm *epcm, 908 int channels) 909 { 910 for (int i = 0; i < channels; i++) { 911 int voice = epcm->voices[i]->number; 912 snd_emu10k1_ptr_write(emu, CPF_STOP, voice, 1); 913 snd_emu10k1_playback_commit_pitch(emu, voice, PITCH_48000 << 16); 914 } 915 } 916 917 static void snd_emu10k1_efx_playback_unmute_voices(struct snd_emu10k1 *emu, 918 struct snd_emu10k1_pcm *epcm, 919 int channels) 920 { 921 for (int i = 0; i < channels; i++) 922 snd_emu10k1_playback_unmute_voice(emu, epcm->voices[i], false, true, 923 &emu->efx_pcm_mixer[i]); 924 } 925 926 static void snd_emu10k1_efx_playback_stop_voices(struct snd_emu10k1 *emu, 927 struct snd_emu10k1_pcm *epcm, 928 int channels) 929 { 930 for (int i = 0; i < channels; i++) 931 snd_emu10k1_playback_stop_voice(emu, epcm->voices[i]); 932 snd_emu10k1_playback_set_stopped(emu, epcm); 933 934 for (int i = 0; i < channels; i++) 935 snd_emu10k1_playback_mute_voice(emu, epcm->voices[i]); 936 } 937 938 static int snd_emu10k1_efx_playback_trigger(struct snd_pcm_substream *substream, 939 int cmd) 940 { 941 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 942 struct snd_pcm_runtime *runtime = substream->runtime; 943 struct snd_emu10k1_pcm *epcm = runtime->private_data; 944 u64 mask; 945 int result = 0; 946 947 spin_lock(&emu->reg_lock); 948 switch (cmd) { 949 case SNDRV_PCM_TRIGGER_START: 950 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 951 case SNDRV_PCM_TRIGGER_RESUME: 952 mask = snd_emu10k1_efx_playback_voice_mask( 953 epcm, runtime->channels); 954 for (int i = 0; i < 10; i++) { 955 // Note that the freeze is not interruptible, so we make no 956 // effort to reset the bits outside the error handling here. 957 snd_emu10k1_voice_set_loop_stop_multiple(emu, mask); 958 snd_emu10k1_efx_playback_freeze_voices( 959 emu, epcm, runtime->channels); 960 snd_emu10k1_playback_prepare_voices( 961 emu, epcm, true, false, runtime->channels); 962 963 // It might seem to make more sense to unmute the voices only after 964 // they have been started, to potentially avoid torturing the speakers 965 // if something goes wrong. However, we cannot unmute atomically, 966 // which means that we'd get some mild artifacts in the regular case. 967 snd_emu10k1_efx_playback_unmute_voices(emu, epcm, runtime->channels); 968 969 snd_emu10k1_playback_set_running(emu, epcm); 970 result = snd_emu10k1_voice_clear_loop_stop_multiple_atomic(emu, mask); 971 if (result == 0) { 972 // The extra voice is allowed to lag a bit 973 snd_emu10k1_playback_trigger_voice(emu, epcm->extra); 974 goto leave; 975 } 976 977 snd_emu10k1_efx_playback_stop_voices( 978 emu, epcm, runtime->channels); 979 980 if (result != -EAGAIN) 981 break; 982 // The sync start can legitimately fail due to NMIs, etc. 983 } 984 snd_emu10k1_voice_clear_loop_stop_multiple(emu, mask); 985 break; 986 case SNDRV_PCM_TRIGGER_SUSPEND: 987 case SNDRV_PCM_TRIGGER_STOP: 988 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 989 snd_emu10k1_playback_stop_voice(emu, epcm->extra); 990 snd_emu10k1_efx_playback_stop_voices( 991 emu, epcm, runtime->channels); 992 993 epcm->resume_pos = snd_emu10k1_playback_pointer(substream); 994 break; 995 default: 996 result = -EINVAL; 997 break; 998 } 999 leave: 1000 spin_unlock(&emu->reg_lock); 1001 return result; 1002 } 1003 1004 1005 static snd_pcm_uframes_t snd_emu10k1_capture_pointer(struct snd_pcm_substream *substream) 1006 { 1007 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1008 struct snd_pcm_runtime *runtime = substream->runtime; 1009 struct snd_emu10k1_pcm *epcm = runtime->private_data; 1010 unsigned int ptr; 1011 1012 if (!epcm->running) 1013 return 0; 1014 if (epcm->first_ptr) { 1015 udelay(50); /* hack, it takes awhile until capture is started */ 1016 epcm->first_ptr = 0; 1017 } 1018 ptr = snd_emu10k1_ptr_read(emu, epcm->capture_idx_reg, 0) & 0x0000ffff; 1019 return bytes_to_frames(runtime, ptr); 1020 } 1021 1022 /* 1023 * Playback support device description 1024 */ 1025 1026 static const struct snd_pcm_hardware snd_emu10k1_playback = 1027 { 1028 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1029 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1030 SNDRV_PCM_INFO_RESUME | 1031 SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_PAUSE), 1032 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1033 .rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_96000, 1034 .rate_min = 4000, 1035 .rate_max = 96000, 1036 .channels_min = 1, 1037 .channels_max = 2, 1038 .buffer_bytes_max = (128*1024), 1039 .period_bytes_max = (128*1024), 1040 .periods_min = 2, 1041 .periods_max = 1024, 1042 .fifo_size = 0, 1043 }; 1044 1045 /* 1046 * Capture support device description 1047 */ 1048 1049 static const struct snd_pcm_hardware snd_emu10k1_capture = 1050 { 1051 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1052 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1053 SNDRV_PCM_INFO_RESUME | 1054 SNDRV_PCM_INFO_MMAP_VALID), 1055 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1056 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_KNOT, 1057 .rate_min = 8000, 1058 .rate_max = 48000, 1059 .channels_min = 1, 1060 .channels_max = 2, 1061 .buffer_bytes_max = (64*1024), 1062 .period_bytes_min = 384, 1063 .period_bytes_max = (64*1024), 1064 .periods_min = 2, 1065 .periods_max = 2, 1066 .fifo_size = 0, 1067 }; 1068 1069 static const struct snd_pcm_hardware snd_emu10k1_capture_efx = 1070 { 1071 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1072 SNDRV_PCM_INFO_BLOCK_TRANSFER | 1073 SNDRV_PCM_INFO_RESUME | 1074 SNDRV_PCM_INFO_MMAP_VALID), 1075 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1076 .rates = SNDRV_PCM_RATE_48000, 1077 .rate_min = 48000, 1078 .rate_max = 48000, 1079 .channels_min = 1, 1080 .channels_max = 16, 1081 .buffer_bytes_max = (64*1024), 1082 .period_bytes_min = 384, 1083 .period_bytes_max = (64*1024), 1084 .periods_min = 2, 1085 .periods_max = 2, 1086 .fifo_size = 0, 1087 }; 1088 1089 /* 1090 * 1091 */ 1092 1093 static void snd_emu10k1_pcm_mixer_notify1(struct snd_emu10k1 *emu, struct snd_kcontrol *kctl, int idx, int activate) 1094 { 1095 struct snd_ctl_elem_id id; 1096 1097 if (! kctl) 1098 return; 1099 if (activate) 1100 kctl->vd[idx].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1101 else 1102 kctl->vd[idx].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1103 snd_ctl_notify(emu->card, SNDRV_CTL_EVENT_MASK_VALUE | 1104 SNDRV_CTL_EVENT_MASK_INFO, 1105 snd_ctl_build_ioff(&id, kctl, idx)); 1106 } 1107 1108 static void snd_emu10k1_pcm_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate) 1109 { 1110 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_routing, idx, activate); 1111 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_send_volume, idx, activate); 1112 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_attn, idx, activate); 1113 } 1114 1115 static void snd_emu10k1_pcm_efx_mixer_notify(struct snd_emu10k1 *emu, int idx, int activate) 1116 { 1117 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_routing, idx, activate); 1118 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_send_volume, idx, activate); 1119 snd_emu10k1_pcm_mixer_notify1(emu, emu->ctl_efx_attn, idx, activate); 1120 } 1121 1122 static void snd_emu10k1_pcm_free_substream(struct snd_pcm_runtime *runtime) 1123 { 1124 kfree(runtime->private_data); 1125 } 1126 1127 static int snd_emu10k1_efx_playback_close(struct snd_pcm_substream *substream) 1128 { 1129 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1130 struct snd_emu10k1_pcm_mixer *mix; 1131 int i; 1132 1133 for (i = 0; i < NUM_EFX_PLAYBACK; i++) { 1134 mix = &emu->efx_pcm_mixer[i]; 1135 mix->epcm = NULL; 1136 snd_emu10k1_pcm_efx_mixer_notify(emu, i, 0); 1137 } 1138 return 0; 1139 } 1140 1141 static int snd_emu10k1_playback_set_constraints(struct snd_pcm_runtime *runtime) 1142 { 1143 int err; 1144 1145 // The buffer size must be a multiple of the period size, to avoid a 1146 // mismatch between the extra voice and the regular voices. 1147 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 1148 if (err < 0) 1149 return err; 1150 // The hardware is typically the cache's size of 64 frames ahead. 1151 // Leave enough time for actually filling up the buffer. 1152 err = snd_pcm_hw_constraint_minmax( 1153 runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 128, UINT_MAX); 1154 return err; 1155 } 1156 1157 static int snd_emu10k1_efx_playback_open(struct snd_pcm_substream *substream) 1158 { 1159 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1160 struct snd_emu10k1_pcm *epcm; 1161 struct snd_emu10k1_pcm_mixer *mix; 1162 struct snd_pcm_runtime *runtime = substream->runtime; 1163 int i, j, err; 1164 1165 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1166 if (epcm == NULL) 1167 return -ENOMEM; 1168 epcm->emu = emu; 1169 epcm->type = PLAYBACK_EFX; 1170 epcm->substream = substream; 1171 1172 runtime->private_data = epcm; 1173 runtime->private_free = snd_emu10k1_pcm_free_substream; 1174 runtime->hw = snd_emu10k1_efx_playback; 1175 if (emu->card_capabilities->emu_model) 1176 snd_emu1010_constrain_efx_rate(emu, runtime); 1177 err = snd_emu10k1_playback_set_constraints(runtime); 1178 if (err < 0) { 1179 kfree(epcm); 1180 return err; 1181 } 1182 1183 for (i = 0; i < NUM_EFX_PLAYBACK; i++) { 1184 mix = &emu->efx_pcm_mixer[i]; 1185 for (j = 0; j < 8; j++) 1186 mix->send_routing[0][j] = i + j; 1187 memset(&mix->send_volume, 0, sizeof(mix->send_volume)); 1188 mix->send_volume[0][0] = 255; 1189 mix->attn[0] = 0x8000; 1190 mix->epcm = epcm; 1191 snd_emu10k1_pcm_efx_mixer_notify(emu, i, 1); 1192 } 1193 return 0; 1194 } 1195 1196 static int snd_emu10k1_playback_open(struct snd_pcm_substream *substream) 1197 { 1198 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1199 struct snd_emu10k1_pcm *epcm; 1200 struct snd_emu10k1_pcm_mixer *mix; 1201 struct snd_pcm_runtime *runtime = substream->runtime; 1202 int i, err, sample_rate; 1203 1204 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1205 if (epcm == NULL) 1206 return -ENOMEM; 1207 epcm->emu = emu; 1208 epcm->type = PLAYBACK_EMUVOICE; 1209 epcm->substream = substream; 1210 runtime->private_data = epcm; 1211 runtime->private_free = snd_emu10k1_pcm_free_substream; 1212 runtime->hw = snd_emu10k1_playback; 1213 err = snd_emu10k1_playback_set_constraints(runtime); 1214 if (err < 0) { 1215 kfree(epcm); 1216 return err; 1217 } 1218 if (emu->card_capabilities->emu_model) 1219 sample_rate = emu->emu1010.word_clock; 1220 else 1221 sample_rate = 48000; 1222 err = snd_pcm_hw_rule_noresample(runtime, sample_rate); 1223 if (err < 0) { 1224 kfree(epcm); 1225 return err; 1226 } 1227 mix = &emu->pcm_mixer[substream->number]; 1228 for (i = 0; i < 8; i++) 1229 mix->send_routing[0][i] = mix->send_routing[1][i] = mix->send_routing[2][i] = i; 1230 memset(&mix->send_volume, 0, sizeof(mix->send_volume)); 1231 mix->send_volume[0][0] = mix->send_volume[0][1] = 1232 mix->send_volume[1][0] = mix->send_volume[2][1] = 255; 1233 mix->attn[0] = mix->attn[1] = mix->attn[2] = 0x8000; 1234 mix->epcm = epcm; 1235 snd_emu10k1_pcm_mixer_notify(emu, substream->number, 1); 1236 return 0; 1237 } 1238 1239 static int snd_emu10k1_playback_close(struct snd_pcm_substream *substream) 1240 { 1241 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1242 struct snd_emu10k1_pcm_mixer *mix = &emu->pcm_mixer[substream->number]; 1243 1244 mix->epcm = NULL; 1245 snd_emu10k1_pcm_mixer_notify(emu, substream->number, 0); 1246 return 0; 1247 } 1248 1249 static int snd_emu10k1_capture_open(struct snd_pcm_substream *substream) 1250 { 1251 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1252 struct snd_pcm_runtime *runtime = substream->runtime; 1253 struct snd_emu10k1_pcm *epcm; 1254 1255 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1256 if (epcm == NULL) 1257 return -ENOMEM; 1258 epcm->emu = emu; 1259 epcm->type = CAPTURE_AC97ADC; 1260 epcm->substream = substream; 1261 epcm->capture_ipr = IPR_ADCBUFFULL|IPR_ADCBUFHALFFULL; 1262 epcm->capture_inte = INTE_ADCBUFENABLE; 1263 epcm->capture_ba_reg = ADCBA; 1264 epcm->capture_bs_reg = ADCBS; 1265 epcm->capture_idx_reg = emu->audigy ? A_ADCIDX : ADCIDX; 1266 runtime->private_data = epcm; 1267 runtime->private_free = snd_emu10k1_pcm_free_substream; 1268 runtime->hw = snd_emu10k1_capture; 1269 snd_emu10k1_constrain_capture_rates(emu, runtime); 1270 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1271 &hw_constraints_capture_buffer_sizes); 1272 emu->capture_interrupt = snd_emu10k1_pcm_ac97adc_interrupt; 1273 emu->pcm_capture_substream = substream; 1274 return 0; 1275 } 1276 1277 static int snd_emu10k1_capture_close(struct snd_pcm_substream *substream) 1278 { 1279 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1280 1281 emu->capture_interrupt = NULL; 1282 emu->pcm_capture_substream = NULL; 1283 return 0; 1284 } 1285 1286 static int snd_emu10k1_capture_mic_open(struct snd_pcm_substream *substream) 1287 { 1288 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1289 struct snd_emu10k1_pcm *epcm; 1290 struct snd_pcm_runtime *runtime = substream->runtime; 1291 1292 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1293 if (epcm == NULL) 1294 return -ENOMEM; 1295 epcm->emu = emu; 1296 epcm->type = CAPTURE_AC97MIC; 1297 epcm->substream = substream; 1298 epcm->capture_ipr = IPR_MICBUFFULL|IPR_MICBUFHALFFULL; 1299 epcm->capture_inte = INTE_MICBUFENABLE; 1300 epcm->capture_ba_reg = MICBA; 1301 epcm->capture_bs_reg = MICBS; 1302 epcm->capture_idx_reg = emu->audigy ? A_MICIDX : MICIDX; 1303 substream->runtime->private_data = epcm; 1304 substream->runtime->private_free = snd_emu10k1_pcm_free_substream; 1305 runtime->hw = snd_emu10k1_capture; 1306 runtime->hw.rates = SNDRV_PCM_RATE_8000; 1307 runtime->hw.rate_min = runtime->hw.rate_max = 8000; 1308 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1309 &hw_constraints_capture_buffer_sizes); 1310 emu->capture_mic_interrupt = snd_emu10k1_pcm_ac97mic_interrupt; 1311 emu->pcm_capture_mic_substream = substream; 1312 return 0; 1313 } 1314 1315 static int snd_emu10k1_capture_mic_close(struct snd_pcm_substream *substream) 1316 { 1317 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1318 1319 emu->capture_mic_interrupt = NULL; 1320 emu->pcm_capture_mic_substream = NULL; 1321 return 0; 1322 } 1323 1324 static int snd_emu10k1_capture_efx_open(struct snd_pcm_substream *substream) 1325 { 1326 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1327 struct snd_emu10k1_pcm *epcm; 1328 struct snd_pcm_runtime *runtime = substream->runtime; 1329 int nefx = emu->audigy ? 64 : 32; 1330 int idx, err; 1331 1332 epcm = kzalloc(sizeof(*epcm), GFP_KERNEL); 1333 if (epcm == NULL) 1334 return -ENOMEM; 1335 epcm->emu = emu; 1336 epcm->type = CAPTURE_EFX; 1337 epcm->substream = substream; 1338 epcm->capture_ipr = IPR_EFXBUFFULL|IPR_EFXBUFHALFFULL; 1339 epcm->capture_inte = INTE_EFXBUFENABLE; 1340 epcm->capture_ba_reg = FXBA; 1341 epcm->capture_bs_reg = FXBS; 1342 epcm->capture_idx_reg = FXIDX; 1343 substream->runtime->private_data = epcm; 1344 substream->runtime->private_free = snd_emu10k1_pcm_free_substream; 1345 runtime->hw = snd_emu10k1_capture_efx; 1346 if (emu->card_capabilities->emu_model) { 1347 snd_emu1010_constrain_efx_rate(emu, runtime); 1348 /* 1349 * There are 32 mono channels of 16bits each. 1350 * 24bit Audio uses 2x channels over 16bit, 1351 * 96kHz uses 2x channels over 48kHz, 1352 * 192kHz uses 4x channels over 48kHz. 1353 * So, for 48kHz 24bit, one has 16 channels, 1354 * for 96kHz 24bit, one has 8 channels, 1355 * for 192kHz 24bit, one has 4 channels. 1356 * 1010rev2 and 1616(m) cards have double that, 1357 * but we don't exceed 16 channels anyway. 1358 */ 1359 #if 0 1360 /* For 96kHz */ 1361 runtime->hw.channels_min = runtime->hw.channels_max = 4; 1362 #endif 1363 #if 0 1364 /* For 192kHz */ 1365 runtime->hw.channels_min = runtime->hw.channels_max = 2; 1366 #endif 1367 runtime->hw.formats = SNDRV_PCM_FMTBIT_S32_LE; 1368 } else { 1369 spin_lock_irq(&emu->reg_lock); 1370 runtime->hw.channels_min = runtime->hw.channels_max = 0; 1371 for (idx = 0; idx < nefx; idx++) { 1372 if (emu->efx_voices_mask[idx/32] & (1 << (idx%32))) { 1373 runtime->hw.channels_min++; 1374 runtime->hw.channels_max++; 1375 } 1376 } 1377 epcm->capture_cr_val = emu->efx_voices_mask[0]; 1378 epcm->capture_cr_val2 = emu->efx_voices_mask[1]; 1379 spin_unlock_irq(&emu->reg_lock); 1380 } 1381 err = snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 1382 &hw_constraints_efx_capture_channels); 1383 if (err < 0) { 1384 kfree(epcm); 1385 return err; 1386 } 1387 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 1388 &hw_constraints_capture_buffer_sizes); 1389 emu->capture_efx_interrupt = snd_emu10k1_pcm_efx_interrupt; 1390 emu->pcm_capture_efx_substream = substream; 1391 return 0; 1392 } 1393 1394 static int snd_emu10k1_capture_efx_close(struct snd_pcm_substream *substream) 1395 { 1396 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1397 1398 emu->capture_efx_interrupt = NULL; 1399 emu->pcm_capture_efx_substream = NULL; 1400 return 0; 1401 } 1402 1403 static const struct snd_pcm_ops snd_emu10k1_playback_ops = { 1404 .open = snd_emu10k1_playback_open, 1405 .close = snd_emu10k1_playback_close, 1406 .hw_params = snd_emu10k1_playback_hw_params, 1407 .hw_free = snd_emu10k1_playback_hw_free, 1408 .prepare = snd_emu10k1_playback_prepare, 1409 .trigger = snd_emu10k1_playback_trigger, 1410 .pointer = snd_emu10k1_playback_pointer, 1411 }; 1412 1413 static const struct snd_pcm_ops snd_emu10k1_capture_ops = { 1414 .open = snd_emu10k1_capture_open, 1415 .close = snd_emu10k1_capture_close, 1416 .prepare = snd_emu10k1_capture_prepare, 1417 .trigger = snd_emu10k1_capture_trigger, 1418 .pointer = snd_emu10k1_capture_pointer, 1419 }; 1420 1421 /* EFX playback */ 1422 static const struct snd_pcm_ops snd_emu10k1_efx_playback_ops = { 1423 .open = snd_emu10k1_efx_playback_open, 1424 .close = snd_emu10k1_efx_playback_close, 1425 .hw_params = snd_emu10k1_playback_hw_params, 1426 .hw_free = snd_emu10k1_playback_hw_free, 1427 .prepare = snd_emu10k1_efx_playback_prepare, 1428 .trigger = snd_emu10k1_efx_playback_trigger, 1429 .pointer = snd_emu10k1_playback_pointer, 1430 }; 1431 1432 int snd_emu10k1_pcm(struct snd_emu10k1 *emu, int device) 1433 { 1434 struct snd_pcm *pcm; 1435 struct snd_pcm_substream *substream; 1436 int err; 1437 1438 err = snd_pcm_new(emu->card, "emu10k1", device, 32, 1, &pcm); 1439 if (err < 0) 1440 return err; 1441 1442 pcm->private_data = emu; 1443 1444 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_playback_ops); 1445 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_ops); 1446 1447 pcm->info_flags = 0; 1448 pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; 1449 strcpy(pcm->name, "ADC Capture/Standard PCM Playback"); 1450 emu->pcm = pcm; 1451 1452 /* playback substream can't use managed buffers due to alignment */ 1453 for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) 1454 snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG, 1455 &emu->pci->dev, 1456 64*1024, 64*1024); 1457 1458 for (substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; substream; substream = substream->next) 1459 snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV, 1460 &emu->pci->dev, 64*1024, 64*1024); 1461 1462 return 0; 1463 } 1464 1465 int snd_emu10k1_pcm_multi(struct snd_emu10k1 *emu, int device) 1466 { 1467 struct snd_pcm *pcm; 1468 struct snd_pcm_substream *substream; 1469 int err; 1470 1471 err = snd_pcm_new(emu->card, "emu10k1", device, 1, 0, &pcm); 1472 if (err < 0) 1473 return err; 1474 1475 pcm->private_data = emu; 1476 1477 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_efx_playback_ops); 1478 1479 pcm->info_flags = 0; 1480 pcm->dev_subclass = SNDRV_PCM_SUBCLASS_GENERIC_MIX; 1481 strcpy(pcm->name, "Multichannel Playback"); 1482 emu->pcm_multi = pcm; 1483 1484 for (substream = pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream; substream; substream = substream->next) 1485 snd_pcm_lib_preallocate_pages(substream, SNDRV_DMA_TYPE_DEV_SG, 1486 &emu->pci->dev, 1487 64*1024, 64*1024); 1488 1489 return 0; 1490 } 1491 1492 1493 static const struct snd_pcm_ops snd_emu10k1_capture_mic_ops = { 1494 .open = snd_emu10k1_capture_mic_open, 1495 .close = snd_emu10k1_capture_mic_close, 1496 .prepare = snd_emu10k1_capture_prepare, 1497 .trigger = snd_emu10k1_capture_trigger, 1498 .pointer = snd_emu10k1_capture_pointer, 1499 }; 1500 1501 int snd_emu10k1_pcm_mic(struct snd_emu10k1 *emu, int device) 1502 { 1503 struct snd_pcm *pcm; 1504 int err; 1505 1506 err = snd_pcm_new(emu->card, "emu10k1 mic", device, 0, 1, &pcm); 1507 if (err < 0) 1508 return err; 1509 1510 pcm->private_data = emu; 1511 1512 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_mic_ops); 1513 1514 pcm->info_flags = 0; 1515 strcpy(pcm->name, "Mic Capture"); 1516 emu->pcm_mic = pcm; 1517 1518 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 1519 64*1024, 64*1024); 1520 1521 return 0; 1522 } 1523 1524 static int snd_emu10k1_pcm_efx_voices_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 1525 { 1526 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); 1527 int nefx = emu->audigy ? 64 : 32; 1528 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 1529 uinfo->count = nefx; 1530 uinfo->value.integer.min = 0; 1531 uinfo->value.integer.max = 1; 1532 return 0; 1533 } 1534 1535 static int snd_emu10k1_pcm_efx_voices_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1536 { 1537 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); 1538 int nefx = emu->audigy ? 64 : 32; 1539 int idx; 1540 1541 for (idx = 0; idx < nefx; idx++) 1542 ucontrol->value.integer.value[idx] = (emu->efx_voices_mask[idx / 32] & (1 << (idx % 32))) ? 1 : 0; 1543 return 0; 1544 } 1545 1546 static int snd_emu10k1_pcm_efx_voices_mask_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 1547 { 1548 struct snd_emu10k1 *emu = snd_kcontrol_chip(kcontrol); 1549 unsigned int nval[2], bits; 1550 int nefx = emu->audigy ? 64 : 32; 1551 int change, idx; 1552 1553 nval[0] = nval[1] = 0; 1554 for (idx = 0, bits = 0; idx < nefx; idx++) 1555 if (ucontrol->value.integer.value[idx]) { 1556 nval[idx / 32] |= 1 << (idx % 32); 1557 bits++; 1558 } 1559 1560 if (bits == 9 || bits == 11 || bits == 13 || bits == 15 || bits > 16) 1561 return -EINVAL; 1562 1563 spin_lock_irq(&emu->reg_lock); 1564 change = (nval[0] != emu->efx_voices_mask[0]) || 1565 (nval[1] != emu->efx_voices_mask[1]); 1566 emu->efx_voices_mask[0] = nval[0]; 1567 emu->efx_voices_mask[1] = nval[1]; 1568 spin_unlock_irq(&emu->reg_lock); 1569 return change; 1570 } 1571 1572 static const struct snd_kcontrol_new snd_emu10k1_pcm_efx_voices_mask = { 1573 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1574 .name = "Captured FX8010 Outputs", 1575 .info = snd_emu10k1_pcm_efx_voices_mask_info, 1576 .get = snd_emu10k1_pcm_efx_voices_mask_get, 1577 .put = snd_emu10k1_pcm_efx_voices_mask_put 1578 }; 1579 1580 static const struct snd_pcm_ops snd_emu10k1_capture_efx_ops = { 1581 .open = snd_emu10k1_capture_efx_open, 1582 .close = snd_emu10k1_capture_efx_close, 1583 .prepare = snd_emu10k1_capture_prepare, 1584 .trigger = snd_emu10k1_capture_trigger, 1585 .pointer = snd_emu10k1_capture_pointer, 1586 }; 1587 1588 1589 /* EFX playback */ 1590 1591 #define INITIAL_TRAM_SHIFT 14 1592 #define INITIAL_TRAM_POS(size) ((((size) / 2) - INITIAL_TRAM_SHIFT) - 1) 1593 1594 static void snd_emu10k1_fx8010_playback_irq(struct snd_emu10k1 *emu, void *private_data) 1595 { 1596 struct snd_pcm_substream *substream = private_data; 1597 snd_pcm_period_elapsed(substream); 1598 } 1599 1600 static void snd_emu10k1_fx8010_playback_tram_poke1(unsigned short *dst_left, 1601 unsigned short *dst_right, 1602 unsigned short *src, 1603 unsigned int count, 1604 unsigned int tram_shift) 1605 { 1606 /* 1607 dev_dbg(emu->card->dev, 1608 "tram_poke1: dst_left = 0x%p, dst_right = 0x%p, " 1609 "src = 0x%p, count = 0x%x\n", 1610 dst_left, dst_right, src, count); 1611 */ 1612 if ((tram_shift & 1) == 0) { 1613 while (count--) { 1614 *dst_left-- = *src++; 1615 *dst_right-- = *src++; 1616 } 1617 } else { 1618 while (count--) { 1619 *dst_right-- = *src++; 1620 *dst_left-- = *src++; 1621 } 1622 } 1623 } 1624 1625 static void fx8010_pb_trans_copy(struct snd_pcm_substream *substream, 1626 struct snd_pcm_indirect *rec, size_t bytes) 1627 { 1628 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1629 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1630 unsigned int tram_size = pcm->buffer_size; 1631 unsigned short *src = (unsigned short *)(substream->runtime->dma_area + rec->sw_data); 1632 unsigned int frames = bytes >> 2, count; 1633 unsigned int tram_pos = pcm->tram_pos; 1634 unsigned int tram_shift = pcm->tram_shift; 1635 1636 while (frames > tram_pos) { 1637 count = tram_pos + 1; 1638 snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos, 1639 (unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2, 1640 src, count, tram_shift); 1641 src += count * 2; 1642 frames -= count; 1643 tram_pos = (tram_size / 2) - 1; 1644 tram_shift++; 1645 } 1646 snd_emu10k1_fx8010_playback_tram_poke1((unsigned short *)emu->fx8010.etram_pages.area + tram_pos, 1647 (unsigned short *)emu->fx8010.etram_pages.area + tram_pos + tram_size / 2, 1648 src, frames, tram_shift); 1649 tram_pos -= frames; 1650 pcm->tram_pos = tram_pos; 1651 pcm->tram_shift = tram_shift; 1652 } 1653 1654 static int snd_emu10k1_fx8010_playback_transfer(struct snd_pcm_substream *substream) 1655 { 1656 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1657 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1658 1659 return snd_pcm_indirect_playback_transfer(substream, &pcm->pcm_rec, 1660 fx8010_pb_trans_copy); 1661 } 1662 1663 static int snd_emu10k1_fx8010_playback_hw_free(struct snd_pcm_substream *substream) 1664 { 1665 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1666 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1667 unsigned int i; 1668 1669 for (i = 0; i < pcm->channels; i++) 1670 snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, 0); 1671 return 0; 1672 } 1673 1674 static int snd_emu10k1_fx8010_playback_prepare(struct snd_pcm_substream *substream) 1675 { 1676 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1677 struct snd_pcm_runtime *runtime = substream->runtime; 1678 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1679 unsigned int i; 1680 1681 /* 1682 dev_dbg(emu->card->dev, "prepare: etram_pages = 0x%p, dma_area = 0x%x, " 1683 "buffer_size = 0x%x (0x%x)\n", 1684 emu->fx8010.etram_pages, runtime->dma_area, 1685 runtime->buffer_size, runtime->buffer_size << 2); 1686 */ 1687 memset(&pcm->pcm_rec, 0, sizeof(pcm->pcm_rec)); 1688 pcm->pcm_rec.hw_buffer_size = pcm->buffer_size * 2; /* byte size */ 1689 pcm->pcm_rec.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 1690 pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size); 1691 pcm->tram_shift = 0; 1692 snd_emu10k1_ptr_write_multiple(emu, 0, 1693 emu->gpr_base + pcm->gpr_running, 0, /* reset */ 1694 emu->gpr_base + pcm->gpr_trigger, 0, /* reset */ 1695 emu->gpr_base + pcm->gpr_size, runtime->buffer_size, 1696 emu->gpr_base + pcm->gpr_ptr, 0, /* reset ptr number */ 1697 emu->gpr_base + pcm->gpr_count, runtime->period_size, 1698 emu->gpr_base + pcm->gpr_tmpcount, runtime->period_size, 1699 REGLIST_END); 1700 for (i = 0; i < pcm->channels; i++) 1701 snd_emu10k1_ptr_write(emu, TANKMEMADDRREGBASE + 0x80 + pcm->etram[i], 0, (TANKMEMADDRREG_READ|TANKMEMADDRREG_ALIGN) + i * (runtime->buffer_size / pcm->channels)); 1702 return 0; 1703 } 1704 1705 static int snd_emu10k1_fx8010_playback_trigger(struct snd_pcm_substream *substream, int cmd) 1706 { 1707 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1708 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1709 int result = 0; 1710 1711 spin_lock(&emu->reg_lock); 1712 switch (cmd) { 1713 case SNDRV_PCM_TRIGGER_START: 1714 /* follow thru */ 1715 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 1716 case SNDRV_PCM_TRIGGER_RESUME: 1717 #ifdef EMU10K1_SET_AC3_IEC958 1718 { 1719 int i; 1720 for (i = 0; i < 3; i++) { 1721 unsigned int bits; 1722 bits = SPCS_CLKACCY_1000PPM | SPCS_SAMPLERATE_48 | 1723 SPCS_CHANNELNUM_LEFT | SPCS_SOURCENUM_UNSPEC | SPCS_GENERATIONSTATUS | 1724 0x00001200 | SPCS_EMPHASIS_NONE | SPCS_COPYRIGHT | SPCS_NOTAUDIODATA; 1725 snd_emu10k1_ptr_write(emu, SPCS0 + i, 0, bits); 1726 } 1727 } 1728 #endif 1729 result = snd_emu10k1_fx8010_register_irq_handler(emu, snd_emu10k1_fx8010_playback_irq, pcm->gpr_running, substream, &pcm->irq); 1730 if (result < 0) 1731 goto __err; 1732 snd_emu10k1_fx8010_playback_transfer(substream); /* roll the ball */ 1733 snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 1); 1734 break; 1735 case SNDRV_PCM_TRIGGER_STOP: 1736 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 1737 case SNDRV_PCM_TRIGGER_SUSPEND: 1738 snd_emu10k1_fx8010_unregister_irq_handler(emu, &pcm->irq); 1739 snd_emu10k1_ptr_write(emu, emu->gpr_base + pcm->gpr_trigger, 0, 0); 1740 pcm->tram_pos = INITIAL_TRAM_POS(pcm->buffer_size); 1741 pcm->tram_shift = 0; 1742 break; 1743 default: 1744 result = -EINVAL; 1745 break; 1746 } 1747 __err: 1748 spin_unlock(&emu->reg_lock); 1749 return result; 1750 } 1751 1752 static snd_pcm_uframes_t snd_emu10k1_fx8010_playback_pointer(struct snd_pcm_substream *substream) 1753 { 1754 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1755 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1756 size_t ptr; /* byte pointer */ 1757 1758 if (!snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_trigger, 0)) 1759 return 0; 1760 ptr = snd_emu10k1_ptr_read(emu, emu->gpr_base + pcm->gpr_ptr, 0) << 2; 1761 return snd_pcm_indirect_playback_pointer(substream, &pcm->pcm_rec, ptr); 1762 } 1763 1764 static const struct snd_pcm_hardware snd_emu10k1_fx8010_playback = 1765 { 1766 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1767 SNDRV_PCM_INFO_RESUME | 1768 /* SNDRV_PCM_INFO_MMAP_VALID | */ SNDRV_PCM_INFO_PAUSE | 1769 SNDRV_PCM_INFO_SYNC_APPLPTR), 1770 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1771 .rates = SNDRV_PCM_RATE_48000, 1772 .rate_min = 48000, 1773 .rate_max = 48000, 1774 .channels_min = 1, 1775 .channels_max = 1, 1776 .buffer_bytes_max = (128*1024), 1777 .period_bytes_min = 1024, 1778 .period_bytes_max = (128*1024), 1779 .periods_min = 2, 1780 .periods_max = 1024, 1781 .fifo_size = 0, 1782 }; 1783 1784 static int snd_emu10k1_fx8010_playback_open(struct snd_pcm_substream *substream) 1785 { 1786 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1787 struct snd_pcm_runtime *runtime = substream->runtime; 1788 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1789 1790 runtime->hw = snd_emu10k1_fx8010_playback; 1791 runtime->hw.channels_min = runtime->hw.channels_max = pcm->channels; 1792 runtime->hw.period_bytes_max = (pcm->buffer_size * 2) / 2; 1793 spin_lock_irq(&emu->reg_lock); 1794 if (pcm->valid == 0) { 1795 spin_unlock_irq(&emu->reg_lock); 1796 return -ENODEV; 1797 } 1798 pcm->opened = 1; 1799 spin_unlock_irq(&emu->reg_lock); 1800 return 0; 1801 } 1802 1803 static int snd_emu10k1_fx8010_playback_close(struct snd_pcm_substream *substream) 1804 { 1805 struct snd_emu10k1 *emu = snd_pcm_substream_chip(substream); 1806 struct snd_emu10k1_fx8010_pcm *pcm = &emu->fx8010.pcm[substream->number]; 1807 1808 spin_lock_irq(&emu->reg_lock); 1809 pcm->opened = 0; 1810 spin_unlock_irq(&emu->reg_lock); 1811 return 0; 1812 } 1813 1814 static const struct snd_pcm_ops snd_emu10k1_fx8010_playback_ops = { 1815 .open = snd_emu10k1_fx8010_playback_open, 1816 .close = snd_emu10k1_fx8010_playback_close, 1817 .hw_free = snd_emu10k1_fx8010_playback_hw_free, 1818 .prepare = snd_emu10k1_fx8010_playback_prepare, 1819 .trigger = snd_emu10k1_fx8010_playback_trigger, 1820 .pointer = snd_emu10k1_fx8010_playback_pointer, 1821 .ack = snd_emu10k1_fx8010_playback_transfer, 1822 }; 1823 1824 int snd_emu10k1_pcm_efx(struct snd_emu10k1 *emu, int device) 1825 { 1826 struct snd_pcm *pcm; 1827 struct snd_kcontrol *kctl; 1828 int err; 1829 1830 err = snd_pcm_new(emu->card, "emu10k1 efx", device, emu->audigy ? 0 : 8, 1, &pcm); 1831 if (err < 0) 1832 return err; 1833 1834 pcm->private_data = emu; 1835 1836 if (!emu->audigy) 1837 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_emu10k1_fx8010_playback_ops); 1838 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_emu10k1_capture_efx_ops); 1839 1840 pcm->info_flags = 0; 1841 if (emu->audigy) 1842 strcpy(pcm->name, "Multichannel Capture"); 1843 else 1844 strcpy(pcm->name, "Multichannel Capture/PT Playback"); 1845 emu->pcm_efx = pcm; 1846 1847 if (!emu->card_capabilities->emu_model) { 1848 // On Sound Blasters, the DSP code copies the EXTINs to FXBUS2. 1849 // The mask determines which of these and the EXTOUTs the multi- 1850 // channel capture actually records (the channel order is fixed). 1851 if (emu->audigy) { 1852 emu->efx_voices_mask[0] = 0; 1853 emu->efx_voices_mask[1] = 0xffff; 1854 } else { 1855 emu->efx_voices_mask[0] = 0xffff0000; 1856 emu->efx_voices_mask[1] = 0; 1857 } 1858 kctl = snd_ctl_new1(&snd_emu10k1_pcm_efx_voices_mask, emu); 1859 if (!kctl) 1860 return -ENOMEM; 1861 kctl->id.device = device; 1862 err = snd_ctl_add(emu->card, kctl); 1863 if (err < 0) 1864 return err; 1865 } else { 1866 // On E-MU cards, the DSP code copies the P16VINs/EMU32INs to 1867 // FXBUS2. These are already selected & routed by the FPGA, 1868 // so there is no need to apply additional masking. 1869 } 1870 1871 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &emu->pci->dev, 1872 64*1024, 64*1024); 1873 1874 return 0; 1875 } 1876