xref: /linux/sound/pci/echoaudio/midi.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /****************************************************************************
2 
3    Copyright Echo Digital Audio Corporation (c) 1998 - 2004
4    All rights reserved
5    www.echoaudio.com
6 
7    This file is part of Echo Digital Audio's generic driver library.
8 
9    Echo Digital Audio's generic driver library is free software;
10    you can redistribute it and/or modify it under the terms of
11    the GNU General Public License as published by the Free Software
12    Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22    MA  02111-1307, USA.
23 
24    *************************************************************************
25 
26  Translation from C++ and adaptation for use in ALSA-Driver
27  were made by Giuliano Pochini <pochini@shiny.it>
28 
29 ****************************************************************************/
30 
31 
32 /******************************************************************************
33 	MIDI lowlevel code
34 ******************************************************************************/
35 
36 /* Start and stop Midi input */
37 static int enable_midi_input(struct echoaudio *chip, char enable)
38 {
39 	dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable);
40 
41 	if (wait_handshake(chip))
42 		return -EIO;
43 
44 	if (enable) {
45 		chip->mtc_state = MIDI_IN_STATE_NORMAL;
46 		chip->comm_page->flags |=
47 			cpu_to_le32(DSP_FLAG_MIDI_INPUT);
48 	} else
49 		chip->comm_page->flags &=
50 			~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
51 
52 	clear_handshake(chip);
53 	return send_vector(chip, DSP_VC_UPDATE_FLAGS);
54 }
55 
56 
57 
58 /* Send a buffer full of MIDI data to the DSP
59 Returns how many actually written or < 0 on error */
60 static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
61 {
62 	if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
63 		return -EINVAL;
64 
65 	if (wait_handshake(chip))
66 		return -EIO;
67 
68 	/* HF4 indicates that it is safe to write MIDI output data */
69 	if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
70 		return 0;
71 
72 	chip->comm_page->midi_output[0] = bytes;
73 	memcpy(&chip->comm_page->midi_output[1], data, bytes);
74 	chip->comm_page->midi_out_free_count = 0;
75 	clear_handshake(chip);
76 	send_vector(chip, DSP_VC_MIDI_WRITE);
77 	dev_dbg(chip->card->dev, "write_midi: %d\n", bytes);
78 	return bytes;
79 }
80 
81 
82 
83 /* Run the state machine for MIDI input data
84 MIDI time code sync isn't supported by this code right now, but you still need
85 this state machine to parse the incoming MIDI data stream.  Every time the DSP
86 sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
87 stream. The DSP sample position is represented as a 32 bit unsigned value,
88 with the high 16 bits first, followed by the low 16 bits. Since these aren't
89 real MIDI bytes, the following logic is needed to skip them. */
90 static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
91 {
92 	switch (chip->mtc_state) {
93 	case MIDI_IN_STATE_NORMAL:
94 		if (midi_byte == 0xF1)
95 			chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
96 		break;
97 	case MIDI_IN_STATE_TS_HIGH:
98 		chip->mtc_state = MIDI_IN_STATE_TS_LOW;
99 		return MIDI_IN_SKIP_DATA;
100 		break;
101 	case MIDI_IN_STATE_TS_LOW:
102 		chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103 		return MIDI_IN_SKIP_DATA;
104 		break;
105 	case MIDI_IN_STATE_F1_DATA:
106 		chip->mtc_state = MIDI_IN_STATE_NORMAL;
107 		break;
108 	}
109 	return 0;
110 }
111 
112 
113 
114 /* This function is called from the IRQ handler and it reads the midi data
115 from the DSP's buffer.  It returns the number of bytes received. */
116 static int midi_service_irq(struct echoaudio *chip)
117 {
118 	short int count, midi_byte, i, received;
119 
120 	/* The count is at index 0, followed by actual data */
121 	count = le16_to_cpu(chip->comm_page->midi_input[0]);
122 
123 	if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124 		return 0;
125 
126 	/* Get the MIDI data from the comm page */
127 	received = 0;
128 	for (i = 1; i <= count; i++) {
129 		/* Get the MIDI byte */
130 		midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
131 
132 		/* Parse the incoming MIDI stream. The incoming MIDI data
133 		consists of MIDI bytes and timestamps for the MIDI time code
134 		0xF1 bytes. mtc_process_data() is a little state machine that
135 		parses the stream. If you get MIDI_IN_SKIP_DATA back, then
136 		this is a timestamp byte, not a MIDI byte, so don't store it
137 		in the MIDI input buffer. */
138 		if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
139 			continue;
140 
141 		chip->midi_buffer[received++] = (u8)midi_byte;
142 	}
143 
144 	return received;
145 }
146 
147 
148 
149 
150 /******************************************************************************
151 	MIDI interface
152 ******************************************************************************/
153 
154 static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
155 {
156 	struct echoaudio *chip = substream->rmidi->private_data;
157 
158 	chip->midi_in = substream;
159 	return 0;
160 }
161 
162 
163 
164 static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
165 					int up)
166 {
167 	struct echoaudio *chip = substream->rmidi->private_data;
168 
169 	if (up != chip->midi_input_enabled) {
170 		spin_lock_irq(&chip->lock);
171 		enable_midi_input(chip, up);
172 		spin_unlock_irq(&chip->lock);
173 		chip->midi_input_enabled = up;
174 	}
175 }
176 
177 
178 
179 static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
180 {
181 	struct echoaudio *chip = substream->rmidi->private_data;
182 
183 	chip->midi_in = NULL;
184 	return 0;
185 }
186 
187 
188 
189 static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
190 {
191 	struct echoaudio *chip = substream->rmidi->private_data;
192 
193 	chip->tinuse = 0;
194 	chip->midi_full = 0;
195 	chip->midi_out = substream;
196 	return 0;
197 }
198 
199 
200 
201 static void snd_echo_midi_output_write(struct timer_list *t)
202 {
203 	struct echoaudio *chip = from_timer(chip, t, timer);
204 	unsigned long flags;
205 	int bytes, sent, time;
206 	unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
207 
208 	/* No interrupts are involved: we have to check at regular intervals
209 	if the card's output buffer has room for new data. */
210 	sent = 0;
211 	spin_lock_irqsave(&chip->lock, flags);
212 	chip->midi_full = 0;
213 	if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
214 		bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
215 						  MIDI_OUT_BUFFER_SIZE - 1);
216 		dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes);
217 		sent = write_midi(chip, buf, bytes);
218 		if (sent < 0) {
219 			dev_err(chip->card->dev,
220 				"write_midi() error %d\n", sent);
221 			/* retry later */
222 			sent = 9000;
223 			chip->midi_full = 1;
224 		} else if (sent > 0) {
225 			dev_dbg(chip->card->dev, "%d bytes sent\n", sent);
226 			snd_rawmidi_transmit_ack(chip->midi_out, sent);
227 		} else {
228 			/* Buffer is full. DSP's internal buffer is 64 (128 ?)
229 			bytes long. Let's wait until half of them are sent */
230 			dev_dbg(chip->card->dev, "Full\n");
231 			sent = 32;
232 			chip->midi_full = 1;
233 		}
234 	}
235 
236 	/* We restart the timer only if there is some data left to send */
237 	if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
238 		/* The timer will expire slightly after the data has been
239 		   sent */
240 		time = (sent << 3) / 25 + 1;	/* 8/25=0.32ms to send a byte */
241 		mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
242 		dev_dbg(chip->card->dev,
243 			"Timer armed(%d)\n", ((time * HZ + 999) / 1000));
244 	}
245 	spin_unlock_irqrestore(&chip->lock, flags);
246 }
247 
248 
249 
250 static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
251 					 int up)
252 {
253 	struct echoaudio *chip = substream->rmidi->private_data;
254 
255 	dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up);
256 	spin_lock_irq(&chip->lock);
257 	if (up) {
258 		if (!chip->tinuse) {
259 			timer_setup(&chip->timer, snd_echo_midi_output_write,
260 				    0);
261 			chip->tinuse = 1;
262 		}
263 	} else {
264 		if (chip->tinuse) {
265 			chip->tinuse = 0;
266 			spin_unlock_irq(&chip->lock);
267 			del_timer_sync(&chip->timer);
268 			dev_dbg(chip->card->dev, "Timer removed\n");
269 			return;
270 		}
271 	}
272 	spin_unlock_irq(&chip->lock);
273 
274 	if (up && !chip->midi_full)
275 		snd_echo_midi_output_write(&chip->timer);
276 }
277 
278 
279 
280 static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
281 {
282 	struct echoaudio *chip = substream->rmidi->private_data;
283 
284 	chip->midi_out = NULL;
285 	return 0;
286 }
287 
288 
289 
290 static const struct snd_rawmidi_ops snd_echo_midi_input = {
291 	.open = snd_echo_midi_input_open,
292 	.close = snd_echo_midi_input_close,
293 	.trigger = snd_echo_midi_input_trigger,
294 };
295 
296 static const struct snd_rawmidi_ops snd_echo_midi_output = {
297 	.open = snd_echo_midi_output_open,
298 	.close = snd_echo_midi_output_close,
299 	.trigger = snd_echo_midi_output_trigger,
300 };
301 
302 
303 
304 /* <--snd_echo_probe() */
305 static int snd_echo_midi_create(struct snd_card *card,
306 				struct echoaudio *chip)
307 {
308 	int err;
309 
310 	err = snd_rawmidi_new(card, card->shortname, 0, 1, 1, &chip->rmidi);
311 	if (err < 0)
312 		return err;
313 
314 	strcpy(chip->rmidi->name, card->shortname);
315 	chip->rmidi->private_data = chip;
316 
317 	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
318 			    &snd_echo_midi_input);
319 	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
320 			    &snd_echo_midi_output);
321 
322 	chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
323 		SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
324 	return 0;
325 }
326