xref: /linux/sound/pci/echoaudio/midi.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /****************************************************************************
2 
3    Copyright Echo Digital Audio Corporation (c) 1998 - 2004
4    All rights reserved
5    www.echoaudio.com
6 
7    This file is part of Echo Digital Audio's generic driver library.
8 
9    Echo Digital Audio's generic driver library is free software;
10    you can redistribute it and/or modify it under the terms of
11    the GNU General Public License as published by the Free Software
12    Foundation.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330, Boston,
22    MA  02111-1307, USA.
23 
24    *************************************************************************
25 
26  Translation from C++ and adaptation for use in ALSA-Driver
27  were made by Giuliano Pochini <pochini@shiny.it>
28 
29 ****************************************************************************/
30 
31 
32 /******************************************************************************
33 	MIDI lowlevel code
34 ******************************************************************************/
35 
36 /* Start and stop Midi input */
37 static int enable_midi_input(struct echoaudio *chip, char enable)
38 {
39 	dev_dbg(chip->card->dev, "enable_midi_input(%d)\n", enable);
40 
41 	if (wait_handshake(chip))
42 		return -EIO;
43 
44 	if (enable) {
45 		chip->mtc_state = MIDI_IN_STATE_NORMAL;
46 		chip->comm_page->flags |=
47 			cpu_to_le32(DSP_FLAG_MIDI_INPUT);
48 	} else
49 		chip->comm_page->flags &=
50 			~cpu_to_le32(DSP_FLAG_MIDI_INPUT);
51 
52 	clear_handshake(chip);
53 	return send_vector(chip, DSP_VC_UPDATE_FLAGS);
54 }
55 
56 
57 
58 /* Send a buffer full of MIDI data to the DSP
59 Returns how many actually written or < 0 on error */
60 static int write_midi(struct echoaudio *chip, u8 *data, int bytes)
61 {
62 	if (snd_BUG_ON(bytes <= 0 || bytes >= MIDI_OUT_BUFFER_SIZE))
63 		return -EINVAL;
64 
65 	if (wait_handshake(chip))
66 		return -EIO;
67 
68 	/* HF4 indicates that it is safe to write MIDI output data */
69 	if (! (get_dsp_register(chip, CHI32_STATUS_REG) & CHI32_STATUS_REG_HF4))
70 		return 0;
71 
72 	chip->comm_page->midi_output[0] = bytes;
73 	memcpy(&chip->comm_page->midi_output[1], data, bytes);
74 	chip->comm_page->midi_out_free_count = 0;
75 	clear_handshake(chip);
76 	send_vector(chip, DSP_VC_MIDI_WRITE);
77 	dev_dbg(chip->card->dev, "write_midi: %d\n", bytes);
78 	return bytes;
79 }
80 
81 
82 
83 /* Run the state machine for MIDI input data
84 MIDI time code sync isn't supported by this code right now, but you still need
85 this state machine to parse the incoming MIDI data stream.  Every time the DSP
86 sees a 0xF1 byte come in, it adds the DSP sample position to the MIDI data
87 stream. The DSP sample position is represented as a 32 bit unsigned value,
88 with the high 16 bits first, followed by the low 16 bits. Since these aren't
89 real MIDI bytes, the following logic is needed to skip them. */
90 static inline int mtc_process_data(struct echoaudio *chip, short midi_byte)
91 {
92 	switch (chip->mtc_state) {
93 	case MIDI_IN_STATE_NORMAL:
94 		if (midi_byte == 0xF1)
95 			chip->mtc_state = MIDI_IN_STATE_TS_HIGH;
96 		break;
97 	case MIDI_IN_STATE_TS_HIGH:
98 		chip->mtc_state = MIDI_IN_STATE_TS_LOW;
99 		return MIDI_IN_SKIP_DATA;
100 		break;
101 	case MIDI_IN_STATE_TS_LOW:
102 		chip->mtc_state = MIDI_IN_STATE_F1_DATA;
103 		return MIDI_IN_SKIP_DATA;
104 		break;
105 	case MIDI_IN_STATE_F1_DATA:
106 		chip->mtc_state = MIDI_IN_STATE_NORMAL;
107 		break;
108 	}
109 	return 0;
110 }
111 
112 
113 
114 /* This function is called from the IRQ handler and it reads the midi data
115 from the DSP's buffer.  It returns the number of bytes received. */
116 static int midi_service_irq(struct echoaudio *chip)
117 {
118 	short int count, midi_byte, i, received;
119 
120 	/* The count is at index 0, followed by actual data */
121 	count = le16_to_cpu(chip->comm_page->midi_input[0]);
122 
123 	if (snd_BUG_ON(count >= MIDI_IN_BUFFER_SIZE))
124 		return 0;
125 
126 	/* Get the MIDI data from the comm page */
127 	i = 1;
128 	received = 0;
129 	for (i = 1; i <= count; i++) {
130 		/* Get the MIDI byte */
131 		midi_byte = le16_to_cpu(chip->comm_page->midi_input[i]);
132 
133 		/* Parse the incoming MIDI stream. The incoming MIDI data
134 		consists of MIDI bytes and timestamps for the MIDI time code
135 		0xF1 bytes. mtc_process_data() is a little state machine that
136 		parses the stream. If you get MIDI_IN_SKIP_DATA back, then
137 		this is a timestamp byte, not a MIDI byte, so don't store it
138 		in the MIDI input buffer. */
139 		if (mtc_process_data(chip, midi_byte) == MIDI_IN_SKIP_DATA)
140 			continue;
141 
142 		chip->midi_buffer[received++] = (u8)midi_byte;
143 	}
144 
145 	return received;
146 }
147 
148 
149 
150 
151 /******************************************************************************
152 	MIDI interface
153 ******************************************************************************/
154 
155 static int snd_echo_midi_input_open(struct snd_rawmidi_substream *substream)
156 {
157 	struct echoaudio *chip = substream->rmidi->private_data;
158 
159 	chip->midi_in = substream;
160 	return 0;
161 }
162 
163 
164 
165 static void snd_echo_midi_input_trigger(struct snd_rawmidi_substream *substream,
166 					int up)
167 {
168 	struct echoaudio *chip = substream->rmidi->private_data;
169 
170 	if (up != chip->midi_input_enabled) {
171 		spin_lock_irq(&chip->lock);
172 		enable_midi_input(chip, up);
173 		spin_unlock_irq(&chip->lock);
174 		chip->midi_input_enabled = up;
175 	}
176 }
177 
178 
179 
180 static int snd_echo_midi_input_close(struct snd_rawmidi_substream *substream)
181 {
182 	struct echoaudio *chip = substream->rmidi->private_data;
183 
184 	chip->midi_in = NULL;
185 	return 0;
186 }
187 
188 
189 
190 static int snd_echo_midi_output_open(struct snd_rawmidi_substream *substream)
191 {
192 	struct echoaudio *chip = substream->rmidi->private_data;
193 
194 	chip->tinuse = 0;
195 	chip->midi_full = 0;
196 	chip->midi_out = substream;
197 	return 0;
198 }
199 
200 
201 
202 static void snd_echo_midi_output_write(unsigned long data)
203 {
204 	struct echoaudio *chip = (struct echoaudio *)data;
205 	unsigned long flags;
206 	int bytes, sent, time;
207 	unsigned char buf[MIDI_OUT_BUFFER_SIZE - 1];
208 
209 	/* No interrupts are involved: we have to check at regular intervals
210 	if the card's output buffer has room for new data. */
211 	sent = bytes = 0;
212 	spin_lock_irqsave(&chip->lock, flags);
213 	chip->midi_full = 0;
214 	if (!snd_rawmidi_transmit_empty(chip->midi_out)) {
215 		bytes = snd_rawmidi_transmit_peek(chip->midi_out, buf,
216 						  MIDI_OUT_BUFFER_SIZE - 1);
217 		dev_dbg(chip->card->dev, "Try to send %d bytes...\n", bytes);
218 		sent = write_midi(chip, buf, bytes);
219 		if (sent < 0) {
220 			dev_err(chip->card->dev,
221 				"write_midi() error %d\n", sent);
222 			/* retry later */
223 			sent = 9000;
224 			chip->midi_full = 1;
225 		} else if (sent > 0) {
226 			dev_dbg(chip->card->dev, "%d bytes sent\n", sent);
227 			snd_rawmidi_transmit_ack(chip->midi_out, sent);
228 		} else {
229 			/* Buffer is full. DSP's internal buffer is 64 (128 ?)
230 			bytes long. Let's wait until half of them are sent */
231 			dev_dbg(chip->card->dev, "Full\n");
232 			sent = 32;
233 			chip->midi_full = 1;
234 		}
235 	}
236 
237 	/* We restart the timer only if there is some data left to send */
238 	if (!snd_rawmidi_transmit_empty(chip->midi_out) && chip->tinuse) {
239 		/* The timer will expire slightly after the data has been
240 		   sent */
241 		time = (sent << 3) / 25 + 1;	/* 8/25=0.32ms to send a byte */
242 		mod_timer(&chip->timer, jiffies + (time * HZ + 999) / 1000);
243 		dev_dbg(chip->card->dev,
244 			"Timer armed(%d)\n", ((time * HZ + 999) / 1000));
245 	}
246 	spin_unlock_irqrestore(&chip->lock, flags);
247 }
248 
249 
250 
251 static void snd_echo_midi_output_trigger(struct snd_rawmidi_substream *substream,
252 					 int up)
253 {
254 	struct echoaudio *chip = substream->rmidi->private_data;
255 
256 	dev_dbg(chip->card->dev, "snd_echo_midi_output_trigger(%d)\n", up);
257 	spin_lock_irq(&chip->lock);
258 	if (up) {
259 		if (!chip->tinuse) {
260 			setup_timer(&chip->timer, snd_echo_midi_output_write,
261 				    (unsigned long)chip);
262 			chip->tinuse = 1;
263 		}
264 	} else {
265 		if (chip->tinuse) {
266 			chip->tinuse = 0;
267 			spin_unlock_irq(&chip->lock);
268 			del_timer_sync(&chip->timer);
269 			dev_dbg(chip->card->dev, "Timer removed\n");
270 			return;
271 		}
272 	}
273 	spin_unlock_irq(&chip->lock);
274 
275 	if (up && !chip->midi_full)
276 		snd_echo_midi_output_write((unsigned long)chip);
277 }
278 
279 
280 
281 static int snd_echo_midi_output_close(struct snd_rawmidi_substream *substream)
282 {
283 	struct echoaudio *chip = substream->rmidi->private_data;
284 
285 	chip->midi_out = NULL;
286 	return 0;
287 }
288 
289 
290 
291 static struct snd_rawmidi_ops snd_echo_midi_input = {
292 	.open = snd_echo_midi_input_open,
293 	.close = snd_echo_midi_input_close,
294 	.trigger = snd_echo_midi_input_trigger,
295 };
296 
297 static struct snd_rawmidi_ops snd_echo_midi_output = {
298 	.open = snd_echo_midi_output_open,
299 	.close = snd_echo_midi_output_close,
300 	.trigger = snd_echo_midi_output_trigger,
301 };
302 
303 
304 
305 /* <--snd_echo_probe() */
306 static int snd_echo_midi_create(struct snd_card *card,
307 				struct echoaudio *chip)
308 {
309 	int err;
310 
311 	if ((err = snd_rawmidi_new(card, card->shortname, 0, 1, 1,
312 				   &chip->rmidi)) < 0)
313 		return err;
314 
315 	strcpy(chip->rmidi->name, card->shortname);
316 	chip->rmidi->private_data = chip;
317 
318 	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_INPUT,
319 			    &snd_echo_midi_input);
320 	snd_rawmidi_set_ops(chip->rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT,
321 			    &snd_echo_midi_output);
322 
323 	chip->rmidi->info_flags |= SNDRV_RAWMIDI_INFO_OUTPUT |
324 		SNDRV_RAWMIDI_INFO_INPUT | SNDRV_RAWMIDI_INFO_DUPLEX;
325 	return 0;
326 }
327