xref: /linux/sound/pci/ctxfi/ctvmem.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File    ctvmem.c
9  *
10  * @Brief
11  * This file contains the implementation of virtual memory management object
12  * for card device.
13  *
14  * @Author Liu Chun
15  * @Date Apr 1 2008
16  */
17 
18 #include "ctvmem.h"
19 #include <linux/slab.h>
20 #include <linux/mm.h>
21 #include <linux/io.h>
22 #include <sound/pcm.h>
23 
24 #define CT_PTES_PER_PAGE (CT_PAGE_SIZE / sizeof(void *))
25 #define CT_ADDRS_PER_PAGE (CT_PTES_PER_PAGE * CT_PAGE_SIZE)
26 
27 /* *
28  * Find or create vm block based on requested @size.
29  * @size must be page aligned.
30  * */
31 static struct ct_vm_block *
32 get_vm_block(struct ct_vm *vm, unsigned int size)
33 {
34 	struct ct_vm_block *block = NULL, *entry;
35 	struct list_head *pos;
36 
37 	size = CT_PAGE_ALIGN(size);
38 	if (size > vm->size) {
39 		printk(KERN_ERR "ctxfi: Fail! No sufficient device virtural "
40 				  "memory space available!\n");
41 		return NULL;
42 	}
43 
44 	mutex_lock(&vm->lock);
45 	list_for_each(pos, &vm->unused) {
46 		entry = list_entry(pos, struct ct_vm_block, list);
47 		if (entry->size >= size)
48 			break; /* found a block that is big enough */
49 	}
50 	if (pos == &vm->unused)
51 		goto out;
52 
53 	if (entry->size == size) {
54 		/* Move the vm node from unused list to used list directly */
55 		list_move(&entry->list, &vm->used);
56 		vm->size -= size;
57 		block = entry;
58 		goto out;
59 	}
60 
61 	block = kzalloc(sizeof(*block), GFP_KERNEL);
62 	if (!block)
63 		goto out;
64 
65 	block->addr = entry->addr;
66 	block->size = size;
67 	list_add(&block->list, &vm->used);
68 	entry->addr += size;
69 	entry->size -= size;
70 	vm->size -= size;
71 
72  out:
73 	mutex_unlock(&vm->lock);
74 	return block;
75 }
76 
77 static void put_vm_block(struct ct_vm *vm, struct ct_vm_block *block)
78 {
79 	struct ct_vm_block *entry, *pre_ent;
80 	struct list_head *pos, *pre;
81 
82 	block->size = CT_PAGE_ALIGN(block->size);
83 
84 	mutex_lock(&vm->lock);
85 	list_del(&block->list);
86 	vm->size += block->size;
87 
88 	list_for_each(pos, &vm->unused) {
89 		entry = list_entry(pos, struct ct_vm_block, list);
90 		if (entry->addr >= (block->addr + block->size))
91 			break; /* found a position */
92 	}
93 	if (pos == &vm->unused) {
94 		list_add_tail(&block->list, &vm->unused);
95 		entry = block;
96 	} else {
97 		if ((block->addr + block->size) == entry->addr) {
98 			entry->addr = block->addr;
99 			entry->size += block->size;
100 			kfree(block);
101 		} else {
102 			__list_add(&block->list, pos->prev, pos);
103 			entry = block;
104 		}
105 	}
106 
107 	pos = &entry->list;
108 	pre = pos->prev;
109 	while (pre != &vm->unused) {
110 		entry = list_entry(pos, struct ct_vm_block, list);
111 		pre_ent = list_entry(pre, struct ct_vm_block, list);
112 		if ((pre_ent->addr + pre_ent->size) > entry->addr)
113 			break;
114 
115 		pre_ent->size += entry->size;
116 		list_del(pos);
117 		kfree(entry);
118 		pos = pre;
119 		pre = pos->prev;
120 	}
121 	mutex_unlock(&vm->lock);
122 }
123 
124 /* Map host addr (kmalloced/vmalloced) to device logical addr. */
125 static struct ct_vm_block *
126 ct_vm_map(struct ct_vm *vm, struct snd_pcm_substream *substream, int size)
127 {
128 	struct ct_vm_block *block;
129 	unsigned int pte_start;
130 	unsigned i, pages;
131 	unsigned long *ptp;
132 
133 	block = get_vm_block(vm, size);
134 	if (block == NULL) {
135 		printk(KERN_ERR "ctxfi: No virtual memory block that is big "
136 				  "enough to allocate!\n");
137 		return NULL;
138 	}
139 
140 	ptp = (unsigned long *)vm->ptp[0].area;
141 	pte_start = (block->addr >> CT_PAGE_SHIFT);
142 	pages = block->size >> CT_PAGE_SHIFT;
143 	for (i = 0; i < pages; i++) {
144 		unsigned long addr;
145 		addr = snd_pcm_sgbuf_get_addr(substream, i << CT_PAGE_SHIFT);
146 		ptp[pte_start + i] = addr;
147 	}
148 
149 	block->size = size;
150 	return block;
151 }
152 
153 static void ct_vm_unmap(struct ct_vm *vm, struct ct_vm_block *block)
154 {
155 	/* do unmapping */
156 	put_vm_block(vm, block);
157 }
158 
159 /* *
160  * return the host physical addr of the @index-th device
161  * page table page on success, or ~0UL on failure.
162  * The first returned ~0UL indicates the termination.
163  * */
164 static dma_addr_t
165 ct_get_ptp_phys(struct ct_vm *vm, int index)
166 {
167 	dma_addr_t addr;
168 
169 	addr = (index >= CT_PTP_NUM) ? ~0UL : vm->ptp[index].addr;
170 
171 	return addr;
172 }
173 
174 int ct_vm_create(struct ct_vm **rvm, struct pci_dev *pci)
175 {
176 	struct ct_vm *vm;
177 	struct ct_vm_block *block;
178 	int i, err = 0;
179 
180 	*rvm = NULL;
181 
182 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
183 	if (!vm)
184 		return -ENOMEM;
185 
186 	mutex_init(&vm->lock);
187 
188 	/* Allocate page table pages */
189 	for (i = 0; i < CT_PTP_NUM; i++) {
190 		err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
191 					  snd_dma_pci_data(pci),
192 					  PAGE_SIZE, &vm->ptp[i]);
193 		if (err < 0)
194 			break;
195 	}
196 	if (err < 0) {
197 		/* no page table pages are allocated */
198 		ct_vm_destroy(vm);
199 		return -ENOMEM;
200 	}
201 	vm->size = CT_ADDRS_PER_PAGE * i;
202 	vm->map = ct_vm_map;
203 	vm->unmap = ct_vm_unmap;
204 	vm->get_ptp_phys = ct_get_ptp_phys;
205 	INIT_LIST_HEAD(&vm->unused);
206 	INIT_LIST_HEAD(&vm->used);
207 	block = kzalloc(sizeof(*block), GFP_KERNEL);
208 	if (NULL != block) {
209 		block->addr = 0;
210 		block->size = vm->size;
211 		list_add(&block->list, &vm->unused);
212 	}
213 
214 	*rvm = vm;
215 	return 0;
216 }
217 
218 /* The caller must ensure no mapping pages are being used
219  * by hardware before calling this function */
220 void ct_vm_destroy(struct ct_vm *vm)
221 {
222 	int i;
223 	struct list_head *pos;
224 	struct ct_vm_block *entry;
225 
226 	/* free used and unused list nodes */
227 	while (!list_empty(&vm->used)) {
228 		pos = vm->used.next;
229 		list_del(pos);
230 		entry = list_entry(pos, struct ct_vm_block, list);
231 		kfree(entry);
232 	}
233 	while (!list_empty(&vm->unused)) {
234 		pos = vm->unused.next;
235 		list_del(pos);
236 		entry = list_entry(pos, struct ct_vm_block, list);
237 		kfree(entry);
238 	}
239 
240 	/* free allocated page table pages */
241 	for (i = 0; i < CT_PTP_NUM; i++)
242 		snd_dma_free_pages(&vm->ptp[i]);
243 
244 	vm->size = 0;
245 
246 	kfree(vm);
247 }
248