1 /** 2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 3 * 4 * This source file is released under GPL v2 license (no other versions). 5 * See the COPYING file included in the main directory of this source 6 * distribution for the license terms and conditions. 7 * 8 * @File cthw20k2.c 9 * 10 * @Brief 11 * This file contains the implementation of hardware access methord for 20k2. 12 * 13 * @Author Liu Chun 14 * @Date May 14 2008 15 * 16 */ 17 18 #include <linux/types.h> 19 #include <linux/slab.h> 20 #include <linux/pci.h> 21 #include <linux/io.h> 22 #include <linux/string.h> 23 #include <linux/kernel.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include "cthw20k2.h" 27 #include "ct20k2reg.h" 28 29 #if BITS_PER_LONG == 32 30 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */ 31 #else 32 #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */ 33 #endif 34 35 struct hw20k2 { 36 struct hw hw; 37 /* for i2c */ 38 unsigned char dev_id; 39 unsigned char addr_size; 40 unsigned char data_size; 41 }; 42 43 static u32 hw_read_20kx(struct hw *hw, u32 reg); 44 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); 45 46 /* 47 * Type definition block. 48 * The layout of control structures can be directly applied on 20k2 chip. 49 */ 50 51 /* 52 * SRC control block definitions. 53 */ 54 55 /* SRC resource control block */ 56 #define SRCCTL_STATE 0x00000007 57 #define SRCCTL_BM 0x00000008 58 #define SRCCTL_RSR 0x00000030 59 #define SRCCTL_SF 0x000001C0 60 #define SRCCTL_WR 0x00000200 61 #define SRCCTL_PM 0x00000400 62 #define SRCCTL_ROM 0x00001800 63 #define SRCCTL_VO 0x00002000 64 #define SRCCTL_ST 0x00004000 65 #define SRCCTL_IE 0x00008000 66 #define SRCCTL_ILSZ 0x000F0000 67 #define SRCCTL_BP 0x00100000 68 69 #define SRCCCR_CISZ 0x000007FF 70 #define SRCCCR_CWA 0x001FF800 71 #define SRCCCR_D 0x00200000 72 #define SRCCCR_RS 0x01C00000 73 #define SRCCCR_NAL 0x3E000000 74 #define SRCCCR_RA 0xC0000000 75 76 #define SRCCA_CA 0x0FFFFFFF 77 #define SRCCA_RS 0xE0000000 78 79 #define SRCSA_SA 0x0FFFFFFF 80 81 #define SRCLA_LA 0x0FFFFFFF 82 83 /* Mixer Parameter Ring ram Low and Hight register. 84 * Fixed-point value in 8.24 format for parameter channel */ 85 #define MPRLH_PITCH 0xFFFFFFFF 86 87 /* SRC resource register dirty flags */ 88 union src_dirty { 89 struct { 90 u16 ctl:1; 91 u16 ccr:1; 92 u16 sa:1; 93 u16 la:1; 94 u16 ca:1; 95 u16 mpr:1; 96 u16 czbfs:1; /* Clear Z-Buffers */ 97 u16 rsv:9; 98 } bf; 99 u16 data; 100 }; 101 102 struct src_rsc_ctrl_blk { 103 unsigned int ctl; 104 unsigned int ccr; 105 unsigned int ca; 106 unsigned int sa; 107 unsigned int la; 108 unsigned int mpr; 109 union src_dirty dirty; 110 }; 111 112 /* SRC manager control block */ 113 union src_mgr_dirty { 114 struct { 115 u16 enb0:1; 116 u16 enb1:1; 117 u16 enb2:1; 118 u16 enb3:1; 119 u16 enb4:1; 120 u16 enb5:1; 121 u16 enb6:1; 122 u16 enb7:1; 123 u16 enbsa:1; 124 u16 rsv:7; 125 } bf; 126 u16 data; 127 }; 128 129 struct src_mgr_ctrl_blk { 130 unsigned int enbsa; 131 unsigned int enb[8]; 132 union src_mgr_dirty dirty; 133 }; 134 135 /* SRCIMP manager control block */ 136 #define SRCAIM_ARC 0x00000FFF 137 #define SRCAIM_NXT 0x00FF0000 138 #define SRCAIM_SRC 0xFF000000 139 140 struct srcimap { 141 unsigned int srcaim; 142 unsigned int idx; 143 }; 144 145 /* SRCIMP manager register dirty flags */ 146 union srcimp_mgr_dirty { 147 struct { 148 u16 srcimap:1; 149 u16 rsv:15; 150 } bf; 151 u16 data; 152 }; 153 154 struct srcimp_mgr_ctrl_blk { 155 struct srcimap srcimap; 156 union srcimp_mgr_dirty dirty; 157 }; 158 159 /* 160 * Function implementation block. 161 */ 162 163 static int src_get_rsc_ctrl_blk(void **rblk) 164 { 165 struct src_rsc_ctrl_blk *blk; 166 167 *rblk = NULL; 168 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 169 if (!blk) 170 return -ENOMEM; 171 172 *rblk = blk; 173 174 return 0; 175 } 176 177 static int src_put_rsc_ctrl_blk(void *blk) 178 { 179 kfree(blk); 180 181 return 0; 182 } 183 184 static int src_set_state(void *blk, unsigned int state) 185 { 186 struct src_rsc_ctrl_blk *ctl = blk; 187 188 set_field(&ctl->ctl, SRCCTL_STATE, state); 189 ctl->dirty.bf.ctl = 1; 190 return 0; 191 } 192 193 static int src_set_bm(void *blk, unsigned int bm) 194 { 195 struct src_rsc_ctrl_blk *ctl = blk; 196 197 set_field(&ctl->ctl, SRCCTL_BM, bm); 198 ctl->dirty.bf.ctl = 1; 199 return 0; 200 } 201 202 static int src_set_rsr(void *blk, unsigned int rsr) 203 { 204 struct src_rsc_ctrl_blk *ctl = blk; 205 206 set_field(&ctl->ctl, SRCCTL_RSR, rsr); 207 ctl->dirty.bf.ctl = 1; 208 return 0; 209 } 210 211 static int src_set_sf(void *blk, unsigned int sf) 212 { 213 struct src_rsc_ctrl_blk *ctl = blk; 214 215 set_field(&ctl->ctl, SRCCTL_SF, sf); 216 ctl->dirty.bf.ctl = 1; 217 return 0; 218 } 219 220 static int src_set_wr(void *blk, unsigned int wr) 221 { 222 struct src_rsc_ctrl_blk *ctl = blk; 223 224 set_field(&ctl->ctl, SRCCTL_WR, wr); 225 ctl->dirty.bf.ctl = 1; 226 return 0; 227 } 228 229 static int src_set_pm(void *blk, unsigned int pm) 230 { 231 struct src_rsc_ctrl_blk *ctl = blk; 232 233 set_field(&ctl->ctl, SRCCTL_PM, pm); 234 ctl->dirty.bf.ctl = 1; 235 return 0; 236 } 237 238 static int src_set_rom(void *blk, unsigned int rom) 239 { 240 struct src_rsc_ctrl_blk *ctl = blk; 241 242 set_field(&ctl->ctl, SRCCTL_ROM, rom); 243 ctl->dirty.bf.ctl = 1; 244 return 0; 245 } 246 247 static int src_set_vo(void *blk, unsigned int vo) 248 { 249 struct src_rsc_ctrl_blk *ctl = blk; 250 251 set_field(&ctl->ctl, SRCCTL_VO, vo); 252 ctl->dirty.bf.ctl = 1; 253 return 0; 254 } 255 256 static int src_set_st(void *blk, unsigned int st) 257 { 258 struct src_rsc_ctrl_blk *ctl = blk; 259 260 set_field(&ctl->ctl, SRCCTL_ST, st); 261 ctl->dirty.bf.ctl = 1; 262 return 0; 263 } 264 265 static int src_set_ie(void *blk, unsigned int ie) 266 { 267 struct src_rsc_ctrl_blk *ctl = blk; 268 269 set_field(&ctl->ctl, SRCCTL_IE, ie); 270 ctl->dirty.bf.ctl = 1; 271 return 0; 272 } 273 274 static int src_set_ilsz(void *blk, unsigned int ilsz) 275 { 276 struct src_rsc_ctrl_blk *ctl = blk; 277 278 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); 279 ctl->dirty.bf.ctl = 1; 280 return 0; 281 } 282 283 static int src_set_bp(void *blk, unsigned int bp) 284 { 285 struct src_rsc_ctrl_blk *ctl = blk; 286 287 set_field(&ctl->ctl, SRCCTL_BP, bp); 288 ctl->dirty.bf.ctl = 1; 289 return 0; 290 } 291 292 static int src_set_cisz(void *blk, unsigned int cisz) 293 { 294 struct src_rsc_ctrl_blk *ctl = blk; 295 296 set_field(&ctl->ccr, SRCCCR_CISZ, cisz); 297 ctl->dirty.bf.ccr = 1; 298 return 0; 299 } 300 301 static int src_set_ca(void *blk, unsigned int ca) 302 { 303 struct src_rsc_ctrl_blk *ctl = blk; 304 305 set_field(&ctl->ca, SRCCA_CA, ca); 306 ctl->dirty.bf.ca = 1; 307 return 0; 308 } 309 310 static int src_set_sa(void *blk, unsigned int sa) 311 { 312 struct src_rsc_ctrl_blk *ctl = blk; 313 314 set_field(&ctl->sa, SRCSA_SA, sa); 315 ctl->dirty.bf.sa = 1; 316 return 0; 317 } 318 319 static int src_set_la(void *blk, unsigned int la) 320 { 321 struct src_rsc_ctrl_blk *ctl = blk; 322 323 set_field(&ctl->la, SRCLA_LA, la); 324 ctl->dirty.bf.la = 1; 325 return 0; 326 } 327 328 static int src_set_pitch(void *blk, unsigned int pitch) 329 { 330 struct src_rsc_ctrl_blk *ctl = blk; 331 332 set_field(&ctl->mpr, MPRLH_PITCH, pitch); 333 ctl->dirty.bf.mpr = 1; 334 return 0; 335 } 336 337 static int src_set_clear_zbufs(void *blk, unsigned int clear) 338 { 339 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); 340 return 0; 341 } 342 343 static int src_set_dirty(void *blk, unsigned int flags) 344 { 345 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 346 return 0; 347 } 348 349 static int src_set_dirty_all(void *blk) 350 { 351 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 352 return 0; 353 } 354 355 #define AR_SLOT_SIZE 4096 356 #define AR_SLOT_BLOCK_SIZE 16 357 #define AR_PTS_PITCH 6 358 #define AR_PARAM_SRC_OFFSET 0x60 359 360 static unsigned int src_param_pitch_mixer(unsigned int src_idx) 361 { 362 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE 363 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; 364 365 } 366 367 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) 368 { 369 struct src_rsc_ctrl_blk *ctl = blk; 370 int i; 371 372 if (ctl->dirty.bf.czbfs) { 373 /* Clear Z-Buffer registers */ 374 for (i = 0; i < 8; i++) 375 hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0); 376 377 for (i = 0; i < 4; i++) 378 hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0); 379 380 for (i = 0; i < 8; i++) 381 hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0); 382 383 ctl->dirty.bf.czbfs = 0; 384 } 385 if (ctl->dirty.bf.mpr) { 386 /* Take the parameter mixer resource in the same group as that 387 * the idx src is in for simplicity. Unlike src, all conjugate 388 * parameter mixer resources must be programmed for 389 * corresponding conjugate src resources. */ 390 unsigned int pm_idx = src_param_pitch_mixer(idx); 391 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr); 392 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3); 393 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0); 394 ctl->dirty.bf.mpr = 0; 395 } 396 if (ctl->dirty.bf.sa) { 397 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa); 398 ctl->dirty.bf.sa = 0; 399 } 400 if (ctl->dirty.bf.la) { 401 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la); 402 ctl->dirty.bf.la = 0; 403 } 404 if (ctl->dirty.bf.ca) { 405 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca); 406 ctl->dirty.bf.ca = 0; 407 } 408 409 /* Write srccf register */ 410 hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0); 411 412 if (ctl->dirty.bf.ccr) { 413 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr); 414 ctl->dirty.bf.ccr = 0; 415 } 416 if (ctl->dirty.bf.ctl) { 417 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl); 418 ctl->dirty.bf.ctl = 0; 419 } 420 421 return 0; 422 } 423 424 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) 425 { 426 struct src_rsc_ctrl_blk *ctl = blk; 427 428 ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100); 429 ctl->dirty.bf.ca = 0; 430 431 return get_field(ctl->ca, SRCCA_CA); 432 } 433 434 static unsigned int src_get_dirty(void *blk) 435 { 436 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; 437 } 438 439 static unsigned int src_dirty_conj_mask(void) 440 { 441 return 0x20; 442 } 443 444 static int src_mgr_enbs_src(void *blk, unsigned int idx) 445 { 446 ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4)); 447 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; 448 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 449 return 0; 450 } 451 452 static int src_mgr_enb_src(void *blk, unsigned int idx) 453 { 454 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 455 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 456 return 0; 457 } 458 459 static int src_mgr_dsb_src(void *blk, unsigned int idx) 460 { 461 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); 462 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 463 return 0; 464 } 465 466 static int src_mgr_commit_write(struct hw *hw, void *blk) 467 { 468 struct src_mgr_ctrl_blk *ctl = blk; 469 int i; 470 unsigned int ret; 471 472 if (ctl->dirty.bf.enbsa) { 473 do { 474 ret = hw_read_20kx(hw, SRC_ENBSTAT); 475 } while (ret & 0x1); 476 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa); 477 ctl->dirty.bf.enbsa = 0; 478 } 479 for (i = 0; i < 8; i++) { 480 if ((ctl->dirty.data & (0x1 << i))) { 481 hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]); 482 ctl->dirty.data &= ~(0x1 << i); 483 } 484 } 485 486 return 0; 487 } 488 489 static int src_mgr_get_ctrl_blk(void **rblk) 490 { 491 struct src_mgr_ctrl_blk *blk; 492 493 *rblk = NULL; 494 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 495 if (!blk) 496 return -ENOMEM; 497 498 *rblk = blk; 499 500 return 0; 501 } 502 503 static int src_mgr_put_ctrl_blk(void *blk) 504 { 505 kfree(blk); 506 507 return 0; 508 } 509 510 static int srcimp_mgr_get_ctrl_blk(void **rblk) 511 { 512 struct srcimp_mgr_ctrl_blk *blk; 513 514 *rblk = NULL; 515 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 516 if (!blk) 517 return -ENOMEM; 518 519 *rblk = blk; 520 521 return 0; 522 } 523 524 static int srcimp_mgr_put_ctrl_blk(void *blk) 525 { 526 kfree(blk); 527 528 return 0; 529 } 530 531 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) 532 { 533 struct srcimp_mgr_ctrl_blk *ctl = blk; 534 535 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); 536 ctl->dirty.bf.srcimap = 1; 537 return 0; 538 } 539 540 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) 541 { 542 struct srcimp_mgr_ctrl_blk *ctl = blk; 543 544 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); 545 ctl->dirty.bf.srcimap = 1; 546 return 0; 547 } 548 549 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) 550 { 551 struct srcimp_mgr_ctrl_blk *ctl = blk; 552 553 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); 554 ctl->dirty.bf.srcimap = 1; 555 return 0; 556 } 557 558 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) 559 { 560 ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr; 561 ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1; 562 return 0; 563 } 564 565 static int srcimp_mgr_commit_write(struct hw *hw, void *blk) 566 { 567 struct srcimp_mgr_ctrl_blk *ctl = blk; 568 569 if (ctl->dirty.bf.srcimap) { 570 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100, 571 ctl->srcimap.srcaim); 572 ctl->dirty.bf.srcimap = 0; 573 } 574 575 return 0; 576 } 577 578 /* 579 * AMIXER control block definitions. 580 */ 581 582 #define AMOPLO_M 0x00000003 583 #define AMOPLO_IV 0x00000004 584 #define AMOPLO_X 0x0003FFF0 585 #define AMOPLO_Y 0xFFFC0000 586 587 #define AMOPHI_SADR 0x000000FF 588 #define AMOPHI_SE 0x80000000 589 590 /* AMIXER resource register dirty flags */ 591 union amixer_dirty { 592 struct { 593 u16 amoplo:1; 594 u16 amophi:1; 595 u16 rsv:14; 596 } bf; 597 u16 data; 598 }; 599 600 /* AMIXER resource control block */ 601 struct amixer_rsc_ctrl_blk { 602 unsigned int amoplo; 603 unsigned int amophi; 604 union amixer_dirty dirty; 605 }; 606 607 static int amixer_set_mode(void *blk, unsigned int mode) 608 { 609 struct amixer_rsc_ctrl_blk *ctl = blk; 610 611 set_field(&ctl->amoplo, AMOPLO_M, mode); 612 ctl->dirty.bf.amoplo = 1; 613 return 0; 614 } 615 616 static int amixer_set_iv(void *blk, unsigned int iv) 617 { 618 struct amixer_rsc_ctrl_blk *ctl = blk; 619 620 set_field(&ctl->amoplo, AMOPLO_IV, iv); 621 ctl->dirty.bf.amoplo = 1; 622 return 0; 623 } 624 625 static int amixer_set_x(void *blk, unsigned int x) 626 { 627 struct amixer_rsc_ctrl_blk *ctl = blk; 628 629 set_field(&ctl->amoplo, AMOPLO_X, x); 630 ctl->dirty.bf.amoplo = 1; 631 return 0; 632 } 633 634 static int amixer_set_y(void *blk, unsigned int y) 635 { 636 struct amixer_rsc_ctrl_blk *ctl = blk; 637 638 set_field(&ctl->amoplo, AMOPLO_Y, y); 639 ctl->dirty.bf.amoplo = 1; 640 return 0; 641 } 642 643 static int amixer_set_sadr(void *blk, unsigned int sadr) 644 { 645 struct amixer_rsc_ctrl_blk *ctl = blk; 646 647 set_field(&ctl->amophi, AMOPHI_SADR, sadr); 648 ctl->dirty.bf.amophi = 1; 649 return 0; 650 } 651 652 static int amixer_set_se(void *blk, unsigned int se) 653 { 654 struct amixer_rsc_ctrl_blk *ctl = blk; 655 656 set_field(&ctl->amophi, AMOPHI_SE, se); 657 ctl->dirty.bf.amophi = 1; 658 return 0; 659 } 660 661 static int amixer_set_dirty(void *blk, unsigned int flags) 662 { 663 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 664 return 0; 665 } 666 667 static int amixer_set_dirty_all(void *blk) 668 { 669 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 670 return 0; 671 } 672 673 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) 674 { 675 struct amixer_rsc_ctrl_blk *ctl = blk; 676 677 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { 678 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo); 679 ctl->dirty.bf.amoplo = 0; 680 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi); 681 ctl->dirty.bf.amophi = 0; 682 } 683 684 return 0; 685 } 686 687 static int amixer_get_y(void *blk) 688 { 689 struct amixer_rsc_ctrl_blk *ctl = blk; 690 691 return get_field(ctl->amoplo, AMOPLO_Y); 692 } 693 694 static unsigned int amixer_get_dirty(void *blk) 695 { 696 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; 697 } 698 699 static int amixer_rsc_get_ctrl_blk(void **rblk) 700 { 701 struct amixer_rsc_ctrl_blk *blk; 702 703 *rblk = NULL; 704 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 705 if (!blk) 706 return -ENOMEM; 707 708 *rblk = blk; 709 710 return 0; 711 } 712 713 static int amixer_rsc_put_ctrl_blk(void *blk) 714 { 715 kfree(blk); 716 717 return 0; 718 } 719 720 static int amixer_mgr_get_ctrl_blk(void **rblk) 721 { 722 *rblk = NULL; 723 724 return 0; 725 } 726 727 static int amixer_mgr_put_ctrl_blk(void *blk) 728 { 729 return 0; 730 } 731 732 /* 733 * DAIO control block definitions. 734 */ 735 736 /* Receiver Sample Rate Tracker Control register */ 737 #define SRTCTL_SRCO 0x000000FF 738 #define SRTCTL_SRCM 0x0000FF00 739 #define SRTCTL_RSR 0x00030000 740 #define SRTCTL_DRAT 0x00300000 741 #define SRTCTL_EC 0x01000000 742 #define SRTCTL_ET 0x10000000 743 744 /* DAIO Receiver register dirty flags */ 745 union dai_dirty { 746 struct { 747 u16 srt:1; 748 u16 rsv:15; 749 } bf; 750 u16 data; 751 }; 752 753 /* DAIO Receiver control block */ 754 struct dai_ctrl_blk { 755 unsigned int srt; 756 union dai_dirty dirty; 757 }; 758 759 /* Audio Input Mapper RAM */ 760 #define AIM_ARC 0x00000FFF 761 #define AIM_NXT 0x007F0000 762 763 struct daoimap { 764 unsigned int aim; 765 unsigned int idx; 766 }; 767 768 /* Audio Transmitter Control and Status register */ 769 #define ATXCTL_EN 0x00000001 770 #define ATXCTL_MODE 0x00000010 771 #define ATXCTL_CD 0x00000020 772 #define ATXCTL_RAW 0x00000100 773 #define ATXCTL_MT 0x00000200 774 #define ATXCTL_NUC 0x00003000 775 #define ATXCTL_BEN 0x00010000 776 #define ATXCTL_BMUX 0x00700000 777 #define ATXCTL_B24 0x01000000 778 #define ATXCTL_CPF 0x02000000 779 #define ATXCTL_RIV 0x10000000 780 #define ATXCTL_LIV 0x20000000 781 #define ATXCTL_RSAT 0x40000000 782 #define ATXCTL_LSAT 0x80000000 783 784 /* XDIF Transmitter register dirty flags */ 785 union dao_dirty { 786 struct { 787 u16 atxcsl:1; 788 u16 rsv:15; 789 } bf; 790 u16 data; 791 }; 792 793 /* XDIF Transmitter control block */ 794 struct dao_ctrl_blk { 795 /* XDIF Transmitter Channel Status Low Register */ 796 unsigned int atxcsl; 797 union dao_dirty dirty; 798 }; 799 800 /* Audio Receiver Control register */ 801 #define ARXCTL_EN 0x00000001 802 803 /* DAIO manager register dirty flags */ 804 union daio_mgr_dirty { 805 struct { 806 u32 atxctl:8; 807 u32 arxctl:8; 808 u32 daoimap:1; 809 u32 rsv:15; 810 } bf; 811 u32 data; 812 }; 813 814 /* DAIO manager control block */ 815 struct daio_mgr_ctrl_blk { 816 struct daoimap daoimap; 817 unsigned int txctl[8]; 818 unsigned int rxctl[8]; 819 union daio_mgr_dirty dirty; 820 }; 821 822 static int dai_srt_set_srco(void *blk, unsigned int src) 823 { 824 struct dai_ctrl_blk *ctl = blk; 825 826 set_field(&ctl->srt, SRTCTL_SRCO, src); 827 ctl->dirty.bf.srt = 1; 828 return 0; 829 } 830 831 static int dai_srt_set_srcm(void *blk, unsigned int src) 832 { 833 struct dai_ctrl_blk *ctl = blk; 834 835 set_field(&ctl->srt, SRTCTL_SRCM, src); 836 ctl->dirty.bf.srt = 1; 837 return 0; 838 } 839 840 static int dai_srt_set_rsr(void *blk, unsigned int rsr) 841 { 842 struct dai_ctrl_blk *ctl = blk; 843 844 set_field(&ctl->srt, SRTCTL_RSR, rsr); 845 ctl->dirty.bf.srt = 1; 846 return 0; 847 } 848 849 static int dai_srt_set_drat(void *blk, unsigned int drat) 850 { 851 struct dai_ctrl_blk *ctl = blk; 852 853 set_field(&ctl->srt, SRTCTL_DRAT, drat); 854 ctl->dirty.bf.srt = 1; 855 return 0; 856 } 857 858 static int dai_srt_set_ec(void *blk, unsigned int ec) 859 { 860 struct dai_ctrl_blk *ctl = blk; 861 862 set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0); 863 ctl->dirty.bf.srt = 1; 864 return 0; 865 } 866 867 static int dai_srt_set_et(void *blk, unsigned int et) 868 { 869 struct dai_ctrl_blk *ctl = blk; 870 871 set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0); 872 ctl->dirty.bf.srt = 1; 873 return 0; 874 } 875 876 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) 877 { 878 struct dai_ctrl_blk *ctl = blk; 879 880 if (ctl->dirty.bf.srt) { 881 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt); 882 ctl->dirty.bf.srt = 0; 883 } 884 885 return 0; 886 } 887 888 static int dai_get_ctrl_blk(void **rblk) 889 { 890 struct dai_ctrl_blk *blk; 891 892 *rblk = NULL; 893 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 894 if (!blk) 895 return -ENOMEM; 896 897 *rblk = blk; 898 899 return 0; 900 } 901 902 static int dai_put_ctrl_blk(void *blk) 903 { 904 kfree(blk); 905 906 return 0; 907 } 908 909 static int dao_set_spos(void *blk, unsigned int spos) 910 { 911 ((struct dao_ctrl_blk *)blk)->atxcsl = spos; 912 ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1; 913 return 0; 914 } 915 916 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) 917 { 918 struct dao_ctrl_blk *ctl = blk; 919 920 if (ctl->dirty.bf.atxcsl) { 921 if (idx < 4) { 922 /* S/PDIF SPOSx */ 923 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx, 924 ctl->atxcsl); 925 } 926 ctl->dirty.bf.atxcsl = 0; 927 } 928 929 return 0; 930 } 931 932 static int dao_get_spos(void *blk, unsigned int *spos) 933 { 934 *spos = ((struct dao_ctrl_blk *)blk)->atxcsl; 935 return 0; 936 } 937 938 static int dao_get_ctrl_blk(void **rblk) 939 { 940 struct dao_ctrl_blk *blk; 941 942 *rblk = NULL; 943 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 944 if (!blk) 945 return -ENOMEM; 946 947 *rblk = blk; 948 949 return 0; 950 } 951 952 static int dao_put_ctrl_blk(void *blk) 953 { 954 kfree(blk); 955 956 return 0; 957 } 958 959 static int daio_mgr_enb_dai(void *blk, unsigned int idx) 960 { 961 struct daio_mgr_ctrl_blk *ctl = blk; 962 963 set_field(&ctl->rxctl[idx], ARXCTL_EN, 1); 964 ctl->dirty.bf.arxctl |= (0x1 << idx); 965 return 0; 966 } 967 968 static int daio_mgr_dsb_dai(void *blk, unsigned int idx) 969 { 970 struct daio_mgr_ctrl_blk *ctl = blk; 971 972 set_field(&ctl->rxctl[idx], ARXCTL_EN, 0); 973 974 ctl->dirty.bf.arxctl |= (0x1 << idx); 975 return 0; 976 } 977 978 static int daio_mgr_enb_dao(void *blk, unsigned int idx) 979 { 980 struct daio_mgr_ctrl_blk *ctl = blk; 981 982 set_field(&ctl->txctl[idx], ATXCTL_EN, 1); 983 ctl->dirty.bf.atxctl |= (0x1 << idx); 984 return 0; 985 } 986 987 static int daio_mgr_dsb_dao(void *blk, unsigned int idx) 988 { 989 struct daio_mgr_ctrl_blk *ctl = blk; 990 991 set_field(&ctl->txctl[idx], ATXCTL_EN, 0); 992 ctl->dirty.bf.atxctl |= (0x1 << idx); 993 return 0; 994 } 995 996 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) 997 { 998 struct daio_mgr_ctrl_blk *ctl = blk; 999 1000 if (idx < 4) { 1001 /* S/PDIF output */ 1002 switch ((conf & 0x7)) { 1003 case 1: 1004 set_field(&ctl->txctl[idx], ATXCTL_NUC, 0); 1005 break; 1006 case 2: 1007 set_field(&ctl->txctl[idx], ATXCTL_NUC, 1); 1008 break; 1009 case 4: 1010 set_field(&ctl->txctl[idx], ATXCTL_NUC, 2); 1011 break; 1012 case 8: 1013 set_field(&ctl->txctl[idx], ATXCTL_NUC, 3); 1014 break; 1015 default: 1016 break; 1017 } 1018 /* CDIF */ 1019 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7))); 1020 /* Non-audio */ 1021 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1); 1022 /* Non-audio */ 1023 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1); 1024 set_field(&ctl->txctl[idx], ATXCTL_RAW, 1025 ((conf >> 3) & 0x1) ? 0 : 0); 1026 ctl->dirty.bf.atxctl |= (0x1 << idx); 1027 } else { 1028 /* I2S output */ 1029 /*idx %= 4; */ 1030 } 1031 return 0; 1032 } 1033 1034 static int daio_mgr_set_imaparc(void *blk, unsigned int slot) 1035 { 1036 struct daio_mgr_ctrl_blk *ctl = blk; 1037 1038 set_field(&ctl->daoimap.aim, AIM_ARC, slot); 1039 ctl->dirty.bf.daoimap = 1; 1040 return 0; 1041 } 1042 1043 static int daio_mgr_set_imapnxt(void *blk, unsigned int next) 1044 { 1045 struct daio_mgr_ctrl_blk *ctl = blk; 1046 1047 set_field(&ctl->daoimap.aim, AIM_NXT, next); 1048 ctl->dirty.bf.daoimap = 1; 1049 return 0; 1050 } 1051 1052 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) 1053 { 1054 ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr; 1055 ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1; 1056 return 0; 1057 } 1058 1059 static int daio_mgr_commit_write(struct hw *hw, void *blk) 1060 { 1061 struct daio_mgr_ctrl_blk *ctl = blk; 1062 unsigned int data; 1063 int i; 1064 1065 for (i = 0; i < 8; i++) { 1066 if ((ctl->dirty.bf.atxctl & (0x1 << i))) { 1067 data = ctl->txctl[i]; 1068 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); 1069 ctl->dirty.bf.atxctl &= ~(0x1 << i); 1070 mdelay(1); 1071 } 1072 if ((ctl->dirty.bf.arxctl & (0x1 << i))) { 1073 data = ctl->rxctl[i]; 1074 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); 1075 ctl->dirty.bf.arxctl &= ~(0x1 << i); 1076 mdelay(1); 1077 } 1078 } 1079 if (ctl->dirty.bf.daoimap) { 1080 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4, 1081 ctl->daoimap.aim); 1082 ctl->dirty.bf.daoimap = 0; 1083 } 1084 1085 return 0; 1086 } 1087 1088 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) 1089 { 1090 struct daio_mgr_ctrl_blk *blk; 1091 int i; 1092 1093 *rblk = NULL; 1094 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 1095 if (!blk) 1096 return -ENOMEM; 1097 1098 for (i = 0; i < 8; i++) { 1099 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i)); 1100 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i)); 1101 } 1102 1103 *rblk = blk; 1104 1105 return 0; 1106 } 1107 1108 static int daio_mgr_put_ctrl_blk(void *blk) 1109 { 1110 kfree(blk); 1111 1112 return 0; 1113 } 1114 1115 /* Timer interrupt */ 1116 static int set_timer_irq(struct hw *hw, int enable) 1117 { 1118 hw_write_20kx(hw, GIE, enable ? IT_INT : 0); 1119 return 0; 1120 } 1121 1122 static int set_timer_tick(struct hw *hw, unsigned int ticks) 1123 { 1124 if (ticks) 1125 ticks |= TIMR_IE | TIMR_IP; 1126 hw_write_20kx(hw, TIMR, ticks); 1127 return 0; 1128 } 1129 1130 static unsigned int get_wc(struct hw *hw) 1131 { 1132 return hw_read_20kx(hw, WC); 1133 } 1134 1135 /* Card hardware initialization block */ 1136 struct dac_conf { 1137 unsigned int msr; /* master sample rate in rsrs */ 1138 }; 1139 1140 struct adc_conf { 1141 unsigned int msr; /* master sample rate in rsrs */ 1142 unsigned char input; /* the input source of ADC */ 1143 unsigned char mic20db; /* boost mic by 20db if input is microphone */ 1144 }; 1145 1146 struct daio_conf { 1147 unsigned int msr; /* master sample rate in rsrs */ 1148 }; 1149 1150 struct trn_conf { 1151 unsigned long vm_pgt_phys; 1152 }; 1153 1154 static int hw_daio_init(struct hw *hw, const struct daio_conf *info) 1155 { 1156 u32 data; 1157 int i; 1158 1159 /* Program I2S with proper sample rate and enable the correct I2S 1160 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */ 1161 if (1 == info->msr) { 1162 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101); 1163 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101); 1164 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1165 } else if (2 == info->msr) { 1166 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111); 1167 /* Specify all playing 96khz 1168 * EA [0] - Enabled 1169 * RTA [4:5] - 96kHz 1170 * EB [8] - Enabled 1171 * RTB [12:13] - 96kHz 1172 * EC [16] - Enabled 1173 * RTC [20:21] - 96kHz 1174 * ED [24] - Enabled 1175 * RTD [28:29] - 96kHz */ 1176 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111); 1177 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1178 } else { 1179 printk(KERN_ALERT "ctxfi: ERROR!!! Invalid sampling rate!!!\n"); 1180 return -EINVAL; 1181 } 1182 1183 for (i = 0; i < 8; i++) { 1184 if (i <= 3) { 1185 /* 1st 3 channels are SPDIFs (SB0960) */ 1186 if (i == 3) 1187 data = 0x1001001; 1188 else 1189 data = 0x1000001; 1190 1191 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); 1192 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); 1193 1194 /* Initialize the SPDIF Out Channel status registers. 1195 * The value specified here is based on the typical 1196 * values provided in the specification, namely: Clock 1197 * Accuracy of 1000ppm, Sample Rate of 48KHz, 1198 * unspecified source number, Generation status = 1, 1199 * Category code = 0x12 (Digital Signal Mixer), 1200 * Mode = 0, Emph = 0, Copy Permitted, AN = 0 1201 * (indicating that we're transmitting digital audio, 1202 * and the Professional Use bit is 0. */ 1203 1204 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i), 1205 0x02109204); /* Default to 48kHz */ 1206 1207 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B); 1208 } else { 1209 /* Next 5 channels are I2S (SB0960) */ 1210 data = 0x11; 1211 hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data); 1212 if (2 == info->msr) { 1213 /* Four channels per sample period */ 1214 data |= 0x1000; 1215 } 1216 hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data); 1217 } 1218 } 1219 1220 return 0; 1221 } 1222 1223 /* TRANSPORT operations */ 1224 static int hw_trn_init(struct hw *hw, const struct trn_conf *info) 1225 { 1226 u32 vmctl, data; 1227 u32 ptp_phys_low, ptp_phys_high; 1228 int i; 1229 1230 /* Set up device page table */ 1231 if ((~0UL) == info->vm_pgt_phys) { 1232 printk(KERN_ALERT "ctxfi: " 1233 "Wrong device page table page address!!!\n"); 1234 return -1; 1235 } 1236 1237 vmctl = 0x80000C0F; /* 32-bit, 4k-size page */ 1238 ptp_phys_low = (u32)info->vm_pgt_phys; 1239 ptp_phys_high = upper_32_bits(info->vm_pgt_phys); 1240 if (sizeof(void *) == 8) /* 64bit address */ 1241 vmctl |= (3 << 8); 1242 /* Write page table physical address to all PTPAL registers */ 1243 for (i = 0; i < 64; i++) { 1244 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low); 1245 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high); 1246 } 1247 /* Enable virtual memory transfer */ 1248 hw_write_20kx(hw, VMEM_CTL, vmctl); 1249 /* Enable transport bus master and queueing of request */ 1250 hw_write_20kx(hw, TRANSPORT_CTL, 0x03); 1251 hw_write_20kx(hw, TRANSPORT_INT, 0x200c01); 1252 /* Enable transport ring */ 1253 data = hw_read_20kx(hw, TRANSPORT_ENB); 1254 hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03)); 1255 1256 return 0; 1257 } 1258 1259 /* Card initialization */ 1260 #define GCTL_AIE 0x00000001 1261 #define GCTL_UAA 0x00000002 1262 #define GCTL_DPC 0x00000004 1263 #define GCTL_DBP 0x00000008 1264 #define GCTL_ABP 0x00000010 1265 #define GCTL_TBP 0x00000020 1266 #define GCTL_SBP 0x00000040 1267 #define GCTL_FBP 0x00000080 1268 #define GCTL_ME 0x00000100 1269 #define GCTL_AID 0x00001000 1270 1271 #define PLLCTL_SRC 0x00000007 1272 #define PLLCTL_SPE 0x00000008 1273 #define PLLCTL_RD 0x000000F0 1274 #define PLLCTL_FD 0x0001FF00 1275 #define PLLCTL_OD 0x00060000 1276 #define PLLCTL_B 0x00080000 1277 #define PLLCTL_AS 0x00100000 1278 #define PLLCTL_LF 0x03E00000 1279 #define PLLCTL_SPS 0x1C000000 1280 #define PLLCTL_AD 0x60000000 1281 1282 #define PLLSTAT_CCS 0x00000007 1283 #define PLLSTAT_SPL 0x00000008 1284 #define PLLSTAT_CRD 0x000000F0 1285 #define PLLSTAT_CFD 0x0001FF00 1286 #define PLLSTAT_SL 0x00020000 1287 #define PLLSTAT_FAS 0x00040000 1288 #define PLLSTAT_B 0x00080000 1289 #define PLLSTAT_PD 0x00100000 1290 #define PLLSTAT_OCA 0x00200000 1291 #define PLLSTAT_NCA 0x00400000 1292 1293 static int hw_pll_init(struct hw *hw, unsigned int rsr) 1294 { 1295 unsigned int pllenb; 1296 unsigned int pllctl; 1297 unsigned int pllstat; 1298 int i; 1299 1300 pllenb = 0xB; 1301 hw_write_20kx(hw, PLL_ENB, pllenb); 1302 pllctl = 0x20D00000; 1303 set_field(&pllctl, PLLCTL_FD, 16 - 4); 1304 hw_write_20kx(hw, PLL_CTL, pllctl); 1305 mdelay(40); 1306 pllctl = hw_read_20kx(hw, PLL_CTL); 1307 set_field(&pllctl, PLLCTL_B, 0); 1308 if (48000 == rsr) { 1309 set_field(&pllctl, PLLCTL_FD, 16 - 2); 1310 set_field(&pllctl, PLLCTL_RD, 1 - 1); 1311 } else { /* 44100 */ 1312 set_field(&pllctl, PLLCTL_FD, 147 - 2); 1313 set_field(&pllctl, PLLCTL_RD, 10 - 1); 1314 } 1315 hw_write_20kx(hw, PLL_CTL, pllctl); 1316 mdelay(40); 1317 for (i = 0; i < 1000; i++) { 1318 pllstat = hw_read_20kx(hw, PLL_STAT); 1319 if (get_field(pllstat, PLLSTAT_PD)) 1320 continue; 1321 1322 if (get_field(pllstat, PLLSTAT_B) != 1323 get_field(pllctl, PLLCTL_B)) 1324 continue; 1325 1326 if (get_field(pllstat, PLLSTAT_CCS) != 1327 get_field(pllctl, PLLCTL_SRC)) 1328 continue; 1329 1330 if (get_field(pllstat, PLLSTAT_CRD) != 1331 get_field(pllctl, PLLCTL_RD)) 1332 continue; 1333 1334 if (get_field(pllstat, PLLSTAT_CFD) != 1335 get_field(pllctl, PLLCTL_FD)) 1336 continue; 1337 1338 break; 1339 } 1340 if (i >= 1000) { 1341 printk(KERN_ALERT "ctxfi: PLL initialization failed!!!\n"); 1342 return -EBUSY; 1343 } 1344 1345 return 0; 1346 } 1347 1348 static int hw_auto_init(struct hw *hw) 1349 { 1350 unsigned int gctl; 1351 int i; 1352 1353 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1354 set_field(&gctl, GCTL_AIE, 0); 1355 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1356 set_field(&gctl, GCTL_AIE, 1); 1357 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1358 mdelay(10); 1359 for (i = 0; i < 400000; i++) { 1360 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1361 if (get_field(gctl, GCTL_AID)) 1362 break; 1363 } 1364 if (!get_field(gctl, GCTL_AID)) { 1365 printk(KERN_ALERT "ctxfi: Card Auto-init failed!!!\n"); 1366 return -EBUSY; 1367 } 1368 1369 return 0; 1370 } 1371 1372 /* DAC operations */ 1373 1374 #define CS4382_MC1 0x1 1375 #define CS4382_MC2 0x2 1376 #define CS4382_MC3 0x3 1377 #define CS4382_FC 0x4 1378 #define CS4382_IC 0x5 1379 #define CS4382_XC1 0x6 1380 #define CS4382_VCA1 0x7 1381 #define CS4382_VCB1 0x8 1382 #define CS4382_XC2 0x9 1383 #define CS4382_VCA2 0xA 1384 #define CS4382_VCB2 0xB 1385 #define CS4382_XC3 0xC 1386 #define CS4382_VCA3 0xD 1387 #define CS4382_VCB3 0xE 1388 #define CS4382_XC4 0xF 1389 #define CS4382_VCA4 0x10 1390 #define CS4382_VCB4 0x11 1391 #define CS4382_CREV 0x12 1392 1393 /* I2C status */ 1394 #define STATE_LOCKED 0x00 1395 #define STATE_UNLOCKED 0xAA 1396 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */ 1397 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */ 1398 1399 #define I2C_STATUS_DCM 0x00000001 1400 #define I2C_STATUS_BC 0x00000006 1401 #define I2C_STATUS_APD 0x00000008 1402 #define I2C_STATUS_AB 0x00010000 1403 #define I2C_STATUS_DR 0x00800000 1404 1405 #define I2C_ADDRESS_PTAD 0x0000FFFF 1406 #define I2C_ADDRESS_SLAD 0x007F0000 1407 1408 struct regs_cs4382 { 1409 u32 mode_control_1; 1410 u32 mode_control_2; 1411 u32 mode_control_3; 1412 1413 u32 filter_control; 1414 u32 invert_control; 1415 1416 u32 mix_control_P1; 1417 u32 vol_control_A1; 1418 u32 vol_control_B1; 1419 1420 u32 mix_control_P2; 1421 u32 vol_control_A2; 1422 u32 vol_control_B2; 1423 1424 u32 mix_control_P3; 1425 u32 vol_control_A3; 1426 u32 vol_control_B3; 1427 1428 u32 mix_control_P4; 1429 u32 vol_control_A4; 1430 u32 vol_control_B4; 1431 }; 1432 1433 static int hw20k2_i2c_unlock_full_access(struct hw *hw) 1434 { 1435 u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4}; 1436 1437 /* Send keys for forced BIOS mode */ 1438 hw_write_20kx(hw, I2C_IF_WLOCK, 1439 UnlockKeySequence_FLASH_FULLACCESS_MODE[0]); 1440 hw_write_20kx(hw, I2C_IF_WLOCK, 1441 UnlockKeySequence_FLASH_FULLACCESS_MODE[1]); 1442 /* Check whether the chip is unlocked */ 1443 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED) 1444 return 0; 1445 1446 return -1; 1447 } 1448 1449 static int hw20k2_i2c_lock_chip(struct hw *hw) 1450 { 1451 /* Write twice */ 1452 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); 1453 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); 1454 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED) 1455 return 0; 1456 1457 return -1; 1458 } 1459 1460 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size) 1461 { 1462 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1463 int err; 1464 unsigned int i2c_status; 1465 unsigned int i2c_addr; 1466 1467 err = hw20k2_i2c_unlock_full_access(hw); 1468 if (err < 0) 1469 return err; 1470 1471 hw20k2->addr_size = addr_size; 1472 hw20k2->data_size = data_size; 1473 hw20k2->dev_id = dev_id; 1474 1475 i2c_addr = 0; 1476 set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id); 1477 1478 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr); 1479 1480 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1481 1482 set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */ 1483 1484 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1485 1486 return 0; 1487 } 1488 1489 static int hw20k2_i2c_uninit(struct hw *hw) 1490 { 1491 unsigned int i2c_status; 1492 unsigned int i2c_addr; 1493 1494 i2c_addr = 0; 1495 set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */ 1496 1497 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr); 1498 1499 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1500 1501 set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */ 1502 1503 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1504 1505 return hw20k2_i2c_lock_chip(hw); 1506 } 1507 1508 static int hw20k2_i2c_wait_data_ready(struct hw *hw) 1509 { 1510 int i = 0x400000; 1511 unsigned int ret; 1512 1513 do { 1514 ret = hw_read_20kx(hw, I2C_IF_STATUS); 1515 } while ((!(ret & DATA_READY)) && --i); 1516 1517 return i; 1518 } 1519 1520 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap) 1521 { 1522 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1523 unsigned int i2c_status; 1524 1525 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1526 set_field(&i2c_status, I2C_STATUS_BC, 1527 (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size); 1528 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1529 if (!hw20k2_i2c_wait_data_ready(hw)) 1530 return -1; 1531 1532 hw_write_20kx(hw, I2C_IF_WDATA, addr); 1533 if (!hw20k2_i2c_wait_data_ready(hw)) 1534 return -1; 1535 1536 /* Force a read operation */ 1537 hw_write_20kx(hw, I2C_IF_RDATA, 0); 1538 if (!hw20k2_i2c_wait_data_ready(hw)) 1539 return -1; 1540 1541 *datap = hw_read_20kx(hw, I2C_IF_RDATA); 1542 1543 return 0; 1544 } 1545 1546 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data) 1547 { 1548 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1549 unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr; 1550 unsigned int i2c_status; 1551 1552 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1553 1554 set_field(&i2c_status, I2C_STATUS_BC, 1555 (4 == (hw20k2->addr_size + hw20k2->data_size)) ? 1556 0 : (hw20k2->addr_size + hw20k2->data_size)); 1557 1558 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1559 hw20k2_i2c_wait_data_ready(hw); 1560 /* Dummy write to trigger the write oprtation */ 1561 hw_write_20kx(hw, I2C_IF_WDATA, 0); 1562 hw20k2_i2c_wait_data_ready(hw); 1563 1564 /* This is the real data */ 1565 hw_write_20kx(hw, I2C_IF_WDATA, i2c_data); 1566 hw20k2_i2c_wait_data_ready(hw); 1567 1568 return 0; 1569 } 1570 1571 static int hw_dac_init(struct hw *hw, const struct dac_conf *info) 1572 { 1573 int err; 1574 u32 data; 1575 int i; 1576 struct regs_cs4382 cs_read = {0}; 1577 struct regs_cs4382 cs_def = { 1578 0x00000001, /* Mode Control 1 */ 1579 0x00000000, /* Mode Control 2 */ 1580 0x00000084, /* Mode Control 3 */ 1581 0x00000000, /* Filter Control */ 1582 0x00000000, /* Invert Control */ 1583 0x00000024, /* Mixing Control Pair 1 */ 1584 0x00000000, /* Vol Control A1 */ 1585 0x00000000, /* Vol Control B1 */ 1586 0x00000024, /* Mixing Control Pair 2 */ 1587 0x00000000, /* Vol Control A2 */ 1588 0x00000000, /* Vol Control B2 */ 1589 0x00000024, /* Mixing Control Pair 3 */ 1590 0x00000000, /* Vol Control A3 */ 1591 0x00000000, /* Vol Control B3 */ 1592 0x00000024, /* Mixing Control Pair 4 */ 1593 0x00000000, /* Vol Control A4 */ 1594 0x00000000 /* Vol Control B4 */ 1595 }; 1596 1597 /* Set DAC reset bit as output */ 1598 data = hw_read_20kx(hw, GPIO_CTRL); 1599 data |= 0x02; 1600 hw_write_20kx(hw, GPIO_CTRL, data); 1601 1602 err = hw20k2_i2c_init(hw, 0x18, 1, 1); 1603 if (err < 0) 1604 goto End; 1605 1606 for (i = 0; i < 2; i++) { 1607 /* Reset DAC twice just in-case the chip 1608 * didn't initialized properly */ 1609 data = hw_read_20kx(hw, GPIO_DATA); 1610 /* GPIO data bit 1 */ 1611 data &= 0xFFFFFFFD; 1612 hw_write_20kx(hw, GPIO_DATA, data); 1613 mdelay(10); 1614 data |= 0x2; 1615 hw_write_20kx(hw, GPIO_DATA, data); 1616 mdelay(50); 1617 1618 /* Reset the 2nd time */ 1619 data &= 0xFFFFFFFD; 1620 hw_write_20kx(hw, GPIO_DATA, data); 1621 mdelay(10); 1622 data |= 0x2; 1623 hw_write_20kx(hw, GPIO_DATA, data); 1624 mdelay(50); 1625 1626 if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1)) 1627 continue; 1628 1629 if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2)) 1630 continue; 1631 1632 if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3)) 1633 continue; 1634 1635 if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control)) 1636 continue; 1637 1638 if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control)) 1639 continue; 1640 1641 if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1)) 1642 continue; 1643 1644 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1)) 1645 continue; 1646 1647 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1)) 1648 continue; 1649 1650 if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2)) 1651 continue; 1652 1653 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2)) 1654 continue; 1655 1656 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2)) 1657 continue; 1658 1659 if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3)) 1660 continue; 1661 1662 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3)) 1663 continue; 1664 1665 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3)) 1666 continue; 1667 1668 if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4)) 1669 continue; 1670 1671 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4)) 1672 continue; 1673 1674 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4)) 1675 continue; 1676 1677 if (memcmp(&cs_read, &cs_def, sizeof(cs_read))) 1678 continue; 1679 else 1680 break; 1681 } 1682 1683 if (i >= 2) 1684 goto End; 1685 1686 /* Note: Every I2C write must have some delay. 1687 * This is not a requirement but the delay works here... */ 1688 hw20k2_i2c_write(hw, CS4382_MC1, 0x80); 1689 hw20k2_i2c_write(hw, CS4382_MC2, 0x10); 1690 if (1 == info->msr) { 1691 hw20k2_i2c_write(hw, CS4382_XC1, 0x24); 1692 hw20k2_i2c_write(hw, CS4382_XC2, 0x24); 1693 hw20k2_i2c_write(hw, CS4382_XC3, 0x24); 1694 hw20k2_i2c_write(hw, CS4382_XC4, 0x24); 1695 } else if (2 == info->msr) { 1696 hw20k2_i2c_write(hw, CS4382_XC1, 0x25); 1697 hw20k2_i2c_write(hw, CS4382_XC2, 0x25); 1698 hw20k2_i2c_write(hw, CS4382_XC3, 0x25); 1699 hw20k2_i2c_write(hw, CS4382_XC4, 0x25); 1700 } else { 1701 hw20k2_i2c_write(hw, CS4382_XC1, 0x26); 1702 hw20k2_i2c_write(hw, CS4382_XC2, 0x26); 1703 hw20k2_i2c_write(hw, CS4382_XC3, 0x26); 1704 hw20k2_i2c_write(hw, CS4382_XC4, 0x26); 1705 } 1706 1707 return 0; 1708 End: 1709 1710 hw20k2_i2c_uninit(hw); 1711 return -1; 1712 } 1713 1714 /* ADC operations */ 1715 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1)) 1716 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF) 1717 1718 #define WM8775_IC 0x0B 1719 #define WM8775_MMC 0x0C 1720 #define WM8775_AADCL 0x0E 1721 #define WM8775_AADCR 0x0F 1722 #define WM8775_ADCMC 0x15 1723 #define WM8775_RESET 0x17 1724 1725 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) 1726 { 1727 u32 data; 1728 1729 data = hw_read_20kx(hw, GPIO_DATA); 1730 switch (type) { 1731 case ADC_MICIN: 1732 data = (data & (0x1 << 14)) ? 1 : 0; 1733 break; 1734 case ADC_LINEIN: 1735 data = (data & (0x1 << 14)) ? 0 : 1; 1736 break; 1737 default: 1738 data = 0; 1739 } 1740 return data; 1741 } 1742 1743 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) 1744 { 1745 u32 data; 1746 1747 data = hw_read_20kx(hw, GPIO_DATA); 1748 switch (type) { 1749 case ADC_MICIN: 1750 data |= (0x1 << 14); 1751 hw_write_20kx(hw, GPIO_DATA, data); 1752 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x101), 1753 MAKE_WM8775_DATA(0x101)); /* Mic-in */ 1754 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xE7), 1755 MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ 1756 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xE7), 1757 MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ 1758 break; 1759 case ADC_LINEIN: 1760 data &= ~(0x1 << 14); 1761 hw_write_20kx(hw, GPIO_DATA, data); 1762 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x102), 1763 MAKE_WM8775_DATA(0x102)); /* Line-in */ 1764 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xCF), 1765 MAKE_WM8775_DATA(0xCF)); /* No boost */ 1766 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xCF), 1767 MAKE_WM8775_DATA(0xCF)); /* No boost */ 1768 break; 1769 default: 1770 break; 1771 } 1772 1773 return 0; 1774 } 1775 1776 static int hw_adc_init(struct hw *hw, const struct adc_conf *info) 1777 { 1778 int err; 1779 u32 mux = 2, data, ctl; 1780 1781 /* Set ADC reset bit as output */ 1782 data = hw_read_20kx(hw, GPIO_CTRL); 1783 data |= (0x1 << 15); 1784 hw_write_20kx(hw, GPIO_CTRL, data); 1785 1786 /* Initialize I2C */ 1787 err = hw20k2_i2c_init(hw, 0x1A, 1, 1); 1788 if (err < 0) { 1789 printk(KERN_ALERT "ctxfi: Failure to acquire I2C!!!\n"); 1790 goto error; 1791 } 1792 1793 /* Make ADC in normal operation */ 1794 data = hw_read_20kx(hw, GPIO_DATA); 1795 data &= ~(0x1 << 15); 1796 mdelay(10); 1797 data |= (0x1 << 15); 1798 hw_write_20kx(hw, GPIO_DATA, data); 1799 mdelay(50); 1800 1801 /* Set the master mode (256fs) */ 1802 if (1 == info->msr) { 1803 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02), 1804 MAKE_WM8775_DATA(0x02)); 1805 } else if (2 == info->msr) { 1806 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A), 1807 MAKE_WM8775_DATA(0x0A)); 1808 } else { 1809 printk(KERN_ALERT "ctxfi: Invalid master sampling " 1810 "rate (msr %d)!!!\n", info->msr); 1811 err = -EINVAL; 1812 goto error; 1813 } 1814 1815 /* Configure GPIO bit 14 change to line-in/mic-in */ 1816 ctl = hw_read_20kx(hw, GPIO_CTRL); 1817 ctl |= 0x1 << 14; 1818 hw_write_20kx(hw, GPIO_CTRL, ctl); 1819 1820 /* Check using Mic-in or Line-in */ 1821 data = hw_read_20kx(hw, GPIO_DATA); 1822 1823 if (mux == 1) { 1824 /* Configures GPIO data to select Mic-in */ 1825 data |= 0x1 << 14; 1826 hw_write_20kx(hw, GPIO_DATA, data); 1827 1828 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x101), 1829 MAKE_WM8775_DATA(0x101)); /* Mic-in */ 1830 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xE7), 1831 MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ 1832 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xE7), 1833 MAKE_WM8775_DATA(0xE7)); /* +12dB boost */ 1834 } else if (mux == 2) { 1835 /* Configures GPIO data to select Line-in */ 1836 data &= ~(0x1 << 14); 1837 hw_write_20kx(hw, GPIO_DATA, data); 1838 1839 /* Setup ADC */ 1840 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, 0x102), 1841 MAKE_WM8775_DATA(0x102)); /* Line-in */ 1842 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, 0xCF), 1843 MAKE_WM8775_DATA(0xCF)); /* No boost */ 1844 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, 0xCF), 1845 MAKE_WM8775_DATA(0xCF)); /* No boost */ 1846 } else { 1847 printk(KERN_ALERT "ctxfi: ERROR!!! Invalid input mux!!!\n"); 1848 err = -EINVAL; 1849 goto error; 1850 } 1851 1852 return 0; 1853 1854 error: 1855 hw20k2_i2c_uninit(hw); 1856 return err; 1857 } 1858 1859 static int hw_have_digit_io_switch(struct hw *hw) 1860 { 1861 return 0; 1862 } 1863 1864 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id) 1865 { 1866 struct hw *hw = dev_id; 1867 unsigned int status; 1868 1869 status = hw_read_20kx(hw, GIP); 1870 if (!status) 1871 return IRQ_NONE; 1872 1873 if (hw->irq_callback) 1874 hw->irq_callback(hw->irq_callback_data, status); 1875 1876 hw_write_20kx(hw, GIP, status); 1877 return IRQ_HANDLED; 1878 } 1879 1880 static int hw_card_start(struct hw *hw) 1881 { 1882 int err = 0; 1883 struct pci_dev *pci = hw->pci; 1884 unsigned int gctl; 1885 1886 err = pci_enable_device(pci); 1887 if (err < 0) 1888 return err; 1889 1890 /* Set DMA transfer mask */ 1891 if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 || 1892 pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) { 1893 printk(KERN_ERR "ctxfi: architecture does not support PCI " 1894 "busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK); 1895 err = -ENXIO; 1896 goto error1; 1897 } 1898 1899 if (!hw->io_base) { 1900 err = pci_request_regions(pci, "XFi"); 1901 if (err < 0) 1902 goto error1; 1903 1904 hw->io_base = pci_resource_start(hw->pci, 2); 1905 hw->mem_base = (unsigned long)ioremap(hw->io_base, 1906 pci_resource_len(hw->pci, 2)); 1907 if (!hw->mem_base) { 1908 err = -ENOENT; 1909 goto error2; 1910 } 1911 } 1912 1913 /* Switch to 20k2 mode from UAA mode. */ 1914 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1915 set_field(&gctl, GCTL_UAA, 0); 1916 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1917 1918 if (hw->irq < 0) { 1919 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED, 1920 "ctxfi", hw); 1921 if (err < 0) { 1922 printk(KERN_ERR "XFi: Cannot get irq %d\n", pci->irq); 1923 goto error2; 1924 } 1925 hw->irq = pci->irq; 1926 } 1927 1928 pci_set_master(pci); 1929 1930 return 0; 1931 1932 /*error3: 1933 iounmap((void *)hw->mem_base); 1934 hw->mem_base = (unsigned long)NULL;*/ 1935 error2: 1936 pci_release_regions(pci); 1937 hw->io_base = 0; 1938 error1: 1939 pci_disable_device(pci); 1940 return err; 1941 } 1942 1943 static int hw_card_stop(struct hw *hw) 1944 { 1945 unsigned int data; 1946 1947 /* disable transport bus master and queueing of request */ 1948 hw_write_20kx(hw, TRANSPORT_CTL, 0x00); 1949 1950 /* disable pll */ 1951 data = hw_read_20kx(hw, PLL_ENB); 1952 hw_write_20kx(hw, PLL_ENB, (data & (~0x07))); 1953 1954 /* TODO: Disable interrupt and so on... */ 1955 return 0; 1956 } 1957 1958 static int hw_card_shutdown(struct hw *hw) 1959 { 1960 if (hw->irq >= 0) 1961 free_irq(hw->irq, hw); 1962 1963 hw->irq = -1; 1964 1965 if (hw->mem_base) 1966 iounmap((void *)hw->mem_base); 1967 1968 hw->mem_base = (unsigned long)NULL; 1969 1970 if (hw->io_base) 1971 pci_release_regions(hw->pci); 1972 1973 hw->io_base = 0; 1974 1975 pci_disable_device(hw->pci); 1976 1977 return 0; 1978 } 1979 1980 static int hw_card_init(struct hw *hw, struct card_conf *info) 1981 { 1982 int err; 1983 unsigned int gctl; 1984 u32 data = 0; 1985 struct dac_conf dac_info = {0}; 1986 struct adc_conf adc_info = {0}; 1987 struct daio_conf daio_info = {0}; 1988 struct trn_conf trn_info = {0}; 1989 1990 /* Get PCI io port/memory base address and 1991 * do 20kx core switch if needed. */ 1992 err = hw_card_start(hw); 1993 if (err) 1994 return err; 1995 1996 /* PLL init */ 1997 err = hw_pll_init(hw, info->rsr); 1998 if (err < 0) 1999 return err; 2000 2001 /* kick off auto-init */ 2002 err = hw_auto_init(hw); 2003 if (err < 0) 2004 return err; 2005 2006 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 2007 set_field(&gctl, GCTL_DBP, 1); 2008 set_field(&gctl, GCTL_TBP, 1); 2009 set_field(&gctl, GCTL_FBP, 1); 2010 set_field(&gctl, GCTL_DPC, 0); 2011 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 2012 2013 /* Reset all global pending interrupts */ 2014 hw_write_20kx(hw, GIE, 0); 2015 /* Reset all SRC pending interrupts */ 2016 hw_write_20kx(hw, SRC_IP, 0); 2017 2018 /* TODO: detect the card ID and configure GPIO accordingly. */ 2019 /* Configures GPIO (0xD802 0x98028) */ 2020 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/ 2021 /* Configures GPIO (SB0880) */ 2022 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/ 2023 hw_write_20kx(hw, GPIO_CTRL, 0xD802); 2024 2025 /* Enable audio ring */ 2026 hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01); 2027 2028 trn_info.vm_pgt_phys = info->vm_pgt_phys; 2029 err = hw_trn_init(hw, &trn_info); 2030 if (err < 0) 2031 return err; 2032 2033 daio_info.msr = info->msr; 2034 err = hw_daio_init(hw, &daio_info); 2035 if (err < 0) 2036 return err; 2037 2038 dac_info.msr = info->msr; 2039 err = hw_dac_init(hw, &dac_info); 2040 if (err < 0) 2041 return err; 2042 2043 adc_info.msr = info->msr; 2044 adc_info.input = ADC_LINEIN; 2045 adc_info.mic20db = 0; 2046 err = hw_adc_init(hw, &adc_info); 2047 if (err < 0) 2048 return err; 2049 2050 data = hw_read_20kx(hw, SRC_MCTL); 2051 data |= 0x1; /* Enables input from the audio ring */ 2052 hw_write_20kx(hw, SRC_MCTL, data); 2053 2054 return 0; 2055 } 2056 2057 #ifdef CONFIG_PM 2058 static int hw_suspend(struct hw *hw, pm_message_t state) 2059 { 2060 struct pci_dev *pci = hw->pci; 2061 2062 hw_card_stop(hw); 2063 2064 pci_disable_device(pci); 2065 pci_save_state(pci); 2066 pci_set_power_state(pci, pci_choose_state(pci, state)); 2067 2068 return 0; 2069 } 2070 2071 static int hw_resume(struct hw *hw, struct card_conf *info) 2072 { 2073 struct pci_dev *pci = hw->pci; 2074 2075 pci_set_power_state(pci, PCI_D0); 2076 pci_restore_state(pci); 2077 2078 /* Re-initialize card hardware. */ 2079 return hw_card_init(hw, info); 2080 } 2081 #endif 2082 2083 static u32 hw_read_20kx(struct hw *hw, u32 reg) 2084 { 2085 return readl((void *)(hw->mem_base + reg)); 2086 } 2087 2088 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) 2089 { 2090 writel(data, (void *)(hw->mem_base + reg)); 2091 } 2092 2093 static struct hw ct20k2_preset __devinitdata = { 2094 .irq = -1, 2095 2096 .card_init = hw_card_init, 2097 .card_stop = hw_card_stop, 2098 .pll_init = hw_pll_init, 2099 .is_adc_source_selected = hw_is_adc_input_selected, 2100 .select_adc_source = hw_adc_input_select, 2101 .have_digit_io_switch = hw_have_digit_io_switch, 2102 #ifdef CONFIG_PM 2103 .suspend = hw_suspend, 2104 .resume = hw_resume, 2105 #endif 2106 2107 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, 2108 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, 2109 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, 2110 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, 2111 .src_set_state = src_set_state, 2112 .src_set_bm = src_set_bm, 2113 .src_set_rsr = src_set_rsr, 2114 .src_set_sf = src_set_sf, 2115 .src_set_wr = src_set_wr, 2116 .src_set_pm = src_set_pm, 2117 .src_set_rom = src_set_rom, 2118 .src_set_vo = src_set_vo, 2119 .src_set_st = src_set_st, 2120 .src_set_ie = src_set_ie, 2121 .src_set_ilsz = src_set_ilsz, 2122 .src_set_bp = src_set_bp, 2123 .src_set_cisz = src_set_cisz, 2124 .src_set_ca = src_set_ca, 2125 .src_set_sa = src_set_sa, 2126 .src_set_la = src_set_la, 2127 .src_set_pitch = src_set_pitch, 2128 .src_set_dirty = src_set_dirty, 2129 .src_set_clear_zbufs = src_set_clear_zbufs, 2130 .src_set_dirty_all = src_set_dirty_all, 2131 .src_commit_write = src_commit_write, 2132 .src_get_ca = src_get_ca, 2133 .src_get_dirty = src_get_dirty, 2134 .src_dirty_conj_mask = src_dirty_conj_mask, 2135 .src_mgr_enbs_src = src_mgr_enbs_src, 2136 .src_mgr_enb_src = src_mgr_enb_src, 2137 .src_mgr_dsb_src = src_mgr_dsb_src, 2138 .src_mgr_commit_write = src_mgr_commit_write, 2139 2140 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, 2141 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, 2142 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, 2143 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, 2144 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, 2145 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, 2146 .srcimp_mgr_commit_write = srcimp_mgr_commit_write, 2147 2148 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, 2149 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, 2150 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, 2151 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, 2152 .amixer_set_mode = amixer_set_mode, 2153 .amixer_set_iv = amixer_set_iv, 2154 .amixer_set_x = amixer_set_x, 2155 .amixer_set_y = amixer_set_y, 2156 .amixer_set_sadr = amixer_set_sadr, 2157 .amixer_set_se = amixer_set_se, 2158 .amixer_set_dirty = amixer_set_dirty, 2159 .amixer_set_dirty_all = amixer_set_dirty_all, 2160 .amixer_commit_write = amixer_commit_write, 2161 .amixer_get_y = amixer_get_y, 2162 .amixer_get_dirty = amixer_get_dirty, 2163 2164 .dai_get_ctrl_blk = dai_get_ctrl_blk, 2165 .dai_put_ctrl_blk = dai_put_ctrl_blk, 2166 .dai_srt_set_srco = dai_srt_set_srco, 2167 .dai_srt_set_srcm = dai_srt_set_srcm, 2168 .dai_srt_set_rsr = dai_srt_set_rsr, 2169 .dai_srt_set_drat = dai_srt_set_drat, 2170 .dai_srt_set_ec = dai_srt_set_ec, 2171 .dai_srt_set_et = dai_srt_set_et, 2172 .dai_commit_write = dai_commit_write, 2173 2174 .dao_get_ctrl_blk = dao_get_ctrl_blk, 2175 .dao_put_ctrl_blk = dao_put_ctrl_blk, 2176 .dao_set_spos = dao_set_spos, 2177 .dao_commit_write = dao_commit_write, 2178 .dao_get_spos = dao_get_spos, 2179 2180 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, 2181 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, 2182 .daio_mgr_enb_dai = daio_mgr_enb_dai, 2183 .daio_mgr_dsb_dai = daio_mgr_dsb_dai, 2184 .daio_mgr_enb_dao = daio_mgr_enb_dao, 2185 .daio_mgr_dsb_dao = daio_mgr_dsb_dao, 2186 .daio_mgr_dao_init = daio_mgr_dao_init, 2187 .daio_mgr_set_imaparc = daio_mgr_set_imaparc, 2188 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, 2189 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, 2190 .daio_mgr_commit_write = daio_mgr_commit_write, 2191 2192 .set_timer_irq = set_timer_irq, 2193 .set_timer_tick = set_timer_tick, 2194 .get_wc = get_wc, 2195 }; 2196 2197 int __devinit create_20k2_hw_obj(struct hw **rhw) 2198 { 2199 struct hw20k2 *hw20k2; 2200 2201 *rhw = NULL; 2202 hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL); 2203 if (!hw20k2) 2204 return -ENOMEM; 2205 2206 hw20k2->hw = ct20k2_preset; 2207 *rhw = &hw20k2->hw; 2208 2209 return 0; 2210 } 2211 2212 int destroy_20k2_hw_obj(struct hw *hw) 2213 { 2214 if (hw->io_base) 2215 hw_card_shutdown(hw); 2216 2217 kfree(hw); 2218 return 0; 2219 } 2220