1 /** 2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 3 * 4 * This source file is released under GPL v2 license (no other versions). 5 * See the COPYING file included in the main directory of this source 6 * distribution for the license terms and conditions. 7 * 8 * @File ctatc.c 9 * 10 * @Brief 11 * This file contains the implementation of the device resource management 12 * object. 13 * 14 * @Author Liu Chun 15 * @Date Mar 28 2008 16 */ 17 18 #include "ctatc.h" 19 #include "ctpcm.h" 20 #include "ctmixer.h" 21 #include "ctsrc.h" 22 #include "ctamixer.h" 23 #include "ctdaio.h" 24 #include "cttimer.h" 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <sound/pcm.h> 28 #include <sound/control.h> 29 #include <sound/asoundef.h> 30 31 #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */ 32 #define MAX_MULTI_CHN 8 33 34 #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \ 35 | IEC958_AES0_CON_NOT_COPYRIGHT) \ 36 | ((IEC958_AES1_CON_MIXER \ 37 | IEC958_AES1_CON_ORIGINAL) << 8) \ 38 | (0x10 << 16) \ 39 | ((IEC958_AES3_CON_FS_48000) << 24)) 40 41 static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = { 42 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X), 43 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X), 44 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X), 45 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X), 46 SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000, 47 "UAA", CTUAA), 48 { } /* terminator */ 49 }; 50 51 static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = { 52 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760, 53 "SB0760", CTSB0760), 54 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB1270, 55 "SB1270", CTSB1270), 56 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801, 57 "SB0880", CTSB0880), 58 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802, 59 "SB0880", CTSB0880), 60 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803, 61 "SB0880", CTSB0880), 62 SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 63 PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX", 64 CTHENDRIX), 65 { } /* terminator */ 66 }; 67 68 static const char *ct_subsys_name[NUM_CTCARDS] = { 69 /* 20k1 models */ 70 [CTSB055X] = "SB055x", 71 [CTSB073X] = "SB073x", 72 [CTUAA] = "UAA", 73 [CT20K1_UNKNOWN] = "Unknown", 74 /* 20k2 models */ 75 [CTSB0760] = "SB076x", 76 [CTHENDRIX] = "Hendrix", 77 [CTSB0880] = "SB0880", 78 [CTSB1270] = "SB1270", 79 [CT20K2_UNKNOWN] = "Unknown", 80 }; 81 82 static struct { 83 int (*create)(struct ct_atc *atc, 84 enum CTALSADEVS device, const char *device_name); 85 int (*destroy)(void *alsa_dev); 86 const char *public_name; 87 } alsa_dev_funcs[NUM_CTALSADEVS] = { 88 [FRONT] = { .create = ct_alsa_pcm_create, 89 .destroy = NULL, 90 .public_name = "Front/WaveIn"}, 91 [SURROUND] = { .create = ct_alsa_pcm_create, 92 .destroy = NULL, 93 .public_name = "Surround"}, 94 [CLFE] = { .create = ct_alsa_pcm_create, 95 .destroy = NULL, 96 .public_name = "Center/LFE"}, 97 [SIDE] = { .create = ct_alsa_pcm_create, 98 .destroy = NULL, 99 .public_name = "Side"}, 100 [IEC958] = { .create = ct_alsa_pcm_create, 101 .destroy = NULL, 102 .public_name = "IEC958 Non-audio"}, 103 104 [MIXER] = { .create = ct_alsa_mix_create, 105 .destroy = NULL, 106 .public_name = "Mixer"} 107 }; 108 109 typedef int (*create_t)(void *, void **); 110 typedef int (*destroy_t)(void *); 111 112 static struct { 113 int (*create)(void *hw, void **rmgr); 114 int (*destroy)(void *mgr); 115 } rsc_mgr_funcs[NUM_RSCTYP] = { 116 [SRC] = { .create = (create_t)src_mgr_create, 117 .destroy = (destroy_t)src_mgr_destroy }, 118 [SRCIMP] = { .create = (create_t)srcimp_mgr_create, 119 .destroy = (destroy_t)srcimp_mgr_destroy }, 120 [AMIXER] = { .create = (create_t)amixer_mgr_create, 121 .destroy = (destroy_t)amixer_mgr_destroy }, 122 [SUM] = { .create = (create_t)sum_mgr_create, 123 .destroy = (destroy_t)sum_mgr_destroy }, 124 [DAIO] = { .create = (create_t)daio_mgr_create, 125 .destroy = (destroy_t)daio_mgr_destroy } 126 }; 127 128 static int 129 atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm); 130 131 /* * 132 * Only mono and interleaved modes are supported now. 133 * Always allocates a contiguous channel block. 134 * */ 135 136 static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm) 137 { 138 struct snd_pcm_runtime *runtime; 139 struct ct_vm *vm; 140 141 if (!apcm->substream) 142 return 0; 143 144 runtime = apcm->substream->runtime; 145 vm = atc->vm; 146 147 apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes); 148 149 if (!apcm->vm_block) 150 return -ENOENT; 151 152 return 0; 153 } 154 155 static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm) 156 { 157 struct ct_vm *vm; 158 159 if (!apcm->vm_block) 160 return; 161 162 vm = atc->vm; 163 164 vm->unmap(vm, apcm->vm_block); 165 166 apcm->vm_block = NULL; 167 } 168 169 static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index) 170 { 171 return atc->vm->get_ptp_phys(atc->vm, index); 172 } 173 174 static unsigned int convert_format(snd_pcm_format_t snd_format) 175 { 176 switch (snd_format) { 177 case SNDRV_PCM_FORMAT_U8: 178 return SRC_SF_U8; 179 case SNDRV_PCM_FORMAT_S16_LE: 180 return SRC_SF_S16; 181 case SNDRV_PCM_FORMAT_S24_3LE: 182 return SRC_SF_S24; 183 case SNDRV_PCM_FORMAT_S32_LE: 184 return SRC_SF_S32; 185 case SNDRV_PCM_FORMAT_FLOAT_LE: 186 return SRC_SF_F32; 187 default: 188 printk(KERN_ERR "ctxfi: not recognized snd format is %d \n", 189 snd_format); 190 return SRC_SF_S16; 191 } 192 } 193 194 static unsigned int 195 atc_get_pitch(unsigned int input_rate, unsigned int output_rate) 196 { 197 unsigned int pitch; 198 int b; 199 200 /* get pitch and convert to fixed-point 8.24 format. */ 201 pitch = (input_rate / output_rate) << 24; 202 input_rate %= output_rate; 203 input_rate /= 100; 204 output_rate /= 100; 205 for (b = 31; ((b >= 0) && !(input_rate >> b)); ) 206 b--; 207 208 if (b >= 0) { 209 input_rate <<= (31 - b); 210 input_rate /= output_rate; 211 b = 24 - (31 - b); 212 if (b >= 0) 213 input_rate <<= b; 214 else 215 input_rate >>= -b; 216 217 pitch |= input_rate; 218 } 219 220 return pitch; 221 } 222 223 static int select_rom(unsigned int pitch) 224 { 225 if (pitch > 0x00428f5c && pitch < 0x01b851ec) { 226 /* 0.26 <= pitch <= 1.72 */ 227 return 1; 228 } else if (pitch == 0x01d66666 || pitch == 0x01d66667) { 229 /* pitch == 1.8375 */ 230 return 2; 231 } else if (pitch == 0x02000000) { 232 /* pitch == 2 */ 233 return 3; 234 } else if (pitch <= 0x08000000) { 235 /* 0 <= pitch <= 8 */ 236 return 0; 237 } else { 238 return -ENOENT; 239 } 240 } 241 242 static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) 243 { 244 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 245 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 246 struct src_desc desc = {0}; 247 struct amixer_desc mix_dsc = {0}; 248 struct src *src; 249 struct amixer *amixer; 250 int err; 251 int n_amixer = apcm->substream->runtime->channels, i = 0; 252 int device = apcm->substream->pcm->device; 253 unsigned int pitch; 254 255 /* first release old resources */ 256 atc_pcm_release_resources(atc, apcm); 257 258 /* Get SRC resource */ 259 desc.multi = apcm->substream->runtime->channels; 260 desc.msr = atc->msr; 261 desc.mode = MEMRD; 262 err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src); 263 if (err) 264 goto error1; 265 266 pitch = atc_get_pitch(apcm->substream->runtime->rate, 267 (atc->rsr * atc->msr)); 268 src = apcm->src; 269 src->ops->set_pitch(src, pitch); 270 src->ops->set_rom(src, select_rom(pitch)); 271 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); 272 src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL)); 273 274 /* Get AMIXER resource */ 275 n_amixer = (n_amixer < 2) ? 2 : n_amixer; 276 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); 277 if (!apcm->amixers) { 278 err = -ENOMEM; 279 goto error1; 280 } 281 mix_dsc.msr = atc->msr; 282 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { 283 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, 284 (struct amixer **)&apcm->amixers[i]); 285 if (err) 286 goto error1; 287 288 apcm->n_amixer++; 289 } 290 291 /* Set up device virtual mem map */ 292 err = ct_map_audio_buffer(atc, apcm); 293 if (err < 0) 294 goto error1; 295 296 /* Connect resources */ 297 src = apcm->src; 298 for (i = 0; i < n_amixer; i++) { 299 amixer = apcm->amixers[i]; 300 mutex_lock(&atc->atc_mutex); 301 amixer->ops->setup(amixer, &src->rsc, 302 INIT_VOL, atc->pcm[i+device*2]); 303 mutex_unlock(&atc->atc_mutex); 304 src = src->ops->next_interleave(src); 305 if (!src) 306 src = apcm->src; 307 } 308 309 ct_timer_prepare(apcm->timer); 310 311 return 0; 312 313 error1: 314 atc_pcm_release_resources(atc, apcm); 315 return err; 316 } 317 318 static int 319 atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) 320 { 321 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 322 struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 323 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 324 struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM]; 325 struct srcimp *srcimp; 326 int i; 327 328 if (apcm->srcimps) { 329 for (i = 0; i < apcm->n_srcimp; i++) { 330 srcimp = apcm->srcimps[i]; 331 srcimp->ops->unmap(srcimp); 332 srcimp_mgr->put_srcimp(srcimp_mgr, srcimp); 333 apcm->srcimps[i] = NULL; 334 } 335 kfree(apcm->srcimps); 336 apcm->srcimps = NULL; 337 } 338 339 if (apcm->srccs) { 340 for (i = 0; i < apcm->n_srcc; i++) { 341 src_mgr->put_src(src_mgr, apcm->srccs[i]); 342 apcm->srccs[i] = NULL; 343 } 344 kfree(apcm->srccs); 345 apcm->srccs = NULL; 346 } 347 348 if (apcm->amixers) { 349 for (i = 0; i < apcm->n_amixer; i++) { 350 amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]); 351 apcm->amixers[i] = NULL; 352 } 353 kfree(apcm->amixers); 354 apcm->amixers = NULL; 355 } 356 357 if (apcm->mono) { 358 sum_mgr->put_sum(sum_mgr, apcm->mono); 359 apcm->mono = NULL; 360 } 361 362 if (apcm->src) { 363 src_mgr->put_src(src_mgr, apcm->src); 364 apcm->src = NULL; 365 } 366 367 if (apcm->vm_block) { 368 /* Undo device virtual mem map */ 369 ct_unmap_audio_buffer(atc, apcm); 370 apcm->vm_block = NULL; 371 } 372 373 return 0; 374 } 375 376 static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm) 377 { 378 unsigned int max_cisz; 379 struct src *src = apcm->src; 380 381 if (apcm->started) 382 return 0; 383 apcm->started = 1; 384 385 max_cisz = src->multi * src->rsc.msr; 386 max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8); 387 388 src->ops->set_sa(src, apcm->vm_block->addr); 389 src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size); 390 src->ops->set_ca(src, apcm->vm_block->addr + max_cisz); 391 src->ops->set_cisz(src, max_cisz); 392 393 src->ops->set_bm(src, 1); 394 src->ops->set_state(src, SRC_STATE_INIT); 395 src->ops->commit_write(src); 396 397 ct_timer_start(apcm->timer); 398 return 0; 399 } 400 401 static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm) 402 { 403 struct src *src; 404 int i; 405 406 ct_timer_stop(apcm->timer); 407 408 src = apcm->src; 409 src->ops->set_bm(src, 0); 410 src->ops->set_state(src, SRC_STATE_OFF); 411 src->ops->commit_write(src); 412 413 if (apcm->srccs) { 414 for (i = 0; i < apcm->n_srcc; i++) { 415 src = apcm->srccs[i]; 416 src->ops->set_bm(src, 0); 417 src->ops->set_state(src, SRC_STATE_OFF); 418 src->ops->commit_write(src); 419 } 420 } 421 422 apcm->started = 0; 423 424 return 0; 425 } 426 427 static int 428 atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm) 429 { 430 struct src *src = apcm->src; 431 u32 size, max_cisz; 432 int position; 433 434 if (!src) 435 return 0; 436 position = src->ops->get_ca(src); 437 438 size = apcm->vm_block->size; 439 max_cisz = src->multi * src->rsc.msr; 440 max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8); 441 442 return (position + size - max_cisz - apcm->vm_block->addr) % size; 443 } 444 445 struct src_node_conf_t { 446 unsigned int pitch; 447 unsigned int msr:8; 448 unsigned int mix_msr:8; 449 unsigned int imp_msr:8; 450 unsigned int vo:1; 451 }; 452 453 static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm, 454 struct src_node_conf_t *conf, int *n_srcc) 455 { 456 unsigned int pitch; 457 458 /* get pitch and convert to fixed-point 8.24 format. */ 459 pitch = atc_get_pitch((atc->rsr * atc->msr), 460 apcm->substream->runtime->rate); 461 *n_srcc = 0; 462 463 if (1 == atc->msr) { /* FIXME: do we really need SRC here if pitch==1 */ 464 *n_srcc = apcm->substream->runtime->channels; 465 conf[0].pitch = pitch; 466 conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1; 467 conf[0].vo = 1; 468 } else if (2 <= atc->msr) { 469 if (0x8000000 < pitch) { 470 /* Need two-stage SRCs, SRCIMPs and 471 * AMIXERs for converting format */ 472 conf[0].pitch = (atc->msr << 24); 473 conf[0].msr = conf[0].mix_msr = 1; 474 conf[0].imp_msr = atc->msr; 475 conf[0].vo = 0; 476 conf[1].pitch = atc_get_pitch(atc->rsr, 477 apcm->substream->runtime->rate); 478 conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1; 479 conf[1].vo = 1; 480 *n_srcc = apcm->substream->runtime->channels * 2; 481 } else if (0x1000000 < pitch) { 482 /* Need one-stage SRCs, SRCIMPs and 483 * AMIXERs for converting format */ 484 conf[0].pitch = pitch; 485 conf[0].msr = conf[0].mix_msr 486 = conf[0].imp_msr = atc->msr; 487 conf[0].vo = 1; 488 *n_srcc = apcm->substream->runtime->channels; 489 } 490 } 491 } 492 493 static int 494 atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) 495 { 496 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 497 struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 498 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 499 struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM]; 500 struct src_desc src_dsc = {0}; 501 struct src *src; 502 struct srcimp_desc srcimp_dsc = {0}; 503 struct srcimp *srcimp; 504 struct amixer_desc mix_dsc = {0}; 505 struct sum_desc sum_dsc = {0}; 506 unsigned int pitch; 507 int multi, err, i; 508 int n_srcimp, n_amixer, n_srcc, n_sum; 509 struct src_node_conf_t src_node_conf[2] = {{0} }; 510 511 /* first release old resources */ 512 atc_pcm_release_resources(atc, apcm); 513 514 /* The numbers of converting SRCs and SRCIMPs should be determined 515 * by pitch value. */ 516 517 multi = apcm->substream->runtime->channels; 518 519 /* get pitch and convert to fixed-point 8.24 format. */ 520 pitch = atc_get_pitch((atc->rsr * atc->msr), 521 apcm->substream->runtime->rate); 522 523 setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc); 524 n_sum = (1 == multi) ? 1 : 0; 525 n_amixer = n_sum * 2 + n_srcc; 526 n_srcimp = n_srcc; 527 if ((multi > 1) && (0x8000000 >= pitch)) { 528 /* Need extra AMIXERs and SRCIMPs for special treatment 529 * of interleaved recording of conjugate channels */ 530 n_amixer += multi * atc->msr; 531 n_srcimp += multi * atc->msr; 532 } else { 533 n_srcimp += multi; 534 } 535 536 if (n_srcc) { 537 apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL); 538 if (!apcm->srccs) 539 return -ENOMEM; 540 } 541 if (n_amixer) { 542 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); 543 if (!apcm->amixers) { 544 err = -ENOMEM; 545 goto error1; 546 } 547 } 548 apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL); 549 if (!apcm->srcimps) { 550 err = -ENOMEM; 551 goto error1; 552 } 553 554 /* Allocate SRCs for sample rate conversion if needed */ 555 src_dsc.multi = 1; 556 src_dsc.mode = ARCRW; 557 for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) { 558 src_dsc.msr = src_node_conf[i/multi].msr; 559 err = src_mgr->get_src(src_mgr, &src_dsc, 560 (struct src **)&apcm->srccs[i]); 561 if (err) 562 goto error1; 563 564 src = apcm->srccs[i]; 565 pitch = src_node_conf[i/multi].pitch; 566 src->ops->set_pitch(src, pitch); 567 src->ops->set_rom(src, select_rom(pitch)); 568 src->ops->set_vo(src, src_node_conf[i/multi].vo); 569 570 apcm->n_srcc++; 571 } 572 573 /* Allocate AMIXERs for routing SRCs of conversion if needed */ 574 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { 575 if (i < (n_sum*2)) 576 mix_dsc.msr = atc->msr; 577 else if (i < (n_sum*2+n_srcc)) 578 mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr; 579 else 580 mix_dsc.msr = 1; 581 582 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, 583 (struct amixer **)&apcm->amixers[i]); 584 if (err) 585 goto error1; 586 587 apcm->n_amixer++; 588 } 589 590 /* Allocate a SUM resource to mix all input channels together */ 591 sum_dsc.msr = atc->msr; 592 err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono); 593 if (err) 594 goto error1; 595 596 pitch = atc_get_pitch((atc->rsr * atc->msr), 597 apcm->substream->runtime->rate); 598 /* Allocate SRCIMP resources */ 599 for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) { 600 if (i < (n_srcc)) 601 srcimp_dsc.msr = src_node_conf[i/multi].imp_msr; 602 else if (1 == multi) 603 srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1; 604 else 605 srcimp_dsc.msr = 1; 606 607 err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp); 608 if (err) 609 goto error1; 610 611 apcm->srcimps[i] = srcimp; 612 apcm->n_srcimp++; 613 } 614 615 /* Allocate a SRC for writing data to host memory */ 616 src_dsc.multi = apcm->substream->runtime->channels; 617 src_dsc.msr = 1; 618 src_dsc.mode = MEMWR; 619 err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src); 620 if (err) 621 goto error1; 622 623 src = apcm->src; 624 src->ops->set_pitch(src, pitch); 625 626 /* Set up device virtual mem map */ 627 err = ct_map_audio_buffer(atc, apcm); 628 if (err < 0) 629 goto error1; 630 631 return 0; 632 633 error1: 634 atc_pcm_release_resources(atc, apcm); 635 return err; 636 } 637 638 static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) 639 { 640 struct src *src; 641 struct amixer *amixer; 642 struct srcimp *srcimp; 643 struct ct_mixer *mixer = atc->mixer; 644 struct sum *mono; 645 struct rsc *out_ports[8] = {NULL}; 646 int err, i, j, n_sum, multi; 647 unsigned int pitch; 648 int mix_base = 0, imp_base = 0; 649 650 atc_pcm_release_resources(atc, apcm); 651 652 /* Get needed resources. */ 653 err = atc_pcm_capture_get_resources(atc, apcm); 654 if (err) 655 return err; 656 657 /* Connect resources */ 658 mixer->get_output_ports(mixer, MIX_PCMO_FRONT, 659 &out_ports[0], &out_ports[1]); 660 661 multi = apcm->substream->runtime->channels; 662 if (1 == multi) { 663 mono = apcm->mono; 664 for (i = 0; i < 2; i++) { 665 amixer = apcm->amixers[i]; 666 amixer->ops->setup(amixer, out_ports[i], 667 MONO_SUM_SCALE, mono); 668 } 669 out_ports[0] = &mono->rsc; 670 n_sum = 1; 671 mix_base = n_sum * 2; 672 } 673 674 for (i = 0; i < apcm->n_srcc; i++) { 675 src = apcm->srccs[i]; 676 srcimp = apcm->srcimps[imp_base+i]; 677 amixer = apcm->amixers[mix_base+i]; 678 srcimp->ops->map(srcimp, src, out_ports[i%multi]); 679 amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL); 680 out_ports[i%multi] = &amixer->rsc; 681 } 682 683 pitch = atc_get_pitch((atc->rsr * atc->msr), 684 apcm->substream->runtime->rate); 685 686 if ((multi > 1) && (pitch <= 0x8000000)) { 687 /* Special connection for interleaved 688 * recording with conjugate channels */ 689 for (i = 0; i < multi; i++) { 690 out_ports[i]->ops->master(out_ports[i]); 691 for (j = 0; j < atc->msr; j++) { 692 amixer = apcm->amixers[apcm->n_srcc+j*multi+i]; 693 amixer->ops->set_input(amixer, out_ports[i]); 694 amixer->ops->set_scale(amixer, INIT_VOL); 695 amixer->ops->set_sum(amixer, NULL); 696 amixer->ops->commit_raw_write(amixer); 697 out_ports[i]->ops->next_conj(out_ports[i]); 698 699 srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i]; 700 srcimp->ops->map(srcimp, apcm->src, 701 &amixer->rsc); 702 } 703 } 704 } else { 705 for (i = 0; i < multi; i++) { 706 srcimp = apcm->srcimps[apcm->n_srcc+i]; 707 srcimp->ops->map(srcimp, apcm->src, out_ports[i]); 708 } 709 } 710 711 ct_timer_prepare(apcm->timer); 712 713 return 0; 714 } 715 716 static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm) 717 { 718 struct src *src; 719 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 720 int i, multi; 721 722 if (apcm->started) 723 return 0; 724 725 apcm->started = 1; 726 multi = apcm->substream->runtime->channels; 727 /* Set up converting SRCs */ 728 for (i = 0; i < apcm->n_srcc; i++) { 729 src = apcm->srccs[i]; 730 src->ops->set_pm(src, ((i%multi) != (multi-1))); 731 src_mgr->src_disable(src_mgr, src); 732 } 733 734 /* Set up recording SRC */ 735 src = apcm->src; 736 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); 737 src->ops->set_sa(src, apcm->vm_block->addr); 738 src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size); 739 src->ops->set_ca(src, apcm->vm_block->addr); 740 src_mgr->src_disable(src_mgr, src); 741 742 /* Disable relevant SRCs firstly */ 743 src_mgr->commit_write(src_mgr); 744 745 /* Enable SRCs respectively */ 746 for (i = 0; i < apcm->n_srcc; i++) { 747 src = apcm->srccs[i]; 748 src->ops->set_state(src, SRC_STATE_RUN); 749 src->ops->commit_write(src); 750 src_mgr->src_enable_s(src_mgr, src); 751 } 752 src = apcm->src; 753 src->ops->set_bm(src, 1); 754 src->ops->set_state(src, SRC_STATE_RUN); 755 src->ops->commit_write(src); 756 src_mgr->src_enable_s(src_mgr, src); 757 758 /* Enable relevant SRCs synchronously */ 759 src_mgr->commit_write(src_mgr); 760 761 ct_timer_start(apcm->timer); 762 return 0; 763 } 764 765 static int 766 atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm) 767 { 768 struct src *src = apcm->src; 769 770 if (!src) 771 return 0; 772 return src->ops->get_ca(src) - apcm->vm_block->addr; 773 } 774 775 static int spdif_passthru_playback_get_resources(struct ct_atc *atc, 776 struct ct_atc_pcm *apcm) 777 { 778 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 779 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 780 struct src_desc desc = {0}; 781 struct amixer_desc mix_dsc = {0}; 782 struct src *src; 783 int err; 784 int n_amixer = apcm->substream->runtime->channels, i; 785 unsigned int pitch, rsr = atc->pll_rate; 786 787 /* first release old resources */ 788 atc_pcm_release_resources(atc, apcm); 789 790 /* Get SRC resource */ 791 desc.multi = apcm->substream->runtime->channels; 792 desc.msr = 1; 793 while (apcm->substream->runtime->rate > (rsr * desc.msr)) 794 desc.msr <<= 1; 795 796 desc.mode = MEMRD; 797 err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src); 798 if (err) 799 goto error1; 800 801 pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr)); 802 src = apcm->src; 803 src->ops->set_pitch(src, pitch); 804 src->ops->set_rom(src, select_rom(pitch)); 805 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); 806 src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL)); 807 src->ops->set_bp(src, 1); 808 809 /* Get AMIXER resource */ 810 n_amixer = (n_amixer < 2) ? 2 : n_amixer; 811 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); 812 if (!apcm->amixers) { 813 err = -ENOMEM; 814 goto error1; 815 } 816 mix_dsc.msr = desc.msr; 817 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { 818 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, 819 (struct amixer **)&apcm->amixers[i]); 820 if (err) 821 goto error1; 822 823 apcm->n_amixer++; 824 } 825 826 /* Set up device virtual mem map */ 827 err = ct_map_audio_buffer(atc, apcm); 828 if (err < 0) 829 goto error1; 830 831 return 0; 832 833 error1: 834 atc_pcm_release_resources(atc, apcm); 835 return err; 836 } 837 838 static int atc_pll_init(struct ct_atc *atc, int rate) 839 { 840 struct hw *hw = atc->hw; 841 int err; 842 err = hw->pll_init(hw, rate); 843 atc->pll_rate = err ? 0 : rate; 844 return err; 845 } 846 847 static int 848 spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm) 849 { 850 struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio); 851 unsigned int rate = apcm->substream->runtime->rate; 852 unsigned int status; 853 int err = 0; 854 unsigned char iec958_con_fs; 855 856 switch (rate) { 857 case 48000: 858 iec958_con_fs = IEC958_AES3_CON_FS_48000; 859 break; 860 case 44100: 861 iec958_con_fs = IEC958_AES3_CON_FS_44100; 862 break; 863 case 32000: 864 iec958_con_fs = IEC958_AES3_CON_FS_32000; 865 break; 866 default: 867 return -ENOENT; 868 } 869 870 mutex_lock(&atc->atc_mutex); 871 dao->ops->get_spos(dao, &status); 872 if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) { 873 status &= ~(IEC958_AES3_CON_FS << 24); 874 status |= (iec958_con_fs << 24); 875 dao->ops->set_spos(dao, status); 876 dao->ops->commit_write(dao); 877 } 878 if ((rate != atc->pll_rate) && (32000 != rate)) 879 err = atc_pll_init(atc, rate); 880 mutex_unlock(&atc->atc_mutex); 881 882 return err; 883 } 884 885 static int 886 spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) 887 { 888 struct src *src; 889 struct amixer *amixer; 890 struct dao *dao; 891 int err; 892 int i; 893 894 atc_pcm_release_resources(atc, apcm); 895 896 /* Configure SPDIFOO and PLL to passthrough mode; 897 * determine pll_rate. */ 898 err = spdif_passthru_playback_setup(atc, apcm); 899 if (err) 900 return err; 901 902 /* Get needed resources. */ 903 err = spdif_passthru_playback_get_resources(atc, apcm); 904 if (err) 905 return err; 906 907 /* Connect resources */ 908 src = apcm->src; 909 for (i = 0; i < apcm->n_amixer; i++) { 910 amixer = apcm->amixers[i]; 911 amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL); 912 src = src->ops->next_interleave(src); 913 if (!src) 914 src = apcm->src; 915 } 916 /* Connect to SPDIFOO */ 917 mutex_lock(&atc->atc_mutex); 918 dao = container_of(atc->daios[SPDIFOO], struct dao, daio); 919 amixer = apcm->amixers[0]; 920 dao->ops->set_left_input(dao, &amixer->rsc); 921 amixer = apcm->amixers[1]; 922 dao->ops->set_right_input(dao, &amixer->rsc); 923 mutex_unlock(&atc->atc_mutex); 924 925 ct_timer_prepare(apcm->timer); 926 927 return 0; 928 } 929 930 static int atc_select_line_in(struct ct_atc *atc) 931 { 932 struct hw *hw = atc->hw; 933 struct ct_mixer *mixer = atc->mixer; 934 struct src *src; 935 936 if (hw->is_adc_source_selected(hw, ADC_LINEIN)) 937 return 0; 938 939 mixer->set_input_left(mixer, MIX_MIC_IN, NULL); 940 mixer->set_input_right(mixer, MIX_MIC_IN, NULL); 941 942 hw->select_adc_source(hw, ADC_LINEIN); 943 944 src = atc->srcs[2]; 945 mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc); 946 src = atc->srcs[3]; 947 mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc); 948 949 return 0; 950 } 951 952 static int atc_select_mic_in(struct ct_atc *atc) 953 { 954 struct hw *hw = atc->hw; 955 struct ct_mixer *mixer = atc->mixer; 956 struct src *src; 957 958 if (hw->is_adc_source_selected(hw, ADC_MICIN)) 959 return 0; 960 961 mixer->set_input_left(mixer, MIX_LINE_IN, NULL); 962 mixer->set_input_right(mixer, MIX_LINE_IN, NULL); 963 964 hw->select_adc_source(hw, ADC_MICIN); 965 966 src = atc->srcs[2]; 967 mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc); 968 src = atc->srcs[3]; 969 mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc); 970 971 return 0; 972 } 973 974 static struct capabilities atc_capabilities(struct ct_atc *atc) 975 { 976 struct hw *hw = atc->hw; 977 978 return hw->capabilities(hw); 979 } 980 981 static int atc_output_switch_get(struct ct_atc *atc) 982 { 983 struct hw *hw = atc->hw; 984 985 return hw->output_switch_get(hw); 986 } 987 988 static int atc_output_switch_put(struct ct_atc *atc, int position) 989 { 990 struct hw *hw = atc->hw; 991 992 return hw->output_switch_put(hw, position); 993 } 994 995 static int atc_mic_source_switch_get(struct ct_atc *atc) 996 { 997 struct hw *hw = atc->hw; 998 999 return hw->mic_source_switch_get(hw); 1000 } 1001 1002 static int atc_mic_source_switch_put(struct ct_atc *atc, int position) 1003 { 1004 struct hw *hw = atc->hw; 1005 1006 return hw->mic_source_switch_put(hw, position); 1007 } 1008 1009 static int atc_select_digit_io(struct ct_atc *atc) 1010 { 1011 struct hw *hw = atc->hw; 1012 1013 if (hw->is_adc_source_selected(hw, ADC_NONE)) 1014 return 0; 1015 1016 hw->select_adc_source(hw, ADC_NONE); 1017 1018 return 0; 1019 } 1020 1021 static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type) 1022 { 1023 struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO]; 1024 1025 if (state) 1026 daio_mgr->daio_enable(daio_mgr, atc->daios[type]); 1027 else 1028 daio_mgr->daio_disable(daio_mgr, atc->daios[type]); 1029 1030 daio_mgr->commit_write(daio_mgr); 1031 1032 return 0; 1033 } 1034 1035 static int 1036 atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type) 1037 { 1038 struct dao *dao = container_of(atc->daios[type], struct dao, daio); 1039 return dao->ops->get_spos(dao, status); 1040 } 1041 1042 static int 1043 atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type) 1044 { 1045 struct dao *dao = container_of(atc->daios[type], struct dao, daio); 1046 1047 dao->ops->set_spos(dao, status); 1048 dao->ops->commit_write(dao); 1049 return 0; 1050 } 1051 1052 static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state) 1053 { 1054 return atc_daio_unmute(atc, state, LINEO1); 1055 } 1056 1057 static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state) 1058 { 1059 return atc_daio_unmute(atc, state, LINEO2); 1060 } 1061 1062 static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state) 1063 { 1064 return atc_daio_unmute(atc, state, LINEO3); 1065 } 1066 1067 static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state) 1068 { 1069 return atc_daio_unmute(atc, state, LINEO4); 1070 } 1071 1072 static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state) 1073 { 1074 return atc_daio_unmute(atc, state, LINEIM); 1075 } 1076 1077 static int atc_mic_unmute(struct ct_atc *atc, unsigned char state) 1078 { 1079 return atc_daio_unmute(atc, state, MIC); 1080 } 1081 1082 static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state) 1083 { 1084 return atc_daio_unmute(atc, state, SPDIFOO); 1085 } 1086 1087 static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state) 1088 { 1089 return atc_daio_unmute(atc, state, SPDIFIO); 1090 } 1091 1092 static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status) 1093 { 1094 return atc_dao_get_status(atc, status, SPDIFOO); 1095 } 1096 1097 static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status) 1098 { 1099 return atc_dao_set_status(atc, status, SPDIFOO); 1100 } 1101 1102 static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state) 1103 { 1104 struct dao_desc da_dsc = {0}; 1105 struct dao *dao; 1106 int err; 1107 struct ct_mixer *mixer = atc->mixer; 1108 struct rsc *rscs[2] = {NULL}; 1109 unsigned int spos = 0; 1110 1111 mutex_lock(&atc->atc_mutex); 1112 dao = container_of(atc->daios[SPDIFOO], struct dao, daio); 1113 da_dsc.msr = state ? 1 : atc->msr; 1114 da_dsc.passthru = state ? 1 : 0; 1115 err = dao->ops->reinit(dao, &da_dsc); 1116 if (state) { 1117 spos = IEC958_DEFAULT_CON; 1118 } else { 1119 mixer->get_output_ports(mixer, MIX_SPDIF_OUT, 1120 &rscs[0], &rscs[1]); 1121 dao->ops->set_left_input(dao, rscs[0]); 1122 dao->ops->set_right_input(dao, rscs[1]); 1123 /* Restore PLL to atc->rsr if needed. */ 1124 if (atc->pll_rate != atc->rsr) 1125 err = atc_pll_init(atc, atc->rsr); 1126 } 1127 dao->ops->set_spos(dao, spos); 1128 dao->ops->commit_write(dao); 1129 mutex_unlock(&atc->atc_mutex); 1130 1131 return err; 1132 } 1133 1134 static int atc_release_resources(struct ct_atc *atc) 1135 { 1136 int i; 1137 struct daio_mgr *daio_mgr = NULL; 1138 struct dao *dao = NULL; 1139 struct dai *dai = NULL; 1140 struct daio *daio = NULL; 1141 struct sum_mgr *sum_mgr = NULL; 1142 struct src_mgr *src_mgr = NULL; 1143 struct srcimp_mgr *srcimp_mgr = NULL; 1144 struct srcimp *srcimp = NULL; 1145 struct ct_mixer *mixer = NULL; 1146 1147 /* disconnect internal mixer objects */ 1148 if (atc->mixer) { 1149 mixer = atc->mixer; 1150 mixer->set_input_left(mixer, MIX_LINE_IN, NULL); 1151 mixer->set_input_right(mixer, MIX_LINE_IN, NULL); 1152 mixer->set_input_left(mixer, MIX_MIC_IN, NULL); 1153 mixer->set_input_right(mixer, MIX_MIC_IN, NULL); 1154 mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL); 1155 mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL); 1156 } 1157 1158 if (atc->daios) { 1159 daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO]; 1160 for (i = 0; i < atc->n_daio; i++) { 1161 daio = atc->daios[i]; 1162 if (daio->type < LINEIM) { 1163 dao = container_of(daio, struct dao, daio); 1164 dao->ops->clear_left_input(dao); 1165 dao->ops->clear_right_input(dao); 1166 } else { 1167 dai = container_of(daio, struct dai, daio); 1168 /* some thing to do for dai ... */ 1169 } 1170 daio_mgr->put_daio(daio_mgr, daio); 1171 } 1172 kfree(atc->daios); 1173 atc->daios = NULL; 1174 } 1175 1176 if (atc->pcm) { 1177 sum_mgr = atc->rsc_mgrs[SUM]; 1178 for (i = 0; i < atc->n_pcm; i++) 1179 sum_mgr->put_sum(sum_mgr, atc->pcm[i]); 1180 1181 kfree(atc->pcm); 1182 atc->pcm = NULL; 1183 } 1184 1185 if (atc->srcs) { 1186 src_mgr = atc->rsc_mgrs[SRC]; 1187 for (i = 0; i < atc->n_src; i++) 1188 src_mgr->put_src(src_mgr, atc->srcs[i]); 1189 1190 kfree(atc->srcs); 1191 atc->srcs = NULL; 1192 } 1193 1194 if (atc->srcimps) { 1195 srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 1196 for (i = 0; i < atc->n_srcimp; i++) { 1197 srcimp = atc->srcimps[i]; 1198 srcimp->ops->unmap(srcimp); 1199 srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]); 1200 } 1201 kfree(atc->srcimps); 1202 atc->srcimps = NULL; 1203 } 1204 1205 return 0; 1206 } 1207 1208 static int ct_atc_destroy(struct ct_atc *atc) 1209 { 1210 int i = 0; 1211 1212 if (!atc) 1213 return 0; 1214 1215 if (atc->timer) { 1216 ct_timer_free(atc->timer); 1217 atc->timer = NULL; 1218 } 1219 1220 atc_release_resources(atc); 1221 1222 /* Destroy internal mixer objects */ 1223 if (atc->mixer) 1224 ct_mixer_destroy(atc->mixer); 1225 1226 for (i = 0; i < NUM_RSCTYP; i++) { 1227 if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i]) 1228 rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]); 1229 1230 } 1231 1232 if (atc->hw) 1233 destroy_hw_obj((struct hw *)atc->hw); 1234 1235 /* Destroy device virtual memory manager object */ 1236 if (atc->vm) { 1237 ct_vm_destroy(atc->vm); 1238 atc->vm = NULL; 1239 } 1240 1241 kfree(atc); 1242 1243 return 0; 1244 } 1245 1246 static int atc_dev_free(struct snd_device *dev) 1247 { 1248 struct ct_atc *atc = dev->device_data; 1249 return ct_atc_destroy(atc); 1250 } 1251 1252 static int __devinit atc_identify_card(struct ct_atc *atc, unsigned int ssid) 1253 { 1254 const struct snd_pci_quirk *p; 1255 const struct snd_pci_quirk *list; 1256 u16 vendor_id, device_id; 1257 1258 switch (atc->chip_type) { 1259 case ATC20K1: 1260 atc->chip_name = "20K1"; 1261 list = subsys_20k1_list; 1262 break; 1263 case ATC20K2: 1264 atc->chip_name = "20K2"; 1265 list = subsys_20k2_list; 1266 break; 1267 default: 1268 return -ENOENT; 1269 } 1270 if (ssid) { 1271 vendor_id = ssid >> 16; 1272 device_id = ssid & 0xffff; 1273 } else { 1274 vendor_id = atc->pci->subsystem_vendor; 1275 device_id = atc->pci->subsystem_device; 1276 } 1277 p = snd_pci_quirk_lookup_id(vendor_id, device_id, list); 1278 if (p) { 1279 if (p->value < 0) { 1280 printk(KERN_ERR "ctxfi: " 1281 "Device %04x:%04x is black-listed\n", 1282 vendor_id, device_id); 1283 return -ENOENT; 1284 } 1285 atc->model = p->value; 1286 } else { 1287 if (atc->chip_type == ATC20K1) 1288 atc->model = CT20K1_UNKNOWN; 1289 else 1290 atc->model = CT20K2_UNKNOWN; 1291 } 1292 atc->model_name = ct_subsys_name[atc->model]; 1293 snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n", 1294 atc->chip_name, atc->model_name, 1295 vendor_id, device_id); 1296 return 0; 1297 } 1298 1299 int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc) 1300 { 1301 enum CTALSADEVS i; 1302 int err; 1303 1304 alsa_dev_funcs[MIXER].public_name = atc->chip_name; 1305 1306 for (i = 0; i < NUM_CTALSADEVS; i++) { 1307 if (!alsa_dev_funcs[i].create) 1308 continue; 1309 1310 err = alsa_dev_funcs[i].create(atc, i, 1311 alsa_dev_funcs[i].public_name); 1312 if (err) { 1313 printk(KERN_ERR "ctxfi: " 1314 "Creating alsa device %d failed!\n", i); 1315 return err; 1316 } 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int __devinit atc_create_hw_devs(struct ct_atc *atc) 1323 { 1324 struct hw *hw; 1325 struct card_conf info = {0}; 1326 int i, err; 1327 1328 err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw); 1329 if (err) { 1330 printk(KERN_ERR "Failed to create hw obj!!!\n"); 1331 return err; 1332 } 1333 atc->hw = hw; 1334 1335 /* Initialize card hardware. */ 1336 info.rsr = atc->rsr; 1337 info.msr = atc->msr; 1338 info.vm_pgt_phys = atc_get_ptp_phys(atc, 0); 1339 err = hw->card_init(hw, &info); 1340 if (err < 0) 1341 return err; 1342 1343 for (i = 0; i < NUM_RSCTYP; i++) { 1344 if (!rsc_mgr_funcs[i].create) 1345 continue; 1346 1347 err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]); 1348 if (err) { 1349 printk(KERN_ERR "ctxfi: " 1350 "Failed to create rsc_mgr %d!!!\n", i); 1351 return err; 1352 } 1353 } 1354 1355 return 0; 1356 } 1357 1358 static int atc_get_resources(struct ct_atc *atc) 1359 { 1360 struct daio_desc da_desc = {0}; 1361 struct daio_mgr *daio_mgr; 1362 struct src_desc src_dsc = {0}; 1363 struct src_mgr *src_mgr; 1364 struct srcimp_desc srcimp_dsc = {0}; 1365 struct srcimp_mgr *srcimp_mgr; 1366 struct sum_desc sum_dsc = {0}; 1367 struct sum_mgr *sum_mgr; 1368 int err, i, num_srcs, num_daios; 1369 1370 num_daios = ((atc->model == CTSB1270) ? 8 : 7); 1371 num_srcs = ((atc->model == CTSB1270) ? 6 : 4); 1372 1373 atc->daios = kzalloc(sizeof(void *)*num_daios, GFP_KERNEL); 1374 if (!atc->daios) 1375 return -ENOMEM; 1376 1377 atc->srcs = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL); 1378 if (!atc->srcs) 1379 return -ENOMEM; 1380 1381 atc->srcimps = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL); 1382 if (!atc->srcimps) 1383 return -ENOMEM; 1384 1385 atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL); 1386 if (!atc->pcm) 1387 return -ENOMEM; 1388 1389 daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO]; 1390 da_desc.msr = atc->msr; 1391 for (i = 0, atc->n_daio = 0; i < num_daios; i++) { 1392 da_desc.type = (atc->model != CTSB073X) ? i : 1393 ((i == SPDIFIO) ? SPDIFI1 : i); 1394 err = daio_mgr->get_daio(daio_mgr, &da_desc, 1395 (struct daio **)&atc->daios[i]); 1396 if (err) { 1397 printk(KERN_ERR "ctxfi: Failed to get DAIO " 1398 "resource %d!!!\n", i); 1399 return err; 1400 } 1401 atc->n_daio++; 1402 } 1403 1404 src_mgr = atc->rsc_mgrs[SRC]; 1405 src_dsc.multi = 1; 1406 src_dsc.msr = atc->msr; 1407 src_dsc.mode = ARCRW; 1408 for (i = 0, atc->n_src = 0; i < num_srcs; i++) { 1409 err = src_mgr->get_src(src_mgr, &src_dsc, 1410 (struct src **)&atc->srcs[i]); 1411 if (err) 1412 return err; 1413 1414 atc->n_src++; 1415 } 1416 1417 srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 1418 srcimp_dsc.msr = 8; 1419 for (i = 0, atc->n_srcimp = 0; i < num_srcs; i++) { 1420 err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, 1421 (struct srcimp **)&atc->srcimps[i]); 1422 if (err) 1423 return err; 1424 1425 atc->n_srcimp++; 1426 } 1427 1428 sum_mgr = atc->rsc_mgrs[SUM]; 1429 sum_dsc.msr = atc->msr; 1430 for (i = 0, atc->n_pcm = 0; i < (2*4); i++) { 1431 err = sum_mgr->get_sum(sum_mgr, &sum_dsc, 1432 (struct sum **)&atc->pcm[i]); 1433 if (err) 1434 return err; 1435 1436 atc->n_pcm++; 1437 } 1438 1439 return 0; 1440 } 1441 1442 static void 1443 atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai, 1444 struct src **srcs, struct srcimp **srcimps) 1445 { 1446 struct rsc *rscs[2] = {NULL}; 1447 struct src *src; 1448 struct srcimp *srcimp; 1449 int i = 0; 1450 1451 rscs[0] = &dai->daio.rscl; 1452 rscs[1] = &dai->daio.rscr; 1453 for (i = 0; i < 2; i++) { 1454 src = srcs[i]; 1455 srcimp = srcimps[i]; 1456 srcimp->ops->map(srcimp, src, rscs[i]); 1457 src_mgr->src_disable(src_mgr, src); 1458 } 1459 1460 src_mgr->commit_write(src_mgr); /* Actually disable SRCs */ 1461 1462 src = srcs[0]; 1463 src->ops->set_pm(src, 1); 1464 for (i = 0; i < 2; i++) { 1465 src = srcs[i]; 1466 src->ops->set_state(src, SRC_STATE_RUN); 1467 src->ops->commit_write(src); 1468 src_mgr->src_enable_s(src_mgr, src); 1469 } 1470 1471 dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc)); 1472 dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc)); 1473 1474 dai->ops->set_enb_src(dai, 1); 1475 dai->ops->set_enb_srt(dai, 1); 1476 dai->ops->commit_write(dai); 1477 1478 src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */ 1479 } 1480 1481 static void atc_connect_resources(struct ct_atc *atc) 1482 { 1483 struct dai *dai; 1484 struct dao *dao; 1485 struct src *src; 1486 struct sum *sum; 1487 struct ct_mixer *mixer; 1488 struct rsc *rscs[2] = {NULL}; 1489 int i, j; 1490 1491 mixer = atc->mixer; 1492 1493 for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) { 1494 mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]); 1495 dao = container_of(atc->daios[j], struct dao, daio); 1496 dao->ops->set_left_input(dao, rscs[0]); 1497 dao->ops->set_right_input(dao, rscs[1]); 1498 } 1499 1500 dai = container_of(atc->daios[LINEIM], struct dai, daio); 1501 atc_connect_dai(atc->rsc_mgrs[SRC], dai, 1502 (struct src **)&atc->srcs[2], 1503 (struct srcimp **)&atc->srcimps[2]); 1504 src = atc->srcs[2]; 1505 mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc); 1506 src = atc->srcs[3]; 1507 mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc); 1508 1509 if (atc->model == CTSB1270) { 1510 /* Titanium HD has a dedicated ADC for the Mic. */ 1511 dai = container_of(atc->daios[MIC], struct dai, daio); 1512 atc_connect_dai(atc->rsc_mgrs[SRC], dai, 1513 (struct src **)&atc->srcs[4], 1514 (struct srcimp **)&atc->srcimps[4]); 1515 src = atc->srcs[4]; 1516 mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc); 1517 src = atc->srcs[5]; 1518 mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc); 1519 } 1520 1521 dai = container_of(atc->daios[SPDIFIO], struct dai, daio); 1522 atc_connect_dai(atc->rsc_mgrs[SRC], dai, 1523 (struct src **)&atc->srcs[0], 1524 (struct srcimp **)&atc->srcimps[0]); 1525 1526 src = atc->srcs[0]; 1527 mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc); 1528 src = atc->srcs[1]; 1529 mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc); 1530 1531 for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) { 1532 sum = atc->pcm[j]; 1533 mixer->set_input_left(mixer, i, &sum->rsc); 1534 sum = atc->pcm[j+1]; 1535 mixer->set_input_right(mixer, i, &sum->rsc); 1536 } 1537 } 1538 1539 #ifdef CONFIG_PM_SLEEP 1540 static int atc_suspend(struct ct_atc *atc) 1541 { 1542 int i; 1543 struct hw *hw = atc->hw; 1544 1545 snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot); 1546 1547 for (i = FRONT; i < NUM_PCMS; i++) { 1548 if (!atc->pcms[i]) 1549 continue; 1550 1551 snd_pcm_suspend_all(atc->pcms[i]); 1552 } 1553 1554 atc_release_resources(atc); 1555 1556 hw->suspend(hw); 1557 1558 return 0; 1559 } 1560 1561 static int atc_hw_resume(struct ct_atc *atc) 1562 { 1563 struct hw *hw = atc->hw; 1564 struct card_conf info = {0}; 1565 1566 /* Re-initialize card hardware. */ 1567 info.rsr = atc->rsr; 1568 info.msr = atc->msr; 1569 info.vm_pgt_phys = atc_get_ptp_phys(atc, 0); 1570 return hw->resume(hw, &info); 1571 } 1572 1573 static int atc_resources_resume(struct ct_atc *atc) 1574 { 1575 struct ct_mixer *mixer; 1576 int err = 0; 1577 1578 /* Get resources */ 1579 err = atc_get_resources(atc); 1580 if (err < 0) { 1581 atc_release_resources(atc); 1582 return err; 1583 } 1584 1585 /* Build topology */ 1586 atc_connect_resources(atc); 1587 1588 mixer = atc->mixer; 1589 mixer->resume(mixer); 1590 1591 return 0; 1592 } 1593 1594 static int atc_resume(struct ct_atc *atc) 1595 { 1596 int err = 0; 1597 1598 /* Do hardware resume. */ 1599 err = atc_hw_resume(atc); 1600 if (err < 0) { 1601 printk(KERN_ERR "ctxfi: pci_enable_device failed, " 1602 "disabling device\n"); 1603 snd_card_disconnect(atc->card); 1604 return err; 1605 } 1606 1607 err = atc_resources_resume(atc); 1608 if (err < 0) 1609 return err; 1610 1611 snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0); 1612 1613 return 0; 1614 } 1615 #endif 1616 1617 static struct ct_atc atc_preset __devinitdata = { 1618 .map_audio_buffer = ct_map_audio_buffer, 1619 .unmap_audio_buffer = ct_unmap_audio_buffer, 1620 .pcm_playback_prepare = atc_pcm_playback_prepare, 1621 .pcm_release_resources = atc_pcm_release_resources, 1622 .pcm_playback_start = atc_pcm_playback_start, 1623 .pcm_playback_stop = atc_pcm_stop, 1624 .pcm_playback_position = atc_pcm_playback_position, 1625 .pcm_capture_prepare = atc_pcm_capture_prepare, 1626 .pcm_capture_start = atc_pcm_capture_start, 1627 .pcm_capture_stop = atc_pcm_stop, 1628 .pcm_capture_position = atc_pcm_capture_position, 1629 .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare, 1630 .get_ptp_phys = atc_get_ptp_phys, 1631 .select_line_in = atc_select_line_in, 1632 .select_mic_in = atc_select_mic_in, 1633 .select_digit_io = atc_select_digit_io, 1634 .line_front_unmute = atc_line_front_unmute, 1635 .line_surround_unmute = atc_line_surround_unmute, 1636 .line_clfe_unmute = atc_line_clfe_unmute, 1637 .line_rear_unmute = atc_line_rear_unmute, 1638 .line_in_unmute = atc_line_in_unmute, 1639 .mic_unmute = atc_mic_unmute, 1640 .spdif_out_unmute = atc_spdif_out_unmute, 1641 .spdif_in_unmute = atc_spdif_in_unmute, 1642 .spdif_out_get_status = atc_spdif_out_get_status, 1643 .spdif_out_set_status = atc_spdif_out_set_status, 1644 .spdif_out_passthru = atc_spdif_out_passthru, 1645 .capabilities = atc_capabilities, 1646 .output_switch_get = atc_output_switch_get, 1647 .output_switch_put = atc_output_switch_put, 1648 .mic_source_switch_get = atc_mic_source_switch_get, 1649 .mic_source_switch_put = atc_mic_source_switch_put, 1650 #ifdef CONFIG_PM_SLEEP 1651 .suspend = atc_suspend, 1652 .resume = atc_resume, 1653 #endif 1654 }; 1655 1656 /** 1657 * ct_atc_create - create and initialize a hardware manager 1658 * @card: corresponding alsa card object 1659 * @pci: corresponding kernel pci device object 1660 * @ratc: return created object address in it 1661 * 1662 * Creates and initializes a hardware manager. 1663 * 1664 * Creates kmallocated ct_atc structure. Initializes hardware. 1665 * Returns 0 if succeeds, or negative error code if fails. 1666 */ 1667 1668 int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci, 1669 unsigned int rsr, unsigned int msr, 1670 int chip_type, unsigned int ssid, 1671 struct ct_atc **ratc) 1672 { 1673 struct ct_atc *atc; 1674 static struct snd_device_ops ops = { 1675 .dev_free = atc_dev_free, 1676 }; 1677 int err; 1678 1679 *ratc = NULL; 1680 1681 atc = kzalloc(sizeof(*atc), GFP_KERNEL); 1682 if (!atc) 1683 return -ENOMEM; 1684 1685 /* Set operations */ 1686 *atc = atc_preset; 1687 1688 atc->card = card; 1689 atc->pci = pci; 1690 atc->rsr = rsr; 1691 atc->msr = msr; 1692 atc->chip_type = chip_type; 1693 1694 mutex_init(&atc->atc_mutex); 1695 1696 /* Find card model */ 1697 err = atc_identify_card(atc, ssid); 1698 if (err < 0) { 1699 printk(KERN_ERR "ctatc: Card not recognised\n"); 1700 goto error1; 1701 } 1702 1703 /* Set up device virtual memory management object */ 1704 err = ct_vm_create(&atc->vm, pci); 1705 if (err < 0) 1706 goto error1; 1707 1708 /* Create all atc hw devices */ 1709 err = atc_create_hw_devs(atc); 1710 if (err < 0) 1711 goto error1; 1712 1713 err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer); 1714 if (err) { 1715 printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n"); 1716 goto error1; 1717 } 1718 1719 /* Get resources */ 1720 err = atc_get_resources(atc); 1721 if (err < 0) 1722 goto error1; 1723 1724 /* Build topology */ 1725 atc_connect_resources(atc); 1726 1727 atc->timer = ct_timer_new(atc); 1728 if (!atc->timer) { 1729 err = -ENOMEM; 1730 goto error1; 1731 } 1732 1733 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops); 1734 if (err < 0) 1735 goto error1; 1736 1737 snd_card_set_dev(card, &pci->dev); 1738 1739 *ratc = atc; 1740 return 0; 1741 1742 error1: 1743 ct_atc_destroy(atc); 1744 printk(KERN_ERR "ctxfi: Something wrong!!!\n"); 1745 return err; 1746 } 1747