xref: /linux/sound/pci/cmipci.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 
34 #if IS_REACHABLE(CONFIG_GAMEPORT)
35 #define SUPPORT_JOYSTICK 1
36 #endif
37 
38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44 #ifdef SUPPORT_JOYSTICK
45 static int joystick_port[SNDRV_CARDS];
46 #endif
47 
48 module_param_array(index, int, NULL, 0444);
49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50 module_param_array(id, charp, NULL, 0444);
51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52 module_param_array(enable, bool, NULL, 0444);
53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57 MODULE_PARM_DESC(fm_port, "FM port.");
58 module_param_array(soft_ac3, bool, NULL, 0444);
59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60 #ifdef SUPPORT_JOYSTICK
61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63 #endif
64 
65 /*
66  * CM8x38 registers definition
67  */
68 
69 #define CM_REG_FUNCTRL0		0x00
70 #define CM_RST_CH1		0x00080000
71 #define CM_RST_CH0		0x00040000
72 #define CM_CHEN1		0x00020000	/* ch1: enable */
73 #define CM_CHEN0		0x00010000	/* ch0: enable */
74 #define CM_PAUSE1		0x00000008	/* ch1: pause */
75 #define CM_PAUSE0		0x00000004	/* ch0: pause */
76 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
77 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
78 
79 #define CM_REG_FUNCTRL1		0x04
80 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
81 #define CM_DSFC_SHIFT		13
82 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
83 #define CM_ASFC_SHIFT		10
84 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
85 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
86 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
87 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
88 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
89 #define CM_BREQ			0x00000010	/* bus master enabled */
90 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
91 #define CM_UART_EN		0x00000004	/* legacy UART */
92 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
93 #define CM_ZVPORT		0x00000001	/* ZVPORT */
94 
95 #define CM_REG_CHFORMAT		0x08
96 
97 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
98 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
99 #define CM_CHB3D		0x20000000	/* 4 channels */
100 
101 #define CM_CHIP_MASK1		0x1f000000
102 #define CM_CHIP_037		0x01000000
103 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
104 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
105 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
106 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
107 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
108 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
109 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
110 
111 #define CM_ADCBITLEN_MASK	0x0000C000
112 #define CM_ADCBITLEN_16		0x00000000
113 #define CM_ADCBITLEN_15		0x00004000
114 #define CM_ADCBITLEN_14		0x00008000
115 #define CM_ADCBITLEN_13		0x0000C000
116 
117 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
118 #define CM_ADCDACLEN_060	0x00000000
119 #define CM_ADCDACLEN_066	0x00001000
120 #define CM_ADCDACLEN_130	0x00002000
121 #define CM_ADCDACLEN_280	0x00003000
122 
123 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
124 #define CM_ADCDLEN_ORIGINAL	0x00000000
125 #define CM_ADCDLEN_EXTRA	0x00001000
126 #define CM_ADCDLEN_24K		0x00002000
127 #define CM_ADCDLEN_WEIGHT	0x00003000
128 
129 #define CM_CH1_SRATE_176K	0x00000800
130 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
131 #define CM_CH1_SRATE_88K	0x00000400
132 #define CM_CH0_SRATE_176K	0x00000200
133 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
134 #define CM_CH0_SRATE_88K	0x00000100
135 #define CM_CH0_SRATE_128K	0x00000300
136 #define CM_CH0_SRATE_MASK	0x00000300
137 
138 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
139 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
140 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
141 #define CM_SPDLOCKED		0x00000010
142 
143 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
144 #define CM_CH1FMT_SHIFT		2
145 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
146 #define CM_CH0FMT_SHIFT		0
147 
148 #define CM_REG_INT_HLDCLR	0x0C
149 #define CM_CHIP_MASK2		0xff000000
150 #define CM_CHIP_8768		0x20000000
151 #define CM_CHIP_055		0x08000000
152 #define CM_CHIP_039		0x04000000
153 #define CM_CHIP_039_6CH		0x01000000
154 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
155 #define CM_TDMA_INT_EN		0x00040000
156 #define CM_CH1_INT_EN		0x00020000
157 #define CM_CH0_INT_EN		0x00010000
158 
159 #define CM_REG_INT_STATUS	0x10
160 #define CM_INTR			0x80000000
161 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
162 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
163 #define CM_UARTINT		0x00010000
164 #define CM_LTDMAINT		0x00008000
165 #define CM_HTDMAINT		0x00004000
166 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
167 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
168 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
169 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
170 #define CM_CH1BUSY		0x00000008
171 #define CM_CH0BUSY		0x00000004
172 #define CM_CHINT1		0x00000002
173 #define CM_CHINT0		0x00000001
174 
175 #define CM_REG_LEGACY_CTRL	0x14
176 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
177 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
178 #define CM_VMPU_330		0x00000000
179 #define CM_VMPU_320		0x20000000
180 #define CM_VMPU_310		0x40000000
181 #define CM_VMPU_300		0x60000000
182 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
183 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
184 #define CM_VSBSEL_220		0x00000000
185 #define CM_VSBSEL_240		0x04000000
186 #define CM_VSBSEL_260		0x08000000
187 #define CM_VSBSEL_280		0x0C000000
188 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
189 #define CM_FMSEL_388		0x00000000
190 #define CM_FMSEL_3C8		0x01000000
191 #define CM_FMSEL_3E0		0x02000000
192 #define CM_FMSEL_3E8		0x03000000
193 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
194 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
195 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
196 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
197 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
199 #define CM_C_EECS		0x00040000
200 #define CM_C_EEDI46		0x00020000
201 #define CM_C_EECK46		0x00010000
202 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
203 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
204 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
205 #define CM_EXBASEN		0x00001000	/* external bass input enable */
206 
207 #define CM_REG_MISC_CTRL	0x18
208 #define CM_PWD			0x80000000	/* power down */
209 #define CM_RESET		0x40000000
210 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
211 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
212 #define CM_TXVX			0x08000000	/* model 037? */
213 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
214 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
215 #define CM_SPDIF48K		0x01000000	/* write */
216 #define CM_SPATUS48K		0x01000000	/* read */
217 #define CM_ENDBDAC		0x00800000	/* enable double dac */
218 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
219 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
220 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
221 #define CM_FM_EN		0x00080000	/* enable legacy FM */
222 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
223 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
224 #define CM_VIDWPDSB		0x00010000	/* model 037? */
225 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
226 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
227 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
228 #define CM_VIDWPPRT		0x00002000	/* model 037? */
229 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
230 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
231 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
232 #define CM_ENCENTER		0x00000080
233 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
234 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
235 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
236 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
237 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
238 #define CM_UPDDMA_2048		0x00000000
239 #define CM_UPDDMA_1024		0x00000004
240 #define CM_UPDDMA_512		0x00000008
241 #define CM_UPDDMA_256		0x0000000C
242 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
243 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
245 
246 #define CM_REG_TDMA_POSITION	0x1C
247 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
248 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
249 
250 	/* byte */
251 #define CM_REG_MIXER0		0x20
252 #define CM_REG_SBVR		0x20		/* write: sb16 version */
253 #define CM_REG_DEV		0x20		/* read: hardware device version */
254 
255 #define CM_REG_MIXER21		0x21
256 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
257 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
258 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
259 #define CM_X_SB16		0x01		/* SB16 compatible */
260 
261 #define CM_REG_SB16_DATA	0x22
262 #define CM_REG_SB16_ADDR	0x23
263 
264 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
265 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
267 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
268 
269 #define CM_REG_MIXER1		0x24
270 #define CM_FMMUTE		0x80	/* mute FM */
271 #define CM_FMMUTE_SHIFT		7
272 #define CM_WSMUTE		0x40	/* mute PCM */
273 #define CM_WSMUTE_SHIFT		6
274 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
275 #define CM_REAR2LIN_SHIFT	5
276 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
277 #define CM_REAR2FRONT_SHIFT	4
278 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
279 #define CM_WAVEINL_SHIFT	3
280 #define CM_WAVEINR		0x04	/* digical wave rec. right */
281 #define CM_WAVEINR_SHIFT	2
282 #define CM_X3DEN		0x02	/* 3D surround enable */
283 #define CM_X3DEN_SHIFT		1
284 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
285 #define CM_CDPLAY_SHIFT		0
286 
287 #define CM_REG_MIXER2		0x25
288 #define CM_RAUXREN		0x80	/* AUX right capture */
289 #define CM_RAUXREN_SHIFT	7
290 #define CM_RAUXLEN		0x40	/* AUX left capture */
291 #define CM_RAUXLEN_SHIFT	6
292 #define CM_VAUXRM		0x20	/* AUX right mute */
293 #define CM_VAUXRM_SHIFT		5
294 #define CM_VAUXLM		0x10	/* AUX left mute */
295 #define CM_VAUXLM_SHIFT		4
296 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
297 #define CM_VADMIC_SHIFT		1
298 #define CM_MICGAINZ		0x01	/* mic boost */
299 #define CM_MICGAINZ_SHIFT	0
300 
301 #define CM_REG_AUX_VOL		0x26
302 #define CM_VAUXL_MASK		0xf0
303 #define CM_VAUXR_MASK		0x0f
304 
305 #define CM_REG_MISC		0x27
306 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
307 #define CM_XGPO1		0x20
308 // #define CM_XGPBIO		0x04
309 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
310 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
311 #define CM_SPDVALID		0x02	/* spdif input valid check */
312 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
313 
314 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
315 /*
316  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
317  * or identical with AC97 codec?
318  */
319 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
320 
321 /*
322  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
323  */
324 #define CM_REG_MPU_PCI		0x40
325 
326 /*
327  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
328  */
329 #define CM_REG_FM_PCI		0x50
330 
331 /*
332  * access from SB-mixer port
333  */
334 #define CM_REG_EXTENT_IND	0xf0
335 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
336 #define CM_VPHONE_SHIFT		5
337 #define CM_VPHOM		0x10	/* Phone mute control */
338 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
339 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
340 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
341 #define CM_VADMIC3		0x01	/* Mic record boost */
342 
343 /*
344  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
345  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
346  * unit (readonly?).
347  */
348 #define CM_REG_PLL		0xf8
349 
350 /*
351  * extended registers
352  */
353 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
354 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
355 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
356 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
357 
358 #define CM_REG_EXT_MISC		0x90
359 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
360 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
361 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
362 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
363 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
364 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
365 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
366 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
367 
368 /*
369  * size of i/o region
370  */
371 #define CM_EXTENT_CODEC	  0x100
372 #define CM_EXTENT_MIDI	  0x2
373 #define CM_EXTENT_SYNTH	  0x4
374 
375 
376 /*
377  * channels for playback / capture
378  */
379 #define CM_CH_PLAY	0
380 #define CM_CH_CAPT	1
381 
382 /*
383  * flags to check device open/close
384  */
385 #define CM_OPEN_NONE	0
386 #define CM_OPEN_CH_MASK	0x01
387 #define CM_OPEN_DAC	0x10
388 #define CM_OPEN_ADC	0x20
389 #define CM_OPEN_SPDIF	0x40
390 #define CM_OPEN_MCHAN	0x80
391 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
392 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
393 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
394 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
395 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
396 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
397 
398 
399 #if CM_CH_PLAY == 1
400 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
401 #define CM_PLAYBACK_SPDF	CM_SPDF_1
402 #define CM_CAPTURE_SPDF		CM_SPDF_0
403 #else
404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
405 #define CM_PLAYBACK_SPDF	CM_SPDF_0
406 #define CM_CAPTURE_SPDF		CM_SPDF_1
407 #endif
408 
409 
410 /*
411  * driver data
412  */
413 
414 struct cmipci_pcm {
415 	struct snd_pcm_substream *substream;
416 	u8 running;		/* dac/adc running? */
417 	u8 fmt;			/* format bits */
418 	u8 is_dac;
419 	u8 needs_silencing;
420 	unsigned int dma_size;	/* in frames */
421 	unsigned int shift;
422 	unsigned int ch;	/* channel (0/1) */
423 	unsigned int offset;	/* physical address of the buffer */
424 };
425 
426 /* mixer elements toggled/resumed during ac3 playback */
427 struct cmipci_mixer_auto_switches {
428 	const char *name;	/* switch to toggle */
429 	int toggle_on;		/* value to change when ac3 mode */
430 };
431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
432 	{"PCM Playback Switch", 0},
433 	{"IEC958 Output Switch", 1},
434 	{"IEC958 Mix Analog", 0},
435 	// {"IEC958 Out To DAC", 1}, // no longer used
436 	{"IEC958 Loop", 0},
437 };
438 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
439 
440 struct cmipci {
441 	struct snd_card *card;
442 
443 	struct pci_dev *pci;
444 	unsigned int device;	/* device ID */
445 	int irq;
446 
447 	unsigned long iobase;
448 	unsigned int ctrl;	/* FUNCTRL0 current value */
449 
450 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
451 	struct snd_pcm *pcm2;	/* 2nd DAC */
452 	struct snd_pcm *pcm_spdif;	/* SPDIF */
453 
454 	int chip_version;
455 	int max_channels;
456 	unsigned int can_ac3_sw: 1;
457 	unsigned int can_ac3_hw: 1;
458 	unsigned int can_multi_ch: 1;
459 	unsigned int can_96k: 1;	/* samplerate above 48k */
460 	unsigned int do_soft_ac3: 1;
461 
462 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
463 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
464 	int spdif_counter;	/* for software AC3 */
465 
466 	unsigned int dig_status;
467 	unsigned int dig_pcm_status;
468 
469 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
470 
471 	int opened[2];	/* open mode */
472 	struct mutex open_mutex;
473 
474 	unsigned int mixer_insensitive: 1;
475 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
476 	int mixer_res_status[CM_SAVED_MIXERS];
477 
478 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
479 
480 	/* external MIDI */
481 	struct snd_rawmidi *rmidi;
482 
483 #ifdef SUPPORT_JOYSTICK
484 	struct gameport *gameport;
485 #endif
486 
487 	spinlock_t reg_lock;
488 
489 	unsigned int saved_regs[0x20];
490 	unsigned char saved_mixers[0x20];
491 };
492 
493 
494 /* read/write operations for dword register */
495 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
496 {
497 	outl(data, cm->iobase + cmd);
498 }
499 
500 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
501 {
502 	return inl(cm->iobase + cmd);
503 }
504 
505 /* read/write operations for word register */
506 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
507 {
508 	outw(data, cm->iobase + cmd);
509 }
510 
511 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
512 {
513 	return inw(cm->iobase + cmd);
514 }
515 
516 /* read/write operations for byte register */
517 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
518 {
519 	outb(data, cm->iobase + cmd);
520 }
521 
522 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
523 {
524 	return inb(cm->iobase + cmd);
525 }
526 
527 /* bit operations for dword register */
528 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
529 {
530 	unsigned int val, oval;
531 	val = oval = inl(cm->iobase + cmd);
532 	val |= flag;
533 	if (val == oval)
534 		return 0;
535 	outl(val, cm->iobase + cmd);
536 	return 1;
537 }
538 
539 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
540 {
541 	unsigned int val, oval;
542 	val = oval = inl(cm->iobase + cmd);
543 	val &= ~flag;
544 	if (val == oval)
545 		return 0;
546 	outl(val, cm->iobase + cmd);
547 	return 1;
548 }
549 
550 /* bit operations for byte register */
551 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
552 {
553 	unsigned char val, oval;
554 	val = oval = inb(cm->iobase + cmd);
555 	val |= flag;
556 	if (val == oval)
557 		return 0;
558 	outb(val, cm->iobase + cmd);
559 	return 1;
560 }
561 
562 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
563 {
564 	unsigned char val, oval;
565 	val = oval = inb(cm->iobase + cmd);
566 	val &= ~flag;
567 	if (val == oval)
568 		return 0;
569 	outb(val, cm->iobase + cmd);
570 	return 1;
571 }
572 
573 
574 /*
575  * PCM interface
576  */
577 
578 /*
579  * calculate frequency
580  */
581 
582 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
583 
584 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
585 {
586 	unsigned int i;
587 
588 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
589 		if (rates[i] == rate)
590 			return i;
591 	}
592 	snd_BUG();
593 	return 0;
594 }
595 
596 #ifdef USE_VAR48KRATE
597 /*
598  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
599  * does it this way .. maybe not.  Never get any information from C-Media about
600  * that <werner@suse.de>.
601  */
602 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
603 {
604 	unsigned int delta, tolerance;
605 	int xm, xn, xr;
606 
607 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
608 		rate <<= 1;
609 	*n = -1;
610 	if (*r > 0xff)
611 		goto out;
612 	tolerance = rate*CM_TOLERANCE_RATE;
613 
614 	for (xn = (1+2); xn < (0x1f+2); xn++) {
615 		for (xm = (1+2); xm < (0xff+2); xm++) {
616 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
617 
618 			if (xr < rate)
619 				delta = rate - xr;
620 			else
621 				delta = xr - rate;
622 
623 			/*
624 			 * If we found one, remember this,
625 			 * and try to find a closer one
626 			 */
627 			if (delta < tolerance) {
628 				tolerance = delta;
629 				*m = xm - 2;
630 				*n = xn - 2;
631 			}
632 		}
633 	}
634 out:
635 	return (*n > -1);
636 }
637 
638 /*
639  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
640  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
641  * at the register CM_REG_FUNCTRL1 (0x04).
642  * Problem: other ways are also possible (any information about that?)
643  */
644 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
645 {
646 	unsigned int reg = CM_REG_PLL + slot;
647 	/*
648 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
649 	 * for DSFC/ASFC (000 up to 111).
650 	 */
651 
652 	/* FIXME: Init (Do we've to set an other register first before programming?) */
653 
654 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
655 	snd_cmipci_write_b(cm, reg, rate>>8);
656 	snd_cmipci_write_b(cm, reg, rate&0xff);
657 
658 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
659 }
660 #endif /* USE_VAR48KRATE */
661 
662 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
663 					  struct snd_pcm_hw_params *hw_params)
664 {
665 	struct cmipci *cm = snd_pcm_substream_chip(substream);
666 	if (params_channels(hw_params) > 2) {
667 		mutex_lock(&cm->open_mutex);
668 		if (cm->opened[CM_CH_PLAY]) {
669 			mutex_unlock(&cm->open_mutex);
670 			return -EBUSY;
671 		}
672 		/* reserve the channel A */
673 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
674 		mutex_unlock(&cm->open_mutex);
675 	}
676 	return 0;
677 }
678 
679 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
680 {
681 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
682 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
683 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
684 	udelay(10);
685 }
686 
687 
688 /*
689  */
690 
691 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
692 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
693 	.count = 3,
694 	.list = hw_channels,
695 	.mask = 0,
696 };
697 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
698 	.count = 4,
699 	.list = hw_channels,
700 	.mask = 0,
701 };
702 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
703 	.count = 5,
704 	.list = hw_channels,
705 	.mask = 0,
706 };
707 
708 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
709 {
710 	if (channels > 2) {
711 		if (!cm->can_multi_ch || !rec->ch)
712 			return -EINVAL;
713 		if (rec->fmt != 0x03) /* stereo 16bit only */
714 			return -EINVAL;
715 	}
716 
717 	if (cm->can_multi_ch) {
718 		spin_lock_irq(&cm->reg_lock);
719 		if (channels > 2) {
720 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
721 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
722 		} else {
723 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725 		}
726 		if (channels == 8)
727 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
728 		else
729 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
730 		if (channels == 6) {
731 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
732 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
733 		} else {
734 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
735 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
736 		}
737 		if (channels == 4)
738 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
739 		else
740 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
741 		spin_unlock_irq(&cm->reg_lock);
742 	}
743 	return 0;
744 }
745 
746 
747 /*
748  * prepare playback/capture channel
749  * channel to be used must have been set in rec->ch.
750  */
751 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
752 				 struct snd_pcm_substream *substream)
753 {
754 	unsigned int reg, freq, freq_ext, val;
755 	unsigned int period_size;
756 	struct snd_pcm_runtime *runtime = substream->runtime;
757 
758 	rec->fmt = 0;
759 	rec->shift = 0;
760 	if (snd_pcm_format_width(runtime->format) >= 16) {
761 		rec->fmt |= 0x02;
762 		if (snd_pcm_format_width(runtime->format) > 16)
763 			rec->shift++; /* 24/32bit */
764 	}
765 	if (runtime->channels > 1)
766 		rec->fmt |= 0x01;
767 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
768 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
769 		return -EINVAL;
770 	}
771 
772 	rec->offset = runtime->dma_addr;
773 	/* buffer and period sizes in frame */
774 	rec->dma_size = runtime->buffer_size << rec->shift;
775 	period_size = runtime->period_size << rec->shift;
776 	if (runtime->channels > 2) {
777 		/* multi-channels */
778 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
779 		period_size = (period_size * runtime->channels) / 2;
780 	}
781 
782 	spin_lock_irq(&cm->reg_lock);
783 
784 	/* set buffer address */
785 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
786 	snd_cmipci_write(cm, reg, rec->offset);
787 	/* program sample counts */
788 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
789 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
790 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
791 
792 	/* set adc/dac flag */
793 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
794 	if (rec->is_dac)
795 		cm->ctrl &= ~val;
796 	else
797 		cm->ctrl |= val;
798 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
799 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
800 
801 	/* set sample rate */
802 	freq = 0;
803 	freq_ext = 0;
804 	if (runtime->rate > 48000)
805 		switch (runtime->rate) {
806 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
807 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
808 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
809 		default:     snd_BUG(); break;
810 		}
811 	else
812 		freq = snd_cmipci_rate_freq(runtime->rate);
813 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
814 	if (rec->ch) {
815 		val &= ~CM_DSFC_MASK;
816 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
817 	} else {
818 		val &= ~CM_ASFC_MASK;
819 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
820 	}
821 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
822 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
823 
824 	/* set format */
825 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
826 	if (rec->ch) {
827 		val &= ~CM_CH1FMT_MASK;
828 		val |= rec->fmt << CM_CH1FMT_SHIFT;
829 	} else {
830 		val &= ~CM_CH0FMT_MASK;
831 		val |= rec->fmt << CM_CH0FMT_SHIFT;
832 	}
833 	if (cm->can_96k) {
834 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
835 		val |= freq_ext << (rec->ch * 2);
836 	}
837 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
838 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
839 
840 	if (!rec->is_dac && cm->chip_version) {
841 		if (runtime->rate > 44100)
842 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
843 		else
844 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
845 	}
846 
847 	rec->running = 0;
848 	spin_unlock_irq(&cm->reg_lock);
849 
850 	return 0;
851 }
852 
853 /*
854  * PCM trigger/stop
855  */
856 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
857 				  int cmd)
858 {
859 	unsigned int inthld, chen, reset, pause;
860 	int result = 0;
861 
862 	inthld = CM_CH0_INT_EN << rec->ch;
863 	chen = CM_CHEN0 << rec->ch;
864 	reset = CM_RST_CH0 << rec->ch;
865 	pause = CM_PAUSE0 << rec->ch;
866 
867 	spin_lock(&cm->reg_lock);
868 	switch (cmd) {
869 	case SNDRV_PCM_TRIGGER_START:
870 		rec->running = 1;
871 		/* set interrupt */
872 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
873 		cm->ctrl |= chen;
874 		/* enable channel */
875 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
876 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
877 		break;
878 	case SNDRV_PCM_TRIGGER_STOP:
879 		rec->running = 0;
880 		/* disable interrupt */
881 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
882 		/* reset */
883 		cm->ctrl &= ~chen;
884 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
885 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
886 		rec->needs_silencing = rec->is_dac;
887 		break;
888 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
889 	case SNDRV_PCM_TRIGGER_SUSPEND:
890 		cm->ctrl |= pause;
891 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
892 		break;
893 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
894 	case SNDRV_PCM_TRIGGER_RESUME:
895 		cm->ctrl &= ~pause;
896 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
897 		break;
898 	default:
899 		result = -EINVAL;
900 		break;
901 	}
902 	spin_unlock(&cm->reg_lock);
903 	return result;
904 }
905 
906 /*
907  * return the current pointer
908  */
909 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
910 						struct snd_pcm_substream *substream)
911 {
912 	size_t ptr;
913 	unsigned int reg, rem, tries;
914 
915 	if (!rec->running)
916 		return 0;
917 #if 1 // this seems better..
918 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
919 	for (tries = 0; tries < 3; tries++) {
920 		rem = snd_cmipci_read_w(cm, reg);
921 		if (rem < rec->dma_size)
922 			goto ok;
923 	}
924 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
925 	return SNDRV_PCM_POS_XRUN;
926 ok:
927 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
928 #else
929 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
930 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
931 	ptr = bytes_to_frames(substream->runtime, ptr);
932 #endif
933 	if (substream->runtime->channels > 2)
934 		ptr = (ptr * 2) / substream->runtime->channels;
935 	return ptr;
936 }
937 
938 /*
939  * playback
940  */
941 
942 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
943 				       int cmd)
944 {
945 	struct cmipci *cm = snd_pcm_substream_chip(substream);
946 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
947 }
948 
949 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
950 {
951 	struct cmipci *cm = snd_pcm_substream_chip(substream);
952 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
953 }
954 
955 
956 
957 /*
958  * capture
959  */
960 
961 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
962 				     int cmd)
963 {
964 	struct cmipci *cm = snd_pcm_substream_chip(substream);
965 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
966 }
967 
968 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
969 {
970 	struct cmipci *cm = snd_pcm_substream_chip(substream);
971 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
972 }
973 
974 
975 /*
976  * hw preparation for spdif
977  */
978 
979 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
980 					 struct snd_ctl_elem_info *uinfo)
981 {
982 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
983 	uinfo->count = 1;
984 	return 0;
985 }
986 
987 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
988 					struct snd_ctl_elem_value *ucontrol)
989 {
990 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
991 	int i;
992 
993 	spin_lock_irq(&chip->reg_lock);
994 	for (i = 0; i < 4; i++)
995 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
996 	spin_unlock_irq(&chip->reg_lock);
997 	return 0;
998 }
999 
1000 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1001 					 struct snd_ctl_elem_value *ucontrol)
1002 {
1003 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004 	int i, change;
1005 	unsigned int val;
1006 
1007 	val = 0;
1008 	spin_lock_irq(&chip->reg_lock);
1009 	for (i = 0; i < 4; i++)
1010 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1011 	change = val != chip->dig_status;
1012 	chip->dig_status = val;
1013 	spin_unlock_irq(&chip->reg_lock);
1014 	return change;
1015 }
1016 
1017 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1018 {
1019 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1020 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1021 	.info =		snd_cmipci_spdif_default_info,
1022 	.get =		snd_cmipci_spdif_default_get,
1023 	.put =		snd_cmipci_spdif_default_put
1024 };
1025 
1026 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1027 				      struct snd_ctl_elem_info *uinfo)
1028 {
1029 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1030 	uinfo->count = 1;
1031 	return 0;
1032 }
1033 
1034 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1035 				     struct snd_ctl_elem_value *ucontrol)
1036 {
1037 	ucontrol->value.iec958.status[0] = 0xff;
1038 	ucontrol->value.iec958.status[1] = 0xff;
1039 	ucontrol->value.iec958.status[2] = 0xff;
1040 	ucontrol->value.iec958.status[3] = 0xff;
1041 	return 0;
1042 }
1043 
1044 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1045 {
1046 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1047 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1048 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1049 	.info =		snd_cmipci_spdif_mask_info,
1050 	.get =		snd_cmipci_spdif_mask_get,
1051 };
1052 
1053 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1054 					struct snd_ctl_elem_info *uinfo)
1055 {
1056 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1057 	uinfo->count = 1;
1058 	return 0;
1059 }
1060 
1061 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1062 				       struct snd_ctl_elem_value *ucontrol)
1063 {
1064 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1065 	int i;
1066 
1067 	spin_lock_irq(&chip->reg_lock);
1068 	for (i = 0; i < 4; i++)
1069 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1070 	spin_unlock_irq(&chip->reg_lock);
1071 	return 0;
1072 }
1073 
1074 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1075 				       struct snd_ctl_elem_value *ucontrol)
1076 {
1077 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078 	int i, change;
1079 	unsigned int val;
1080 
1081 	val = 0;
1082 	spin_lock_irq(&chip->reg_lock);
1083 	for (i = 0; i < 4; i++)
1084 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1085 	change = val != chip->dig_pcm_status;
1086 	chip->dig_pcm_status = val;
1087 	spin_unlock_irq(&chip->reg_lock);
1088 	return change;
1089 }
1090 
1091 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1092 {
1093 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1094 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1095 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1096 	.info =		snd_cmipci_spdif_stream_info,
1097 	.get =		snd_cmipci_spdif_stream_get,
1098 	.put =		snd_cmipci_spdif_stream_put
1099 };
1100 
1101 /*
1102  */
1103 
1104 /* save mixer setting and mute for AC3 playback */
1105 static int save_mixer_state(struct cmipci *cm)
1106 {
1107 	if (! cm->mixer_insensitive) {
1108 		struct snd_ctl_elem_value *val;
1109 		unsigned int i;
1110 
1111 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1112 		if (!val)
1113 			return -ENOMEM;
1114 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1115 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1116 			if (ctl) {
1117 				int event;
1118 				memset(val, 0, sizeof(*val));
1119 				ctl->get(ctl, val);
1120 				cm->mixer_res_status[i] = val->value.integer.value[0];
1121 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1122 				event = SNDRV_CTL_EVENT_MASK_INFO;
1123 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1124 					ctl->put(ctl, val); /* toggle */
1125 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126 				}
1127 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128 				snd_ctl_notify(cm->card, event, &ctl->id);
1129 			}
1130 		}
1131 		kfree(val);
1132 		cm->mixer_insensitive = 1;
1133 	}
1134 	return 0;
1135 }
1136 
1137 
1138 /* restore the previously saved mixer status */
1139 static void restore_mixer_state(struct cmipci *cm)
1140 {
1141 	if (cm->mixer_insensitive) {
1142 		struct snd_ctl_elem_value *val;
1143 		unsigned int i;
1144 
1145 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1146 		if (!val)
1147 			return;
1148 		cm->mixer_insensitive = 0; /* at first clear this;
1149 					      otherwise the changes will be ignored */
1150 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1151 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1152 			if (ctl) {
1153 				int event;
1154 
1155 				memset(val, 0, sizeof(*val));
1156 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1157 				ctl->get(ctl, val);
1158 				event = SNDRV_CTL_EVENT_MASK_INFO;
1159 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1160 					val->value.integer.value[0] = cm->mixer_res_status[i];
1161 					ctl->put(ctl, val);
1162 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1163 				}
1164 				snd_ctl_notify(cm->card, event, &ctl->id);
1165 			}
1166 		}
1167 		kfree(val);
1168 	}
1169 }
1170 
1171 /* spinlock held! */
1172 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1173 {
1174 	if (do_ac3) {
1175 		/* AC3EN for 037 */
1176 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1177 		/* AC3EN for 039 */
1178 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1179 
1180 		if (cm->can_ac3_hw) {
1181 			/* SPD24SEL for 037, 0x02 */
1182 			/* SPD24SEL for 039, 0x20, but cannot be set */
1183 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1184 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185 		} else { /* can_ac3_sw */
1186 			/* SPD32SEL for 037 & 039, 0x20 */
1187 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188 			/* set 176K sample rate to fix 033 HW bug */
1189 			if (cm->chip_version == 33) {
1190 				if (rate >= 48000) {
1191 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1192 				} else {
1193 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194 				}
1195 			}
1196 		}
1197 
1198 	} else {
1199 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201 
1202 		if (cm->can_ac3_hw) {
1203 			/* chip model >= 37 */
1204 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1205 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207 			} else {
1208 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210 			}
1211 		} else {
1212 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215 		}
1216 	}
1217 }
1218 
1219 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1220 {
1221 	int rate, err;
1222 
1223 	rate = subs->runtime->rate;
1224 
1225 	if (up && do_ac3) {
1226 		err = save_mixer_state(cm);
1227 		if (err < 0)
1228 			return err;
1229 	}
1230 
1231 	spin_lock_irq(&cm->reg_lock);
1232 	cm->spdif_playback_avail = up;
1233 	if (up) {
1234 		/* they are controlled via "IEC958 Output Switch" */
1235 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1236 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1237 		if (cm->spdif_playback_enabled)
1238 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1239 		setup_ac3(cm, subs, do_ac3, rate);
1240 
1241 		if (rate == 48000 || rate == 96000)
1242 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1243 		else
1244 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245 		if (rate > 48000)
1246 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1247 		else
1248 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249 	} else {
1250 		/* they are controlled via "IEC958 Output Switch" */
1251 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255 		setup_ac3(cm, subs, 0, 0);
1256 	}
1257 	spin_unlock_irq(&cm->reg_lock);
1258 	return 0;
1259 }
1260 
1261 
1262 /*
1263  * preparation
1264  */
1265 
1266 /* playback - enable spdif only on the certain condition */
1267 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1268 {
1269 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1270 	int rate = substream->runtime->rate;
1271 	int err, do_spdif, do_ac3 = 0;
1272 
1273 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1274 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1275 		    substream->runtime->channels == 2);
1276 	if (do_spdif && cm->can_ac3_hw)
1277 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1278 	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1279 	if (err < 0)
1280 		return err;
1281 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1282 }
1283 
1284 /* playback  (via device #2) - enable spdif always */
1285 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286 {
1287 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1288 	int err, do_ac3;
1289 
1290 	if (cm->can_ac3_hw)
1291 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292 	else
1293 		do_ac3 = 1; /* doesn't matter */
1294 	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1295 	if (err < 0)
1296 		return err;
1297 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1298 }
1299 
1300 /*
1301  * Apparently, the samples last played on channel A stay in some buffer, even
1302  * after the channel is reset, and get added to the data for the rear DACs when
1303  * playing a multichannel stream on channel B.  This is likely to generate
1304  * wraparounds and thus distortions.
1305  * To avoid this, we play at least one zero sample after the actual stream has
1306  * stopped.
1307  */
1308 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1309 {
1310 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1311 	unsigned int reg, val;
1312 
1313 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1314 		/* set up a small silence buffer */
1315 		memset(runtime->dma_area, 0, PAGE_SIZE);
1316 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1317 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1318 		snd_cmipci_write(cm, reg, val);
1319 
1320 		/* configure for 16 bits, 2 channels, 8 kHz */
1321 		if (runtime->channels > 2)
1322 			set_dac_channels(cm, rec, 2);
1323 		spin_lock_irq(&cm->reg_lock);
1324 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1325 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1326 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1327 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1328 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1329 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1330 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1331 		if (cm->can_96k)
1332 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1333 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1334 
1335 		/* start stream (we don't need interrupts) */
1336 		cm->ctrl |= CM_CHEN0 << rec->ch;
1337 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1338 		spin_unlock_irq(&cm->reg_lock);
1339 
1340 		msleep(1);
1341 
1342 		/* stop and reset stream */
1343 		spin_lock_irq(&cm->reg_lock);
1344 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1345 		val = CM_RST_CH0 << rec->ch;
1346 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1347 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1348 		spin_unlock_irq(&cm->reg_lock);
1349 
1350 		rec->needs_silencing = 0;
1351 	}
1352 }
1353 
1354 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1355 {
1356 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1357 	setup_spdif_playback(cm, substream, 0, 0);
1358 	restore_mixer_state(cm);
1359 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1360 	return 0;
1361 }
1362 
1363 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1364 {
1365 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1366 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1367 	return 0;
1368 }
1369 
1370 /* capture */
1371 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1372 {
1373 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1374 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1375 }
1376 
1377 /* capture with spdif (via device #2) */
1378 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1379 {
1380 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1381 
1382 	spin_lock_irq(&cm->reg_lock);
1383 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1384 	if (cm->can_96k) {
1385 		if (substream->runtime->rate > 48000)
1386 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1387 		else
1388 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389 	}
1390 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1391 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1392 	else
1393 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394 
1395 	spin_unlock_irq(&cm->reg_lock);
1396 
1397 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1398 }
1399 
1400 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401 {
1402 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1403 
1404 	spin_lock_irq(&cm->reg_lock);
1405 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1407 	spin_unlock_irq(&cm->reg_lock);
1408 
1409 	return 0;
1410 }
1411 
1412 
1413 /*
1414  * interrupt handler
1415  */
1416 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417 {
1418 	struct cmipci *cm = dev_id;
1419 	unsigned int status, mask = 0;
1420 
1421 	/* fastpath out, to ease interrupt sharing */
1422 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1423 	if (!(status & CM_INTR))
1424 		return IRQ_NONE;
1425 
1426 	/* acknowledge interrupt */
1427 	spin_lock(&cm->reg_lock);
1428 	if (status & CM_CHINT0)
1429 		mask |= CM_CH0_INT_EN;
1430 	if (status & CM_CHINT1)
1431 		mask |= CM_CH1_INT_EN;
1432 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1433 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1434 	spin_unlock(&cm->reg_lock);
1435 
1436 	if (cm->rmidi && (status & CM_UARTINT))
1437 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1438 
1439 	if (cm->pcm) {
1440 		if ((status & CM_CHINT0) && cm->channel[0].running)
1441 			snd_pcm_period_elapsed(cm->channel[0].substream);
1442 		if ((status & CM_CHINT1) && cm->channel[1].running)
1443 			snd_pcm_period_elapsed(cm->channel[1].substream);
1444 	}
1445 	return IRQ_HANDLED;
1446 }
1447 
1448 /*
1449  * h/w infos
1450  */
1451 
1452 /* playback on channel A */
1453 static const struct snd_pcm_hardware snd_cmipci_playback =
1454 {
1455 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1456 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1457 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1458 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1459 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1460 	.rate_min =		5512,
1461 	.rate_max =		48000,
1462 	.channels_min =		1,
1463 	.channels_max =		2,
1464 	.buffer_bytes_max =	(128*1024),
1465 	.period_bytes_min =	64,
1466 	.period_bytes_max =	(128*1024),
1467 	.periods_min =		2,
1468 	.periods_max =		1024,
1469 	.fifo_size =		0,
1470 };
1471 
1472 /* capture on channel B */
1473 static const struct snd_pcm_hardware snd_cmipci_capture =
1474 {
1475 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1476 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1477 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1478 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1479 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1480 	.rate_min =		5512,
1481 	.rate_max =		48000,
1482 	.channels_min =		1,
1483 	.channels_max =		2,
1484 	.buffer_bytes_max =	(128*1024),
1485 	.period_bytes_min =	64,
1486 	.period_bytes_max =	(128*1024),
1487 	.periods_min =		2,
1488 	.periods_max =		1024,
1489 	.fifo_size =		0,
1490 };
1491 
1492 /* playback on channel B - stereo 16bit only? */
1493 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1494 {
1495 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1496 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1497 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1498 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1499 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1500 	.rate_min =		5512,
1501 	.rate_max =		48000,
1502 	.channels_min =		2,
1503 	.channels_max =		2,
1504 	.buffer_bytes_max =	(128*1024),
1505 	.period_bytes_min =	64,
1506 	.period_bytes_max =	(128*1024),
1507 	.periods_min =		2,
1508 	.periods_max =		1024,
1509 	.fifo_size =		0,
1510 };
1511 
1512 /* spdif playback on channel A */
1513 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514 {
1515 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1516 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1517 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1518 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1519 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1520 	.rate_min =		44100,
1521 	.rate_max =		48000,
1522 	.channels_min =		2,
1523 	.channels_max =		2,
1524 	.buffer_bytes_max =	(128*1024),
1525 	.period_bytes_min =	64,
1526 	.period_bytes_max =	(128*1024),
1527 	.periods_min =		2,
1528 	.periods_max =		1024,
1529 	.fifo_size =		0,
1530 };
1531 
1532 /* spdif playback on channel A (32bit, IEC958 subframes) */
1533 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534 {
1535 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1536 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1537 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1538 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1539 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1540 	.rate_min =		44100,
1541 	.rate_max =		48000,
1542 	.channels_min =		2,
1543 	.channels_max =		2,
1544 	.buffer_bytes_max =	(128*1024),
1545 	.period_bytes_min =	64,
1546 	.period_bytes_max =	(128*1024),
1547 	.periods_min =		2,
1548 	.periods_max =		1024,
1549 	.fifo_size =		0,
1550 };
1551 
1552 /* spdif capture on channel B */
1553 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554 {
1555 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1556 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1557 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1558 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1559 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1560 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1561 	.rate_min =		44100,
1562 	.rate_max =		48000,
1563 	.channels_min =		2,
1564 	.channels_max =		2,
1565 	.buffer_bytes_max =	(128*1024),
1566 	.period_bytes_min =	64,
1567 	.period_bytes_max =	(128*1024),
1568 	.periods_min =		2,
1569 	.periods_max =		1024,
1570 	.fifo_size =		0,
1571 };
1572 
1573 /*
1574  * check device open/close
1575  */
1576 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1577 {
1578 	int ch = mode & CM_OPEN_CH_MASK;
1579 
1580 	/* FIXME: a file should wait until the device becomes free
1581 	 * when it's opened on blocking mode.  however, since the current
1582 	 * pcm framework doesn't pass file pointer before actually opened,
1583 	 * we can't know whether blocking mode or not in open callback..
1584 	 */
1585 	mutex_lock(&cm->open_mutex);
1586 	if (cm->opened[ch]) {
1587 		mutex_unlock(&cm->open_mutex);
1588 		return -EBUSY;
1589 	}
1590 	cm->opened[ch] = mode;
1591 	cm->channel[ch].substream = subs;
1592 	if (! (mode & CM_OPEN_DAC)) {
1593 		/* disable dual DAC mode */
1594 		cm->channel[ch].is_dac = 0;
1595 		spin_lock_irq(&cm->reg_lock);
1596 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1597 		spin_unlock_irq(&cm->reg_lock);
1598 	}
1599 	mutex_unlock(&cm->open_mutex);
1600 	return 0;
1601 }
1602 
1603 static void close_device_check(struct cmipci *cm, int mode)
1604 {
1605 	int ch = mode & CM_OPEN_CH_MASK;
1606 
1607 	mutex_lock(&cm->open_mutex);
1608 	if (cm->opened[ch] == mode) {
1609 		if (cm->channel[ch].substream) {
1610 			snd_cmipci_ch_reset(cm, ch);
1611 			cm->channel[ch].running = 0;
1612 			cm->channel[ch].substream = NULL;
1613 		}
1614 		cm->opened[ch] = 0;
1615 		if (! cm->channel[ch].is_dac) {
1616 			/* enable dual DAC mode again */
1617 			cm->channel[ch].is_dac = 1;
1618 			spin_lock_irq(&cm->reg_lock);
1619 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1620 			spin_unlock_irq(&cm->reg_lock);
1621 		}
1622 	}
1623 	mutex_unlock(&cm->open_mutex);
1624 }
1625 
1626 /*
1627  */
1628 
1629 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1630 {
1631 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1632 	struct snd_pcm_runtime *runtime = substream->runtime;
1633 	int err;
1634 
1635 	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1636 	if (err < 0)
1637 		return err;
1638 	runtime->hw = snd_cmipci_playback;
1639 	if (cm->chip_version == 68) {
1640 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1641 				     SNDRV_PCM_RATE_96000;
1642 		runtime->hw.rate_max = 96000;
1643 	} else if (cm->chip_version == 55) {
1644 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1645 				     SNDRV_PCM_RATE_96000 |
1646 				     SNDRV_PCM_RATE_128000;
1647 		runtime->hw.rate_max = 128000;
1648 	}
1649 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1650 	cm->dig_pcm_status = cm->dig_status;
1651 	return 0;
1652 }
1653 
1654 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1655 {
1656 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1657 	struct snd_pcm_runtime *runtime = substream->runtime;
1658 	int err;
1659 
1660 	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1661 	if (err < 0)
1662 		return err;
1663 	runtime->hw = snd_cmipci_capture;
1664 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1665 		runtime->hw.rate_min = 41000;
1666 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1667 	} else if (cm->chip_version == 55) {
1668 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1669 				     SNDRV_PCM_RATE_96000 |
1670 				     SNDRV_PCM_RATE_128000;
1671 		runtime->hw.rate_max = 128000;
1672 	}
1673 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1674 	return 0;
1675 }
1676 
1677 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1678 {
1679 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1680 	struct snd_pcm_runtime *runtime = substream->runtime;
1681 	int err;
1682 
1683 	/* use channel B */
1684 	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1685 	if (err < 0)
1686 		return err;
1687 	runtime->hw = snd_cmipci_playback2;
1688 	mutex_lock(&cm->open_mutex);
1689 	if (! cm->opened[CM_CH_PLAY]) {
1690 		if (cm->can_multi_ch) {
1691 			runtime->hw.channels_max = cm->max_channels;
1692 			if (cm->max_channels == 4)
1693 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1694 			else if (cm->max_channels == 6)
1695 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1696 			else if (cm->max_channels == 8)
1697 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1698 		}
1699 	}
1700 	mutex_unlock(&cm->open_mutex);
1701 	if (cm->chip_version == 68) {
1702 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1703 				     SNDRV_PCM_RATE_96000;
1704 		runtime->hw.rate_max = 96000;
1705 	} else if (cm->chip_version == 55) {
1706 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1707 				     SNDRV_PCM_RATE_96000 |
1708 				     SNDRV_PCM_RATE_128000;
1709 		runtime->hw.rate_max = 128000;
1710 	}
1711 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1712 	return 0;
1713 }
1714 
1715 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1716 {
1717 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1718 	struct snd_pcm_runtime *runtime = substream->runtime;
1719 	int err;
1720 
1721 	/* use channel A */
1722 	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1723 	if (err < 0)
1724 		return err;
1725 	if (cm->can_ac3_hw) {
1726 		runtime->hw = snd_cmipci_playback_spdif;
1727 		if (cm->chip_version >= 37) {
1728 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1729 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1730 		}
1731 		if (cm->can_96k) {
1732 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1733 					     SNDRV_PCM_RATE_96000;
1734 			runtime->hw.rate_max = 96000;
1735 		}
1736 	} else {
1737 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1738 	}
1739 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1740 	cm->dig_pcm_status = cm->dig_status;
1741 	return 0;
1742 }
1743 
1744 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1745 {
1746 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1747 	struct snd_pcm_runtime *runtime = substream->runtime;
1748 	int err;
1749 
1750 	/* use channel B */
1751 	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1752 	if (err < 0)
1753 		return err;
1754 	runtime->hw = snd_cmipci_capture_spdif;
1755 	if (cm->can_96k && !(cm->chip_version == 68)) {
1756 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1757 				     SNDRV_PCM_RATE_96000;
1758 		runtime->hw.rate_max = 96000;
1759 	}
1760 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1761 	return 0;
1762 }
1763 
1764 
1765 /*
1766  */
1767 
1768 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1769 {
1770 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1771 	close_device_check(cm, CM_OPEN_PLAYBACK);
1772 	return 0;
1773 }
1774 
1775 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1776 {
1777 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1778 	close_device_check(cm, CM_OPEN_CAPTURE);
1779 	return 0;
1780 }
1781 
1782 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1783 {
1784 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1785 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1786 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1787 	return 0;
1788 }
1789 
1790 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1791 {
1792 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1793 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1794 	return 0;
1795 }
1796 
1797 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1798 {
1799 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1800 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1801 	return 0;
1802 }
1803 
1804 
1805 /*
1806  */
1807 
1808 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1809 	.open =		snd_cmipci_playback_open,
1810 	.close =	snd_cmipci_playback_close,
1811 	.hw_free =	snd_cmipci_playback_hw_free,
1812 	.prepare =	snd_cmipci_playback_prepare,
1813 	.trigger =	snd_cmipci_playback_trigger,
1814 	.pointer =	snd_cmipci_playback_pointer,
1815 };
1816 
1817 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1818 	.open =		snd_cmipci_capture_open,
1819 	.close =	snd_cmipci_capture_close,
1820 	.prepare =	snd_cmipci_capture_prepare,
1821 	.trigger =	snd_cmipci_capture_trigger,
1822 	.pointer =	snd_cmipci_capture_pointer,
1823 };
1824 
1825 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1826 	.open =		snd_cmipci_playback2_open,
1827 	.close =	snd_cmipci_playback2_close,
1828 	.hw_params =	snd_cmipci_playback2_hw_params,
1829 	.hw_free =	snd_cmipci_playback2_hw_free,
1830 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1831 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1832 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1833 };
1834 
1835 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1836 	.open =		snd_cmipci_playback_spdif_open,
1837 	.close =	snd_cmipci_playback_spdif_close,
1838 	.hw_free =	snd_cmipci_playback_hw_free,
1839 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1840 	.trigger =	snd_cmipci_playback_trigger,
1841 	.pointer =	snd_cmipci_playback_pointer,
1842 };
1843 
1844 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1845 	.open =		snd_cmipci_capture_spdif_open,
1846 	.close =	snd_cmipci_capture_spdif_close,
1847 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1848 	.prepare =	snd_cmipci_capture_spdif_prepare,
1849 	.trigger =	snd_cmipci_capture_trigger,
1850 	.pointer =	snd_cmipci_capture_pointer,
1851 };
1852 
1853 
1854 /*
1855  */
1856 
1857 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1858 {
1859 	struct snd_pcm *pcm;
1860 	int err;
1861 
1862 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1863 	if (err < 0)
1864 		return err;
1865 
1866 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1867 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1868 
1869 	pcm->private_data = cm;
1870 	pcm->info_flags = 0;
1871 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1872 	cm->pcm = pcm;
1873 
1874 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1875 				       &cm->pci->dev, 64*1024, 128*1024);
1876 
1877 	return 0;
1878 }
1879 
1880 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1881 {
1882 	struct snd_pcm *pcm;
1883 	int err;
1884 
1885 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1886 	if (err < 0)
1887 		return err;
1888 
1889 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1890 
1891 	pcm->private_data = cm;
1892 	pcm->info_flags = 0;
1893 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1894 	cm->pcm2 = pcm;
1895 
1896 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1897 				       &cm->pci->dev, 64*1024, 128*1024);
1898 
1899 	return 0;
1900 }
1901 
1902 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1903 {
1904 	struct snd_pcm *pcm;
1905 	int err;
1906 
1907 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1908 	if (err < 0)
1909 		return err;
1910 
1911 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1912 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1913 
1914 	pcm->private_data = cm;
1915 	pcm->info_flags = 0;
1916 	strcpy(pcm->name, "C-Media PCI IEC958");
1917 	cm->pcm_spdif = pcm;
1918 
1919 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1920 				       &cm->pci->dev, 64*1024, 128*1024);
1921 
1922 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1923 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1924 				     NULL);
1925 	if (err < 0)
1926 		return err;
1927 
1928 	return 0;
1929 }
1930 
1931 /*
1932  * mixer interface:
1933  * - CM8338/8738 has a compatible mixer interface with SB16, but
1934  *   lack of some elements like tone control, i/o gain and AGC.
1935  * - Access to native registers:
1936  *   - A 3D switch
1937  *   - Output mute switches
1938  */
1939 
1940 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1941 {
1942 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1943 	outb(data, s->iobase + CM_REG_SB16_DATA);
1944 }
1945 
1946 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1947 {
1948 	unsigned char v;
1949 
1950 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1951 	v = inb(s->iobase + CM_REG_SB16_DATA);
1952 	return v;
1953 }
1954 
1955 /*
1956  * general mixer element
1957  */
1958 struct cmipci_sb_reg {
1959 	unsigned int left_reg, right_reg;
1960 	unsigned int left_shift, right_shift;
1961 	unsigned int mask;
1962 	unsigned int invert: 1;
1963 	unsigned int stereo: 1;
1964 };
1965 
1966 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1967  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1968 
1969 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1970 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1971   .info = snd_cmipci_info_volume, \
1972   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1973   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1974 }
1975 
1976 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1977 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1978 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1979 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1980 
1981 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1982 {
1983 	r->left_reg = val & 0xff;
1984 	r->right_reg = (val >> 8) & 0xff;
1985 	r->left_shift = (val >> 16) & 0x07;
1986 	r->right_shift = (val >> 19) & 0x07;
1987 	r->invert = (val >> 22) & 1;
1988 	r->stereo = (val >> 23) & 1;
1989 	r->mask = (val >> 24) & 0xff;
1990 }
1991 
1992 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1993 				  struct snd_ctl_elem_info *uinfo)
1994 {
1995 	struct cmipci_sb_reg reg;
1996 
1997 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1998 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1999 	uinfo->count = reg.stereo + 1;
2000 	uinfo->value.integer.min = 0;
2001 	uinfo->value.integer.max = reg.mask;
2002 	return 0;
2003 }
2004 
2005 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2006 				 struct snd_ctl_elem_value *ucontrol)
2007 {
2008 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2009 	struct cmipci_sb_reg reg;
2010 	int val;
2011 
2012 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2013 	spin_lock_irq(&cm->reg_lock);
2014 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2015 	if (reg.invert)
2016 		val = reg.mask - val;
2017 	ucontrol->value.integer.value[0] = val;
2018 	if (reg.stereo) {
2019 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2020 		if (reg.invert)
2021 			val = reg.mask - val;
2022 		ucontrol->value.integer.value[1] = val;
2023 	}
2024 	spin_unlock_irq(&cm->reg_lock);
2025 	return 0;
2026 }
2027 
2028 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2029 				 struct snd_ctl_elem_value *ucontrol)
2030 {
2031 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2032 	struct cmipci_sb_reg reg;
2033 	int change;
2034 	int left, right, oleft, oright;
2035 
2036 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2037 	left = ucontrol->value.integer.value[0] & reg.mask;
2038 	if (reg.invert)
2039 		left = reg.mask - left;
2040 	left <<= reg.left_shift;
2041 	if (reg.stereo) {
2042 		right = ucontrol->value.integer.value[1] & reg.mask;
2043 		if (reg.invert)
2044 			right = reg.mask - right;
2045 		right <<= reg.right_shift;
2046 	} else
2047 		right = 0;
2048 	spin_lock_irq(&cm->reg_lock);
2049 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2050 	left |= oleft & ~(reg.mask << reg.left_shift);
2051 	change = left != oleft;
2052 	if (reg.stereo) {
2053 		if (reg.left_reg != reg.right_reg) {
2054 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2055 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2056 		} else
2057 			oright = left;
2058 		right |= oright & ~(reg.mask << reg.right_shift);
2059 		change |= right != oright;
2060 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2061 	} else
2062 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2063 	spin_unlock_irq(&cm->reg_lock);
2064 	return change;
2065 }
2066 
2067 /*
2068  * input route (left,right) -> (left,right)
2069  */
2070 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2071 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2072   .info = snd_cmipci_info_input_sw, \
2073   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2074   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2075 }
2076 
2077 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2078 				    struct snd_ctl_elem_info *uinfo)
2079 {
2080 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2081 	uinfo->count = 4;
2082 	uinfo->value.integer.min = 0;
2083 	uinfo->value.integer.max = 1;
2084 	return 0;
2085 }
2086 
2087 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2088 				   struct snd_ctl_elem_value *ucontrol)
2089 {
2090 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2091 	struct cmipci_sb_reg reg;
2092 	int val1, val2;
2093 
2094 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2095 	spin_lock_irq(&cm->reg_lock);
2096 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2097 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2098 	spin_unlock_irq(&cm->reg_lock);
2099 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2100 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2101 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2102 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2103 	return 0;
2104 }
2105 
2106 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2107 				   struct snd_ctl_elem_value *ucontrol)
2108 {
2109 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2110 	struct cmipci_sb_reg reg;
2111 	int change;
2112 	int val1, val2, oval1, oval2;
2113 
2114 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2115 	spin_lock_irq(&cm->reg_lock);
2116 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2117 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2118 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2119 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2120 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2121 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2122 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2123 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2124 	change = val1 != oval1 || val2 != oval2;
2125 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2126 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2127 	spin_unlock_irq(&cm->reg_lock);
2128 	return change;
2129 }
2130 
2131 /*
2132  * native mixer switches/volumes
2133  */
2134 
2135 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2136 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2137   .info = snd_cmipci_info_native_mixer, \
2138   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2139   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2140 }
2141 
2142 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2143 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2144   .info = snd_cmipci_info_native_mixer, \
2145   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2146   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2147 }
2148 
2149 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2150 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2151   .info = snd_cmipci_info_native_mixer, \
2152   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2153   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2154 }
2155 
2156 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2157 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2158   .info = snd_cmipci_info_native_mixer, \
2159   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2160   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2161 }
2162 
2163 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2164 					struct snd_ctl_elem_info *uinfo)
2165 {
2166 	struct cmipci_sb_reg reg;
2167 
2168 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2169 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2170 	uinfo->count = reg.stereo + 1;
2171 	uinfo->value.integer.min = 0;
2172 	uinfo->value.integer.max = reg.mask;
2173 	return 0;
2174 
2175 }
2176 
2177 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2178 				       struct snd_ctl_elem_value *ucontrol)
2179 {
2180 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2181 	struct cmipci_sb_reg reg;
2182 	unsigned char oreg, val;
2183 
2184 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185 	spin_lock_irq(&cm->reg_lock);
2186 	oreg = inb(cm->iobase + reg.left_reg);
2187 	val = (oreg >> reg.left_shift) & reg.mask;
2188 	if (reg.invert)
2189 		val = reg.mask - val;
2190 	ucontrol->value.integer.value[0] = val;
2191 	if (reg.stereo) {
2192 		val = (oreg >> reg.right_shift) & reg.mask;
2193 		if (reg.invert)
2194 			val = reg.mask - val;
2195 		ucontrol->value.integer.value[1] = val;
2196 	}
2197 	spin_unlock_irq(&cm->reg_lock);
2198 	return 0;
2199 }
2200 
2201 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2202 				       struct snd_ctl_elem_value *ucontrol)
2203 {
2204 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2205 	struct cmipci_sb_reg reg;
2206 	unsigned char oreg, nreg, val;
2207 
2208 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2209 	spin_lock_irq(&cm->reg_lock);
2210 	oreg = inb(cm->iobase + reg.left_reg);
2211 	val = ucontrol->value.integer.value[0] & reg.mask;
2212 	if (reg.invert)
2213 		val = reg.mask - val;
2214 	nreg = oreg & ~(reg.mask << reg.left_shift);
2215 	nreg |= (val << reg.left_shift);
2216 	if (reg.stereo) {
2217 		val = ucontrol->value.integer.value[1] & reg.mask;
2218 		if (reg.invert)
2219 			val = reg.mask - val;
2220 		nreg &= ~(reg.mask << reg.right_shift);
2221 		nreg |= (val << reg.right_shift);
2222 	}
2223 	outb(nreg, cm->iobase + reg.left_reg);
2224 	spin_unlock_irq(&cm->reg_lock);
2225 	return (nreg != oreg);
2226 }
2227 
2228 /*
2229  * special case - check mixer sensitivity
2230  */
2231 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2232 						 struct snd_ctl_elem_value *ucontrol)
2233 {
2234 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2236 }
2237 
2238 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2239 						 struct snd_ctl_elem_value *ucontrol)
2240 {
2241 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242 	if (cm->mixer_insensitive) {
2243 		/* ignored */
2244 		return 0;
2245 	}
2246 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2247 }
2248 
2249 
2250 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2251 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2252 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2253 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2254 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2255 	{ /* switch with sensitivity */
2256 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2257 		.name = "PCM Playback Switch",
2258 		.info = snd_cmipci_info_native_mixer,
2259 		.get = snd_cmipci_get_native_mixer_sensitive,
2260 		.put = snd_cmipci_put_native_mixer_sensitive,
2261 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2262 	},
2263 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2264 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2265 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2266 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2267 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2268 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2269 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2270 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2271 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2272 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2273 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2274 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2275 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2276 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2277 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2278 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2279 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2280 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2281 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2282 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2283 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2284 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2285 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2286 };
2287 
2288 /*
2289  * other switches
2290  */
2291 
2292 struct cmipci_switch_args {
2293 	int reg;		/* register index */
2294 	unsigned int mask;	/* mask bits */
2295 	unsigned int mask_on;	/* mask bits to turn on */
2296 	unsigned int is_byte: 1;		/* byte access? */
2297 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2298 					 * non-audio operation?
2299 					 */
2300 };
2301 
2302 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2303 
2304 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2305 				   struct snd_ctl_elem_value *ucontrol,
2306 				   struct cmipci_switch_args *args)
2307 {
2308 	unsigned int val;
2309 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2310 
2311 	spin_lock_irq(&cm->reg_lock);
2312 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2313 		ucontrol->value.integer.value[0] = 0;
2314 		spin_unlock_irq(&cm->reg_lock);
2315 		return 0;
2316 	}
2317 	if (args->is_byte)
2318 		val = inb(cm->iobase + args->reg);
2319 	else
2320 		val = snd_cmipci_read(cm, args->reg);
2321 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2322 	spin_unlock_irq(&cm->reg_lock);
2323 	return 0;
2324 }
2325 
2326 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2327 				  struct snd_ctl_elem_value *ucontrol)
2328 {
2329 	struct cmipci_switch_args *args;
2330 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2331 	if (snd_BUG_ON(!args))
2332 		return -EINVAL;
2333 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2334 }
2335 
2336 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2337 				   struct snd_ctl_elem_value *ucontrol,
2338 				   struct cmipci_switch_args *args)
2339 {
2340 	unsigned int val;
2341 	int change;
2342 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2343 
2344 	spin_lock_irq(&cm->reg_lock);
2345 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2346 		/* ignored */
2347 		spin_unlock_irq(&cm->reg_lock);
2348 		return 0;
2349 	}
2350 	if (args->is_byte)
2351 		val = inb(cm->iobase + args->reg);
2352 	else
2353 		val = snd_cmipci_read(cm, args->reg);
2354 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2355 			args->mask_on : (args->mask & ~args->mask_on));
2356 	if (change) {
2357 		val &= ~args->mask;
2358 		if (ucontrol->value.integer.value[0])
2359 			val |= args->mask_on;
2360 		else
2361 			val |= (args->mask & ~args->mask_on);
2362 		if (args->is_byte)
2363 			outb((unsigned char)val, cm->iobase + args->reg);
2364 		else
2365 			snd_cmipci_write(cm, args->reg, val);
2366 	}
2367 	spin_unlock_irq(&cm->reg_lock);
2368 	return change;
2369 }
2370 
2371 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2372 				  struct snd_ctl_elem_value *ucontrol)
2373 {
2374 	struct cmipci_switch_args *args;
2375 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2376 	if (snd_BUG_ON(!args))
2377 		return -EINVAL;
2378 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2379 }
2380 
2381 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2382 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2383   .reg = xreg, \
2384   .mask = xmask, \
2385   .mask_on = xmask_on, \
2386   .is_byte = xis_byte, \
2387   .ac3_sensitive = xac3, \
2388 }
2389 
2390 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2391 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2392 
2393 #if 0 /* these will be controlled in pcm device */
2394 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2395 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2396 #endif
2397 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2398 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2399 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2400 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2401 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2402 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2403 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2404 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2405 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2406 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2407 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2408 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2409 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2410 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2411 #if CM_CH_PLAY == 1
2412 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2413 #else
2414 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2415 #endif
2416 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2417 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2418 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2419 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2420 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2421 
2422 #define DEFINE_SWITCH(sname, stype, sarg) \
2423 { .name = sname, \
2424   .iface = stype, \
2425   .info = snd_cmipci_uswitch_info, \
2426   .get = snd_cmipci_uswitch_get, \
2427   .put = snd_cmipci_uswitch_put, \
2428   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2429 }
2430 
2431 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2432 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2433 
2434 
2435 /*
2436  * callbacks for spdif output switch
2437  * needs toggle two registers..
2438  */
2439 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2440 					struct snd_ctl_elem_value *ucontrol)
2441 {
2442 	int changed;
2443 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2444 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2445 	return changed;
2446 }
2447 
2448 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2449 					struct snd_ctl_elem_value *ucontrol)
2450 {
2451 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2452 	int changed;
2453 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2454 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2455 	if (changed) {
2456 		if (ucontrol->value.integer.value[0]) {
2457 			if (chip->spdif_playback_avail)
2458 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2459 		} else {
2460 			if (chip->spdif_playback_avail)
2461 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2462 		}
2463 	}
2464 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2465 	return changed;
2466 }
2467 
2468 
2469 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2470 					struct snd_ctl_elem_info *uinfo)
2471 {
2472 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2473 	static const char *const texts[3] = {
2474 		"Line-In", "Rear Output", "Bass Output"
2475 	};
2476 
2477 	return snd_ctl_enum_info(uinfo, 1,
2478 				 cm->chip_version >= 39 ? 3 : 2, texts);
2479 }
2480 
2481 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2482 {
2483 	unsigned int val;
2484 	if (cm->chip_version >= 39) {
2485 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2486 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2487 			return 2;
2488 	}
2489 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2490 	if (val & CM_REAR2LIN)
2491 		return 1;
2492 	return 0;
2493 }
2494 
2495 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2496 				       struct snd_ctl_elem_value *ucontrol)
2497 {
2498 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2499 
2500 	spin_lock_irq(&cm->reg_lock);
2501 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2502 	spin_unlock_irq(&cm->reg_lock);
2503 	return 0;
2504 }
2505 
2506 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2507 				       struct snd_ctl_elem_value *ucontrol)
2508 {
2509 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510 	int change;
2511 
2512 	spin_lock_irq(&cm->reg_lock);
2513 	if (ucontrol->value.enumerated.item[0] == 2)
2514 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2515 	else
2516 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2517 	if (ucontrol->value.enumerated.item[0] == 1)
2518 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2519 	else
2520 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2521 	spin_unlock_irq(&cm->reg_lock);
2522 	return change;
2523 }
2524 
2525 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2526 				       struct snd_ctl_elem_info *uinfo)
2527 {
2528 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2529 
2530 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2531 }
2532 
2533 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2534 				      struct snd_ctl_elem_value *ucontrol)
2535 {
2536 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2537 	/* same bit as spdi_phase */
2538 	spin_lock_irq(&cm->reg_lock);
2539 	ucontrol->value.enumerated.item[0] =
2540 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2541 	spin_unlock_irq(&cm->reg_lock);
2542 	return 0;
2543 }
2544 
2545 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2546 				      struct snd_ctl_elem_value *ucontrol)
2547 {
2548 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2549 	int change;
2550 
2551 	spin_lock_irq(&cm->reg_lock);
2552 	if (ucontrol->value.enumerated.item[0])
2553 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2554 	else
2555 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2556 	spin_unlock_irq(&cm->reg_lock);
2557 	return change;
2558 }
2559 
2560 /* both for CM8338/8738 */
2561 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2562 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2563 	{
2564 		.name = "Line-In Mode",
2565 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2566 		.info = snd_cmipci_line_in_mode_info,
2567 		.get = snd_cmipci_line_in_mode_get,
2568 		.put = snd_cmipci_line_in_mode_put,
2569 	},
2570 };
2571 
2572 /* for non-multichannel chips */
2573 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2574 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2575 
2576 /* only for CM8738 */
2577 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2578 #if 0 /* controlled in pcm device */
2579 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2580 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2581 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2582 #endif
2583 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2584 	{ .name = "IEC958 Output Switch",
2585 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2586 	  .info = snd_cmipci_uswitch_info,
2587 	  .get = snd_cmipci_spdout_enable_get,
2588 	  .put = snd_cmipci_spdout_enable_put,
2589 	},
2590 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2591 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2592 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2593 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2594 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2595 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2596 };
2597 
2598 /* only for model 033/037 */
2599 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2600 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2601 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2602 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2603 };
2604 
2605 /* only for model 039 or later */
2606 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2607 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2608 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2609 	{
2610 		.name = "Mic-In Mode",
2611 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2612 		.info = snd_cmipci_mic_in_mode_info,
2613 		.get = snd_cmipci_mic_in_mode_get,
2614 		.put = snd_cmipci_mic_in_mode_put,
2615 	}
2616 };
2617 
2618 /* card control switches */
2619 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2620 DEFINE_CARD_SWITCH("Modem", modem);
2621 
2622 
2623 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2624 {
2625 	struct snd_card *card;
2626 	const struct snd_kcontrol_new *sw;
2627 	struct snd_kcontrol *kctl;
2628 	unsigned int idx;
2629 	int err;
2630 
2631 	if (snd_BUG_ON(!cm || !cm->card))
2632 		return -EINVAL;
2633 
2634 	card = cm->card;
2635 
2636 	strcpy(card->mixername, "CMedia PCI");
2637 
2638 	spin_lock_irq(&cm->reg_lock);
2639 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2640 	spin_unlock_irq(&cm->reg_lock);
2641 
2642 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2643 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2644 			if (!strcmp(snd_cmipci_mixers[idx].name,
2645 				"PCM Playback Volume"))
2646 				continue;
2647 		}
2648 		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2649 		if (err < 0)
2650 			return err;
2651 	}
2652 
2653 	/* mixer switches */
2654 	sw = snd_cmipci_mixer_switches;
2655 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2656 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2657 		if (err < 0)
2658 			return err;
2659 	}
2660 	if (! cm->can_multi_ch) {
2661 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2662 		if (err < 0)
2663 			return err;
2664 	}
2665 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2666 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2667 		sw = snd_cmipci_8738_mixer_switches;
2668 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2669 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2670 			if (err < 0)
2671 				return err;
2672 		}
2673 		if (cm->can_ac3_hw) {
2674 			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2675 			kctl->id.device = pcm_spdif_device;
2676 			err = snd_ctl_add(card, kctl);
2677 			if (err < 0)
2678 				return err;
2679 			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2680 			kctl->id.device = pcm_spdif_device;
2681 			err = snd_ctl_add(card, kctl);
2682 			if (err < 0)
2683 				return err;
2684 			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2685 			kctl->id.device = pcm_spdif_device;
2686 			err = snd_ctl_add(card, kctl);
2687 			if (err < 0)
2688 				return err;
2689 		}
2690 		if (cm->chip_version <= 37) {
2691 			sw = snd_cmipci_old_mixer_switches;
2692 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2693 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2694 				if (err < 0)
2695 					return err;
2696 			}
2697 		}
2698 	}
2699 	if (cm->chip_version >= 39) {
2700 		sw = snd_cmipci_extra_mixer_switches;
2701 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2702 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2703 			if (err < 0)
2704 				return err;
2705 		}
2706 	}
2707 
2708 	/* card switches */
2709 	/*
2710 	 * newer chips don't have the register bits to force modem link
2711 	 * detection; the bit that was FLINKON now mutes CH1
2712 	 */
2713 	if (cm->chip_version < 39) {
2714 		err = snd_ctl_add(cm->card,
2715 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2716 		if (err < 0)
2717 			return err;
2718 	}
2719 
2720 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2721 		struct snd_kcontrol *ctl;
2722 		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2723 		if (ctl)
2724 			cm->mixer_res_ctl[idx] = ctl;
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 
2731 /*
2732  * proc interface
2733  */
2734 
2735 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2736 				 struct snd_info_buffer *buffer)
2737 {
2738 	struct cmipci *cm = entry->private_data;
2739 	int i, v;
2740 
2741 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2742 	for (i = 0; i < 0x94; i++) {
2743 		if (i == 0x28)
2744 			i = 0x90;
2745 		v = inb(cm->iobase + i);
2746 		if (i % 4 == 0)
2747 			snd_iprintf(buffer, "\n%02x:", i);
2748 		snd_iprintf(buffer, " %02x", v);
2749 	}
2750 	snd_iprintf(buffer, "\n");
2751 }
2752 
2753 static void snd_cmipci_proc_init(struct cmipci *cm)
2754 {
2755 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2756 }
2757 
2758 static const struct pci_device_id snd_cmipci_ids[] = {
2759 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2760 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2761 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2762 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2763 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2764 	{0,},
2765 };
2766 
2767 
2768 /*
2769  * check chip version and capabilities
2770  * driver name is modified according to the chip model
2771  */
2772 static void query_chip(struct cmipci *cm)
2773 {
2774 	unsigned int detect;
2775 
2776 	/* check reg 0Ch, bit 24-31 */
2777 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2778 	if (! detect) {
2779 		/* check reg 08h, bit 24-28 */
2780 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2781 		switch (detect) {
2782 		case 0:
2783 			cm->chip_version = 33;
2784 			if (cm->do_soft_ac3)
2785 				cm->can_ac3_sw = 1;
2786 			else
2787 				cm->can_ac3_hw = 1;
2788 			break;
2789 		case CM_CHIP_037:
2790 			cm->chip_version = 37;
2791 			cm->can_ac3_hw = 1;
2792 			break;
2793 		default:
2794 			cm->chip_version = 39;
2795 			cm->can_ac3_hw = 1;
2796 			break;
2797 		}
2798 		cm->max_channels = 2;
2799 	} else {
2800 		if (detect & CM_CHIP_039) {
2801 			cm->chip_version = 39;
2802 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2803 				cm->max_channels = 6;
2804 			else
2805 				cm->max_channels = 4;
2806 		} else if (detect & CM_CHIP_8768) {
2807 			cm->chip_version = 68;
2808 			cm->max_channels = 8;
2809 			cm->can_96k = 1;
2810 		} else {
2811 			cm->chip_version = 55;
2812 			cm->max_channels = 6;
2813 			cm->can_96k = 1;
2814 		}
2815 		cm->can_ac3_hw = 1;
2816 		cm->can_multi_ch = 1;
2817 	}
2818 }
2819 
2820 #ifdef SUPPORT_JOYSTICK
2821 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2822 {
2823 	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2824 	struct gameport *gp;
2825 	struct resource *r = NULL;
2826 	int i, io_port = 0;
2827 
2828 	if (joystick_port[dev] == 0)
2829 		return -ENODEV;
2830 
2831 	if (joystick_port[dev] == 1) { /* auto-detect */
2832 		for (i = 0; ports[i]; i++) {
2833 			io_port = ports[i];
2834 			r = devm_request_region(&cm->pci->dev, io_port, 1,
2835 						"CMIPCI gameport");
2836 			if (r)
2837 				break;
2838 		}
2839 	} else {
2840 		io_port = joystick_port[dev];
2841 		r = devm_request_region(&cm->pci->dev, io_port, 1,
2842 					"CMIPCI gameport");
2843 	}
2844 
2845 	if (!r) {
2846 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2847 		return -EBUSY;
2848 	}
2849 
2850 	cm->gameport = gp = gameport_allocate_port();
2851 	if (!gp) {
2852 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2853 		return -ENOMEM;
2854 	}
2855 	gameport_set_name(gp, "C-Media Gameport");
2856 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2857 	gameport_set_dev_parent(gp, &cm->pci->dev);
2858 	gp->io = io_port;
2859 
2860 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2861 
2862 	gameport_register_port(cm->gameport);
2863 
2864 	return 0;
2865 }
2866 
2867 static void snd_cmipci_free_gameport(struct cmipci *cm)
2868 {
2869 	if (cm->gameport) {
2870 		gameport_unregister_port(cm->gameport);
2871 		cm->gameport = NULL;
2872 
2873 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2874 	}
2875 }
2876 #else
2877 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2878 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2879 #endif
2880 
2881 static void snd_cmipci_free(struct snd_card *card)
2882 {
2883 	struct cmipci *cm = card->private_data;
2884 
2885 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2886 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2887 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2888 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2889 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2890 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2891 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2892 
2893 	/* reset mixer */
2894 	snd_cmipci_mixer_write(cm, 0, 0);
2895 
2896 	snd_cmipci_free_gameport(cm);
2897 }
2898 
2899 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2900 {
2901 	long iosynth;
2902 	unsigned int val;
2903 	struct snd_opl3 *opl3;
2904 	int err;
2905 
2906 	if (!fm_port)
2907 		goto disable_fm;
2908 
2909 	if (cm->chip_version >= 39) {
2910 		/* first try FM regs in PCI port range */
2911 		iosynth = cm->iobase + CM_REG_FM_PCI;
2912 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2913 				      OPL3_HW_OPL3, 1, &opl3);
2914 	} else {
2915 		err = -EIO;
2916 	}
2917 	if (err < 0) {
2918 		/* then try legacy ports */
2919 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2920 		iosynth = fm_port;
2921 		switch (iosynth) {
2922 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2923 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2924 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2925 		case 0x388: val |= CM_FMSEL_388; break;
2926 		default:
2927 			goto disable_fm;
2928 		}
2929 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2930 		/* enable FM */
2931 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2932 
2933 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2935 			dev_err(cm->card->dev,
2936 				"no OPL device at %#lx, skipping...\n",
2937 				iosynth);
2938 			goto disable_fm;
2939 		}
2940 	}
2941 	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2942 	if (err < 0) {
2943 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2944 		return err;
2945 	}
2946 	return 0;
2947 
2948  disable_fm:
2949 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2950 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2951 	return 0;
2952 }
2953 
2954 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2955 			     int dev)
2956 {
2957 	struct cmipci *cm = card->private_data;
2958 	int err;
2959 	unsigned int val;
2960 	long iomidi = 0;
2961 	int integrated_midi = 0;
2962 	char modelstr[16];
2963 	int pcm_index, pcm_spdif_index;
2964 	static const struct pci_device_id intel_82437vx[] = {
2965 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2966 		{ },
2967 	};
2968 
2969 	err = pcim_enable_device(pci);
2970 	if (err < 0)
2971 		return err;
2972 
2973 	spin_lock_init(&cm->reg_lock);
2974 	mutex_init(&cm->open_mutex);
2975 	cm->device = pci->device;
2976 	cm->card = card;
2977 	cm->pci = pci;
2978 	cm->irq = -1;
2979 	cm->channel[0].ch = 0;
2980 	cm->channel[1].ch = 1;
2981 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2982 
2983 	err = pci_request_regions(pci, card->driver);
2984 	if (err < 0)
2985 		return err;
2986 	cm->iobase = pci_resource_start(pci, 0);
2987 
2988 	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
2989 			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
2990 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
2991 		return -EBUSY;
2992 	}
2993 	cm->irq = pci->irq;
2994 	card->sync_irq = cm->irq;
2995 	card->private_free = snd_cmipci_free;
2996 
2997 	pci_set_master(cm->pci);
2998 
2999 	/*
3000 	 * check chip version, max channels and capabilities
3001 	 */
3002 
3003 	cm->chip_version = 0;
3004 	cm->max_channels = 2;
3005 	cm->do_soft_ac3 = soft_ac3[dev];
3006 
3007 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3008 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3009 		query_chip(cm);
3010 	/* added -MCx suffix for chip supporting multi-channels */
3011 	if (cm->can_multi_ch)
3012 		sprintf(cm->card->driver + strlen(cm->card->driver),
3013 			"-MC%d", cm->max_channels);
3014 	else if (cm->can_ac3_sw)
3015 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3016 
3017 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3018 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3019 
3020 #if CM_CH_PLAY == 1
3021 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3022 #else
3023 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3024 #endif
3025 
3026 	/* initialize codec registers */
3027 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3028 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3029 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3030 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3031 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3032 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3033 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3034 
3035 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3036 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3037 #if CM_CH_PLAY == 1
3038 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3039 #else
3040 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3041 #endif
3042 	if (cm->chip_version) {
3043 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3044 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3045 	}
3046 	/* Set Bus Master Request */
3047 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3048 
3049 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3050 	switch (pci->device) {
3051 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3052 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3053 		if (!pci_dev_present(intel_82437vx))
3054 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3055 		break;
3056 	default:
3057 		break;
3058 	}
3059 
3060 	if (cm->chip_version < 68) {
3061 		val = pci->device < 0x110 ? 8338 : 8738;
3062 	} else {
3063 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3064 		case 0:
3065 			val = 8769;
3066 			break;
3067 		case 2:
3068 			val = 8762;
3069 			break;
3070 		default:
3071 			switch ((pci->subsystem_vendor << 16) |
3072 				pci->subsystem_device) {
3073 			case 0x13f69761:
3074 			case 0x584d3741:
3075 			case 0x584d3751:
3076 			case 0x584d3761:
3077 			case 0x584d3771:
3078 			case 0x72848384:
3079 				val = 8770;
3080 				break;
3081 			default:
3082 				val = 8768;
3083 				break;
3084 			}
3085 		}
3086 	}
3087 	sprintf(card->shortname, "C-Media CMI%d", val);
3088 	if (cm->chip_version < 68)
3089 		scnprintf(modelstr, sizeof(modelstr),
3090 			  " (model %d)", cm->chip_version);
3091 	else
3092 		modelstr[0] = '\0';
3093 	scnprintf(card->longname, sizeof(card->longname),
3094 		  "%s%s at %#lx, irq %i",
3095 		  card->shortname, modelstr, cm->iobase, cm->irq);
3096 
3097 	if (cm->chip_version >= 39) {
3098 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3099 		if (val != 0x00 && val != 0xff) {
3100 			if (mpu_port[dev])
3101 				iomidi = cm->iobase + CM_REG_MPU_PCI;
3102 			integrated_midi = 1;
3103 		}
3104 	}
3105 	if (!integrated_midi) {
3106 		val = 0;
3107 		iomidi = mpu_port[dev];
3108 		switch (iomidi) {
3109 		case 0x320: val = CM_VMPU_320; break;
3110 		case 0x310: val = CM_VMPU_310; break;
3111 		case 0x300: val = CM_VMPU_300; break;
3112 		case 0x330: val = CM_VMPU_330; break;
3113 		default:
3114 			    iomidi = 0; break;
3115 		}
3116 		if (iomidi > 0) {
3117 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3118 			/* enable UART */
3119 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3120 			if (inb(iomidi + 1) == 0xff) {
3121 				dev_err(cm->card->dev,
3122 					"cannot enable MPU-401 port at %#lx\n",
3123 					iomidi);
3124 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3125 						     CM_UART_EN);
3126 				iomidi = 0;
3127 			}
3128 		}
3129 	}
3130 
3131 	if (cm->chip_version < 68) {
3132 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3133 		if (err < 0)
3134 			return err;
3135 	}
3136 
3137 	/* reset mixer */
3138 	snd_cmipci_mixer_write(cm, 0, 0);
3139 
3140 	snd_cmipci_proc_init(cm);
3141 
3142 	/* create pcm devices */
3143 	pcm_index = pcm_spdif_index = 0;
3144 	err = snd_cmipci_pcm_new(cm, pcm_index);
3145 	if (err < 0)
3146 		return err;
3147 	pcm_index++;
3148 	err = snd_cmipci_pcm2_new(cm, pcm_index);
3149 	if (err < 0)
3150 		return err;
3151 	pcm_index++;
3152 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3153 		pcm_spdif_index = pcm_index;
3154 		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3155 		if (err < 0)
3156 			return err;
3157 	}
3158 
3159 	/* create mixer interface & switches */
3160 	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3161 	if (err < 0)
3162 		return err;
3163 
3164 	if (iomidi > 0) {
3165 		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3166 					  iomidi,
3167 					  (integrated_midi ?
3168 					   MPU401_INFO_INTEGRATED : 0) |
3169 					  MPU401_INFO_IRQ_HOOK,
3170 					  -1, &cm->rmidi);
3171 		if (err < 0)
3172 			dev_err(cm->card->dev,
3173 				"no UART401 device at 0x%lx\n", iomidi);
3174 	}
3175 
3176 #ifdef USE_VAR48KRATE
3177 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3178 		snd_cmipci_set_pll(cm, rates[val], val);
3179 
3180 	/*
3181 	 * (Re-)Enable external switch spdo_48k
3182 	 */
3183 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3184 #endif /* USE_VAR48KRATE */
3185 
3186 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3187 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3188 
3189 	return 0;
3190 }
3191 
3192 /*
3193  */
3194 
3195 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3196 
3197 static int snd_cmipci_probe(struct pci_dev *pci,
3198 			    const struct pci_device_id *pci_id)
3199 {
3200 	static int dev;
3201 	struct snd_card *card;
3202 	int err;
3203 
3204 	if (dev >= SNDRV_CARDS)
3205 		return -ENODEV;
3206 	if (! enable[dev]) {
3207 		dev++;
3208 		return -ENOENT;
3209 	}
3210 
3211 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3212 				sizeof(struct cmipci), &card);
3213 	if (err < 0)
3214 		return err;
3215 
3216 	switch (pci->device) {
3217 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3218 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3219 		strcpy(card->driver, "CMI8738");
3220 		break;
3221 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3222 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3223 		strcpy(card->driver, "CMI8338");
3224 		break;
3225 	default:
3226 		strcpy(card->driver, "CMIPCI");
3227 		break;
3228 	}
3229 
3230 	err = snd_cmipci_create(card, pci, dev);
3231 	if (err < 0)
3232 		goto error;
3233 
3234 	err = snd_card_register(card);
3235 	if (err < 0)
3236 		goto error;
3237 
3238 	pci_set_drvdata(pci, card);
3239 	dev++;
3240 	return 0;
3241 
3242  error:
3243 	snd_card_free(card);
3244 	return err;
3245 }
3246 
3247 /*
3248  * power management
3249  */
3250 static const unsigned char saved_regs[] = {
3251 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3252 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3253 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3254 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3255 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3256 };
3257 
3258 static const unsigned char saved_mixers[] = {
3259 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3260 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3261 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3262 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3263 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3264 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3265 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3266 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3267 };
3268 
3269 static int snd_cmipci_suspend(struct device *dev)
3270 {
3271 	struct snd_card *card = dev_get_drvdata(dev);
3272 	struct cmipci *cm = card->private_data;
3273 	int i;
3274 
3275 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3276 
3277 	/* save registers */
3278 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3279 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3280 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3281 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3282 
3283 	/* disable ints */
3284 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3285 	return 0;
3286 }
3287 
3288 static int snd_cmipci_resume(struct device *dev)
3289 {
3290 	struct snd_card *card = dev_get_drvdata(dev);
3291 	struct cmipci *cm = card->private_data;
3292 	int i;
3293 
3294 	/* reset / initialize to a sane state */
3295 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3296 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3297 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3298 	snd_cmipci_mixer_write(cm, 0, 0);
3299 
3300 	/* restore registers */
3301 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3302 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3303 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3304 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3305 
3306 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3307 	return 0;
3308 }
3309 
3310 static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3311 
3312 static struct pci_driver cmipci_driver = {
3313 	.name = KBUILD_MODNAME,
3314 	.id_table = snd_cmipci_ids,
3315 	.probe = snd_cmipci_probe,
3316 	.driver = {
3317 		.pm = &snd_cmipci_pm,
3318 	},
3319 };
3320 
3321 module_pci_driver(cmipci_driver);
3322