1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7 /* Does not work. Warning may block system in capture mode */ 8 /* #define USE_VAR48KRATE */ 9 10 #include <linux/io.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/slab.h> 16 #include <linux/gameport.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <sound/core.h> 20 #include <sound/info.h> 21 #include <sound/control.h> 22 #include <sound/pcm.h> 23 #include <sound/rawmidi.h> 24 #include <sound/mpu401.h> 25 #include <sound/opl3.h> 26 #include <sound/sb.h> 27 #include <sound/asoundef.h> 28 #include <sound/initval.h> 29 30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32 MODULE_LICENSE("GPL"); 33 34 #if IS_REACHABLE(CONFIG_GAMEPORT) 35 #define SUPPORT_JOYSTICK 1 36 #endif 37 38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; 42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 44 #ifdef SUPPORT_JOYSTICK 45 static int joystick_port[SNDRV_CARDS]; 46 #endif 47 48 module_param_array(index, int, NULL, 0444); 49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 50 module_param_array(id, charp, NULL, 0444); 51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 52 module_param_array(enable, bool, NULL, 0444); 53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 55 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 56 module_param_hw_array(fm_port, long, ioport, NULL, 0444); 57 MODULE_PARM_DESC(fm_port, "FM port."); 58 module_param_array(soft_ac3, bool, NULL, 0444); 59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 60 #ifdef SUPPORT_JOYSTICK 61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 62 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 63 #endif 64 65 /* 66 * CM8x38 registers definition 67 */ 68 69 #define CM_REG_FUNCTRL0 0x00 70 #define CM_RST_CH1 0x00080000 71 #define CM_RST_CH0 0x00040000 72 #define CM_CHEN1 0x00020000 /* ch1: enable */ 73 #define CM_CHEN0 0x00010000 /* ch0: enable */ 74 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 75 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 76 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 77 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 78 79 #define CM_REG_FUNCTRL1 0x04 80 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 81 #define CM_DSFC_SHIFT 13 82 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 83 #define CM_ASFC_SHIFT 10 84 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 85 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 86 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 87 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 88 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 89 #define CM_BREQ 0x00000010 /* bus master enabled */ 90 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 91 #define CM_UART_EN 0x00000004 /* legacy UART */ 92 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 93 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 94 95 #define CM_REG_CHFORMAT 0x08 96 97 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 98 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 99 #define CM_CHB3D 0x20000000 /* 4 channels */ 100 101 #define CM_CHIP_MASK1 0x1f000000 102 #define CM_CHIP_037 0x01000000 103 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 104 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 105 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 106 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 107 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 108 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 109 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 110 111 #define CM_ADCBITLEN_MASK 0x0000C000 112 #define CM_ADCBITLEN_16 0x00000000 113 #define CM_ADCBITLEN_15 0x00004000 114 #define CM_ADCBITLEN_14 0x00008000 115 #define CM_ADCBITLEN_13 0x0000C000 116 117 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 118 #define CM_ADCDACLEN_060 0x00000000 119 #define CM_ADCDACLEN_066 0x00001000 120 #define CM_ADCDACLEN_130 0x00002000 121 #define CM_ADCDACLEN_280 0x00003000 122 123 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 124 #define CM_ADCDLEN_ORIGINAL 0x00000000 125 #define CM_ADCDLEN_EXTRA 0x00001000 126 #define CM_ADCDLEN_24K 0x00002000 127 #define CM_ADCDLEN_WEIGHT 0x00003000 128 129 #define CM_CH1_SRATE_176K 0x00000800 130 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 131 #define CM_CH1_SRATE_88K 0x00000400 132 #define CM_CH0_SRATE_176K 0x00000200 133 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 134 #define CM_CH0_SRATE_88K 0x00000100 135 #define CM_CH0_SRATE_128K 0x00000300 136 #define CM_CH0_SRATE_MASK 0x00000300 137 138 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 139 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 140 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 141 #define CM_SPDLOCKED 0x00000010 142 143 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 144 #define CM_CH1FMT_SHIFT 2 145 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 146 #define CM_CH0FMT_SHIFT 0 147 148 #define CM_REG_INT_HLDCLR 0x0C 149 #define CM_CHIP_MASK2 0xff000000 150 #define CM_CHIP_8768 0x20000000 151 #define CM_CHIP_055 0x08000000 152 #define CM_CHIP_039 0x04000000 153 #define CM_CHIP_039_6CH 0x01000000 154 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 155 #define CM_TDMA_INT_EN 0x00040000 156 #define CM_CH1_INT_EN 0x00020000 157 #define CM_CH0_INT_EN 0x00010000 158 159 #define CM_REG_INT_STATUS 0x10 160 #define CM_INTR 0x80000000 161 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 162 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 163 #define CM_UARTINT 0x00010000 164 #define CM_LTDMAINT 0x00008000 165 #define CM_HTDMAINT 0x00004000 166 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 167 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 168 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 169 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 170 #define CM_CH1BUSY 0x00000008 171 #define CM_CH0BUSY 0x00000004 172 #define CM_CHINT1 0x00000002 173 #define CM_CHINT0 0x00000001 174 175 #define CM_REG_LEGACY_CTRL 0x14 176 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 177 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 178 #define CM_VMPU_330 0x00000000 179 #define CM_VMPU_320 0x20000000 180 #define CM_VMPU_310 0x40000000 181 #define CM_VMPU_300 0x60000000 182 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 183 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 184 #define CM_VSBSEL_220 0x00000000 185 #define CM_VSBSEL_240 0x04000000 186 #define CM_VSBSEL_260 0x08000000 187 #define CM_VSBSEL_280 0x0C000000 188 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 189 #define CM_FMSEL_388 0x00000000 190 #define CM_FMSEL_3C8 0x01000000 191 #define CM_FMSEL_3E0 0x02000000 192 #define CM_FMSEL_3E8 0x03000000 193 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 194 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 195 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 196 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 197 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 198 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 199 #define CM_C_EECS 0x00040000 200 #define CM_C_EEDI46 0x00020000 201 #define CM_C_EECK46 0x00010000 202 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 203 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 204 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 205 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 206 207 #define CM_REG_MISC_CTRL 0x18 208 #define CM_PWD 0x80000000 /* power down */ 209 #define CM_RESET 0x40000000 210 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 211 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 212 #define CM_TXVX 0x08000000 /* model 037? */ 213 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 214 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 215 #define CM_SPDIF48K 0x01000000 /* write */ 216 #define CM_SPATUS48K 0x01000000 /* read */ 217 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 218 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 219 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 220 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 221 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 222 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 223 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 224 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 225 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 226 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 227 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 228 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 229 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 230 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 231 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 232 #define CM_ENCENTER 0x00000080 233 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 234 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 235 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 236 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 237 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 238 #define CM_UPDDMA_2048 0x00000000 239 #define CM_UPDDMA_1024 0x00000004 240 #define CM_UPDDMA_512 0x00000008 241 #define CM_UPDDMA_256 0x0000000C 242 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 243 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 244 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 245 246 #define CM_REG_TDMA_POSITION 0x1C 247 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 248 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 249 250 /* byte */ 251 #define CM_REG_MIXER0 0x20 252 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 253 #define CM_REG_DEV 0x20 /* read: hardware device version */ 254 255 #define CM_REG_MIXER21 0x21 256 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 257 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 258 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 259 #define CM_X_SB16 0x01 /* SB16 compatible */ 260 261 #define CM_REG_SB16_DATA 0x22 262 #define CM_REG_SB16_ADDR 0x23 263 264 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 265 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 266 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 267 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 268 269 #define CM_REG_MIXER1 0x24 270 #define CM_FMMUTE 0x80 /* mute FM */ 271 #define CM_FMMUTE_SHIFT 7 272 #define CM_WSMUTE 0x40 /* mute PCM */ 273 #define CM_WSMUTE_SHIFT 6 274 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 275 #define CM_REAR2LIN_SHIFT 5 276 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 277 #define CM_REAR2FRONT_SHIFT 4 278 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 279 #define CM_WAVEINL_SHIFT 3 280 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 281 #define CM_WAVEINR_SHIFT 2 282 #define CM_X3DEN 0x02 /* 3D surround enable */ 283 #define CM_X3DEN_SHIFT 1 284 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 285 #define CM_CDPLAY_SHIFT 0 286 287 #define CM_REG_MIXER2 0x25 288 #define CM_RAUXREN 0x80 /* AUX right capture */ 289 #define CM_RAUXREN_SHIFT 7 290 #define CM_RAUXLEN 0x40 /* AUX left capture */ 291 #define CM_RAUXLEN_SHIFT 6 292 #define CM_VAUXRM 0x20 /* AUX right mute */ 293 #define CM_VAUXRM_SHIFT 5 294 #define CM_VAUXLM 0x10 /* AUX left mute */ 295 #define CM_VAUXLM_SHIFT 4 296 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 297 #define CM_VADMIC_SHIFT 1 298 #define CM_MICGAINZ 0x01 /* mic boost */ 299 #define CM_MICGAINZ_SHIFT 0 300 301 #define CM_REG_AUX_VOL 0x26 302 #define CM_VAUXL_MASK 0xf0 303 #define CM_VAUXR_MASK 0x0f 304 305 #define CM_REG_MISC 0x27 306 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 307 #define CM_XGPO1 0x20 308 // #define CM_XGPBIO 0x04 309 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 310 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 311 #define CM_SPDVALID 0x02 /* spdif input valid check */ 312 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 313 314 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 315 /* 316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 317 * or identical with AC97 codec? 318 */ 319 #define CM_REG_EXTERN_CODEC CM_REG_AC97 320 321 /* 322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 323 */ 324 #define CM_REG_MPU_PCI 0x40 325 326 /* 327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 328 */ 329 #define CM_REG_FM_PCI 0x50 330 331 /* 332 * access from SB-mixer port 333 */ 334 #define CM_REG_EXTENT_IND 0xf0 335 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 336 #define CM_VPHONE_SHIFT 5 337 #define CM_VPHOM 0x10 /* Phone mute control */ 338 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 339 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 340 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 341 #define CM_VADMIC3 0x01 /* Mic record boost */ 342 343 /* 344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 346 * unit (readonly?). 347 */ 348 #define CM_REG_PLL 0xf8 349 350 /* 351 * extended registers 352 */ 353 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 354 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 355 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 356 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 357 358 #define CM_REG_EXT_MISC 0x90 359 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 360 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 361 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 362 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 363 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 364 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 365 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 366 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 367 368 /* 369 * size of i/o region 370 */ 371 #define CM_EXTENT_CODEC 0x100 372 #define CM_EXTENT_MIDI 0x2 373 #define CM_EXTENT_SYNTH 0x4 374 375 376 /* 377 * channels for playback / capture 378 */ 379 #define CM_CH_PLAY 0 380 #define CM_CH_CAPT 1 381 382 /* 383 * flags to check device open/close 384 */ 385 #define CM_OPEN_NONE 0 386 #define CM_OPEN_CH_MASK 0x01 387 #define CM_OPEN_DAC 0x10 388 #define CM_OPEN_ADC 0x20 389 #define CM_OPEN_SPDIF 0x40 390 #define CM_OPEN_MCHAN 0x80 391 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 392 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 393 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 394 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 395 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 396 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 397 398 399 #if CM_CH_PLAY == 1 400 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 401 #define CM_PLAYBACK_SPDF CM_SPDF_1 402 #define CM_CAPTURE_SPDF CM_SPDF_0 403 #else 404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 405 #define CM_PLAYBACK_SPDF CM_SPDF_0 406 #define CM_CAPTURE_SPDF CM_SPDF_1 407 #endif 408 409 410 /* 411 * driver data 412 */ 413 414 struct cmipci_pcm { 415 struct snd_pcm_substream *substream; 416 u8 running; /* dac/adc running? */ 417 u8 fmt; /* format bits */ 418 u8 is_dac; 419 u8 needs_silencing; 420 unsigned int dma_size; /* in frames */ 421 unsigned int shift; 422 unsigned int ch; /* channel (0/1) */ 423 unsigned int offset; /* physical address of the buffer */ 424 }; 425 426 /* mixer elements toggled/resumed during ac3 playback */ 427 struct cmipci_mixer_auto_switches { 428 const char *name; /* switch to toggle */ 429 int toggle_on; /* value to change when ac3 mode */ 430 }; 431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 432 {"PCM Playback Switch", 0}, 433 {"IEC958 Output Switch", 1}, 434 {"IEC958 Mix Analog", 0}, 435 // {"IEC958 Out To DAC", 1}, // no longer used 436 {"IEC958 Loop", 0}, 437 }; 438 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 439 440 struct cmipci { 441 struct snd_card *card; 442 443 struct pci_dev *pci; 444 unsigned int device; /* device ID */ 445 int irq; 446 447 unsigned long iobase; 448 unsigned int ctrl; /* FUNCTRL0 current value */ 449 450 struct snd_pcm *pcm; /* DAC/ADC PCM */ 451 struct snd_pcm *pcm2; /* 2nd DAC */ 452 struct snd_pcm *pcm_spdif; /* SPDIF */ 453 454 int chip_version; 455 int max_channels; 456 unsigned int can_ac3_sw: 1; 457 unsigned int can_ac3_hw: 1; 458 unsigned int can_multi_ch: 1; 459 unsigned int can_96k: 1; /* samplerate above 48k */ 460 unsigned int do_soft_ac3: 1; 461 462 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 463 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 464 int spdif_counter; /* for software AC3 */ 465 466 unsigned int dig_status; 467 unsigned int dig_pcm_status; 468 469 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 470 471 int opened[2]; /* open mode */ 472 struct mutex open_mutex; 473 474 unsigned int mixer_insensitive: 1; 475 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 476 int mixer_res_status[CM_SAVED_MIXERS]; 477 478 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 479 480 /* external MIDI */ 481 struct snd_rawmidi *rmidi; 482 483 #ifdef SUPPORT_JOYSTICK 484 struct gameport *gameport; 485 #endif 486 487 spinlock_t reg_lock; 488 489 unsigned int saved_regs[0x20]; 490 unsigned char saved_mixers[0x20]; 491 }; 492 493 494 /* read/write operations for dword register */ 495 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 496 { 497 outl(data, cm->iobase + cmd); 498 } 499 500 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 501 { 502 return inl(cm->iobase + cmd); 503 } 504 505 /* read/write operations for word register */ 506 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 507 { 508 outw(data, cm->iobase + cmd); 509 } 510 511 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 512 { 513 return inw(cm->iobase + cmd); 514 } 515 516 /* read/write operations for byte register */ 517 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 518 { 519 outb(data, cm->iobase + cmd); 520 } 521 522 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 523 { 524 return inb(cm->iobase + cmd); 525 } 526 527 /* bit operations for dword register */ 528 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 529 { 530 unsigned int val, oval; 531 val = oval = inl(cm->iobase + cmd); 532 val |= flag; 533 if (val == oval) 534 return 0; 535 outl(val, cm->iobase + cmd); 536 return 1; 537 } 538 539 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 540 { 541 unsigned int val, oval; 542 val = oval = inl(cm->iobase + cmd); 543 val &= ~flag; 544 if (val == oval) 545 return 0; 546 outl(val, cm->iobase + cmd); 547 return 1; 548 } 549 550 /* bit operations for byte register */ 551 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 552 { 553 unsigned char val, oval; 554 val = oval = inb(cm->iobase + cmd); 555 val |= flag; 556 if (val == oval) 557 return 0; 558 outb(val, cm->iobase + cmd); 559 return 1; 560 } 561 562 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 563 { 564 unsigned char val, oval; 565 val = oval = inb(cm->iobase + cmd); 566 val &= ~flag; 567 if (val == oval) 568 return 0; 569 outb(val, cm->iobase + cmd); 570 return 1; 571 } 572 573 574 /* 575 * PCM interface 576 */ 577 578 /* 579 * calculate frequency 580 */ 581 582 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 583 584 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 585 { 586 unsigned int i; 587 588 for (i = 0; i < ARRAY_SIZE(rates); i++) { 589 if (rates[i] == rate) 590 return i; 591 } 592 snd_BUG(); 593 return 0; 594 } 595 596 #ifdef USE_VAR48KRATE 597 /* 598 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 599 * does it this way .. maybe not. Never get any information from C-Media about 600 * that <werner@suse.de>. 601 */ 602 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 603 { 604 unsigned int delta, tolerance; 605 int xm, xn, xr; 606 607 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 608 rate <<= 1; 609 *n = -1; 610 if (*r > 0xff) 611 goto out; 612 tolerance = rate*CM_TOLERANCE_RATE; 613 614 for (xn = (1+2); xn < (0x1f+2); xn++) { 615 for (xm = (1+2); xm < (0xff+2); xm++) { 616 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 617 618 if (xr < rate) 619 delta = rate - xr; 620 else 621 delta = xr - rate; 622 623 /* 624 * If we found one, remember this, 625 * and try to find a closer one 626 */ 627 if (delta < tolerance) { 628 tolerance = delta; 629 *m = xm - 2; 630 *n = xn - 2; 631 } 632 } 633 } 634 out: 635 return (*n > -1); 636 } 637 638 /* 639 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 640 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 641 * at the register CM_REG_FUNCTRL1 (0x04). 642 * Problem: other ways are also possible (any information about that?) 643 */ 644 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 645 { 646 unsigned int reg = CM_REG_PLL + slot; 647 /* 648 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 649 * for DSFC/ASFC (000 up to 111). 650 */ 651 652 /* FIXME: Init (Do we've to set an other register first before programming?) */ 653 654 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 655 snd_cmipci_write_b(cm, reg, rate>>8); 656 snd_cmipci_write_b(cm, reg, rate&0xff); 657 658 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 659 } 660 #endif /* USE_VAR48KRATE */ 661 662 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 663 struct snd_pcm_hw_params *hw_params) 664 { 665 struct cmipci *cm = snd_pcm_substream_chip(substream); 666 if (params_channels(hw_params) > 2) { 667 mutex_lock(&cm->open_mutex); 668 if (cm->opened[CM_CH_PLAY]) { 669 mutex_unlock(&cm->open_mutex); 670 return -EBUSY; 671 } 672 /* reserve the channel A */ 673 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 674 mutex_unlock(&cm->open_mutex); 675 } 676 return 0; 677 } 678 679 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 680 { 681 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 682 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 683 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 684 udelay(10); 685 } 686 687 688 /* 689 */ 690 691 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 692 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 693 .count = 3, 694 .list = hw_channels, 695 .mask = 0, 696 }; 697 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 698 .count = 4, 699 .list = hw_channels, 700 .mask = 0, 701 }; 702 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 703 .count = 5, 704 .list = hw_channels, 705 .mask = 0, 706 }; 707 708 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 709 { 710 if (channels > 2) { 711 if (!cm->can_multi_ch || !rec->ch) 712 return -EINVAL; 713 if (rec->fmt != 0x03) /* stereo 16bit only */ 714 return -EINVAL; 715 } 716 717 if (cm->can_multi_ch) { 718 spin_lock_irq(&cm->reg_lock); 719 if (channels > 2) { 720 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 721 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 722 } else { 723 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 724 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 725 } 726 if (channels == 8) 727 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 728 else 729 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 730 if (channels == 6) { 731 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 732 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 733 } else { 734 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 735 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 736 } 737 if (channels == 4) 738 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 739 else 740 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 741 spin_unlock_irq(&cm->reg_lock); 742 } 743 return 0; 744 } 745 746 747 /* 748 * prepare playback/capture channel 749 * channel to be used must have been set in rec->ch. 750 */ 751 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 752 struct snd_pcm_substream *substream) 753 { 754 unsigned int reg, freq, freq_ext, val; 755 unsigned int period_size; 756 struct snd_pcm_runtime *runtime = substream->runtime; 757 758 rec->fmt = 0; 759 rec->shift = 0; 760 if (snd_pcm_format_width(runtime->format) >= 16) { 761 rec->fmt |= 0x02; 762 if (snd_pcm_format_width(runtime->format) > 16) 763 rec->shift++; /* 24/32bit */ 764 } 765 if (runtime->channels > 1) 766 rec->fmt |= 0x01; 767 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 768 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 769 return -EINVAL; 770 } 771 772 rec->offset = runtime->dma_addr; 773 /* buffer and period sizes in frame */ 774 rec->dma_size = runtime->buffer_size << rec->shift; 775 period_size = runtime->period_size << rec->shift; 776 if (runtime->channels > 2) { 777 /* multi-channels */ 778 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 779 period_size = (period_size * runtime->channels) / 2; 780 } 781 782 spin_lock_irq(&cm->reg_lock); 783 784 /* set buffer address */ 785 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 786 snd_cmipci_write(cm, reg, rec->offset); 787 /* program sample counts */ 788 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 789 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 790 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 791 792 /* set adc/dac flag */ 793 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 794 if (rec->is_dac) 795 cm->ctrl &= ~val; 796 else 797 cm->ctrl |= val; 798 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 799 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 800 801 /* set sample rate */ 802 freq = 0; 803 freq_ext = 0; 804 if (runtime->rate > 48000) 805 switch (runtime->rate) { 806 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 807 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 808 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 809 default: snd_BUG(); break; 810 } 811 else 812 freq = snd_cmipci_rate_freq(runtime->rate); 813 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 814 if (rec->ch) { 815 val &= ~CM_DSFC_MASK; 816 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 817 } else { 818 val &= ~CM_ASFC_MASK; 819 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 820 } 821 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 822 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 823 824 /* set format */ 825 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 826 if (rec->ch) { 827 val &= ~CM_CH1FMT_MASK; 828 val |= rec->fmt << CM_CH1FMT_SHIFT; 829 } else { 830 val &= ~CM_CH0FMT_MASK; 831 val |= rec->fmt << CM_CH0FMT_SHIFT; 832 } 833 if (cm->can_96k) { 834 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 835 val |= freq_ext << (rec->ch * 2); 836 } 837 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 838 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 839 840 if (!rec->is_dac && cm->chip_version) { 841 if (runtime->rate > 44100) 842 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 843 else 844 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 845 } 846 847 rec->running = 0; 848 spin_unlock_irq(&cm->reg_lock); 849 850 return 0; 851 } 852 853 /* 854 * PCM trigger/stop 855 */ 856 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 857 int cmd) 858 { 859 unsigned int inthld, chen, reset, pause; 860 int result = 0; 861 862 inthld = CM_CH0_INT_EN << rec->ch; 863 chen = CM_CHEN0 << rec->ch; 864 reset = CM_RST_CH0 << rec->ch; 865 pause = CM_PAUSE0 << rec->ch; 866 867 spin_lock(&cm->reg_lock); 868 switch (cmd) { 869 case SNDRV_PCM_TRIGGER_START: 870 rec->running = 1; 871 /* set interrupt */ 872 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 873 cm->ctrl |= chen; 874 /* enable channel */ 875 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 876 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 877 break; 878 case SNDRV_PCM_TRIGGER_STOP: 879 rec->running = 0; 880 /* disable interrupt */ 881 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 882 /* reset */ 883 cm->ctrl &= ~chen; 884 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 885 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 886 rec->needs_silencing = rec->is_dac; 887 break; 888 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 889 case SNDRV_PCM_TRIGGER_SUSPEND: 890 cm->ctrl |= pause; 891 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 892 break; 893 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 894 case SNDRV_PCM_TRIGGER_RESUME: 895 cm->ctrl &= ~pause; 896 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 897 break; 898 default: 899 result = -EINVAL; 900 break; 901 } 902 spin_unlock(&cm->reg_lock); 903 return result; 904 } 905 906 /* 907 * return the current pointer 908 */ 909 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 910 struct snd_pcm_substream *substream) 911 { 912 size_t ptr; 913 unsigned int reg, rem, tries; 914 915 if (!rec->running) 916 return 0; 917 #if 1 // this seems better.. 918 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 919 for (tries = 0; tries < 3; tries++) { 920 rem = snd_cmipci_read_w(cm, reg); 921 if (rem < rec->dma_size) 922 goto ok; 923 } 924 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 925 return SNDRV_PCM_POS_XRUN; 926 ok: 927 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 928 #else 929 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 930 ptr = snd_cmipci_read(cm, reg) - rec->offset; 931 ptr = bytes_to_frames(substream->runtime, ptr); 932 #endif 933 if (substream->runtime->channels > 2) 934 ptr = (ptr * 2) / substream->runtime->channels; 935 return ptr; 936 } 937 938 /* 939 * playback 940 */ 941 942 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 943 int cmd) 944 { 945 struct cmipci *cm = snd_pcm_substream_chip(substream); 946 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 947 } 948 949 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 950 { 951 struct cmipci *cm = snd_pcm_substream_chip(substream); 952 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 953 } 954 955 956 957 /* 958 * capture 959 */ 960 961 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 962 int cmd) 963 { 964 struct cmipci *cm = snd_pcm_substream_chip(substream); 965 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 966 } 967 968 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 969 { 970 struct cmipci *cm = snd_pcm_substream_chip(substream); 971 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 972 } 973 974 975 /* 976 * hw preparation for spdif 977 */ 978 979 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 980 struct snd_ctl_elem_info *uinfo) 981 { 982 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 983 uinfo->count = 1; 984 return 0; 985 } 986 987 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 988 struct snd_ctl_elem_value *ucontrol) 989 { 990 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 991 int i; 992 993 spin_lock_irq(&chip->reg_lock); 994 for (i = 0; i < 4; i++) 995 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 996 spin_unlock_irq(&chip->reg_lock); 997 return 0; 998 } 999 1000 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1001 struct snd_ctl_elem_value *ucontrol) 1002 { 1003 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1004 int i, change; 1005 unsigned int val; 1006 1007 val = 0; 1008 spin_lock_irq(&chip->reg_lock); 1009 for (i = 0; i < 4; i++) 1010 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1011 change = val != chip->dig_status; 1012 chip->dig_status = val; 1013 spin_unlock_irq(&chip->reg_lock); 1014 return change; 1015 } 1016 1017 static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1018 { 1019 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1020 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1021 .info = snd_cmipci_spdif_default_info, 1022 .get = snd_cmipci_spdif_default_get, 1023 .put = snd_cmipci_spdif_default_put 1024 }; 1025 1026 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1027 struct snd_ctl_elem_info *uinfo) 1028 { 1029 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1030 uinfo->count = 1; 1031 return 0; 1032 } 1033 1034 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1035 struct snd_ctl_elem_value *ucontrol) 1036 { 1037 ucontrol->value.iec958.status[0] = 0xff; 1038 ucontrol->value.iec958.status[1] = 0xff; 1039 ucontrol->value.iec958.status[2] = 0xff; 1040 ucontrol->value.iec958.status[3] = 0xff; 1041 return 0; 1042 } 1043 1044 static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1045 { 1046 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1047 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1048 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1049 .info = snd_cmipci_spdif_mask_info, 1050 .get = snd_cmipci_spdif_mask_get, 1051 }; 1052 1053 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1054 struct snd_ctl_elem_info *uinfo) 1055 { 1056 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1057 uinfo->count = 1; 1058 return 0; 1059 } 1060 1061 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1062 struct snd_ctl_elem_value *ucontrol) 1063 { 1064 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1065 int i; 1066 1067 spin_lock_irq(&chip->reg_lock); 1068 for (i = 0; i < 4; i++) 1069 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1070 spin_unlock_irq(&chip->reg_lock); 1071 return 0; 1072 } 1073 1074 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1075 struct snd_ctl_elem_value *ucontrol) 1076 { 1077 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1078 int i, change; 1079 unsigned int val; 1080 1081 val = 0; 1082 spin_lock_irq(&chip->reg_lock); 1083 for (i = 0; i < 4; i++) 1084 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1085 change = val != chip->dig_pcm_status; 1086 chip->dig_pcm_status = val; 1087 spin_unlock_irq(&chip->reg_lock); 1088 return change; 1089 } 1090 1091 static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1092 { 1093 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1094 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1095 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1096 .info = snd_cmipci_spdif_stream_info, 1097 .get = snd_cmipci_spdif_stream_get, 1098 .put = snd_cmipci_spdif_stream_put 1099 }; 1100 1101 /* 1102 */ 1103 1104 /* save mixer setting and mute for AC3 playback */ 1105 static int save_mixer_state(struct cmipci *cm) 1106 { 1107 if (! cm->mixer_insensitive) { 1108 struct snd_ctl_elem_value *val; 1109 unsigned int i; 1110 1111 val = kmalloc(sizeof(*val), GFP_KERNEL); 1112 if (!val) 1113 return -ENOMEM; 1114 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1115 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1116 if (ctl) { 1117 int event; 1118 memset(val, 0, sizeof(*val)); 1119 ctl->get(ctl, val); 1120 cm->mixer_res_status[i] = val->value.integer.value[0]; 1121 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1122 event = SNDRV_CTL_EVENT_MASK_INFO; 1123 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1124 ctl->put(ctl, val); /* toggle */ 1125 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1126 } 1127 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1128 snd_ctl_notify(cm->card, event, &ctl->id); 1129 } 1130 } 1131 kfree(val); 1132 cm->mixer_insensitive = 1; 1133 } 1134 return 0; 1135 } 1136 1137 1138 /* restore the previously saved mixer status */ 1139 static void restore_mixer_state(struct cmipci *cm) 1140 { 1141 if (cm->mixer_insensitive) { 1142 struct snd_ctl_elem_value *val; 1143 unsigned int i; 1144 1145 val = kmalloc(sizeof(*val), GFP_KERNEL); 1146 if (!val) 1147 return; 1148 cm->mixer_insensitive = 0; /* at first clear this; 1149 otherwise the changes will be ignored */ 1150 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1151 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1152 if (ctl) { 1153 int event; 1154 1155 memset(val, 0, sizeof(*val)); 1156 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1157 ctl->get(ctl, val); 1158 event = SNDRV_CTL_EVENT_MASK_INFO; 1159 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1160 val->value.integer.value[0] = cm->mixer_res_status[i]; 1161 ctl->put(ctl, val); 1162 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1163 } 1164 snd_ctl_notify(cm->card, event, &ctl->id); 1165 } 1166 } 1167 kfree(val); 1168 } 1169 } 1170 1171 /* spinlock held! */ 1172 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1173 { 1174 if (do_ac3) { 1175 /* AC3EN for 037 */ 1176 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1177 /* AC3EN for 039 */ 1178 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1179 1180 if (cm->can_ac3_hw) { 1181 /* SPD24SEL for 037, 0x02 */ 1182 /* SPD24SEL for 039, 0x20, but cannot be set */ 1183 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1184 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1185 } else { /* can_ac3_sw */ 1186 /* SPD32SEL for 037 & 039, 0x20 */ 1187 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1188 /* set 176K sample rate to fix 033 HW bug */ 1189 if (cm->chip_version == 33) { 1190 if (rate >= 48000) { 1191 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1192 } else { 1193 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1194 } 1195 } 1196 } 1197 1198 } else { 1199 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1200 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1201 1202 if (cm->can_ac3_hw) { 1203 /* chip model >= 37 */ 1204 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1205 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1206 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1207 } else { 1208 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1209 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1210 } 1211 } else { 1212 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1213 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1214 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1215 } 1216 } 1217 } 1218 1219 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1220 { 1221 int rate, err; 1222 1223 rate = subs->runtime->rate; 1224 1225 if (up && do_ac3) { 1226 err = save_mixer_state(cm); 1227 if (err < 0) 1228 return err; 1229 } 1230 1231 spin_lock_irq(&cm->reg_lock); 1232 cm->spdif_playback_avail = up; 1233 if (up) { 1234 /* they are controlled via "IEC958 Output Switch" */ 1235 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1236 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1237 if (cm->spdif_playback_enabled) 1238 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1239 setup_ac3(cm, subs, do_ac3, rate); 1240 1241 if (rate == 48000 || rate == 96000) 1242 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1243 else 1244 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1245 if (rate > 48000) 1246 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1247 else 1248 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1249 } else { 1250 /* they are controlled via "IEC958 Output Switch" */ 1251 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1252 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1253 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1254 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1255 setup_ac3(cm, subs, 0, 0); 1256 } 1257 spin_unlock_irq(&cm->reg_lock); 1258 return 0; 1259 } 1260 1261 1262 /* 1263 * preparation 1264 */ 1265 1266 /* playback - enable spdif only on the certain condition */ 1267 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1268 { 1269 struct cmipci *cm = snd_pcm_substream_chip(substream); 1270 int rate = substream->runtime->rate; 1271 int err, do_spdif, do_ac3 = 0; 1272 1273 do_spdif = (rate >= 44100 && rate <= 96000 && 1274 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1275 substream->runtime->channels == 2); 1276 if (do_spdif && cm->can_ac3_hw) 1277 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1278 err = setup_spdif_playback(cm, substream, do_spdif, do_ac3); 1279 if (err < 0) 1280 return err; 1281 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1282 } 1283 1284 /* playback (via device #2) - enable spdif always */ 1285 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1286 { 1287 struct cmipci *cm = snd_pcm_substream_chip(substream); 1288 int err, do_ac3; 1289 1290 if (cm->can_ac3_hw) 1291 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1292 else 1293 do_ac3 = 1; /* doesn't matter */ 1294 err = setup_spdif_playback(cm, substream, 1, do_ac3); 1295 if (err < 0) 1296 return err; 1297 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1298 } 1299 1300 /* 1301 * Apparently, the samples last played on channel A stay in some buffer, even 1302 * after the channel is reset, and get added to the data for the rear DACs when 1303 * playing a multichannel stream on channel B. This is likely to generate 1304 * wraparounds and thus distortions. 1305 * To avoid this, we play at least one zero sample after the actual stream has 1306 * stopped. 1307 */ 1308 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1309 { 1310 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1311 unsigned int reg, val; 1312 1313 if (rec->needs_silencing && runtime && runtime->dma_area) { 1314 /* set up a small silence buffer */ 1315 memset(runtime->dma_area, 0, PAGE_SIZE); 1316 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1317 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1318 snd_cmipci_write(cm, reg, val); 1319 1320 /* configure for 16 bits, 2 channels, 8 kHz */ 1321 if (runtime->channels > 2) 1322 set_dac_channels(cm, rec, 2); 1323 spin_lock_irq(&cm->reg_lock); 1324 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1325 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1326 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1327 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1328 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1329 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1330 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1331 if (cm->can_96k) 1332 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1333 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1334 1335 /* start stream (we don't need interrupts) */ 1336 cm->ctrl |= CM_CHEN0 << rec->ch; 1337 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1338 spin_unlock_irq(&cm->reg_lock); 1339 1340 msleep(1); 1341 1342 /* stop and reset stream */ 1343 spin_lock_irq(&cm->reg_lock); 1344 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1345 val = CM_RST_CH0 << rec->ch; 1346 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1347 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1348 spin_unlock_irq(&cm->reg_lock); 1349 1350 rec->needs_silencing = 0; 1351 } 1352 } 1353 1354 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1355 { 1356 struct cmipci *cm = snd_pcm_substream_chip(substream); 1357 setup_spdif_playback(cm, substream, 0, 0); 1358 restore_mixer_state(cm); 1359 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1360 return 0; 1361 } 1362 1363 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1364 { 1365 struct cmipci *cm = snd_pcm_substream_chip(substream); 1366 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1367 return 0; 1368 } 1369 1370 /* capture */ 1371 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1372 { 1373 struct cmipci *cm = snd_pcm_substream_chip(substream); 1374 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1375 } 1376 1377 /* capture with spdif (via device #2) */ 1378 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1379 { 1380 struct cmipci *cm = snd_pcm_substream_chip(substream); 1381 1382 spin_lock_irq(&cm->reg_lock); 1383 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1384 if (cm->can_96k) { 1385 if (substream->runtime->rate > 48000) 1386 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1387 else 1388 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1389 } 1390 if (snd_pcm_format_width(substream->runtime->format) > 16) 1391 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1392 else 1393 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1394 1395 spin_unlock_irq(&cm->reg_lock); 1396 1397 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1398 } 1399 1400 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1401 { 1402 struct cmipci *cm = snd_pcm_substream_chip(subs); 1403 1404 spin_lock_irq(&cm->reg_lock); 1405 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1406 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1407 spin_unlock_irq(&cm->reg_lock); 1408 1409 return 0; 1410 } 1411 1412 1413 /* 1414 * interrupt handler 1415 */ 1416 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1417 { 1418 struct cmipci *cm = dev_id; 1419 unsigned int status, mask = 0; 1420 1421 /* fastpath out, to ease interrupt sharing */ 1422 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1423 if (!(status & CM_INTR)) 1424 return IRQ_NONE; 1425 1426 /* acknowledge interrupt */ 1427 spin_lock(&cm->reg_lock); 1428 if (status & CM_CHINT0) 1429 mask |= CM_CH0_INT_EN; 1430 if (status & CM_CHINT1) 1431 mask |= CM_CH1_INT_EN; 1432 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1433 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1434 spin_unlock(&cm->reg_lock); 1435 1436 if (cm->rmidi && (status & CM_UARTINT)) 1437 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1438 1439 if (cm->pcm) { 1440 if ((status & CM_CHINT0) && cm->channel[0].running) 1441 snd_pcm_period_elapsed(cm->channel[0].substream); 1442 if ((status & CM_CHINT1) && cm->channel[1].running) 1443 snd_pcm_period_elapsed(cm->channel[1].substream); 1444 } 1445 return IRQ_HANDLED; 1446 } 1447 1448 /* 1449 * h/w infos 1450 */ 1451 1452 /* playback on channel A */ 1453 static const struct snd_pcm_hardware snd_cmipci_playback = 1454 { 1455 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1456 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1457 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1458 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1459 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1460 .rate_min = 5512, 1461 .rate_max = 48000, 1462 .channels_min = 1, 1463 .channels_max = 2, 1464 .buffer_bytes_max = (128*1024), 1465 .period_bytes_min = 64, 1466 .period_bytes_max = (128*1024), 1467 .periods_min = 2, 1468 .periods_max = 1024, 1469 .fifo_size = 0, 1470 }; 1471 1472 /* capture on channel B */ 1473 static const struct snd_pcm_hardware snd_cmipci_capture = 1474 { 1475 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1476 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1477 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1478 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1479 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1480 .rate_min = 5512, 1481 .rate_max = 48000, 1482 .channels_min = 1, 1483 .channels_max = 2, 1484 .buffer_bytes_max = (128*1024), 1485 .period_bytes_min = 64, 1486 .period_bytes_max = (128*1024), 1487 .periods_min = 2, 1488 .periods_max = 1024, 1489 .fifo_size = 0, 1490 }; 1491 1492 /* playback on channel B - stereo 16bit only? */ 1493 static const struct snd_pcm_hardware snd_cmipci_playback2 = 1494 { 1495 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1496 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1497 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1498 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1499 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1500 .rate_min = 5512, 1501 .rate_max = 48000, 1502 .channels_min = 2, 1503 .channels_max = 2, 1504 .buffer_bytes_max = (128*1024), 1505 .period_bytes_min = 64, 1506 .period_bytes_max = (128*1024), 1507 .periods_min = 2, 1508 .periods_max = 1024, 1509 .fifo_size = 0, 1510 }; 1511 1512 /* spdif playback on channel A */ 1513 static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1514 { 1515 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1516 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1517 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1518 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1519 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1520 .rate_min = 44100, 1521 .rate_max = 48000, 1522 .channels_min = 2, 1523 .channels_max = 2, 1524 .buffer_bytes_max = (128*1024), 1525 .period_bytes_min = 64, 1526 .period_bytes_max = (128*1024), 1527 .periods_min = 2, 1528 .periods_max = 1024, 1529 .fifo_size = 0, 1530 }; 1531 1532 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1533 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1534 { 1535 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1536 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1537 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1538 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1539 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1540 .rate_min = 44100, 1541 .rate_max = 48000, 1542 .channels_min = 2, 1543 .channels_max = 2, 1544 .buffer_bytes_max = (128*1024), 1545 .period_bytes_min = 64, 1546 .period_bytes_max = (128*1024), 1547 .periods_min = 2, 1548 .periods_max = 1024, 1549 .fifo_size = 0, 1550 }; 1551 1552 /* spdif capture on channel B */ 1553 static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1554 { 1555 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1556 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1557 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1558 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1559 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1560 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1561 .rate_min = 44100, 1562 .rate_max = 48000, 1563 .channels_min = 2, 1564 .channels_max = 2, 1565 .buffer_bytes_max = (128*1024), 1566 .period_bytes_min = 64, 1567 .period_bytes_max = (128*1024), 1568 .periods_min = 2, 1569 .periods_max = 1024, 1570 .fifo_size = 0, 1571 }; 1572 1573 /* 1574 * check device open/close 1575 */ 1576 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1577 { 1578 int ch = mode & CM_OPEN_CH_MASK; 1579 1580 /* FIXME: a file should wait until the device becomes free 1581 * when it's opened on blocking mode. however, since the current 1582 * pcm framework doesn't pass file pointer before actually opened, 1583 * we can't know whether blocking mode or not in open callback.. 1584 */ 1585 mutex_lock(&cm->open_mutex); 1586 if (cm->opened[ch]) { 1587 mutex_unlock(&cm->open_mutex); 1588 return -EBUSY; 1589 } 1590 cm->opened[ch] = mode; 1591 cm->channel[ch].substream = subs; 1592 if (! (mode & CM_OPEN_DAC)) { 1593 /* disable dual DAC mode */ 1594 cm->channel[ch].is_dac = 0; 1595 spin_lock_irq(&cm->reg_lock); 1596 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1597 spin_unlock_irq(&cm->reg_lock); 1598 } 1599 mutex_unlock(&cm->open_mutex); 1600 return 0; 1601 } 1602 1603 static void close_device_check(struct cmipci *cm, int mode) 1604 { 1605 int ch = mode & CM_OPEN_CH_MASK; 1606 1607 mutex_lock(&cm->open_mutex); 1608 if (cm->opened[ch] == mode) { 1609 if (cm->channel[ch].substream) { 1610 snd_cmipci_ch_reset(cm, ch); 1611 cm->channel[ch].running = 0; 1612 cm->channel[ch].substream = NULL; 1613 } 1614 cm->opened[ch] = 0; 1615 if (! cm->channel[ch].is_dac) { 1616 /* enable dual DAC mode again */ 1617 cm->channel[ch].is_dac = 1; 1618 spin_lock_irq(&cm->reg_lock); 1619 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1620 spin_unlock_irq(&cm->reg_lock); 1621 } 1622 } 1623 mutex_unlock(&cm->open_mutex); 1624 } 1625 1626 /* 1627 */ 1628 1629 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1630 { 1631 struct cmipci *cm = snd_pcm_substream_chip(substream); 1632 struct snd_pcm_runtime *runtime = substream->runtime; 1633 int err; 1634 1635 err = open_device_check(cm, CM_OPEN_PLAYBACK, substream); 1636 if (err < 0) 1637 return err; 1638 runtime->hw = snd_cmipci_playback; 1639 if (cm->chip_version == 68) { 1640 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1641 SNDRV_PCM_RATE_96000; 1642 runtime->hw.rate_max = 96000; 1643 } else if (cm->chip_version == 55) { 1644 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1645 SNDRV_PCM_RATE_96000 | 1646 SNDRV_PCM_RATE_128000; 1647 runtime->hw.rate_max = 128000; 1648 } 1649 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1650 cm->dig_pcm_status = cm->dig_status; 1651 return 0; 1652 } 1653 1654 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1655 { 1656 struct cmipci *cm = snd_pcm_substream_chip(substream); 1657 struct snd_pcm_runtime *runtime = substream->runtime; 1658 int err; 1659 1660 err = open_device_check(cm, CM_OPEN_CAPTURE, substream); 1661 if (err < 0) 1662 return err; 1663 runtime->hw = snd_cmipci_capture; 1664 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1665 runtime->hw.rate_min = 41000; 1666 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1667 } else if (cm->chip_version == 55) { 1668 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1669 SNDRV_PCM_RATE_96000 | 1670 SNDRV_PCM_RATE_128000; 1671 runtime->hw.rate_max = 128000; 1672 } 1673 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1674 return 0; 1675 } 1676 1677 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1678 { 1679 struct cmipci *cm = snd_pcm_substream_chip(substream); 1680 struct snd_pcm_runtime *runtime = substream->runtime; 1681 int err; 1682 1683 /* use channel B */ 1684 err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream); 1685 if (err < 0) 1686 return err; 1687 runtime->hw = snd_cmipci_playback2; 1688 mutex_lock(&cm->open_mutex); 1689 if (! cm->opened[CM_CH_PLAY]) { 1690 if (cm->can_multi_ch) { 1691 runtime->hw.channels_max = cm->max_channels; 1692 if (cm->max_channels == 4) 1693 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1694 else if (cm->max_channels == 6) 1695 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1696 else if (cm->max_channels == 8) 1697 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1698 } 1699 } 1700 mutex_unlock(&cm->open_mutex); 1701 if (cm->chip_version == 68) { 1702 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1703 SNDRV_PCM_RATE_96000; 1704 runtime->hw.rate_max = 96000; 1705 } else if (cm->chip_version == 55) { 1706 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1707 SNDRV_PCM_RATE_96000 | 1708 SNDRV_PCM_RATE_128000; 1709 runtime->hw.rate_max = 128000; 1710 } 1711 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1712 return 0; 1713 } 1714 1715 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1716 { 1717 struct cmipci *cm = snd_pcm_substream_chip(substream); 1718 struct snd_pcm_runtime *runtime = substream->runtime; 1719 int err; 1720 1721 /* use channel A */ 1722 err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream); 1723 if (err < 0) 1724 return err; 1725 if (cm->can_ac3_hw) { 1726 runtime->hw = snd_cmipci_playback_spdif; 1727 if (cm->chip_version >= 37) { 1728 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1729 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1730 } 1731 if (cm->can_96k) { 1732 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1733 SNDRV_PCM_RATE_96000; 1734 runtime->hw.rate_max = 96000; 1735 } 1736 } else { 1737 runtime->hw = snd_cmipci_playback_iec958_subframe; 1738 } 1739 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1740 cm->dig_pcm_status = cm->dig_status; 1741 return 0; 1742 } 1743 1744 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1745 { 1746 struct cmipci *cm = snd_pcm_substream_chip(substream); 1747 struct snd_pcm_runtime *runtime = substream->runtime; 1748 int err; 1749 1750 /* use channel B */ 1751 err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream); 1752 if (err < 0) 1753 return err; 1754 runtime->hw = snd_cmipci_capture_spdif; 1755 if (cm->can_96k && !(cm->chip_version == 68)) { 1756 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1757 SNDRV_PCM_RATE_96000; 1758 runtime->hw.rate_max = 96000; 1759 } 1760 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1761 return 0; 1762 } 1763 1764 1765 /* 1766 */ 1767 1768 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1769 { 1770 struct cmipci *cm = snd_pcm_substream_chip(substream); 1771 close_device_check(cm, CM_OPEN_PLAYBACK); 1772 return 0; 1773 } 1774 1775 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1776 { 1777 struct cmipci *cm = snd_pcm_substream_chip(substream); 1778 close_device_check(cm, CM_OPEN_CAPTURE); 1779 return 0; 1780 } 1781 1782 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1783 { 1784 struct cmipci *cm = snd_pcm_substream_chip(substream); 1785 close_device_check(cm, CM_OPEN_PLAYBACK2); 1786 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1787 return 0; 1788 } 1789 1790 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1791 { 1792 struct cmipci *cm = snd_pcm_substream_chip(substream); 1793 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1794 return 0; 1795 } 1796 1797 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1798 { 1799 struct cmipci *cm = snd_pcm_substream_chip(substream); 1800 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1801 return 0; 1802 } 1803 1804 1805 /* 1806 */ 1807 1808 static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1809 .open = snd_cmipci_playback_open, 1810 .close = snd_cmipci_playback_close, 1811 .hw_free = snd_cmipci_playback_hw_free, 1812 .prepare = snd_cmipci_playback_prepare, 1813 .trigger = snd_cmipci_playback_trigger, 1814 .pointer = snd_cmipci_playback_pointer, 1815 }; 1816 1817 static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1818 .open = snd_cmipci_capture_open, 1819 .close = snd_cmipci_capture_close, 1820 .prepare = snd_cmipci_capture_prepare, 1821 .trigger = snd_cmipci_capture_trigger, 1822 .pointer = snd_cmipci_capture_pointer, 1823 }; 1824 1825 static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1826 .open = snd_cmipci_playback2_open, 1827 .close = snd_cmipci_playback2_close, 1828 .hw_params = snd_cmipci_playback2_hw_params, 1829 .hw_free = snd_cmipci_playback2_hw_free, 1830 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1831 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1832 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1833 }; 1834 1835 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1836 .open = snd_cmipci_playback_spdif_open, 1837 .close = snd_cmipci_playback_spdif_close, 1838 .hw_free = snd_cmipci_playback_hw_free, 1839 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1840 .trigger = snd_cmipci_playback_trigger, 1841 .pointer = snd_cmipci_playback_pointer, 1842 }; 1843 1844 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1845 .open = snd_cmipci_capture_spdif_open, 1846 .close = snd_cmipci_capture_spdif_close, 1847 .hw_free = snd_cmipci_capture_spdif_hw_free, 1848 .prepare = snd_cmipci_capture_spdif_prepare, 1849 .trigger = snd_cmipci_capture_trigger, 1850 .pointer = snd_cmipci_capture_pointer, 1851 }; 1852 1853 1854 /* 1855 */ 1856 1857 static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1858 { 1859 struct snd_pcm *pcm; 1860 int err; 1861 1862 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1863 if (err < 0) 1864 return err; 1865 1866 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1867 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1868 1869 pcm->private_data = cm; 1870 pcm->info_flags = 0; 1871 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1872 cm->pcm = pcm; 1873 1874 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1875 &cm->pci->dev, 64*1024, 128*1024); 1876 1877 return 0; 1878 } 1879 1880 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1881 { 1882 struct snd_pcm *pcm; 1883 int err; 1884 1885 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1886 if (err < 0) 1887 return err; 1888 1889 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1890 1891 pcm->private_data = cm; 1892 pcm->info_flags = 0; 1893 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1894 cm->pcm2 = pcm; 1895 1896 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1897 &cm->pci->dev, 64*1024, 128*1024); 1898 1899 return 0; 1900 } 1901 1902 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1903 { 1904 struct snd_pcm *pcm; 1905 int err; 1906 1907 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1908 if (err < 0) 1909 return err; 1910 1911 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1912 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1913 1914 pcm->private_data = cm; 1915 pcm->info_flags = 0; 1916 strcpy(pcm->name, "C-Media PCI IEC958"); 1917 cm->pcm_spdif = pcm; 1918 1919 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1920 &cm->pci->dev, 64*1024, 128*1024); 1921 1922 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1923 snd_pcm_alt_chmaps, cm->max_channels, 0, 1924 NULL); 1925 if (err < 0) 1926 return err; 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * mixer interface: 1933 * - CM8338/8738 has a compatible mixer interface with SB16, but 1934 * lack of some elements like tone control, i/o gain and AGC. 1935 * - Access to native registers: 1936 * - A 3D switch 1937 * - Output mute switches 1938 */ 1939 1940 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1941 { 1942 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1943 outb(data, s->iobase + CM_REG_SB16_DATA); 1944 } 1945 1946 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1947 { 1948 unsigned char v; 1949 1950 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1951 v = inb(s->iobase + CM_REG_SB16_DATA); 1952 return v; 1953 } 1954 1955 /* 1956 * general mixer element 1957 */ 1958 struct cmipci_sb_reg { 1959 unsigned int left_reg, right_reg; 1960 unsigned int left_shift, right_shift; 1961 unsigned int mask; 1962 unsigned int invert: 1; 1963 unsigned int stereo: 1; 1964 }; 1965 1966 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1967 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1968 1969 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1970 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1971 .info = snd_cmipci_info_volume, \ 1972 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1973 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1974 } 1975 1976 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1977 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1978 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1979 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1980 1981 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1982 { 1983 r->left_reg = val & 0xff; 1984 r->right_reg = (val >> 8) & 0xff; 1985 r->left_shift = (val >> 16) & 0x07; 1986 r->right_shift = (val >> 19) & 0x07; 1987 r->invert = (val >> 22) & 1; 1988 r->stereo = (val >> 23) & 1; 1989 r->mask = (val >> 24) & 0xff; 1990 } 1991 1992 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 1993 struct snd_ctl_elem_info *uinfo) 1994 { 1995 struct cmipci_sb_reg reg; 1996 1997 cmipci_sb_reg_decode(®, kcontrol->private_value); 1998 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 1999 uinfo->count = reg.stereo + 1; 2000 uinfo->value.integer.min = 0; 2001 uinfo->value.integer.max = reg.mask; 2002 return 0; 2003 } 2004 2005 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2006 struct snd_ctl_elem_value *ucontrol) 2007 { 2008 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2009 struct cmipci_sb_reg reg; 2010 int val; 2011 2012 cmipci_sb_reg_decode(®, kcontrol->private_value); 2013 spin_lock_irq(&cm->reg_lock); 2014 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2015 if (reg.invert) 2016 val = reg.mask - val; 2017 ucontrol->value.integer.value[0] = val; 2018 if (reg.stereo) { 2019 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2020 if (reg.invert) 2021 val = reg.mask - val; 2022 ucontrol->value.integer.value[1] = val; 2023 } 2024 spin_unlock_irq(&cm->reg_lock); 2025 return 0; 2026 } 2027 2028 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2029 struct snd_ctl_elem_value *ucontrol) 2030 { 2031 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2032 struct cmipci_sb_reg reg; 2033 int change; 2034 int left, right, oleft, oright; 2035 2036 cmipci_sb_reg_decode(®, kcontrol->private_value); 2037 left = ucontrol->value.integer.value[0] & reg.mask; 2038 if (reg.invert) 2039 left = reg.mask - left; 2040 left <<= reg.left_shift; 2041 if (reg.stereo) { 2042 right = ucontrol->value.integer.value[1] & reg.mask; 2043 if (reg.invert) 2044 right = reg.mask - right; 2045 right <<= reg.right_shift; 2046 } else 2047 right = 0; 2048 spin_lock_irq(&cm->reg_lock); 2049 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2050 left |= oleft & ~(reg.mask << reg.left_shift); 2051 change = left != oleft; 2052 if (reg.stereo) { 2053 if (reg.left_reg != reg.right_reg) { 2054 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2055 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2056 } else 2057 oright = left; 2058 right |= oright & ~(reg.mask << reg.right_shift); 2059 change |= right != oright; 2060 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2061 } else 2062 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2063 spin_unlock_irq(&cm->reg_lock); 2064 return change; 2065 } 2066 2067 /* 2068 * input route (left,right) -> (left,right) 2069 */ 2070 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2071 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2072 .info = snd_cmipci_info_input_sw, \ 2073 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2074 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2075 } 2076 2077 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2078 struct snd_ctl_elem_info *uinfo) 2079 { 2080 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2081 uinfo->count = 4; 2082 uinfo->value.integer.min = 0; 2083 uinfo->value.integer.max = 1; 2084 return 0; 2085 } 2086 2087 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2088 struct snd_ctl_elem_value *ucontrol) 2089 { 2090 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2091 struct cmipci_sb_reg reg; 2092 int val1, val2; 2093 2094 cmipci_sb_reg_decode(®, kcontrol->private_value); 2095 spin_lock_irq(&cm->reg_lock); 2096 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2097 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2098 spin_unlock_irq(&cm->reg_lock); 2099 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2100 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2101 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2102 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2103 return 0; 2104 } 2105 2106 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2107 struct snd_ctl_elem_value *ucontrol) 2108 { 2109 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2110 struct cmipci_sb_reg reg; 2111 int change; 2112 int val1, val2, oval1, oval2; 2113 2114 cmipci_sb_reg_decode(®, kcontrol->private_value); 2115 spin_lock_irq(&cm->reg_lock); 2116 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2117 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2118 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2119 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2120 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2121 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2122 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2123 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2124 change = val1 != oval1 || val2 != oval2; 2125 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2126 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2127 spin_unlock_irq(&cm->reg_lock); 2128 return change; 2129 } 2130 2131 /* 2132 * native mixer switches/volumes 2133 */ 2134 2135 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2136 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2137 .info = snd_cmipci_info_native_mixer, \ 2138 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2139 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2140 } 2141 2142 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2143 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2144 .info = snd_cmipci_info_native_mixer, \ 2145 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2146 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2147 } 2148 2149 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2150 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2151 .info = snd_cmipci_info_native_mixer, \ 2152 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2153 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2154 } 2155 2156 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2157 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2158 .info = snd_cmipci_info_native_mixer, \ 2159 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2160 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2161 } 2162 2163 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2164 struct snd_ctl_elem_info *uinfo) 2165 { 2166 struct cmipci_sb_reg reg; 2167 2168 cmipci_sb_reg_decode(®, kcontrol->private_value); 2169 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2170 uinfo->count = reg.stereo + 1; 2171 uinfo->value.integer.min = 0; 2172 uinfo->value.integer.max = reg.mask; 2173 return 0; 2174 2175 } 2176 2177 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2178 struct snd_ctl_elem_value *ucontrol) 2179 { 2180 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2181 struct cmipci_sb_reg reg; 2182 unsigned char oreg, val; 2183 2184 cmipci_sb_reg_decode(®, kcontrol->private_value); 2185 spin_lock_irq(&cm->reg_lock); 2186 oreg = inb(cm->iobase + reg.left_reg); 2187 val = (oreg >> reg.left_shift) & reg.mask; 2188 if (reg.invert) 2189 val = reg.mask - val; 2190 ucontrol->value.integer.value[0] = val; 2191 if (reg.stereo) { 2192 val = (oreg >> reg.right_shift) & reg.mask; 2193 if (reg.invert) 2194 val = reg.mask - val; 2195 ucontrol->value.integer.value[1] = val; 2196 } 2197 spin_unlock_irq(&cm->reg_lock); 2198 return 0; 2199 } 2200 2201 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2202 struct snd_ctl_elem_value *ucontrol) 2203 { 2204 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2205 struct cmipci_sb_reg reg; 2206 unsigned char oreg, nreg, val; 2207 2208 cmipci_sb_reg_decode(®, kcontrol->private_value); 2209 spin_lock_irq(&cm->reg_lock); 2210 oreg = inb(cm->iobase + reg.left_reg); 2211 val = ucontrol->value.integer.value[0] & reg.mask; 2212 if (reg.invert) 2213 val = reg.mask - val; 2214 nreg = oreg & ~(reg.mask << reg.left_shift); 2215 nreg |= (val << reg.left_shift); 2216 if (reg.stereo) { 2217 val = ucontrol->value.integer.value[1] & reg.mask; 2218 if (reg.invert) 2219 val = reg.mask - val; 2220 nreg &= ~(reg.mask << reg.right_shift); 2221 nreg |= (val << reg.right_shift); 2222 } 2223 outb(nreg, cm->iobase + reg.left_reg); 2224 spin_unlock_irq(&cm->reg_lock); 2225 return (nreg != oreg); 2226 } 2227 2228 /* 2229 * special case - check mixer sensitivity 2230 */ 2231 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2232 struct snd_ctl_elem_value *ucontrol) 2233 { 2234 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2235 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2236 } 2237 2238 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2239 struct snd_ctl_elem_value *ucontrol) 2240 { 2241 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2242 if (cm->mixer_insensitive) { 2243 /* ignored */ 2244 return 0; 2245 } 2246 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2247 } 2248 2249 2250 static const struct snd_kcontrol_new snd_cmipci_mixers[] = { 2251 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2252 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2253 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2254 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2255 { /* switch with sensitivity */ 2256 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2257 .name = "PCM Playback Switch", 2258 .info = snd_cmipci_info_native_mixer, 2259 .get = snd_cmipci_get_native_mixer_sensitive, 2260 .put = snd_cmipci_put_native_mixer_sensitive, 2261 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2262 }, 2263 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2264 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2265 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2266 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2267 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2268 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2269 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2270 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2271 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2272 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2273 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2274 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2275 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2276 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2277 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2278 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2279 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2280 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2281 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2282 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2283 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2284 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2285 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2286 }; 2287 2288 /* 2289 * other switches 2290 */ 2291 2292 struct cmipci_switch_args { 2293 int reg; /* register index */ 2294 unsigned int mask; /* mask bits */ 2295 unsigned int mask_on; /* mask bits to turn on */ 2296 unsigned int is_byte: 1; /* byte access? */ 2297 unsigned int ac3_sensitive: 1; /* access forbidden during 2298 * non-audio operation? 2299 */ 2300 }; 2301 2302 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2303 2304 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2305 struct snd_ctl_elem_value *ucontrol, 2306 struct cmipci_switch_args *args) 2307 { 2308 unsigned int val; 2309 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2310 2311 spin_lock_irq(&cm->reg_lock); 2312 if (args->ac3_sensitive && cm->mixer_insensitive) { 2313 ucontrol->value.integer.value[0] = 0; 2314 spin_unlock_irq(&cm->reg_lock); 2315 return 0; 2316 } 2317 if (args->is_byte) 2318 val = inb(cm->iobase + args->reg); 2319 else 2320 val = snd_cmipci_read(cm, args->reg); 2321 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2322 spin_unlock_irq(&cm->reg_lock); 2323 return 0; 2324 } 2325 2326 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2327 struct snd_ctl_elem_value *ucontrol) 2328 { 2329 struct cmipci_switch_args *args; 2330 args = (struct cmipci_switch_args *)kcontrol->private_value; 2331 if (snd_BUG_ON(!args)) 2332 return -EINVAL; 2333 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2334 } 2335 2336 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2337 struct snd_ctl_elem_value *ucontrol, 2338 struct cmipci_switch_args *args) 2339 { 2340 unsigned int val; 2341 int change; 2342 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2343 2344 spin_lock_irq(&cm->reg_lock); 2345 if (args->ac3_sensitive && cm->mixer_insensitive) { 2346 /* ignored */ 2347 spin_unlock_irq(&cm->reg_lock); 2348 return 0; 2349 } 2350 if (args->is_byte) 2351 val = inb(cm->iobase + args->reg); 2352 else 2353 val = snd_cmipci_read(cm, args->reg); 2354 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2355 args->mask_on : (args->mask & ~args->mask_on)); 2356 if (change) { 2357 val &= ~args->mask; 2358 if (ucontrol->value.integer.value[0]) 2359 val |= args->mask_on; 2360 else 2361 val |= (args->mask & ~args->mask_on); 2362 if (args->is_byte) 2363 outb((unsigned char)val, cm->iobase + args->reg); 2364 else 2365 snd_cmipci_write(cm, args->reg, val); 2366 } 2367 spin_unlock_irq(&cm->reg_lock); 2368 return change; 2369 } 2370 2371 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2372 struct snd_ctl_elem_value *ucontrol) 2373 { 2374 struct cmipci_switch_args *args; 2375 args = (struct cmipci_switch_args *)kcontrol->private_value; 2376 if (snd_BUG_ON(!args)) 2377 return -EINVAL; 2378 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2379 } 2380 2381 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2382 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2383 .reg = xreg, \ 2384 .mask = xmask, \ 2385 .mask_on = xmask_on, \ 2386 .is_byte = xis_byte, \ 2387 .ac3_sensitive = xac3, \ 2388 } 2389 2390 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2391 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2392 2393 #if 0 /* these will be controlled in pcm device */ 2394 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2395 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2396 #endif 2397 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2398 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2399 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2400 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2401 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2402 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2403 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2404 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2405 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2406 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2407 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2408 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2409 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2410 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2411 #if CM_CH_PLAY == 1 2412 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2413 #else 2414 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2415 #endif 2416 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2417 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2418 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2419 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2420 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2421 2422 #define DEFINE_SWITCH(sname, stype, sarg) \ 2423 { .name = sname, \ 2424 .iface = stype, \ 2425 .info = snd_cmipci_uswitch_info, \ 2426 .get = snd_cmipci_uswitch_get, \ 2427 .put = snd_cmipci_uswitch_put, \ 2428 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2429 } 2430 2431 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2432 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2433 2434 2435 /* 2436 * callbacks for spdif output switch 2437 * needs toggle two registers.. 2438 */ 2439 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2440 struct snd_ctl_elem_value *ucontrol) 2441 { 2442 int changed; 2443 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2444 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2445 return changed; 2446 } 2447 2448 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2449 struct snd_ctl_elem_value *ucontrol) 2450 { 2451 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2452 int changed; 2453 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2454 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2455 if (changed) { 2456 if (ucontrol->value.integer.value[0]) { 2457 if (chip->spdif_playback_avail) 2458 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2459 } else { 2460 if (chip->spdif_playback_avail) 2461 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2462 } 2463 } 2464 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2465 return changed; 2466 } 2467 2468 2469 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2470 struct snd_ctl_elem_info *uinfo) 2471 { 2472 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2473 static const char *const texts[3] = { 2474 "Line-In", "Rear Output", "Bass Output" 2475 }; 2476 2477 return snd_ctl_enum_info(uinfo, 1, 2478 cm->chip_version >= 39 ? 3 : 2, texts); 2479 } 2480 2481 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2482 { 2483 unsigned int val; 2484 if (cm->chip_version >= 39) { 2485 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2486 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2487 return 2; 2488 } 2489 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2490 if (val & CM_REAR2LIN) 2491 return 1; 2492 return 0; 2493 } 2494 2495 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2496 struct snd_ctl_elem_value *ucontrol) 2497 { 2498 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2499 2500 spin_lock_irq(&cm->reg_lock); 2501 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2502 spin_unlock_irq(&cm->reg_lock); 2503 return 0; 2504 } 2505 2506 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2507 struct snd_ctl_elem_value *ucontrol) 2508 { 2509 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2510 int change; 2511 2512 spin_lock_irq(&cm->reg_lock); 2513 if (ucontrol->value.enumerated.item[0] == 2) 2514 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2515 else 2516 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2517 if (ucontrol->value.enumerated.item[0] == 1) 2518 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2519 else 2520 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2521 spin_unlock_irq(&cm->reg_lock); 2522 return change; 2523 } 2524 2525 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2526 struct snd_ctl_elem_info *uinfo) 2527 { 2528 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2529 2530 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2531 } 2532 2533 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2534 struct snd_ctl_elem_value *ucontrol) 2535 { 2536 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2537 /* same bit as spdi_phase */ 2538 spin_lock_irq(&cm->reg_lock); 2539 ucontrol->value.enumerated.item[0] = 2540 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2541 spin_unlock_irq(&cm->reg_lock); 2542 return 0; 2543 } 2544 2545 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2546 struct snd_ctl_elem_value *ucontrol) 2547 { 2548 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2549 int change; 2550 2551 spin_lock_irq(&cm->reg_lock); 2552 if (ucontrol->value.enumerated.item[0]) 2553 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2554 else 2555 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2556 spin_unlock_irq(&cm->reg_lock); 2557 return change; 2558 } 2559 2560 /* both for CM8338/8738 */ 2561 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2562 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2563 { 2564 .name = "Line-In Mode", 2565 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2566 .info = snd_cmipci_line_in_mode_info, 2567 .get = snd_cmipci_line_in_mode_get, 2568 .put = snd_cmipci_line_in_mode_put, 2569 }, 2570 }; 2571 2572 /* for non-multichannel chips */ 2573 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2574 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2575 2576 /* only for CM8738 */ 2577 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2578 #if 0 /* controlled in pcm device */ 2579 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2580 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2581 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2582 #endif 2583 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2584 { .name = "IEC958 Output Switch", 2585 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2586 .info = snd_cmipci_uswitch_info, 2587 .get = snd_cmipci_spdout_enable_get, 2588 .put = snd_cmipci_spdout_enable_put, 2589 }, 2590 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2591 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2592 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2593 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2594 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2595 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2596 }; 2597 2598 /* only for model 033/037 */ 2599 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2600 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2601 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2602 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2603 }; 2604 2605 /* only for model 039 or later */ 2606 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2607 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2608 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2609 { 2610 .name = "Mic-In Mode", 2611 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2612 .info = snd_cmipci_mic_in_mode_info, 2613 .get = snd_cmipci_mic_in_mode_get, 2614 .put = snd_cmipci_mic_in_mode_put, 2615 } 2616 }; 2617 2618 /* card control switches */ 2619 static const struct snd_kcontrol_new snd_cmipci_modem_switch = 2620 DEFINE_CARD_SWITCH("Modem", modem); 2621 2622 2623 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2624 { 2625 struct snd_card *card; 2626 const struct snd_kcontrol_new *sw; 2627 struct snd_kcontrol *kctl; 2628 unsigned int idx; 2629 int err; 2630 2631 if (snd_BUG_ON(!cm || !cm->card)) 2632 return -EINVAL; 2633 2634 card = cm->card; 2635 2636 strcpy(card->mixername, "CMedia PCI"); 2637 2638 spin_lock_irq(&cm->reg_lock); 2639 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2640 spin_unlock_irq(&cm->reg_lock); 2641 2642 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2643 if (cm->chip_version == 68) { // 8768 has no PCM volume 2644 if (!strcmp(snd_cmipci_mixers[idx].name, 2645 "PCM Playback Volume")) 2646 continue; 2647 } 2648 err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm)); 2649 if (err < 0) 2650 return err; 2651 } 2652 2653 /* mixer switches */ 2654 sw = snd_cmipci_mixer_switches; 2655 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2656 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2657 if (err < 0) 2658 return err; 2659 } 2660 if (! cm->can_multi_ch) { 2661 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2662 if (err < 0) 2663 return err; 2664 } 2665 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2666 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2667 sw = snd_cmipci_8738_mixer_switches; 2668 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2669 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2670 if (err < 0) 2671 return err; 2672 } 2673 if (cm->can_ac3_hw) { 2674 kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm); 2675 kctl->id.device = pcm_spdif_device; 2676 err = snd_ctl_add(card, kctl); 2677 if (err < 0) 2678 return err; 2679 kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm); 2680 kctl->id.device = pcm_spdif_device; 2681 err = snd_ctl_add(card, kctl); 2682 if (err < 0) 2683 return err; 2684 kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm); 2685 kctl->id.device = pcm_spdif_device; 2686 err = snd_ctl_add(card, kctl); 2687 if (err < 0) 2688 return err; 2689 } 2690 if (cm->chip_version <= 37) { 2691 sw = snd_cmipci_old_mixer_switches; 2692 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2693 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2694 if (err < 0) 2695 return err; 2696 } 2697 } 2698 } 2699 if (cm->chip_version >= 39) { 2700 sw = snd_cmipci_extra_mixer_switches; 2701 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2702 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2703 if (err < 0) 2704 return err; 2705 } 2706 } 2707 2708 /* card switches */ 2709 /* 2710 * newer chips don't have the register bits to force modem link 2711 * detection; the bit that was FLINKON now mutes CH1 2712 */ 2713 if (cm->chip_version < 39) { 2714 err = snd_ctl_add(cm->card, 2715 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2716 if (err < 0) 2717 return err; 2718 } 2719 2720 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2721 struct snd_kcontrol *ctl; 2722 ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name); 2723 if (ctl) 2724 cm->mixer_res_ctl[idx] = ctl; 2725 } 2726 2727 return 0; 2728 } 2729 2730 2731 /* 2732 * proc interface 2733 */ 2734 2735 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2736 struct snd_info_buffer *buffer) 2737 { 2738 struct cmipci *cm = entry->private_data; 2739 int i, v; 2740 2741 snd_iprintf(buffer, "%s\n", cm->card->longname); 2742 for (i = 0; i < 0x94; i++) { 2743 if (i == 0x28) 2744 i = 0x90; 2745 v = inb(cm->iobase + i); 2746 if (i % 4 == 0) 2747 snd_iprintf(buffer, "\n%02x:", i); 2748 snd_iprintf(buffer, " %02x", v); 2749 } 2750 snd_iprintf(buffer, "\n"); 2751 } 2752 2753 static void snd_cmipci_proc_init(struct cmipci *cm) 2754 { 2755 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2756 } 2757 2758 static const struct pci_device_id snd_cmipci_ids[] = { 2759 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2760 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2761 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2762 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2763 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2764 {0,}, 2765 }; 2766 2767 2768 /* 2769 * check chip version and capabilities 2770 * driver name is modified according to the chip model 2771 */ 2772 static void query_chip(struct cmipci *cm) 2773 { 2774 unsigned int detect; 2775 2776 /* check reg 0Ch, bit 24-31 */ 2777 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2778 if (! detect) { 2779 /* check reg 08h, bit 24-28 */ 2780 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2781 switch (detect) { 2782 case 0: 2783 cm->chip_version = 33; 2784 if (cm->do_soft_ac3) 2785 cm->can_ac3_sw = 1; 2786 else 2787 cm->can_ac3_hw = 1; 2788 break; 2789 case CM_CHIP_037: 2790 cm->chip_version = 37; 2791 cm->can_ac3_hw = 1; 2792 break; 2793 default: 2794 cm->chip_version = 39; 2795 cm->can_ac3_hw = 1; 2796 break; 2797 } 2798 cm->max_channels = 2; 2799 } else { 2800 if (detect & CM_CHIP_039) { 2801 cm->chip_version = 39; 2802 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2803 cm->max_channels = 6; 2804 else 2805 cm->max_channels = 4; 2806 } else if (detect & CM_CHIP_8768) { 2807 cm->chip_version = 68; 2808 cm->max_channels = 8; 2809 cm->can_96k = 1; 2810 } else { 2811 cm->chip_version = 55; 2812 cm->max_channels = 6; 2813 cm->can_96k = 1; 2814 } 2815 cm->can_ac3_hw = 1; 2816 cm->can_multi_ch = 1; 2817 } 2818 } 2819 2820 #ifdef SUPPORT_JOYSTICK 2821 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2822 { 2823 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2824 struct gameport *gp; 2825 struct resource *r = NULL; 2826 int i, io_port = 0; 2827 2828 if (joystick_port[dev] == 0) 2829 return -ENODEV; 2830 2831 if (joystick_port[dev] == 1) { /* auto-detect */ 2832 for (i = 0; ports[i]; i++) { 2833 io_port = ports[i]; 2834 r = devm_request_region(&cm->pci->dev, io_port, 1, 2835 "CMIPCI gameport"); 2836 if (r) 2837 break; 2838 } 2839 } else { 2840 io_port = joystick_port[dev]; 2841 r = devm_request_region(&cm->pci->dev, io_port, 1, 2842 "CMIPCI gameport"); 2843 } 2844 2845 if (!r) { 2846 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2847 return -EBUSY; 2848 } 2849 2850 cm->gameport = gp = gameport_allocate_port(); 2851 if (!gp) { 2852 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2853 return -ENOMEM; 2854 } 2855 gameport_set_name(gp, "C-Media Gameport"); 2856 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2857 gameport_set_dev_parent(gp, &cm->pci->dev); 2858 gp->io = io_port; 2859 2860 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2861 2862 gameport_register_port(cm->gameport); 2863 2864 return 0; 2865 } 2866 2867 static void snd_cmipci_free_gameport(struct cmipci *cm) 2868 { 2869 if (cm->gameport) { 2870 gameport_unregister_port(cm->gameport); 2871 cm->gameport = NULL; 2872 2873 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2874 } 2875 } 2876 #else 2877 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2878 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2879 #endif 2880 2881 static void snd_cmipci_free(struct snd_card *card) 2882 { 2883 struct cmipci *cm = card->private_data; 2884 2885 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2886 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2887 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2888 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2889 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2890 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2891 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2892 2893 /* reset mixer */ 2894 snd_cmipci_mixer_write(cm, 0, 0); 2895 2896 snd_cmipci_free_gameport(cm); 2897 } 2898 2899 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2900 { 2901 long iosynth; 2902 unsigned int val; 2903 struct snd_opl3 *opl3; 2904 int err; 2905 2906 if (!fm_port) 2907 goto disable_fm; 2908 2909 if (cm->chip_version >= 39) { 2910 /* first try FM regs in PCI port range */ 2911 iosynth = cm->iobase + CM_REG_FM_PCI; 2912 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2913 OPL3_HW_OPL3, 1, &opl3); 2914 } else { 2915 err = -EIO; 2916 } 2917 if (err < 0) { 2918 /* then try legacy ports */ 2919 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2920 iosynth = fm_port; 2921 switch (iosynth) { 2922 case 0x3E8: val |= CM_FMSEL_3E8; break; 2923 case 0x3E0: val |= CM_FMSEL_3E0; break; 2924 case 0x3C8: val |= CM_FMSEL_3C8; break; 2925 case 0x388: val |= CM_FMSEL_388; break; 2926 default: 2927 goto disable_fm; 2928 } 2929 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2930 /* enable FM */ 2931 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2932 2933 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2934 OPL3_HW_OPL3, 0, &opl3) < 0) { 2935 dev_err(cm->card->dev, 2936 "no OPL device at %#lx, skipping...\n", 2937 iosynth); 2938 goto disable_fm; 2939 } 2940 } 2941 err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); 2942 if (err < 0) { 2943 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2944 return err; 2945 } 2946 return 0; 2947 2948 disable_fm: 2949 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2950 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2951 return 0; 2952 } 2953 2954 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2955 int dev) 2956 { 2957 struct cmipci *cm = card->private_data; 2958 int err; 2959 unsigned int val; 2960 long iomidi = 0; 2961 int integrated_midi = 0; 2962 char modelstr[16]; 2963 int pcm_index, pcm_spdif_index; 2964 static const struct pci_device_id intel_82437vx[] = { 2965 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2966 { }, 2967 }; 2968 2969 err = pcim_enable_device(pci); 2970 if (err < 0) 2971 return err; 2972 2973 spin_lock_init(&cm->reg_lock); 2974 mutex_init(&cm->open_mutex); 2975 cm->device = pci->device; 2976 cm->card = card; 2977 cm->pci = pci; 2978 cm->irq = -1; 2979 cm->channel[0].ch = 0; 2980 cm->channel[1].ch = 1; 2981 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 2982 2983 err = pci_request_regions(pci, card->driver); 2984 if (err < 0) 2985 return err; 2986 cm->iobase = pci_resource_start(pci, 0); 2987 2988 if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt, 2989 IRQF_SHARED, KBUILD_MODNAME, cm)) { 2990 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 2991 return -EBUSY; 2992 } 2993 cm->irq = pci->irq; 2994 card->sync_irq = cm->irq; 2995 card->private_free = snd_cmipci_free; 2996 2997 pci_set_master(cm->pci); 2998 2999 /* 3000 * check chip version, max channels and capabilities 3001 */ 3002 3003 cm->chip_version = 0; 3004 cm->max_channels = 2; 3005 cm->do_soft_ac3 = soft_ac3[dev]; 3006 3007 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3008 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3009 query_chip(cm); 3010 /* added -MCx suffix for chip supporting multi-channels */ 3011 if (cm->can_multi_ch) 3012 sprintf(cm->card->driver + strlen(cm->card->driver), 3013 "-MC%d", cm->max_channels); 3014 else if (cm->can_ac3_sw) 3015 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3016 3017 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3018 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3019 3020 #if CM_CH_PLAY == 1 3021 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3022 #else 3023 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3024 #endif 3025 3026 /* initialize codec registers */ 3027 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3028 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3029 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3030 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3031 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3032 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3033 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3034 3035 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3036 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3037 #if CM_CH_PLAY == 1 3038 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3039 #else 3040 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3041 #endif 3042 if (cm->chip_version) { 3043 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3044 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3045 } 3046 /* Set Bus Master Request */ 3047 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3048 3049 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3050 switch (pci->device) { 3051 case PCI_DEVICE_ID_CMEDIA_CM8738: 3052 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3053 if (!pci_dev_present(intel_82437vx)) 3054 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3055 break; 3056 default: 3057 break; 3058 } 3059 3060 if (cm->chip_version < 68) { 3061 val = pci->device < 0x110 ? 8338 : 8738; 3062 } else { 3063 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3064 case 0: 3065 val = 8769; 3066 break; 3067 case 2: 3068 val = 8762; 3069 break; 3070 default: 3071 switch ((pci->subsystem_vendor << 16) | 3072 pci->subsystem_device) { 3073 case 0x13f69761: 3074 case 0x584d3741: 3075 case 0x584d3751: 3076 case 0x584d3761: 3077 case 0x584d3771: 3078 case 0x72848384: 3079 val = 8770; 3080 break; 3081 default: 3082 val = 8768; 3083 break; 3084 } 3085 } 3086 } 3087 sprintf(card->shortname, "C-Media CMI%d", val); 3088 if (cm->chip_version < 68) 3089 scnprintf(modelstr, sizeof(modelstr), 3090 " (model %d)", cm->chip_version); 3091 else 3092 modelstr[0] = '\0'; 3093 scnprintf(card->longname, sizeof(card->longname), 3094 "%s%s at %#lx, irq %i", 3095 card->shortname, modelstr, cm->iobase, cm->irq); 3096 3097 if (cm->chip_version >= 39) { 3098 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3099 if (val != 0x00 && val != 0xff) { 3100 if (mpu_port[dev]) 3101 iomidi = cm->iobase + CM_REG_MPU_PCI; 3102 integrated_midi = 1; 3103 } 3104 } 3105 if (!integrated_midi) { 3106 val = 0; 3107 iomidi = mpu_port[dev]; 3108 switch (iomidi) { 3109 case 0x320: val = CM_VMPU_320; break; 3110 case 0x310: val = CM_VMPU_310; break; 3111 case 0x300: val = CM_VMPU_300; break; 3112 case 0x330: val = CM_VMPU_330; break; 3113 default: 3114 iomidi = 0; break; 3115 } 3116 if (iomidi > 0) { 3117 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3118 /* enable UART */ 3119 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3120 if (inb(iomidi + 1) == 0xff) { 3121 dev_err(cm->card->dev, 3122 "cannot enable MPU-401 port at %#lx\n", 3123 iomidi); 3124 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3125 CM_UART_EN); 3126 iomidi = 0; 3127 } 3128 } 3129 } 3130 3131 if (cm->chip_version < 68) { 3132 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3133 if (err < 0) 3134 return err; 3135 } 3136 3137 /* reset mixer */ 3138 snd_cmipci_mixer_write(cm, 0, 0); 3139 3140 snd_cmipci_proc_init(cm); 3141 3142 /* create pcm devices */ 3143 pcm_index = pcm_spdif_index = 0; 3144 err = snd_cmipci_pcm_new(cm, pcm_index); 3145 if (err < 0) 3146 return err; 3147 pcm_index++; 3148 err = snd_cmipci_pcm2_new(cm, pcm_index); 3149 if (err < 0) 3150 return err; 3151 pcm_index++; 3152 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3153 pcm_spdif_index = pcm_index; 3154 err = snd_cmipci_pcm_spdif_new(cm, pcm_index); 3155 if (err < 0) 3156 return err; 3157 } 3158 3159 /* create mixer interface & switches */ 3160 err = snd_cmipci_mixer_new(cm, pcm_spdif_index); 3161 if (err < 0) 3162 return err; 3163 3164 if (iomidi > 0) { 3165 err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3166 iomidi, 3167 (integrated_midi ? 3168 MPU401_INFO_INTEGRATED : 0) | 3169 MPU401_INFO_IRQ_HOOK, 3170 -1, &cm->rmidi); 3171 if (err < 0) 3172 dev_err(cm->card->dev, 3173 "no UART401 device at 0x%lx\n", iomidi); 3174 } 3175 3176 #ifdef USE_VAR48KRATE 3177 for (val = 0; val < ARRAY_SIZE(rates); val++) 3178 snd_cmipci_set_pll(cm, rates[val], val); 3179 3180 /* 3181 * (Re-)Enable external switch spdo_48k 3182 */ 3183 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3184 #endif /* USE_VAR48KRATE */ 3185 3186 if (snd_cmipci_create_gameport(cm, dev) < 0) 3187 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3188 3189 return 0; 3190 } 3191 3192 /* 3193 */ 3194 3195 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3196 3197 static int snd_cmipci_probe(struct pci_dev *pci, 3198 const struct pci_device_id *pci_id) 3199 { 3200 static int dev; 3201 struct snd_card *card; 3202 int err; 3203 3204 if (dev >= SNDRV_CARDS) 3205 return -ENODEV; 3206 if (! enable[dev]) { 3207 dev++; 3208 return -ENOENT; 3209 } 3210 3211 err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3212 sizeof(struct cmipci), &card); 3213 if (err < 0) 3214 return err; 3215 3216 switch (pci->device) { 3217 case PCI_DEVICE_ID_CMEDIA_CM8738: 3218 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3219 strcpy(card->driver, "CMI8738"); 3220 break; 3221 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3222 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3223 strcpy(card->driver, "CMI8338"); 3224 break; 3225 default: 3226 strcpy(card->driver, "CMIPCI"); 3227 break; 3228 } 3229 3230 err = snd_cmipci_create(card, pci, dev); 3231 if (err < 0) 3232 goto error; 3233 3234 err = snd_card_register(card); 3235 if (err < 0) 3236 goto error; 3237 3238 pci_set_drvdata(pci, card); 3239 dev++; 3240 return 0; 3241 3242 error: 3243 snd_card_free(card); 3244 return err; 3245 } 3246 3247 /* 3248 * power management 3249 */ 3250 static const unsigned char saved_regs[] = { 3251 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3252 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL, 3253 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3254 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3255 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3256 }; 3257 3258 static const unsigned char saved_mixers[] = { 3259 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3260 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3261 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3262 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3263 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3264 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3265 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3266 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3267 }; 3268 3269 static int snd_cmipci_suspend(struct device *dev) 3270 { 3271 struct snd_card *card = dev_get_drvdata(dev); 3272 struct cmipci *cm = card->private_data; 3273 int i; 3274 3275 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3276 3277 /* save registers */ 3278 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3279 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3280 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3281 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3282 3283 /* disable ints */ 3284 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3285 return 0; 3286 } 3287 3288 static int snd_cmipci_resume(struct device *dev) 3289 { 3290 struct snd_card *card = dev_get_drvdata(dev); 3291 struct cmipci *cm = card->private_data; 3292 int i; 3293 3294 /* reset / initialize to a sane state */ 3295 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3296 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3297 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3298 snd_cmipci_mixer_write(cm, 0, 0); 3299 3300 /* restore registers */ 3301 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3302 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3303 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3304 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3305 3306 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3307 return 0; 3308 } 3309 3310 static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3311 3312 static struct pci_driver cmipci_driver = { 3313 .name = KBUILD_MODNAME, 3314 .id_table = snd_cmipci_ids, 3315 .probe = snd_cmipci_probe, 3316 .driver = { 3317 .pm = &snd_cmipci_pm, 3318 }, 3319 }; 3320 3321 module_pci_driver(cmipci_driver); 3322