xref: /linux/sound/pci/cmipci.c (revision 0ddd7eaffa644baa78e247bbd220ab7195b1eed6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 
34 #if IS_REACHABLE(CONFIG_GAMEPORT)
35 #define SUPPORT_JOYSTICK 1
36 #endif
37 
38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44 #ifdef SUPPORT_JOYSTICK
45 static int joystick_port[SNDRV_CARDS];
46 #endif
47 
48 module_param_array(index, int, NULL, 0444);
49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50 module_param_array(id, charp, NULL, 0444);
51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52 module_param_array(enable, bool, NULL, 0444);
53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57 MODULE_PARM_DESC(fm_port, "FM port.");
58 module_param_array(soft_ac3, bool, NULL, 0444);
59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60 #ifdef SUPPORT_JOYSTICK
61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63 #endif
64 
65 /*
66  * CM8x38 registers definition
67  */
68 
69 #define CM_REG_FUNCTRL0		0x00
70 #define CM_RST_CH1		0x00080000
71 #define CM_RST_CH0		0x00040000
72 #define CM_CHEN1		0x00020000	/* ch1: enable */
73 #define CM_CHEN0		0x00010000	/* ch0: enable */
74 #define CM_PAUSE1		0x00000008	/* ch1: pause */
75 #define CM_PAUSE0		0x00000004	/* ch0: pause */
76 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
77 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
78 
79 #define CM_REG_FUNCTRL1		0x04
80 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
81 #define CM_DSFC_SHIFT		13
82 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
83 #define CM_ASFC_SHIFT		10
84 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
85 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
86 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
87 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
88 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
89 #define CM_BREQ			0x00000010	/* bus master enabled */
90 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
91 #define CM_UART_EN		0x00000004	/* legacy UART */
92 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
93 #define CM_ZVPORT		0x00000001	/* ZVPORT */
94 
95 #define CM_REG_CHFORMAT		0x08
96 
97 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
98 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
99 #define CM_CHB3D		0x20000000	/* 4 channels */
100 
101 #define CM_CHIP_MASK1		0x1f000000
102 #define CM_CHIP_037		0x01000000
103 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
104 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
105 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
106 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
107 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
108 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
109 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
110 
111 #define CM_ADCBITLEN_MASK	0x0000C000
112 #define CM_ADCBITLEN_16		0x00000000
113 #define CM_ADCBITLEN_15		0x00004000
114 #define CM_ADCBITLEN_14		0x00008000
115 #define CM_ADCBITLEN_13		0x0000C000
116 
117 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
118 #define CM_ADCDACLEN_060	0x00000000
119 #define CM_ADCDACLEN_066	0x00001000
120 #define CM_ADCDACLEN_130	0x00002000
121 #define CM_ADCDACLEN_280	0x00003000
122 
123 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
124 #define CM_ADCDLEN_ORIGINAL	0x00000000
125 #define CM_ADCDLEN_EXTRA	0x00001000
126 #define CM_ADCDLEN_24K		0x00002000
127 #define CM_ADCDLEN_WEIGHT	0x00003000
128 
129 #define CM_CH1_SRATE_176K	0x00000800
130 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
131 #define CM_CH1_SRATE_88K	0x00000400
132 #define CM_CH0_SRATE_176K	0x00000200
133 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
134 #define CM_CH0_SRATE_88K	0x00000100
135 #define CM_CH0_SRATE_128K	0x00000300
136 #define CM_CH0_SRATE_MASK	0x00000300
137 
138 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
139 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
140 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
141 #define CM_SPDLOCKED		0x00000010
142 
143 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
144 #define CM_CH1FMT_SHIFT		2
145 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
146 #define CM_CH0FMT_SHIFT		0
147 
148 #define CM_REG_INT_HLDCLR	0x0C
149 #define CM_CHIP_MASK2		0xff000000
150 #define CM_CHIP_8768		0x20000000
151 #define CM_CHIP_055		0x08000000
152 #define CM_CHIP_039		0x04000000
153 #define CM_CHIP_039_6CH		0x01000000
154 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
155 #define CM_TDMA_INT_EN		0x00040000
156 #define CM_CH1_INT_EN		0x00020000
157 #define CM_CH0_INT_EN		0x00010000
158 
159 #define CM_REG_INT_STATUS	0x10
160 #define CM_INTR			0x80000000
161 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
162 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
163 #define CM_UARTINT		0x00010000
164 #define CM_LTDMAINT		0x00008000
165 #define CM_HTDMAINT		0x00004000
166 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
167 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
168 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
169 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
170 #define CM_CH1BUSY		0x00000008
171 #define CM_CH0BUSY		0x00000004
172 #define CM_CHINT1		0x00000002
173 #define CM_CHINT0		0x00000001
174 
175 #define CM_REG_LEGACY_CTRL	0x14
176 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
177 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
178 #define CM_VMPU_330		0x00000000
179 #define CM_VMPU_320		0x20000000
180 #define CM_VMPU_310		0x40000000
181 #define CM_VMPU_300		0x60000000
182 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
183 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
184 #define CM_VSBSEL_220		0x00000000
185 #define CM_VSBSEL_240		0x04000000
186 #define CM_VSBSEL_260		0x08000000
187 #define CM_VSBSEL_280		0x0C000000
188 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
189 #define CM_FMSEL_388		0x00000000
190 #define CM_FMSEL_3C8		0x01000000
191 #define CM_FMSEL_3E0		0x02000000
192 #define CM_FMSEL_3E8		0x03000000
193 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
194 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
195 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
196 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
197 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
199 #define CM_C_EECS		0x00040000
200 #define CM_C_EEDI46		0x00020000
201 #define CM_C_EECK46		0x00010000
202 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
203 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
204 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
205 #define CM_EXBASEN		0x00001000	/* external bass input enable */
206 
207 #define CM_REG_MISC_CTRL	0x18
208 #define CM_PWD			0x80000000	/* power down */
209 #define CM_RESET		0x40000000
210 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
211 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
212 #define CM_TXVX			0x08000000	/* model 037? */
213 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
214 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
215 #define CM_SPDIF48K		0x01000000	/* write */
216 #define CM_SPATUS48K		0x01000000	/* read */
217 #define CM_ENDBDAC		0x00800000	/* enable double dac */
218 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
219 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
220 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
221 #define CM_FM_EN		0x00080000	/* enable legacy FM */
222 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
223 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
224 #define CM_VIDWPDSB		0x00010000	/* model 037? */
225 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
226 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
227 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
228 #define CM_VIDWPPRT		0x00002000	/* model 037? */
229 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
230 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
231 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
232 #define CM_ENCENTER		0x00000080
233 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
234 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
235 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
236 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
237 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
238 #define CM_UPDDMA_2048		0x00000000
239 #define CM_UPDDMA_1024		0x00000004
240 #define CM_UPDDMA_512		0x00000008
241 #define CM_UPDDMA_256		0x0000000C
242 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
243 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
245 
246 #define CM_REG_TDMA_POSITION	0x1C
247 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
248 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
249 
250 	/* byte */
251 #define CM_REG_MIXER0		0x20
252 #define CM_REG_SBVR		0x20		/* write: sb16 version */
253 #define CM_REG_DEV		0x20		/* read: hardware device version */
254 
255 #define CM_REG_MIXER21		0x21
256 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
257 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
258 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
259 #define CM_X_SB16		0x01		/* SB16 compatible */
260 
261 #define CM_REG_SB16_DATA	0x22
262 #define CM_REG_SB16_ADDR	0x23
263 
264 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
265 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
267 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
268 
269 #define CM_REG_MIXER1		0x24
270 #define CM_FMMUTE		0x80	/* mute FM */
271 #define CM_FMMUTE_SHIFT		7
272 #define CM_WSMUTE		0x40	/* mute PCM */
273 #define CM_WSMUTE_SHIFT		6
274 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
275 #define CM_REAR2LIN_SHIFT	5
276 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
277 #define CM_REAR2FRONT_SHIFT	4
278 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
279 #define CM_WAVEINL_SHIFT	3
280 #define CM_WAVEINR		0x04	/* digical wave rec. right */
281 #define CM_WAVEINR_SHIFT	2
282 #define CM_X3DEN		0x02	/* 3D surround enable */
283 #define CM_X3DEN_SHIFT		1
284 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
285 #define CM_CDPLAY_SHIFT		0
286 
287 #define CM_REG_MIXER2		0x25
288 #define CM_RAUXREN		0x80	/* AUX right capture */
289 #define CM_RAUXREN_SHIFT	7
290 #define CM_RAUXLEN		0x40	/* AUX left capture */
291 #define CM_RAUXLEN_SHIFT	6
292 #define CM_VAUXRM		0x20	/* AUX right mute */
293 #define CM_VAUXRM_SHIFT		5
294 #define CM_VAUXLM		0x10	/* AUX left mute */
295 #define CM_VAUXLM_SHIFT		4
296 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
297 #define CM_VADMIC_SHIFT		1
298 #define CM_MICGAINZ		0x01	/* mic boost */
299 #define CM_MICGAINZ_SHIFT	0
300 
301 #define CM_REG_MIXER3		0x24
302 #define CM_REG_AUX_VOL		0x26
303 #define CM_VAUXL_MASK		0xf0
304 #define CM_VAUXR_MASK		0x0f
305 
306 #define CM_REG_MISC		0x27
307 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
308 #define CM_XGPO1		0x20
309 // #define CM_XGPBIO		0x04
310 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
311 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
312 #define CM_SPDVALID		0x02	/* spdif input valid check */
313 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
314 
315 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
316 /*
317  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
318  * or identical with AC97 codec?
319  */
320 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
321 
322 /*
323  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
324  */
325 #define CM_REG_MPU_PCI		0x40
326 
327 /*
328  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
329  */
330 #define CM_REG_FM_PCI		0x50
331 
332 /*
333  * access from SB-mixer port
334  */
335 #define CM_REG_EXTENT_IND	0xf0
336 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
337 #define CM_VPHONE_SHIFT		5
338 #define CM_VPHOM		0x10	/* Phone mute control */
339 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
340 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
341 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
342 #define CM_VADMIC3		0x01	/* Mic record boost */
343 
344 /*
345  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
346  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
347  * unit (readonly?).
348  */
349 #define CM_REG_PLL		0xf8
350 
351 /*
352  * extended registers
353  */
354 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
355 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
356 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
357 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
358 
359 #define CM_REG_EXT_MISC		0x90
360 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
361 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
362 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
363 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
364 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
365 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
366 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
367 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
368 
369 /*
370  * size of i/o region
371  */
372 #define CM_EXTENT_CODEC	  0x100
373 #define CM_EXTENT_MIDI	  0x2
374 #define CM_EXTENT_SYNTH	  0x4
375 
376 
377 /*
378  * channels for playback / capture
379  */
380 #define CM_CH_PLAY	0
381 #define CM_CH_CAPT	1
382 
383 /*
384  * flags to check device open/close
385  */
386 #define CM_OPEN_NONE	0
387 #define CM_OPEN_CH_MASK	0x01
388 #define CM_OPEN_DAC	0x10
389 #define CM_OPEN_ADC	0x20
390 #define CM_OPEN_SPDIF	0x40
391 #define CM_OPEN_MCHAN	0x80
392 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
393 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
394 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
395 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
396 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
397 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
398 
399 
400 #if CM_CH_PLAY == 1
401 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
402 #define CM_PLAYBACK_SPDF	CM_SPDF_1
403 #define CM_CAPTURE_SPDF		CM_SPDF_0
404 #else
405 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
406 #define CM_PLAYBACK_SPDF	CM_SPDF_0
407 #define CM_CAPTURE_SPDF		CM_SPDF_1
408 #endif
409 
410 
411 /*
412  * driver data
413  */
414 
415 struct cmipci_pcm {
416 	struct snd_pcm_substream *substream;
417 	u8 running;		/* dac/adc running? */
418 	u8 fmt;			/* format bits */
419 	u8 is_dac;
420 	u8 needs_silencing;
421 	unsigned int dma_size;	/* in frames */
422 	unsigned int shift;
423 	unsigned int ch;	/* channel (0/1) */
424 	unsigned int offset;	/* physical address of the buffer */
425 };
426 
427 /* mixer elements toggled/resumed during ac3 playback */
428 struct cmipci_mixer_auto_switches {
429 	const char *name;	/* switch to toggle */
430 	int toggle_on;		/* value to change when ac3 mode */
431 };
432 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
433 	{"PCM Playback Switch", 0},
434 	{"IEC958 Output Switch", 1},
435 	{"IEC958 Mix Analog", 0},
436 	// {"IEC958 Out To DAC", 1}, // no longer used
437 	{"IEC958 Loop", 0},
438 };
439 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
440 
441 struct cmipci {
442 	struct snd_card *card;
443 
444 	struct pci_dev *pci;
445 	unsigned int device;	/* device ID */
446 	int irq;
447 
448 	unsigned long iobase;
449 	unsigned int ctrl;	/* FUNCTRL0 current value */
450 
451 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
452 	struct snd_pcm *pcm2;	/* 2nd DAC */
453 	struct snd_pcm *pcm_spdif;	/* SPDIF */
454 
455 	int chip_version;
456 	int max_channels;
457 	unsigned int can_ac3_sw: 1;
458 	unsigned int can_ac3_hw: 1;
459 	unsigned int can_multi_ch: 1;
460 	unsigned int can_96k: 1;	/* samplerate above 48k */
461 	unsigned int do_soft_ac3: 1;
462 
463 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
464 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
465 	int spdif_counter;	/* for software AC3 */
466 
467 	unsigned int dig_status;
468 	unsigned int dig_pcm_status;
469 
470 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
471 
472 	int opened[2];	/* open mode */
473 	struct mutex open_mutex;
474 
475 	unsigned int mixer_insensitive: 1;
476 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
477 	int mixer_res_status[CM_SAVED_MIXERS];
478 
479 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
480 
481 	/* external MIDI */
482 	struct snd_rawmidi *rmidi;
483 
484 #ifdef SUPPORT_JOYSTICK
485 	struct gameport *gameport;
486 #endif
487 
488 	spinlock_t reg_lock;
489 
490 #ifdef CONFIG_PM_SLEEP
491 	unsigned int saved_regs[0x20];
492 	unsigned char saved_mixers[0x20];
493 #endif
494 };
495 
496 
497 /* read/write operations for dword register */
498 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
499 {
500 	outl(data, cm->iobase + cmd);
501 }
502 
503 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
504 {
505 	return inl(cm->iobase + cmd);
506 }
507 
508 /* read/write operations for word register */
509 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
510 {
511 	outw(data, cm->iobase + cmd);
512 }
513 
514 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
515 {
516 	return inw(cm->iobase + cmd);
517 }
518 
519 /* read/write operations for byte register */
520 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
521 {
522 	outb(data, cm->iobase + cmd);
523 }
524 
525 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
526 {
527 	return inb(cm->iobase + cmd);
528 }
529 
530 /* bit operations for dword register */
531 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
532 {
533 	unsigned int val, oval;
534 	val = oval = inl(cm->iobase + cmd);
535 	val |= flag;
536 	if (val == oval)
537 		return 0;
538 	outl(val, cm->iobase + cmd);
539 	return 1;
540 }
541 
542 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
543 {
544 	unsigned int val, oval;
545 	val = oval = inl(cm->iobase + cmd);
546 	val &= ~flag;
547 	if (val == oval)
548 		return 0;
549 	outl(val, cm->iobase + cmd);
550 	return 1;
551 }
552 
553 /* bit operations for byte register */
554 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
555 {
556 	unsigned char val, oval;
557 	val = oval = inb(cm->iobase + cmd);
558 	val |= flag;
559 	if (val == oval)
560 		return 0;
561 	outb(val, cm->iobase + cmd);
562 	return 1;
563 }
564 
565 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
566 {
567 	unsigned char val, oval;
568 	val = oval = inb(cm->iobase + cmd);
569 	val &= ~flag;
570 	if (val == oval)
571 		return 0;
572 	outb(val, cm->iobase + cmd);
573 	return 1;
574 }
575 
576 
577 /*
578  * PCM interface
579  */
580 
581 /*
582  * calculate frequency
583  */
584 
585 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
586 
587 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
588 {
589 	unsigned int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
592 		if (rates[i] == rate)
593 			return i;
594 	}
595 	snd_BUG();
596 	return 0;
597 }
598 
599 #ifdef USE_VAR48KRATE
600 /*
601  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
602  * does it this way .. maybe not.  Never get any information from C-Media about
603  * that <werner@suse.de>.
604  */
605 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
606 {
607 	unsigned int delta, tolerance;
608 	int xm, xn, xr;
609 
610 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
611 		rate <<= 1;
612 	*n = -1;
613 	if (*r > 0xff)
614 		goto out;
615 	tolerance = rate*CM_TOLERANCE_RATE;
616 
617 	for (xn = (1+2); xn < (0x1f+2); xn++) {
618 		for (xm = (1+2); xm < (0xff+2); xm++) {
619 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
620 
621 			if (xr < rate)
622 				delta = rate - xr;
623 			else
624 				delta = xr - rate;
625 
626 			/*
627 			 * If we found one, remember this,
628 			 * and try to find a closer one
629 			 */
630 			if (delta < tolerance) {
631 				tolerance = delta;
632 				*m = xm - 2;
633 				*n = xn - 2;
634 			}
635 		}
636 	}
637 out:
638 	return (*n > -1);
639 }
640 
641 /*
642  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
643  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
644  * at the register CM_REG_FUNCTRL1 (0x04).
645  * Problem: other ways are also possible (any information about that?)
646  */
647 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
648 {
649 	unsigned int reg = CM_REG_PLL + slot;
650 	/*
651 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
652 	 * for DSFC/ASFC (000 up to 111).
653 	 */
654 
655 	/* FIXME: Init (Do we've to set an other register first before programming?) */
656 
657 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
658 	snd_cmipci_write_b(cm, reg, rate>>8);
659 	snd_cmipci_write_b(cm, reg, rate&0xff);
660 
661 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
662 }
663 #endif /* USE_VAR48KRATE */
664 
665 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
666 					  struct snd_pcm_hw_params *hw_params)
667 {
668 	struct cmipci *cm = snd_pcm_substream_chip(substream);
669 	if (params_channels(hw_params) > 2) {
670 		mutex_lock(&cm->open_mutex);
671 		if (cm->opened[CM_CH_PLAY]) {
672 			mutex_unlock(&cm->open_mutex);
673 			return -EBUSY;
674 		}
675 		/* reserve the channel A */
676 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
677 		mutex_unlock(&cm->open_mutex);
678 	}
679 	return 0;
680 }
681 
682 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
683 {
684 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
685 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
686 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
687 	udelay(10);
688 }
689 
690 
691 /*
692  */
693 
694 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
695 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
696 	.count = 3,
697 	.list = hw_channels,
698 	.mask = 0,
699 };
700 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
701 	.count = 4,
702 	.list = hw_channels,
703 	.mask = 0,
704 };
705 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
706 	.count = 5,
707 	.list = hw_channels,
708 	.mask = 0,
709 };
710 
711 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
712 {
713 	if (channels > 2) {
714 		if (!cm->can_multi_ch || !rec->ch)
715 			return -EINVAL;
716 		if (rec->fmt != 0x03) /* stereo 16bit only */
717 			return -EINVAL;
718 	}
719 
720 	if (cm->can_multi_ch) {
721 		spin_lock_irq(&cm->reg_lock);
722 		if (channels > 2) {
723 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725 		} else {
726 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
727 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
728 		}
729 		if (channels == 8)
730 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
731 		else
732 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
733 		if (channels == 6) {
734 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
735 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
736 		} else {
737 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
738 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
739 		}
740 		if (channels == 4)
741 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
742 		else
743 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
744 		spin_unlock_irq(&cm->reg_lock);
745 	}
746 	return 0;
747 }
748 
749 
750 /*
751  * prepare playback/capture channel
752  * channel to be used must have been set in rec->ch.
753  */
754 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
755 				 struct snd_pcm_substream *substream)
756 {
757 	unsigned int reg, freq, freq_ext, val;
758 	unsigned int period_size;
759 	struct snd_pcm_runtime *runtime = substream->runtime;
760 
761 	rec->fmt = 0;
762 	rec->shift = 0;
763 	if (snd_pcm_format_width(runtime->format) >= 16) {
764 		rec->fmt |= 0x02;
765 		if (snd_pcm_format_width(runtime->format) > 16)
766 			rec->shift++; /* 24/32bit */
767 	}
768 	if (runtime->channels > 1)
769 		rec->fmt |= 0x01;
770 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
771 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
772 		return -EINVAL;
773 	}
774 
775 	rec->offset = runtime->dma_addr;
776 	/* buffer and period sizes in frame */
777 	rec->dma_size = runtime->buffer_size << rec->shift;
778 	period_size = runtime->period_size << rec->shift;
779 	if (runtime->channels > 2) {
780 		/* multi-channels */
781 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
782 		period_size = (period_size * runtime->channels) / 2;
783 	}
784 
785 	spin_lock_irq(&cm->reg_lock);
786 
787 	/* set buffer address */
788 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
789 	snd_cmipci_write(cm, reg, rec->offset);
790 	/* program sample counts */
791 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
792 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
793 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
794 
795 	/* set adc/dac flag */
796 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
797 	if (rec->is_dac)
798 		cm->ctrl &= ~val;
799 	else
800 		cm->ctrl |= val;
801 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
802 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
803 
804 	/* set sample rate */
805 	freq = 0;
806 	freq_ext = 0;
807 	if (runtime->rate > 48000)
808 		switch (runtime->rate) {
809 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
810 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
811 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
812 		default:     snd_BUG(); break;
813 		}
814 	else
815 		freq = snd_cmipci_rate_freq(runtime->rate);
816 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
817 	if (rec->ch) {
818 		val &= ~CM_DSFC_MASK;
819 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
820 	} else {
821 		val &= ~CM_ASFC_MASK;
822 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
823 	}
824 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
825 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
826 
827 	/* set format */
828 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
829 	if (rec->ch) {
830 		val &= ~CM_CH1FMT_MASK;
831 		val |= rec->fmt << CM_CH1FMT_SHIFT;
832 	} else {
833 		val &= ~CM_CH0FMT_MASK;
834 		val |= rec->fmt << CM_CH0FMT_SHIFT;
835 	}
836 	if (cm->can_96k) {
837 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
838 		val |= freq_ext << (rec->ch * 2);
839 	}
840 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
841 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
842 
843 	if (!rec->is_dac && cm->chip_version) {
844 		if (runtime->rate > 44100)
845 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
846 		else
847 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
848 	}
849 
850 	rec->running = 0;
851 	spin_unlock_irq(&cm->reg_lock);
852 
853 	return 0;
854 }
855 
856 /*
857  * PCM trigger/stop
858  */
859 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
860 				  int cmd)
861 {
862 	unsigned int inthld, chen, reset, pause;
863 	int result = 0;
864 
865 	inthld = CM_CH0_INT_EN << rec->ch;
866 	chen = CM_CHEN0 << rec->ch;
867 	reset = CM_RST_CH0 << rec->ch;
868 	pause = CM_PAUSE0 << rec->ch;
869 
870 	spin_lock(&cm->reg_lock);
871 	switch (cmd) {
872 	case SNDRV_PCM_TRIGGER_START:
873 		rec->running = 1;
874 		/* set interrupt */
875 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
876 		cm->ctrl |= chen;
877 		/* enable channel */
878 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
879 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
880 		break;
881 	case SNDRV_PCM_TRIGGER_STOP:
882 		rec->running = 0;
883 		/* disable interrupt */
884 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
885 		/* reset */
886 		cm->ctrl &= ~chen;
887 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
888 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
889 		rec->needs_silencing = rec->is_dac;
890 		break;
891 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
892 	case SNDRV_PCM_TRIGGER_SUSPEND:
893 		cm->ctrl |= pause;
894 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
895 		break;
896 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
897 	case SNDRV_PCM_TRIGGER_RESUME:
898 		cm->ctrl &= ~pause;
899 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
900 		break;
901 	default:
902 		result = -EINVAL;
903 		break;
904 	}
905 	spin_unlock(&cm->reg_lock);
906 	return result;
907 }
908 
909 /*
910  * return the current pointer
911  */
912 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
913 						struct snd_pcm_substream *substream)
914 {
915 	size_t ptr;
916 	unsigned int reg, rem, tries;
917 
918 	if (!rec->running)
919 		return 0;
920 #if 1 // this seems better..
921 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
922 	for (tries = 0; tries < 3; tries++) {
923 		rem = snd_cmipci_read_w(cm, reg);
924 		if (rem < rec->dma_size)
925 			goto ok;
926 	}
927 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
928 	return SNDRV_PCM_POS_XRUN;
929 ok:
930 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
931 #else
932 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
933 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
934 	ptr = bytes_to_frames(substream->runtime, ptr);
935 #endif
936 	if (substream->runtime->channels > 2)
937 		ptr = (ptr * 2) / substream->runtime->channels;
938 	return ptr;
939 }
940 
941 /*
942  * playback
943  */
944 
945 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
946 				       int cmd)
947 {
948 	struct cmipci *cm = snd_pcm_substream_chip(substream);
949 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
950 }
951 
952 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
953 {
954 	struct cmipci *cm = snd_pcm_substream_chip(substream);
955 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
956 }
957 
958 
959 
960 /*
961  * capture
962  */
963 
964 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
965 				     int cmd)
966 {
967 	struct cmipci *cm = snd_pcm_substream_chip(substream);
968 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
969 }
970 
971 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
972 {
973 	struct cmipci *cm = snd_pcm_substream_chip(substream);
974 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
975 }
976 
977 
978 /*
979  * hw preparation for spdif
980  */
981 
982 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
983 					 struct snd_ctl_elem_info *uinfo)
984 {
985 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
986 	uinfo->count = 1;
987 	return 0;
988 }
989 
990 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
991 					struct snd_ctl_elem_value *ucontrol)
992 {
993 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
994 	int i;
995 
996 	spin_lock_irq(&chip->reg_lock);
997 	for (i = 0; i < 4; i++)
998 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
999 	spin_unlock_irq(&chip->reg_lock);
1000 	return 0;
1001 }
1002 
1003 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1004 					 struct snd_ctl_elem_value *ucontrol)
1005 {
1006 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1007 	int i, change;
1008 	unsigned int val;
1009 
1010 	val = 0;
1011 	spin_lock_irq(&chip->reg_lock);
1012 	for (i = 0; i < 4; i++)
1013 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1014 	change = val != chip->dig_status;
1015 	chip->dig_status = val;
1016 	spin_unlock_irq(&chip->reg_lock);
1017 	return change;
1018 }
1019 
1020 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1021 {
1022 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1023 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1024 	.info =		snd_cmipci_spdif_default_info,
1025 	.get =		snd_cmipci_spdif_default_get,
1026 	.put =		snd_cmipci_spdif_default_put
1027 };
1028 
1029 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1030 				      struct snd_ctl_elem_info *uinfo)
1031 {
1032 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1033 	uinfo->count = 1;
1034 	return 0;
1035 }
1036 
1037 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1038 				     struct snd_ctl_elem_value *ucontrol)
1039 {
1040 	ucontrol->value.iec958.status[0] = 0xff;
1041 	ucontrol->value.iec958.status[1] = 0xff;
1042 	ucontrol->value.iec958.status[2] = 0xff;
1043 	ucontrol->value.iec958.status[3] = 0xff;
1044 	return 0;
1045 }
1046 
1047 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1048 {
1049 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1050 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1051 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1052 	.info =		snd_cmipci_spdif_mask_info,
1053 	.get =		snd_cmipci_spdif_mask_get,
1054 };
1055 
1056 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1057 					struct snd_ctl_elem_info *uinfo)
1058 {
1059 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1060 	uinfo->count = 1;
1061 	return 0;
1062 }
1063 
1064 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1065 				       struct snd_ctl_elem_value *ucontrol)
1066 {
1067 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1068 	int i;
1069 
1070 	spin_lock_irq(&chip->reg_lock);
1071 	for (i = 0; i < 4; i++)
1072 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1073 	spin_unlock_irq(&chip->reg_lock);
1074 	return 0;
1075 }
1076 
1077 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1078 				       struct snd_ctl_elem_value *ucontrol)
1079 {
1080 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1081 	int i, change;
1082 	unsigned int val;
1083 
1084 	val = 0;
1085 	spin_lock_irq(&chip->reg_lock);
1086 	for (i = 0; i < 4; i++)
1087 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1088 	change = val != chip->dig_pcm_status;
1089 	chip->dig_pcm_status = val;
1090 	spin_unlock_irq(&chip->reg_lock);
1091 	return change;
1092 }
1093 
1094 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1095 {
1096 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1097 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1098 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1099 	.info =		snd_cmipci_spdif_stream_info,
1100 	.get =		snd_cmipci_spdif_stream_get,
1101 	.put =		snd_cmipci_spdif_stream_put
1102 };
1103 
1104 /*
1105  */
1106 
1107 /* save mixer setting and mute for AC3 playback */
1108 static int save_mixer_state(struct cmipci *cm)
1109 {
1110 	if (! cm->mixer_insensitive) {
1111 		struct snd_ctl_elem_value *val;
1112 		unsigned int i;
1113 
1114 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1115 		if (!val)
1116 			return -ENOMEM;
1117 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1118 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1119 			if (ctl) {
1120 				int event;
1121 				memset(val, 0, sizeof(*val));
1122 				ctl->get(ctl, val);
1123 				cm->mixer_res_status[i] = val->value.integer.value[0];
1124 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1125 				event = SNDRV_CTL_EVENT_MASK_INFO;
1126 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1127 					ctl->put(ctl, val); /* toggle */
1128 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1129 				}
1130 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1131 				snd_ctl_notify(cm->card, event, &ctl->id);
1132 			}
1133 		}
1134 		kfree(val);
1135 		cm->mixer_insensitive = 1;
1136 	}
1137 	return 0;
1138 }
1139 
1140 
1141 /* restore the previously saved mixer status */
1142 static void restore_mixer_state(struct cmipci *cm)
1143 {
1144 	if (cm->mixer_insensitive) {
1145 		struct snd_ctl_elem_value *val;
1146 		unsigned int i;
1147 
1148 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1149 		if (!val)
1150 			return;
1151 		cm->mixer_insensitive = 0; /* at first clear this;
1152 					      otherwise the changes will be ignored */
1153 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1154 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1155 			if (ctl) {
1156 				int event;
1157 
1158 				memset(val, 0, sizeof(*val));
1159 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1160 				ctl->get(ctl, val);
1161 				event = SNDRV_CTL_EVENT_MASK_INFO;
1162 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1163 					val->value.integer.value[0] = cm->mixer_res_status[i];
1164 					ctl->put(ctl, val);
1165 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1166 				}
1167 				snd_ctl_notify(cm->card, event, &ctl->id);
1168 			}
1169 		}
1170 		kfree(val);
1171 	}
1172 }
1173 
1174 /* spinlock held! */
1175 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1176 {
1177 	if (do_ac3) {
1178 		/* AC3EN for 037 */
1179 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1180 		/* AC3EN for 039 */
1181 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1182 
1183 		if (cm->can_ac3_hw) {
1184 			/* SPD24SEL for 037, 0x02 */
1185 			/* SPD24SEL for 039, 0x20, but cannot be set */
1186 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1187 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188 		} else { /* can_ac3_sw */
1189 			/* SPD32SEL for 037 & 039, 0x20 */
1190 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191 			/* set 176K sample rate to fix 033 HW bug */
1192 			if (cm->chip_version == 33) {
1193 				if (rate >= 48000) {
1194 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1195 				} else {
1196 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1197 				}
1198 			}
1199 		}
1200 
1201 	} else {
1202 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1203 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1204 
1205 		if (cm->can_ac3_hw) {
1206 			/* chip model >= 37 */
1207 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1208 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210 			} else {
1211 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213 			}
1214 		} else {
1215 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1218 		}
1219 	}
1220 }
1221 
1222 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1223 {
1224 	int rate, err;
1225 
1226 	rate = subs->runtime->rate;
1227 
1228 	if (up && do_ac3)
1229 		if ((err = save_mixer_state(cm)) < 0)
1230 			return err;
1231 
1232 	spin_lock_irq(&cm->reg_lock);
1233 	cm->spdif_playback_avail = up;
1234 	if (up) {
1235 		/* they are controlled via "IEC958 Output Switch" */
1236 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1237 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1238 		if (cm->spdif_playback_enabled)
1239 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1240 		setup_ac3(cm, subs, do_ac3, rate);
1241 
1242 		if (rate == 48000 || rate == 96000)
1243 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1244 		else
1245 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1246 		if (rate > 48000)
1247 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1248 		else
1249 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1250 	} else {
1251 		/* they are controlled via "IEC958 Output Switch" */
1252 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1253 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1254 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1255 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1256 		setup_ac3(cm, subs, 0, 0);
1257 	}
1258 	spin_unlock_irq(&cm->reg_lock);
1259 	return 0;
1260 }
1261 
1262 
1263 /*
1264  * preparation
1265  */
1266 
1267 /* playback - enable spdif only on the certain condition */
1268 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1269 {
1270 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1271 	int rate = substream->runtime->rate;
1272 	int err, do_spdif, do_ac3 = 0;
1273 
1274 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1275 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1276 		    substream->runtime->channels == 2);
1277 	if (do_spdif && cm->can_ac3_hw)
1278 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1279 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1280 		return err;
1281 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1282 }
1283 
1284 /* playback  (via device #2) - enable spdif always */
1285 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286 {
1287 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1288 	int err, do_ac3;
1289 
1290 	if (cm->can_ac3_hw)
1291 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292 	else
1293 		do_ac3 = 1; /* doesn't matter */
1294 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1295 		return err;
1296 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1297 }
1298 
1299 /*
1300  * Apparently, the samples last played on channel A stay in some buffer, even
1301  * after the channel is reset, and get added to the data for the rear DACs when
1302  * playing a multichannel stream on channel B.  This is likely to generate
1303  * wraparounds and thus distortions.
1304  * To avoid this, we play at least one zero sample after the actual stream has
1305  * stopped.
1306  */
1307 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1308 {
1309 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1310 	unsigned int reg, val;
1311 
1312 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1313 		/* set up a small silence buffer */
1314 		memset(runtime->dma_area, 0, PAGE_SIZE);
1315 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1316 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1317 		snd_cmipci_write(cm, reg, val);
1318 
1319 		/* configure for 16 bits, 2 channels, 8 kHz */
1320 		if (runtime->channels > 2)
1321 			set_dac_channels(cm, rec, 2);
1322 		spin_lock_irq(&cm->reg_lock);
1323 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1324 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1325 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1326 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1327 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1328 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1329 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1330 		if (cm->can_96k)
1331 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1332 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1333 
1334 		/* start stream (we don't need interrupts) */
1335 		cm->ctrl |= CM_CHEN0 << rec->ch;
1336 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1337 		spin_unlock_irq(&cm->reg_lock);
1338 
1339 		msleep(1);
1340 
1341 		/* stop and reset stream */
1342 		spin_lock_irq(&cm->reg_lock);
1343 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1344 		val = CM_RST_CH0 << rec->ch;
1345 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1346 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1347 		spin_unlock_irq(&cm->reg_lock);
1348 
1349 		rec->needs_silencing = 0;
1350 	}
1351 }
1352 
1353 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1354 {
1355 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1356 	setup_spdif_playback(cm, substream, 0, 0);
1357 	restore_mixer_state(cm);
1358 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1359 	return 0;
1360 }
1361 
1362 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1363 {
1364 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1365 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1366 	return 0;
1367 }
1368 
1369 /* capture */
1370 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1371 {
1372 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1373 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1374 }
1375 
1376 /* capture with spdif (via device #2) */
1377 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1378 {
1379 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1380 
1381 	spin_lock_irq(&cm->reg_lock);
1382 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1383 	if (cm->can_96k) {
1384 		if (substream->runtime->rate > 48000)
1385 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1386 		else
1387 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1388 	}
1389 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1390 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1391 	else
1392 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1393 
1394 	spin_unlock_irq(&cm->reg_lock);
1395 
1396 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1397 }
1398 
1399 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1400 {
1401 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1402 
1403 	spin_lock_irq(&cm->reg_lock);
1404 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1405 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1406 	spin_unlock_irq(&cm->reg_lock);
1407 
1408 	return 0;
1409 }
1410 
1411 
1412 /*
1413  * interrupt handler
1414  */
1415 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1416 {
1417 	struct cmipci *cm = dev_id;
1418 	unsigned int status, mask = 0;
1419 
1420 	/* fastpath out, to ease interrupt sharing */
1421 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1422 	if (!(status & CM_INTR))
1423 		return IRQ_NONE;
1424 
1425 	/* acknowledge interrupt */
1426 	spin_lock(&cm->reg_lock);
1427 	if (status & CM_CHINT0)
1428 		mask |= CM_CH0_INT_EN;
1429 	if (status & CM_CHINT1)
1430 		mask |= CM_CH1_INT_EN;
1431 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1432 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1433 	spin_unlock(&cm->reg_lock);
1434 
1435 	if (cm->rmidi && (status & CM_UARTINT))
1436 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1437 
1438 	if (cm->pcm) {
1439 		if ((status & CM_CHINT0) && cm->channel[0].running)
1440 			snd_pcm_period_elapsed(cm->channel[0].substream);
1441 		if ((status & CM_CHINT1) && cm->channel[1].running)
1442 			snd_pcm_period_elapsed(cm->channel[1].substream);
1443 	}
1444 	return IRQ_HANDLED;
1445 }
1446 
1447 /*
1448  * h/w infos
1449  */
1450 
1451 /* playback on channel A */
1452 static const struct snd_pcm_hardware snd_cmipci_playback =
1453 {
1454 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1455 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1456 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1457 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1458 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1459 	.rate_min =		5512,
1460 	.rate_max =		48000,
1461 	.channels_min =		1,
1462 	.channels_max =		2,
1463 	.buffer_bytes_max =	(128*1024),
1464 	.period_bytes_min =	64,
1465 	.period_bytes_max =	(128*1024),
1466 	.periods_min =		2,
1467 	.periods_max =		1024,
1468 	.fifo_size =		0,
1469 };
1470 
1471 /* capture on channel B */
1472 static const struct snd_pcm_hardware snd_cmipci_capture =
1473 {
1474 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1475 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1476 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1477 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1478 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1479 	.rate_min =		5512,
1480 	.rate_max =		48000,
1481 	.channels_min =		1,
1482 	.channels_max =		2,
1483 	.buffer_bytes_max =	(128*1024),
1484 	.period_bytes_min =	64,
1485 	.period_bytes_max =	(128*1024),
1486 	.periods_min =		2,
1487 	.periods_max =		1024,
1488 	.fifo_size =		0,
1489 };
1490 
1491 /* playback on channel B - stereo 16bit only? */
1492 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1493 {
1494 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1495 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1496 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1497 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1498 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1499 	.rate_min =		5512,
1500 	.rate_max =		48000,
1501 	.channels_min =		2,
1502 	.channels_max =		2,
1503 	.buffer_bytes_max =	(128*1024),
1504 	.period_bytes_min =	64,
1505 	.period_bytes_max =	(128*1024),
1506 	.periods_min =		2,
1507 	.periods_max =		1024,
1508 	.fifo_size =		0,
1509 };
1510 
1511 /* spdif playback on channel A */
1512 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1513 {
1514 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1515 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1516 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1517 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1518 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1519 	.rate_min =		44100,
1520 	.rate_max =		48000,
1521 	.channels_min =		2,
1522 	.channels_max =		2,
1523 	.buffer_bytes_max =	(128*1024),
1524 	.period_bytes_min =	64,
1525 	.period_bytes_max =	(128*1024),
1526 	.periods_min =		2,
1527 	.periods_max =		1024,
1528 	.fifo_size =		0,
1529 };
1530 
1531 /* spdif playback on channel A (32bit, IEC958 subframes) */
1532 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1533 {
1534 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1535 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1536 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1537 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1538 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1539 	.rate_min =		44100,
1540 	.rate_max =		48000,
1541 	.channels_min =		2,
1542 	.channels_max =		2,
1543 	.buffer_bytes_max =	(128*1024),
1544 	.period_bytes_min =	64,
1545 	.period_bytes_max =	(128*1024),
1546 	.periods_min =		2,
1547 	.periods_max =		1024,
1548 	.fifo_size =		0,
1549 };
1550 
1551 /* spdif capture on channel B */
1552 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1553 {
1554 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1555 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1556 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1557 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1558 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1559 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1560 	.rate_min =		44100,
1561 	.rate_max =		48000,
1562 	.channels_min =		2,
1563 	.channels_max =		2,
1564 	.buffer_bytes_max =	(128*1024),
1565 	.period_bytes_min =	64,
1566 	.period_bytes_max =	(128*1024),
1567 	.periods_min =		2,
1568 	.periods_max =		1024,
1569 	.fifo_size =		0,
1570 };
1571 
1572 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1573 			32000, 44100, 48000, 88200, 96000, 128000 };
1574 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1575 		.count = ARRAY_SIZE(rate_constraints),
1576 		.list = rate_constraints,
1577 		.mask = 0,
1578 };
1579 
1580 /*
1581  * check device open/close
1582  */
1583 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1584 {
1585 	int ch = mode & CM_OPEN_CH_MASK;
1586 
1587 	/* FIXME: a file should wait until the device becomes free
1588 	 * when it's opened on blocking mode.  however, since the current
1589 	 * pcm framework doesn't pass file pointer before actually opened,
1590 	 * we can't know whether blocking mode or not in open callback..
1591 	 */
1592 	mutex_lock(&cm->open_mutex);
1593 	if (cm->opened[ch]) {
1594 		mutex_unlock(&cm->open_mutex);
1595 		return -EBUSY;
1596 	}
1597 	cm->opened[ch] = mode;
1598 	cm->channel[ch].substream = subs;
1599 	if (! (mode & CM_OPEN_DAC)) {
1600 		/* disable dual DAC mode */
1601 		cm->channel[ch].is_dac = 0;
1602 		spin_lock_irq(&cm->reg_lock);
1603 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1604 		spin_unlock_irq(&cm->reg_lock);
1605 	}
1606 	mutex_unlock(&cm->open_mutex);
1607 	return 0;
1608 }
1609 
1610 static void close_device_check(struct cmipci *cm, int mode)
1611 {
1612 	int ch = mode & CM_OPEN_CH_MASK;
1613 
1614 	mutex_lock(&cm->open_mutex);
1615 	if (cm->opened[ch] == mode) {
1616 		if (cm->channel[ch].substream) {
1617 			snd_cmipci_ch_reset(cm, ch);
1618 			cm->channel[ch].running = 0;
1619 			cm->channel[ch].substream = NULL;
1620 		}
1621 		cm->opened[ch] = 0;
1622 		if (! cm->channel[ch].is_dac) {
1623 			/* enable dual DAC mode again */
1624 			cm->channel[ch].is_dac = 1;
1625 			spin_lock_irq(&cm->reg_lock);
1626 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1627 			spin_unlock_irq(&cm->reg_lock);
1628 		}
1629 	}
1630 	mutex_unlock(&cm->open_mutex);
1631 }
1632 
1633 /*
1634  */
1635 
1636 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1637 {
1638 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1639 	struct snd_pcm_runtime *runtime = substream->runtime;
1640 	int err;
1641 
1642 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1643 		return err;
1644 	runtime->hw = snd_cmipci_playback;
1645 	if (cm->chip_version == 68) {
1646 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1647 				     SNDRV_PCM_RATE_96000;
1648 		runtime->hw.rate_max = 96000;
1649 	} else if (cm->chip_version == 55) {
1650 		err = snd_pcm_hw_constraint_list(runtime, 0,
1651 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1652 		if (err < 0)
1653 			return err;
1654 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1655 		runtime->hw.rate_max = 128000;
1656 	}
1657 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1658 	cm->dig_pcm_status = cm->dig_status;
1659 	return 0;
1660 }
1661 
1662 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1663 {
1664 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1665 	struct snd_pcm_runtime *runtime = substream->runtime;
1666 	int err;
1667 
1668 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1669 		return err;
1670 	runtime->hw = snd_cmipci_capture;
1671 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1672 		runtime->hw.rate_min = 41000;
1673 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1674 	} else if (cm->chip_version == 55) {
1675 		err = snd_pcm_hw_constraint_list(runtime, 0,
1676 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1677 		if (err < 0)
1678 			return err;
1679 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1680 		runtime->hw.rate_max = 128000;
1681 	}
1682 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1683 	return 0;
1684 }
1685 
1686 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1687 {
1688 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1689 	struct snd_pcm_runtime *runtime = substream->runtime;
1690 	int err;
1691 
1692 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1693 		return err;
1694 	runtime->hw = snd_cmipci_playback2;
1695 	mutex_lock(&cm->open_mutex);
1696 	if (! cm->opened[CM_CH_PLAY]) {
1697 		if (cm->can_multi_ch) {
1698 			runtime->hw.channels_max = cm->max_channels;
1699 			if (cm->max_channels == 4)
1700 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1701 			else if (cm->max_channels == 6)
1702 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1703 			else if (cm->max_channels == 8)
1704 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1705 		}
1706 	}
1707 	mutex_unlock(&cm->open_mutex);
1708 	if (cm->chip_version == 68) {
1709 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1710 				     SNDRV_PCM_RATE_96000;
1711 		runtime->hw.rate_max = 96000;
1712 	} else if (cm->chip_version == 55) {
1713 		err = snd_pcm_hw_constraint_list(runtime, 0,
1714 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1715 		if (err < 0)
1716 			return err;
1717 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1718 		runtime->hw.rate_max = 128000;
1719 	}
1720 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1721 	return 0;
1722 }
1723 
1724 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1725 {
1726 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1727 	struct snd_pcm_runtime *runtime = substream->runtime;
1728 	int err;
1729 
1730 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1731 		return err;
1732 	if (cm->can_ac3_hw) {
1733 		runtime->hw = snd_cmipci_playback_spdif;
1734 		if (cm->chip_version >= 37) {
1735 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1736 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1737 		}
1738 		if (cm->can_96k) {
1739 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1740 					     SNDRV_PCM_RATE_96000;
1741 			runtime->hw.rate_max = 96000;
1742 		}
1743 	} else {
1744 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1745 	}
1746 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1747 	cm->dig_pcm_status = cm->dig_status;
1748 	return 0;
1749 }
1750 
1751 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1752 {
1753 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1754 	struct snd_pcm_runtime *runtime = substream->runtime;
1755 	int err;
1756 
1757 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1758 		return err;
1759 	runtime->hw = snd_cmipci_capture_spdif;
1760 	if (cm->can_96k && !(cm->chip_version == 68)) {
1761 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1762 				     SNDRV_PCM_RATE_96000;
1763 		runtime->hw.rate_max = 96000;
1764 	}
1765 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1766 	return 0;
1767 }
1768 
1769 
1770 /*
1771  */
1772 
1773 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1774 {
1775 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1776 	close_device_check(cm, CM_OPEN_PLAYBACK);
1777 	return 0;
1778 }
1779 
1780 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1781 {
1782 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1783 	close_device_check(cm, CM_OPEN_CAPTURE);
1784 	return 0;
1785 }
1786 
1787 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1788 {
1789 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1790 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1791 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1792 	return 0;
1793 }
1794 
1795 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1796 {
1797 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1798 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1799 	return 0;
1800 }
1801 
1802 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1803 {
1804 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1805 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1806 	return 0;
1807 }
1808 
1809 
1810 /*
1811  */
1812 
1813 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1814 	.open =		snd_cmipci_playback_open,
1815 	.close =	snd_cmipci_playback_close,
1816 	.hw_free =	snd_cmipci_playback_hw_free,
1817 	.prepare =	snd_cmipci_playback_prepare,
1818 	.trigger =	snd_cmipci_playback_trigger,
1819 	.pointer =	snd_cmipci_playback_pointer,
1820 };
1821 
1822 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1823 	.open =		snd_cmipci_capture_open,
1824 	.close =	snd_cmipci_capture_close,
1825 	.prepare =	snd_cmipci_capture_prepare,
1826 	.trigger =	snd_cmipci_capture_trigger,
1827 	.pointer =	snd_cmipci_capture_pointer,
1828 };
1829 
1830 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1831 	.open =		snd_cmipci_playback2_open,
1832 	.close =	snd_cmipci_playback2_close,
1833 	.hw_params =	snd_cmipci_playback2_hw_params,
1834 	.hw_free =	snd_cmipci_playback2_hw_free,
1835 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1836 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1837 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1838 };
1839 
1840 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1841 	.open =		snd_cmipci_playback_spdif_open,
1842 	.close =	snd_cmipci_playback_spdif_close,
1843 	.hw_free =	snd_cmipci_playback_hw_free,
1844 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1845 	.trigger =	snd_cmipci_playback_trigger,
1846 	.pointer =	snd_cmipci_playback_pointer,
1847 };
1848 
1849 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1850 	.open =		snd_cmipci_capture_spdif_open,
1851 	.close =	snd_cmipci_capture_spdif_close,
1852 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1853 	.prepare =	snd_cmipci_capture_spdif_prepare,
1854 	.trigger =	snd_cmipci_capture_trigger,
1855 	.pointer =	snd_cmipci_capture_pointer,
1856 };
1857 
1858 
1859 /*
1860  */
1861 
1862 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1863 {
1864 	struct snd_pcm *pcm;
1865 	int err;
1866 
1867 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1868 	if (err < 0)
1869 		return err;
1870 
1871 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1872 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1873 
1874 	pcm->private_data = cm;
1875 	pcm->info_flags = 0;
1876 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1877 	cm->pcm = pcm;
1878 
1879 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1880 				       &cm->pci->dev, 64*1024, 128*1024);
1881 
1882 	return 0;
1883 }
1884 
1885 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1886 {
1887 	struct snd_pcm *pcm;
1888 	int err;
1889 
1890 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1891 	if (err < 0)
1892 		return err;
1893 
1894 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1895 
1896 	pcm->private_data = cm;
1897 	pcm->info_flags = 0;
1898 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1899 	cm->pcm2 = pcm;
1900 
1901 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1902 				       &cm->pci->dev, 64*1024, 128*1024);
1903 
1904 	return 0;
1905 }
1906 
1907 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1908 {
1909 	struct snd_pcm *pcm;
1910 	int err;
1911 
1912 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1913 	if (err < 0)
1914 		return err;
1915 
1916 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1917 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1918 
1919 	pcm->private_data = cm;
1920 	pcm->info_flags = 0;
1921 	strcpy(pcm->name, "C-Media PCI IEC958");
1922 	cm->pcm_spdif = pcm;
1923 
1924 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1925 				       &cm->pci->dev, 64*1024, 128*1024);
1926 
1927 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1928 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1929 				     NULL);
1930 	if (err < 0)
1931 		return err;
1932 
1933 	return 0;
1934 }
1935 
1936 /*
1937  * mixer interface:
1938  * - CM8338/8738 has a compatible mixer interface with SB16, but
1939  *   lack of some elements like tone control, i/o gain and AGC.
1940  * - Access to native registers:
1941  *   - A 3D switch
1942  *   - Output mute switches
1943  */
1944 
1945 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1946 {
1947 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1948 	outb(data, s->iobase + CM_REG_SB16_DATA);
1949 }
1950 
1951 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1952 {
1953 	unsigned char v;
1954 
1955 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1956 	v = inb(s->iobase + CM_REG_SB16_DATA);
1957 	return v;
1958 }
1959 
1960 /*
1961  * general mixer element
1962  */
1963 struct cmipci_sb_reg {
1964 	unsigned int left_reg, right_reg;
1965 	unsigned int left_shift, right_shift;
1966 	unsigned int mask;
1967 	unsigned int invert: 1;
1968 	unsigned int stereo: 1;
1969 };
1970 
1971 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1972  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1973 
1974 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1975 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1976   .info = snd_cmipci_info_volume, \
1977   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1978   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1979 }
1980 
1981 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1982 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1983 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1984 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1985 
1986 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1987 {
1988 	r->left_reg = val & 0xff;
1989 	r->right_reg = (val >> 8) & 0xff;
1990 	r->left_shift = (val >> 16) & 0x07;
1991 	r->right_shift = (val >> 19) & 0x07;
1992 	r->invert = (val >> 22) & 1;
1993 	r->stereo = (val >> 23) & 1;
1994 	r->mask = (val >> 24) & 0xff;
1995 }
1996 
1997 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1998 				  struct snd_ctl_elem_info *uinfo)
1999 {
2000 	struct cmipci_sb_reg reg;
2001 
2002 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2003 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2004 	uinfo->count = reg.stereo + 1;
2005 	uinfo->value.integer.min = 0;
2006 	uinfo->value.integer.max = reg.mask;
2007 	return 0;
2008 }
2009 
2010 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2011 				 struct snd_ctl_elem_value *ucontrol)
2012 {
2013 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2014 	struct cmipci_sb_reg reg;
2015 	int val;
2016 
2017 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2018 	spin_lock_irq(&cm->reg_lock);
2019 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2020 	if (reg.invert)
2021 		val = reg.mask - val;
2022 	ucontrol->value.integer.value[0] = val;
2023 	if (reg.stereo) {
2024 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2025 		if (reg.invert)
2026 			val = reg.mask - val;
2027 		ucontrol->value.integer.value[1] = val;
2028 	}
2029 	spin_unlock_irq(&cm->reg_lock);
2030 	return 0;
2031 }
2032 
2033 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2034 				 struct snd_ctl_elem_value *ucontrol)
2035 {
2036 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2037 	struct cmipci_sb_reg reg;
2038 	int change;
2039 	int left, right, oleft, oright;
2040 
2041 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2042 	left = ucontrol->value.integer.value[0] & reg.mask;
2043 	if (reg.invert)
2044 		left = reg.mask - left;
2045 	left <<= reg.left_shift;
2046 	if (reg.stereo) {
2047 		right = ucontrol->value.integer.value[1] & reg.mask;
2048 		if (reg.invert)
2049 			right = reg.mask - right;
2050 		right <<= reg.right_shift;
2051 	} else
2052 		right = 0;
2053 	spin_lock_irq(&cm->reg_lock);
2054 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2055 	left |= oleft & ~(reg.mask << reg.left_shift);
2056 	change = left != oleft;
2057 	if (reg.stereo) {
2058 		if (reg.left_reg != reg.right_reg) {
2059 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2060 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2061 		} else
2062 			oright = left;
2063 		right |= oright & ~(reg.mask << reg.right_shift);
2064 		change |= right != oright;
2065 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2066 	} else
2067 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2068 	spin_unlock_irq(&cm->reg_lock);
2069 	return change;
2070 }
2071 
2072 /*
2073  * input route (left,right) -> (left,right)
2074  */
2075 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2076 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2077   .info = snd_cmipci_info_input_sw, \
2078   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2079   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2080 }
2081 
2082 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2083 				    struct snd_ctl_elem_info *uinfo)
2084 {
2085 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2086 	uinfo->count = 4;
2087 	uinfo->value.integer.min = 0;
2088 	uinfo->value.integer.max = 1;
2089 	return 0;
2090 }
2091 
2092 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2093 				   struct snd_ctl_elem_value *ucontrol)
2094 {
2095 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2096 	struct cmipci_sb_reg reg;
2097 	int val1, val2;
2098 
2099 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2100 	spin_lock_irq(&cm->reg_lock);
2101 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2102 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2103 	spin_unlock_irq(&cm->reg_lock);
2104 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2105 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2106 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2107 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2108 	return 0;
2109 }
2110 
2111 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2112 				   struct snd_ctl_elem_value *ucontrol)
2113 {
2114 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2115 	struct cmipci_sb_reg reg;
2116 	int change;
2117 	int val1, val2, oval1, oval2;
2118 
2119 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2120 	spin_lock_irq(&cm->reg_lock);
2121 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2122 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2123 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2124 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2125 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2126 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2127 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2128 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2129 	change = val1 != oval1 || val2 != oval2;
2130 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2131 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2132 	spin_unlock_irq(&cm->reg_lock);
2133 	return change;
2134 }
2135 
2136 /*
2137  * native mixer switches/volumes
2138  */
2139 
2140 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2141 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2142   .info = snd_cmipci_info_native_mixer, \
2143   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2144   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2145 }
2146 
2147 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2148 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2149   .info = snd_cmipci_info_native_mixer, \
2150   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2151   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2152 }
2153 
2154 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2155 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2156   .info = snd_cmipci_info_native_mixer, \
2157   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2158   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2159 }
2160 
2161 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2162 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2163   .info = snd_cmipci_info_native_mixer, \
2164   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2165   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2166 }
2167 
2168 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2169 					struct snd_ctl_elem_info *uinfo)
2170 {
2171 	struct cmipci_sb_reg reg;
2172 
2173 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2174 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2175 	uinfo->count = reg.stereo + 1;
2176 	uinfo->value.integer.min = 0;
2177 	uinfo->value.integer.max = reg.mask;
2178 	return 0;
2179 
2180 }
2181 
2182 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2183 				       struct snd_ctl_elem_value *ucontrol)
2184 {
2185 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2186 	struct cmipci_sb_reg reg;
2187 	unsigned char oreg, val;
2188 
2189 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2190 	spin_lock_irq(&cm->reg_lock);
2191 	oreg = inb(cm->iobase + reg.left_reg);
2192 	val = (oreg >> reg.left_shift) & reg.mask;
2193 	if (reg.invert)
2194 		val = reg.mask - val;
2195 	ucontrol->value.integer.value[0] = val;
2196 	if (reg.stereo) {
2197 		val = (oreg >> reg.right_shift) & reg.mask;
2198 		if (reg.invert)
2199 			val = reg.mask - val;
2200 		ucontrol->value.integer.value[1] = val;
2201 	}
2202 	spin_unlock_irq(&cm->reg_lock);
2203 	return 0;
2204 }
2205 
2206 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2207 				       struct snd_ctl_elem_value *ucontrol)
2208 {
2209 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2210 	struct cmipci_sb_reg reg;
2211 	unsigned char oreg, nreg, val;
2212 
2213 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2214 	spin_lock_irq(&cm->reg_lock);
2215 	oreg = inb(cm->iobase + reg.left_reg);
2216 	val = ucontrol->value.integer.value[0] & reg.mask;
2217 	if (reg.invert)
2218 		val = reg.mask - val;
2219 	nreg = oreg & ~(reg.mask << reg.left_shift);
2220 	nreg |= (val << reg.left_shift);
2221 	if (reg.stereo) {
2222 		val = ucontrol->value.integer.value[1] & reg.mask;
2223 		if (reg.invert)
2224 			val = reg.mask - val;
2225 		nreg &= ~(reg.mask << reg.right_shift);
2226 		nreg |= (val << reg.right_shift);
2227 	}
2228 	outb(nreg, cm->iobase + reg.left_reg);
2229 	spin_unlock_irq(&cm->reg_lock);
2230 	return (nreg != oreg);
2231 }
2232 
2233 /*
2234  * special case - check mixer sensitivity
2235  */
2236 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2237 						 struct snd_ctl_elem_value *ucontrol)
2238 {
2239 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2240 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2241 }
2242 
2243 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2244 						 struct snd_ctl_elem_value *ucontrol)
2245 {
2246 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2247 	if (cm->mixer_insensitive) {
2248 		/* ignored */
2249 		return 0;
2250 	}
2251 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2252 }
2253 
2254 
2255 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2256 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2257 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2258 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2259 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2260 	{ /* switch with sensitivity */
2261 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2262 		.name = "PCM Playback Switch",
2263 		.info = snd_cmipci_info_native_mixer,
2264 		.get = snd_cmipci_get_native_mixer_sensitive,
2265 		.put = snd_cmipci_put_native_mixer_sensitive,
2266 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2267 	},
2268 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2269 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2270 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2271 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2272 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2273 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2274 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2275 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2276 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2277 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2278 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2279 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2280 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2281 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2282 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2283 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2284 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2285 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2286 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2287 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2288 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2289 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2290 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2291 };
2292 
2293 /*
2294  * other switches
2295  */
2296 
2297 struct cmipci_switch_args {
2298 	int reg;		/* register index */
2299 	unsigned int mask;	/* mask bits */
2300 	unsigned int mask_on;	/* mask bits to turn on */
2301 	unsigned int is_byte: 1;		/* byte access? */
2302 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2303 					 * non-audio operation?
2304 					 */
2305 };
2306 
2307 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2308 
2309 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2310 				   struct snd_ctl_elem_value *ucontrol,
2311 				   struct cmipci_switch_args *args)
2312 {
2313 	unsigned int val;
2314 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2315 
2316 	spin_lock_irq(&cm->reg_lock);
2317 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2318 		ucontrol->value.integer.value[0] = 0;
2319 		spin_unlock_irq(&cm->reg_lock);
2320 		return 0;
2321 	}
2322 	if (args->is_byte)
2323 		val = inb(cm->iobase + args->reg);
2324 	else
2325 		val = snd_cmipci_read(cm, args->reg);
2326 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2327 	spin_unlock_irq(&cm->reg_lock);
2328 	return 0;
2329 }
2330 
2331 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2332 				  struct snd_ctl_elem_value *ucontrol)
2333 {
2334 	struct cmipci_switch_args *args;
2335 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2336 	if (snd_BUG_ON(!args))
2337 		return -EINVAL;
2338 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2339 }
2340 
2341 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2342 				   struct snd_ctl_elem_value *ucontrol,
2343 				   struct cmipci_switch_args *args)
2344 {
2345 	unsigned int val;
2346 	int change;
2347 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2348 
2349 	spin_lock_irq(&cm->reg_lock);
2350 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2351 		/* ignored */
2352 		spin_unlock_irq(&cm->reg_lock);
2353 		return 0;
2354 	}
2355 	if (args->is_byte)
2356 		val = inb(cm->iobase + args->reg);
2357 	else
2358 		val = snd_cmipci_read(cm, args->reg);
2359 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2360 			args->mask_on : (args->mask & ~args->mask_on));
2361 	if (change) {
2362 		val &= ~args->mask;
2363 		if (ucontrol->value.integer.value[0])
2364 			val |= args->mask_on;
2365 		else
2366 			val |= (args->mask & ~args->mask_on);
2367 		if (args->is_byte)
2368 			outb((unsigned char)val, cm->iobase + args->reg);
2369 		else
2370 			snd_cmipci_write(cm, args->reg, val);
2371 	}
2372 	spin_unlock_irq(&cm->reg_lock);
2373 	return change;
2374 }
2375 
2376 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2377 				  struct snd_ctl_elem_value *ucontrol)
2378 {
2379 	struct cmipci_switch_args *args;
2380 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2381 	if (snd_BUG_ON(!args))
2382 		return -EINVAL;
2383 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2384 }
2385 
2386 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2387 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2388   .reg = xreg, \
2389   .mask = xmask, \
2390   .mask_on = xmask_on, \
2391   .is_byte = xis_byte, \
2392   .ac3_sensitive = xac3, \
2393 }
2394 
2395 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2396 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2397 
2398 #if 0 /* these will be controlled in pcm device */
2399 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2400 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2401 #endif
2402 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2403 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2404 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2405 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2406 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2407 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2408 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2409 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2410 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2411 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2412 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2413 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2414 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2415 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2416 #if CM_CH_PLAY == 1
2417 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2418 #else
2419 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2420 #endif
2421 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2422 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2423 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2424 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2425 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2426 
2427 #define DEFINE_SWITCH(sname, stype, sarg) \
2428 { .name = sname, \
2429   .iface = stype, \
2430   .info = snd_cmipci_uswitch_info, \
2431   .get = snd_cmipci_uswitch_get, \
2432   .put = snd_cmipci_uswitch_put, \
2433   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2434 }
2435 
2436 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2437 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2438 
2439 
2440 /*
2441  * callbacks for spdif output switch
2442  * needs toggle two registers..
2443  */
2444 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2445 					struct snd_ctl_elem_value *ucontrol)
2446 {
2447 	int changed;
2448 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2449 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2450 	return changed;
2451 }
2452 
2453 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2454 					struct snd_ctl_elem_value *ucontrol)
2455 {
2456 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2457 	int changed;
2458 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2459 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2460 	if (changed) {
2461 		if (ucontrol->value.integer.value[0]) {
2462 			if (chip->spdif_playback_avail)
2463 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2464 		} else {
2465 			if (chip->spdif_playback_avail)
2466 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2467 		}
2468 	}
2469 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2470 	return changed;
2471 }
2472 
2473 
2474 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2475 					struct snd_ctl_elem_info *uinfo)
2476 {
2477 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2478 	static const char *const texts[3] = {
2479 		"Line-In", "Rear Output", "Bass Output"
2480 	};
2481 
2482 	return snd_ctl_enum_info(uinfo, 1,
2483 				 cm->chip_version >= 39 ? 3 : 2, texts);
2484 }
2485 
2486 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2487 {
2488 	unsigned int val;
2489 	if (cm->chip_version >= 39) {
2490 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2491 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2492 			return 2;
2493 	}
2494 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2495 	if (val & CM_REAR2LIN)
2496 		return 1;
2497 	return 0;
2498 }
2499 
2500 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2501 				       struct snd_ctl_elem_value *ucontrol)
2502 {
2503 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2504 
2505 	spin_lock_irq(&cm->reg_lock);
2506 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2507 	spin_unlock_irq(&cm->reg_lock);
2508 	return 0;
2509 }
2510 
2511 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2512 				       struct snd_ctl_elem_value *ucontrol)
2513 {
2514 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2515 	int change;
2516 
2517 	spin_lock_irq(&cm->reg_lock);
2518 	if (ucontrol->value.enumerated.item[0] == 2)
2519 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2520 	else
2521 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2522 	if (ucontrol->value.enumerated.item[0] == 1)
2523 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2524 	else
2525 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2526 	spin_unlock_irq(&cm->reg_lock);
2527 	return change;
2528 }
2529 
2530 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2531 				       struct snd_ctl_elem_info *uinfo)
2532 {
2533 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2534 
2535 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2536 }
2537 
2538 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2539 				      struct snd_ctl_elem_value *ucontrol)
2540 {
2541 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2542 	/* same bit as spdi_phase */
2543 	spin_lock_irq(&cm->reg_lock);
2544 	ucontrol->value.enumerated.item[0] =
2545 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2546 	spin_unlock_irq(&cm->reg_lock);
2547 	return 0;
2548 }
2549 
2550 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2551 				      struct snd_ctl_elem_value *ucontrol)
2552 {
2553 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2554 	int change;
2555 
2556 	spin_lock_irq(&cm->reg_lock);
2557 	if (ucontrol->value.enumerated.item[0])
2558 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2559 	else
2560 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2561 	spin_unlock_irq(&cm->reg_lock);
2562 	return change;
2563 }
2564 
2565 /* both for CM8338/8738 */
2566 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2567 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2568 	{
2569 		.name = "Line-In Mode",
2570 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2571 		.info = snd_cmipci_line_in_mode_info,
2572 		.get = snd_cmipci_line_in_mode_get,
2573 		.put = snd_cmipci_line_in_mode_put,
2574 	},
2575 };
2576 
2577 /* for non-multichannel chips */
2578 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2579 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2580 
2581 /* only for CM8738 */
2582 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2583 #if 0 /* controlled in pcm device */
2584 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2585 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2586 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2587 #endif
2588 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2589 	{ .name = "IEC958 Output Switch",
2590 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2591 	  .info = snd_cmipci_uswitch_info,
2592 	  .get = snd_cmipci_spdout_enable_get,
2593 	  .put = snd_cmipci_spdout_enable_put,
2594 	},
2595 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2596 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2597 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2598 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2599 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2600 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2601 };
2602 
2603 /* only for model 033/037 */
2604 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2605 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2606 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2607 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2608 };
2609 
2610 /* only for model 039 or later */
2611 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2612 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2613 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2614 	{
2615 		.name = "Mic-In Mode",
2616 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2617 		.info = snd_cmipci_mic_in_mode_info,
2618 		.get = snd_cmipci_mic_in_mode_get,
2619 		.put = snd_cmipci_mic_in_mode_put,
2620 	}
2621 };
2622 
2623 /* card control switches */
2624 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2625 DEFINE_CARD_SWITCH("Modem", modem);
2626 
2627 
2628 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2629 {
2630 	struct snd_card *card;
2631 	const struct snd_kcontrol_new *sw;
2632 	struct snd_kcontrol *kctl;
2633 	unsigned int idx;
2634 	int err;
2635 
2636 	if (snd_BUG_ON(!cm || !cm->card))
2637 		return -EINVAL;
2638 
2639 	card = cm->card;
2640 
2641 	strcpy(card->mixername, "CMedia PCI");
2642 
2643 	spin_lock_irq(&cm->reg_lock);
2644 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2645 	spin_unlock_irq(&cm->reg_lock);
2646 
2647 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2648 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2649 			if (!strcmp(snd_cmipci_mixers[idx].name,
2650 				"PCM Playback Volume"))
2651 				continue;
2652 		}
2653 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2654 			return err;
2655 	}
2656 
2657 	/* mixer switches */
2658 	sw = snd_cmipci_mixer_switches;
2659 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2660 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2661 		if (err < 0)
2662 			return err;
2663 	}
2664 	if (! cm->can_multi_ch) {
2665 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2666 		if (err < 0)
2667 			return err;
2668 	}
2669 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2670 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2671 		sw = snd_cmipci_8738_mixer_switches;
2672 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2673 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2674 			if (err < 0)
2675 				return err;
2676 		}
2677 		if (cm->can_ac3_hw) {
2678 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2679 				return err;
2680 			kctl->id.device = pcm_spdif_device;
2681 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2682 				return err;
2683 			kctl->id.device = pcm_spdif_device;
2684 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2685 				return err;
2686 			kctl->id.device = pcm_spdif_device;
2687 		}
2688 		if (cm->chip_version <= 37) {
2689 			sw = snd_cmipci_old_mixer_switches;
2690 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2691 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2692 				if (err < 0)
2693 					return err;
2694 			}
2695 		}
2696 	}
2697 	if (cm->chip_version >= 39) {
2698 		sw = snd_cmipci_extra_mixer_switches;
2699 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2700 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2701 			if (err < 0)
2702 				return err;
2703 		}
2704 	}
2705 
2706 	/* card switches */
2707 	/*
2708 	 * newer chips don't have the register bits to force modem link
2709 	 * detection; the bit that was FLINKON now mutes CH1
2710 	 */
2711 	if (cm->chip_version < 39) {
2712 		err = snd_ctl_add(cm->card,
2713 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2714 		if (err < 0)
2715 			return err;
2716 	}
2717 
2718 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2719 		struct snd_ctl_elem_id elem_id;
2720 		struct snd_kcontrol *ctl;
2721 		memset(&elem_id, 0, sizeof(elem_id));
2722 		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2723 		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2724 		ctl = snd_ctl_find_id(cm->card, &elem_id);
2725 		if (ctl)
2726 			cm->mixer_res_ctl[idx] = ctl;
2727 	}
2728 
2729 	return 0;
2730 }
2731 
2732 
2733 /*
2734  * proc interface
2735  */
2736 
2737 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2738 				 struct snd_info_buffer *buffer)
2739 {
2740 	struct cmipci *cm = entry->private_data;
2741 	int i, v;
2742 
2743 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2744 	for (i = 0; i < 0x94; i++) {
2745 		if (i == 0x28)
2746 			i = 0x90;
2747 		v = inb(cm->iobase + i);
2748 		if (i % 4 == 0)
2749 			snd_iprintf(buffer, "\n%02x:", i);
2750 		snd_iprintf(buffer, " %02x", v);
2751 	}
2752 	snd_iprintf(buffer, "\n");
2753 }
2754 
2755 static void snd_cmipci_proc_init(struct cmipci *cm)
2756 {
2757 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2758 }
2759 
2760 static const struct pci_device_id snd_cmipci_ids[] = {
2761 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2762 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2763 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2764 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2765 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2766 	{0,},
2767 };
2768 
2769 
2770 /*
2771  * check chip version and capabilities
2772  * driver name is modified according to the chip model
2773  */
2774 static void query_chip(struct cmipci *cm)
2775 {
2776 	unsigned int detect;
2777 
2778 	/* check reg 0Ch, bit 24-31 */
2779 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2780 	if (! detect) {
2781 		/* check reg 08h, bit 24-28 */
2782 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2783 		switch (detect) {
2784 		case 0:
2785 			cm->chip_version = 33;
2786 			if (cm->do_soft_ac3)
2787 				cm->can_ac3_sw = 1;
2788 			else
2789 				cm->can_ac3_hw = 1;
2790 			break;
2791 		case CM_CHIP_037:
2792 			cm->chip_version = 37;
2793 			cm->can_ac3_hw = 1;
2794 			break;
2795 		default:
2796 			cm->chip_version = 39;
2797 			cm->can_ac3_hw = 1;
2798 			break;
2799 		}
2800 		cm->max_channels = 2;
2801 	} else {
2802 		if (detect & CM_CHIP_039) {
2803 			cm->chip_version = 39;
2804 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2805 				cm->max_channels = 6;
2806 			else
2807 				cm->max_channels = 4;
2808 		} else if (detect & CM_CHIP_8768) {
2809 			cm->chip_version = 68;
2810 			cm->max_channels = 8;
2811 			cm->can_96k = 1;
2812 		} else {
2813 			cm->chip_version = 55;
2814 			cm->max_channels = 6;
2815 			cm->can_96k = 1;
2816 		}
2817 		cm->can_ac3_hw = 1;
2818 		cm->can_multi_ch = 1;
2819 	}
2820 }
2821 
2822 #ifdef SUPPORT_JOYSTICK
2823 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2824 {
2825 	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2826 	struct gameport *gp;
2827 	struct resource *r = NULL;
2828 	int i, io_port = 0;
2829 
2830 	if (joystick_port[dev] == 0)
2831 		return -ENODEV;
2832 
2833 	if (joystick_port[dev] == 1) { /* auto-detect */
2834 		for (i = 0; ports[i]; i++) {
2835 			io_port = ports[i];
2836 			r = request_region(io_port, 1, "CMIPCI gameport");
2837 			if (r)
2838 				break;
2839 		}
2840 	} else {
2841 		io_port = joystick_port[dev];
2842 		r = request_region(io_port, 1, "CMIPCI gameport");
2843 	}
2844 
2845 	if (!r) {
2846 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2847 		return -EBUSY;
2848 	}
2849 
2850 	cm->gameport = gp = gameport_allocate_port();
2851 	if (!gp) {
2852 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2853 		release_and_free_resource(r);
2854 		return -ENOMEM;
2855 	}
2856 	gameport_set_name(gp, "C-Media Gameport");
2857 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2858 	gameport_set_dev_parent(gp, &cm->pci->dev);
2859 	gp->io = io_port;
2860 	gameport_set_port_data(gp, r);
2861 
2862 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2863 
2864 	gameport_register_port(cm->gameport);
2865 
2866 	return 0;
2867 }
2868 
2869 static void snd_cmipci_free_gameport(struct cmipci *cm)
2870 {
2871 	if (cm->gameport) {
2872 		struct resource *r = gameport_get_port_data(cm->gameport);
2873 
2874 		gameport_unregister_port(cm->gameport);
2875 		cm->gameport = NULL;
2876 
2877 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2878 		release_and_free_resource(r);
2879 	}
2880 }
2881 #else
2882 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2883 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2884 #endif
2885 
2886 static int snd_cmipci_free(struct cmipci *cm)
2887 {
2888 	if (cm->irq >= 0) {
2889 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2890 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2891 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2892 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2893 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2894 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2895 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2896 
2897 		/* reset mixer */
2898 		snd_cmipci_mixer_write(cm, 0, 0);
2899 
2900 		free_irq(cm->irq, cm);
2901 	}
2902 
2903 	snd_cmipci_free_gameport(cm);
2904 	pci_release_regions(cm->pci);
2905 	pci_disable_device(cm->pci);
2906 	kfree(cm);
2907 	return 0;
2908 }
2909 
2910 static int snd_cmipci_dev_free(struct snd_device *device)
2911 {
2912 	struct cmipci *cm = device->device_data;
2913 	return snd_cmipci_free(cm);
2914 }
2915 
2916 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2917 {
2918 	long iosynth;
2919 	unsigned int val;
2920 	struct snd_opl3 *opl3;
2921 	int err;
2922 
2923 	if (!fm_port)
2924 		goto disable_fm;
2925 
2926 	if (cm->chip_version >= 39) {
2927 		/* first try FM regs in PCI port range */
2928 		iosynth = cm->iobase + CM_REG_FM_PCI;
2929 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2930 				      OPL3_HW_OPL3, 1, &opl3);
2931 	} else {
2932 		err = -EIO;
2933 	}
2934 	if (err < 0) {
2935 		/* then try legacy ports */
2936 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2937 		iosynth = fm_port;
2938 		switch (iosynth) {
2939 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2940 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2941 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2942 		case 0x388: val |= CM_FMSEL_388; break;
2943 		default:
2944 			goto disable_fm;
2945 		}
2946 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2947 		/* enable FM */
2948 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2949 
2950 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2951 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2952 			dev_err(cm->card->dev,
2953 				"no OPL device at %#lx, skipping...\n",
2954 				iosynth);
2955 			goto disable_fm;
2956 		}
2957 	}
2958 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2959 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2960 		return err;
2961 	}
2962 	return 0;
2963 
2964  disable_fm:
2965 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2966 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2967 	return 0;
2968 }
2969 
2970 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2971 			     int dev, struct cmipci **rcmipci)
2972 {
2973 	struct cmipci *cm;
2974 	int err;
2975 	static const struct snd_device_ops ops = {
2976 		.dev_free =	snd_cmipci_dev_free,
2977 	};
2978 	unsigned int val;
2979 	long iomidi = 0;
2980 	int integrated_midi = 0;
2981 	char modelstr[16];
2982 	int pcm_index, pcm_spdif_index;
2983 	static const struct pci_device_id intel_82437vx[] = {
2984 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2985 		{ },
2986 	};
2987 
2988 	*rcmipci = NULL;
2989 
2990 	if ((err = pci_enable_device(pci)) < 0)
2991 		return err;
2992 
2993 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2994 	if (cm == NULL) {
2995 		pci_disable_device(pci);
2996 		return -ENOMEM;
2997 	}
2998 
2999 	spin_lock_init(&cm->reg_lock);
3000 	mutex_init(&cm->open_mutex);
3001 	cm->device = pci->device;
3002 	cm->card = card;
3003 	cm->pci = pci;
3004 	cm->irq = -1;
3005 	cm->channel[0].ch = 0;
3006 	cm->channel[1].ch = 1;
3007 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3008 
3009 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3010 		kfree(cm);
3011 		pci_disable_device(pci);
3012 		return err;
3013 	}
3014 	cm->iobase = pci_resource_start(pci, 0);
3015 
3016 	if (request_irq(pci->irq, snd_cmipci_interrupt,
3017 			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3018 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3019 		snd_cmipci_free(cm);
3020 		return -EBUSY;
3021 	}
3022 	cm->irq = pci->irq;
3023 	card->sync_irq = cm->irq;
3024 
3025 	pci_set_master(cm->pci);
3026 
3027 	/*
3028 	 * check chip version, max channels and capabilities
3029 	 */
3030 
3031 	cm->chip_version = 0;
3032 	cm->max_channels = 2;
3033 	cm->do_soft_ac3 = soft_ac3[dev];
3034 
3035 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3036 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3037 		query_chip(cm);
3038 	/* added -MCx suffix for chip supporting multi-channels */
3039 	if (cm->can_multi_ch)
3040 		sprintf(cm->card->driver + strlen(cm->card->driver),
3041 			"-MC%d", cm->max_channels);
3042 	else if (cm->can_ac3_sw)
3043 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3044 
3045 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3046 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3047 
3048 #if CM_CH_PLAY == 1
3049 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3050 #else
3051 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3052 #endif
3053 
3054 	/* initialize codec registers */
3055 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3056 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3057 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3058 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3059 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3060 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3061 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3062 
3063 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3064 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3065 #if CM_CH_PLAY == 1
3066 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3067 #else
3068 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3069 #endif
3070 	if (cm->chip_version) {
3071 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3072 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3073 	}
3074 	/* Set Bus Master Request */
3075 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3076 
3077 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3078 	switch (pci->device) {
3079 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3080 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3081 		if (!pci_dev_present(intel_82437vx))
3082 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3083 		break;
3084 	default:
3085 		break;
3086 	}
3087 
3088 	if (cm->chip_version < 68) {
3089 		val = pci->device < 0x110 ? 8338 : 8738;
3090 	} else {
3091 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3092 		case 0:
3093 			val = 8769;
3094 			break;
3095 		case 2:
3096 			val = 8762;
3097 			break;
3098 		default:
3099 			switch ((pci->subsystem_vendor << 16) |
3100 				pci->subsystem_device) {
3101 			case 0x13f69761:
3102 			case 0x584d3741:
3103 			case 0x584d3751:
3104 			case 0x584d3761:
3105 			case 0x584d3771:
3106 			case 0x72848384:
3107 				val = 8770;
3108 				break;
3109 			default:
3110 				val = 8768;
3111 				break;
3112 			}
3113 		}
3114 	}
3115 	sprintf(card->shortname, "C-Media CMI%d", val);
3116 	if (cm->chip_version < 68)
3117 		sprintf(modelstr, " (model %d)", cm->chip_version);
3118 	else
3119 		modelstr[0] = '\0';
3120 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3121 		card->shortname, modelstr, cm->iobase, cm->irq);
3122 
3123 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3124 		snd_cmipci_free(cm);
3125 		return err;
3126 	}
3127 
3128 	if (cm->chip_version >= 39) {
3129 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3130 		if (val != 0x00 && val != 0xff) {
3131 			if (mpu_port[dev])
3132 				iomidi = cm->iobase + CM_REG_MPU_PCI;
3133 			integrated_midi = 1;
3134 		}
3135 	}
3136 	if (!integrated_midi) {
3137 		val = 0;
3138 		iomidi = mpu_port[dev];
3139 		switch (iomidi) {
3140 		case 0x320: val = CM_VMPU_320; break;
3141 		case 0x310: val = CM_VMPU_310; break;
3142 		case 0x300: val = CM_VMPU_300; break;
3143 		case 0x330: val = CM_VMPU_330; break;
3144 		default:
3145 			    iomidi = 0; break;
3146 		}
3147 		if (iomidi > 0) {
3148 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3149 			/* enable UART */
3150 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3151 			if (inb(iomidi + 1) == 0xff) {
3152 				dev_err(cm->card->dev,
3153 					"cannot enable MPU-401 port at %#lx\n",
3154 					iomidi);
3155 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3156 						     CM_UART_EN);
3157 				iomidi = 0;
3158 			}
3159 		}
3160 	}
3161 
3162 	if (cm->chip_version < 68) {
3163 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3164 		if (err < 0)
3165 			return err;
3166 	}
3167 
3168 	/* reset mixer */
3169 	snd_cmipci_mixer_write(cm, 0, 0);
3170 
3171 	snd_cmipci_proc_init(cm);
3172 
3173 	/* create pcm devices */
3174 	pcm_index = pcm_spdif_index = 0;
3175 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3176 		return err;
3177 	pcm_index++;
3178 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3179 		return err;
3180 	pcm_index++;
3181 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3182 		pcm_spdif_index = pcm_index;
3183 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3184 			return err;
3185 	}
3186 
3187 	/* create mixer interface & switches */
3188 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3189 		return err;
3190 
3191 	if (iomidi > 0) {
3192 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3193 					       iomidi,
3194 					       (integrated_midi ?
3195 						MPU401_INFO_INTEGRATED : 0) |
3196 					       MPU401_INFO_IRQ_HOOK,
3197 					       -1, &cm->rmidi)) < 0) {
3198 			dev_err(cm->card->dev,
3199 				"no UART401 device at 0x%lx\n", iomidi);
3200 		}
3201 	}
3202 
3203 #ifdef USE_VAR48KRATE
3204 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3205 		snd_cmipci_set_pll(cm, rates[val], val);
3206 
3207 	/*
3208 	 * (Re-)Enable external switch spdo_48k
3209 	 */
3210 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3211 #endif /* USE_VAR48KRATE */
3212 
3213 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3214 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3215 
3216 	*rcmipci = cm;
3217 	return 0;
3218 }
3219 
3220 /*
3221  */
3222 
3223 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3224 
3225 static int snd_cmipci_probe(struct pci_dev *pci,
3226 			    const struct pci_device_id *pci_id)
3227 {
3228 	static int dev;
3229 	struct snd_card *card;
3230 	struct cmipci *cm;
3231 	int err;
3232 
3233 	if (dev >= SNDRV_CARDS)
3234 		return -ENODEV;
3235 	if (! enable[dev]) {
3236 		dev++;
3237 		return -ENOENT;
3238 	}
3239 
3240 	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3241 			   0, &card);
3242 	if (err < 0)
3243 		return err;
3244 
3245 	switch (pci->device) {
3246 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3247 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3248 		strcpy(card->driver, "CMI8738");
3249 		break;
3250 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3251 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3252 		strcpy(card->driver, "CMI8338");
3253 		break;
3254 	default:
3255 		strcpy(card->driver, "CMIPCI");
3256 		break;
3257 	}
3258 
3259 	err = snd_cmipci_create(card, pci, dev, &cm);
3260 	if (err < 0)
3261 		goto free_card;
3262 
3263 	card->private_data = cm;
3264 
3265 	err = snd_card_register(card);
3266 	if (err < 0)
3267 		goto free_card;
3268 
3269 	pci_set_drvdata(pci, card);
3270 	dev++;
3271 	return 0;
3272 
3273 free_card:
3274 	snd_card_free(card);
3275 	return err;
3276 }
3277 
3278 static void snd_cmipci_remove(struct pci_dev *pci)
3279 {
3280 	snd_card_free(pci_get_drvdata(pci));
3281 }
3282 
3283 
3284 #ifdef CONFIG_PM_SLEEP
3285 /*
3286  * power management
3287  */
3288 static const unsigned char saved_regs[] = {
3289 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3290 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3291 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3292 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3293 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3294 };
3295 
3296 static const unsigned char saved_mixers[] = {
3297 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3298 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3299 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3300 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3301 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3302 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3303 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3304 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3305 };
3306 
3307 static int snd_cmipci_suspend(struct device *dev)
3308 {
3309 	struct snd_card *card = dev_get_drvdata(dev);
3310 	struct cmipci *cm = card->private_data;
3311 	int i;
3312 
3313 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3314 
3315 	/* save registers */
3316 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3317 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3318 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3319 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3320 
3321 	/* disable ints */
3322 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3323 	return 0;
3324 }
3325 
3326 static int snd_cmipci_resume(struct device *dev)
3327 {
3328 	struct snd_card *card = dev_get_drvdata(dev);
3329 	struct cmipci *cm = card->private_data;
3330 	int i;
3331 
3332 	/* reset / initialize to a sane state */
3333 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3334 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3335 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3336 	snd_cmipci_mixer_write(cm, 0, 0);
3337 
3338 	/* restore registers */
3339 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3340 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3341 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3342 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3343 
3344 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3345 	return 0;
3346 }
3347 
3348 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3349 #define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3350 #else
3351 #define SND_CMIPCI_PM_OPS	NULL
3352 #endif /* CONFIG_PM_SLEEP */
3353 
3354 static struct pci_driver cmipci_driver = {
3355 	.name = KBUILD_MODNAME,
3356 	.id_table = snd_cmipci_ids,
3357 	.probe = snd_cmipci_probe,
3358 	.remove = snd_cmipci_remove,
3359 	.driver = {
3360 		.pm = SND_CMIPCI_PM_OPS,
3361 	},
3362 };
3363 
3364 module_pci_driver(cmipci_driver);
3365