1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU Library General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 */ 16 17 /* 18 * Vortex PCM ALSA driver. 19 * 20 * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet. 21 * It remains stuck,and DMA transfers do not happen. 22 */ 23 #include <sound/asoundef.h> 24 #include <linux/time.h> 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 #include "au88x0.h" 29 30 #define VORTEX_PCM_TYPE(x) (x->name[40]) 31 32 /* hardware definition */ 33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = { 34 .info = 35 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */ 36 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED | 37 SNDRV_PCM_INFO_MMAP_VALID), 38 .formats = 39 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 | 40 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, 41 .rates = SNDRV_PCM_RATE_CONTINUOUS, 42 .rate_min = 5000, 43 .rate_max = 48000, 44 .channels_min = 1, 45 .channels_max = 2, 46 .buffer_bytes_max = 0x10000, 47 .period_bytes_min = 0x20, 48 .period_bytes_max = 0x1000, 49 .periods_min = 2, 50 .periods_max = 1024, 51 }; 52 53 #ifndef CHIP_AU8820 54 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = { 55 .info = 56 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */ 57 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED | 58 SNDRV_PCM_INFO_MMAP_VALID), 59 .formats = 60 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 | 61 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, 62 .rates = SNDRV_PCM_RATE_CONTINUOUS, 63 .rate_min = 5000, 64 .rate_max = 48000, 65 .channels_min = 1, 66 .channels_max = 1, 67 .buffer_bytes_max = 0x10000, 68 .period_bytes_min = 0x100, 69 .period_bytes_max = 0x1000, 70 .periods_min = 2, 71 .periods_max = 64, 72 }; 73 #endif 74 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = { 75 .info = 76 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */ 77 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED | 78 SNDRV_PCM_INFO_MMAP_VALID), 79 .formats = 80 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 | 81 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW | 82 SNDRV_PCM_FMTBIT_A_LAW, 83 .rates = 84 SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 85 .rate_min = 32000, 86 .rate_max = 48000, 87 .channels_min = 1, 88 .channels_max = 2, 89 .buffer_bytes_max = 0x10000, 90 .period_bytes_min = 0x100, 91 .period_bytes_max = 0x1000, 92 .periods_min = 2, 93 .periods_max = 64, 94 }; 95 96 #ifndef CHIP_AU8810 97 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = { 98 .info = (SNDRV_PCM_INFO_MMAP | 99 SNDRV_PCM_INFO_INTERLEAVED | 100 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), 101 .formats = SNDRV_PCM_FMTBIT_S16_LE, 102 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000, 103 .rate_min = 8000, 104 .rate_max = 48000, 105 .channels_min = 1, 106 .channels_max = 2, 107 .buffer_bytes_max = 0x10000, 108 .period_bytes_min = 0x0400, 109 .period_bytes_max = 0x1000, 110 .periods_min = 2, 111 .periods_max = 64, 112 }; 113 #endif 114 #ifdef CHIP_AU8830 115 static unsigned int au8830_channels[3] = { 116 1, 2, 4, 117 }; 118 119 static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = { 120 .count = ARRAY_SIZE(au8830_channels), 121 .list = au8830_channels, 122 .mask = 0, 123 }; 124 #endif 125 /* open callback */ 126 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream) 127 { 128 vortex_t *vortex = snd_pcm_substream_chip(substream); 129 struct snd_pcm_runtime *runtime = substream->runtime; 130 int err; 131 132 /* Force equal size periods */ 133 if ((err = 134 snd_pcm_hw_constraint_integer(runtime, 135 SNDRV_PCM_HW_PARAM_PERIODS)) < 0) 136 return err; 137 /* Avoid PAGE_SIZE boundary to fall inside of a period. */ 138 if ((err = 139 snd_pcm_hw_constraint_pow2(runtime, 0, 140 SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0) 141 return err; 142 143 snd_pcm_hw_constraint_step(runtime, 0, 144 SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 64); 145 146 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 147 #ifndef CHIP_AU8820 148 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) { 149 runtime->hw = snd_vortex_playback_hw_a3d; 150 } 151 #endif 152 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) { 153 runtime->hw = snd_vortex_playback_hw_spdif; 154 switch (vortex->spdif_sr) { 155 case 32000: 156 runtime->hw.rates = SNDRV_PCM_RATE_32000; 157 break; 158 case 44100: 159 runtime->hw.rates = SNDRV_PCM_RATE_44100; 160 break; 161 case 48000: 162 runtime->hw.rates = SNDRV_PCM_RATE_48000; 163 break; 164 } 165 } 166 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB 167 || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S) 168 runtime->hw = snd_vortex_playback_hw_adb; 169 #ifdef CHIP_AU8830 170 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 171 VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) { 172 runtime->hw.channels_max = 4; 173 snd_pcm_hw_constraint_list(runtime, 0, 174 SNDRV_PCM_HW_PARAM_CHANNELS, 175 &hw_constraints_au8830_channels); 176 } 177 #endif 178 substream->runtime->private_data = NULL; 179 } 180 #ifndef CHIP_AU8810 181 else { 182 runtime->hw = snd_vortex_playback_hw_wt; 183 substream->runtime->private_data = NULL; 184 } 185 #endif 186 return 0; 187 } 188 189 /* close callback */ 190 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream) 191 { 192 //vortex_t *chip = snd_pcm_substream_chip(substream); 193 stream_t *stream = (stream_t *) substream->runtime->private_data; 194 195 // the hardware-specific codes will be here 196 if (stream != NULL) { 197 stream->substream = NULL; 198 stream->nr_ch = 0; 199 } 200 substream->runtime->private_data = NULL; 201 return 0; 202 } 203 204 /* hw_params callback */ 205 static int 206 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream, 207 struct snd_pcm_hw_params *hw_params) 208 { 209 vortex_t *chip = snd_pcm_substream_chip(substream); 210 stream_t *stream = (stream_t *) (substream->runtime->private_data); 211 int err; 212 213 // Alloc buffer memory. 214 err = 215 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 216 if (err < 0) { 217 printk(KERN_ERR "Vortex: pcm page alloc failed!\n"); 218 return err; 219 } 220 /* 221 printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params), 222 params_period_bytes(hw_params), params_channels(hw_params)); 223 */ 224 spin_lock_irq(&chip->lock); 225 // Make audio routes and config buffer DMA. 226 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 227 int dma, type = VORTEX_PCM_TYPE(substream->pcm); 228 /* Dealloc any routes. */ 229 if (stream != NULL) 230 vortex_adb_allocroute(chip, stream->dma, 231 stream->nr_ch, stream->dir, 232 stream->type); 233 /* Alloc routes. */ 234 dma = 235 vortex_adb_allocroute(chip, -1, 236 params_channels(hw_params), 237 substream->stream, type); 238 if (dma < 0) { 239 spin_unlock_irq(&chip->lock); 240 return dma; 241 } 242 stream = substream->runtime->private_data = &chip->dma_adb[dma]; 243 stream->substream = substream; 244 /* Setup Buffers. */ 245 vortex_adbdma_setbuffers(chip, dma, 246 params_period_bytes(hw_params), 247 params_periods(hw_params)); 248 } 249 #ifndef CHIP_AU8810 250 else { 251 /* if (stream != NULL) 252 vortex_wt_allocroute(chip, substream->number, 0); */ 253 vortex_wt_allocroute(chip, substream->number, 254 params_channels(hw_params)); 255 stream = substream->runtime->private_data = 256 &chip->dma_wt[substream->number]; 257 stream->dma = substream->number; 258 stream->substream = substream; 259 vortex_wtdma_setbuffers(chip, substream->number, 260 params_period_bytes(hw_params), 261 params_periods(hw_params)); 262 } 263 #endif 264 spin_unlock_irq(&chip->lock); 265 return 0; 266 } 267 268 /* hw_free callback */ 269 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream) 270 { 271 vortex_t *chip = snd_pcm_substream_chip(substream); 272 stream_t *stream = (stream_t *) (substream->runtime->private_data); 273 274 spin_lock_irq(&chip->lock); 275 // Delete audio routes. 276 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 277 if (stream != NULL) 278 vortex_adb_allocroute(chip, stream->dma, 279 stream->nr_ch, stream->dir, 280 stream->type); 281 } 282 #ifndef CHIP_AU8810 283 else { 284 if (stream != NULL) 285 vortex_wt_allocroute(chip, stream->dma, 0); 286 } 287 #endif 288 substream->runtime->private_data = NULL; 289 spin_unlock_irq(&chip->lock); 290 291 return snd_pcm_lib_free_pages(substream); 292 } 293 294 /* prepare callback */ 295 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream) 296 { 297 vortex_t *chip = snd_pcm_substream_chip(substream); 298 struct snd_pcm_runtime *runtime = substream->runtime; 299 stream_t *stream = (stream_t *) substream->runtime->private_data; 300 int dma = stream->dma, fmt, dir; 301 302 // set up the hardware with the current configuration. 303 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 304 dir = 1; 305 else 306 dir = 0; 307 fmt = vortex_alsafmt_aspfmt(runtime->format); 308 spin_lock_irq(&chip->lock); 309 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 310 vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ , 311 0); 312 vortex_adbdma_setstartbuffer(chip, dma, 0); 313 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF) 314 vortex_adb_setsrc(chip, dma, runtime->rate, dir); 315 } 316 #ifndef CHIP_AU8810 317 else { 318 vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0); 319 // FIXME: Set rate (i guess using vortex_wt_writereg() somehow). 320 vortex_wtdma_setstartbuffer(chip, dma, 0); 321 } 322 #endif 323 spin_unlock_irq(&chip->lock); 324 return 0; 325 } 326 327 /* trigger callback */ 328 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 329 { 330 vortex_t *chip = snd_pcm_substream_chip(substream); 331 stream_t *stream = (stream_t *) substream->runtime->private_data; 332 int dma = stream->dma; 333 334 spin_lock(&chip->lock); 335 switch (cmd) { 336 case SNDRV_PCM_TRIGGER_START: 337 // do something to start the PCM engine 338 //printk(KERN_INFO "vortex: start %d\n", dma); 339 stream->fifo_enabled = 1; 340 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 341 vortex_adbdma_resetup(chip, dma); 342 vortex_adbdma_startfifo(chip, dma); 343 } 344 #ifndef CHIP_AU8810 345 else { 346 printk(KERN_INFO "vortex: wt start %d\n", dma); 347 vortex_wtdma_startfifo(chip, dma); 348 } 349 #endif 350 break; 351 case SNDRV_PCM_TRIGGER_STOP: 352 // do something to stop the PCM engine 353 //printk(KERN_INFO "vortex: stop %d\n", dma); 354 stream->fifo_enabled = 0; 355 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 356 vortex_adbdma_pausefifo(chip, dma); 357 //vortex_adbdma_stopfifo(chip, dma); 358 #ifndef CHIP_AU8810 359 else { 360 printk(KERN_INFO "vortex: wt stop %d\n", dma); 361 vortex_wtdma_stopfifo(chip, dma); 362 } 363 #endif 364 break; 365 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 366 //printk(KERN_INFO "vortex: pause %d\n", dma); 367 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 368 vortex_adbdma_pausefifo(chip, dma); 369 #ifndef CHIP_AU8810 370 else 371 vortex_wtdma_pausefifo(chip, dma); 372 #endif 373 break; 374 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 375 //printk(KERN_INFO "vortex: resume %d\n", dma); 376 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 377 vortex_adbdma_resumefifo(chip, dma); 378 #ifndef CHIP_AU8810 379 else 380 vortex_wtdma_resumefifo(chip, dma); 381 #endif 382 break; 383 default: 384 spin_unlock(&chip->lock); 385 return -EINVAL; 386 } 387 spin_unlock(&chip->lock); 388 return 0; 389 } 390 391 /* pointer callback */ 392 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream) 393 { 394 vortex_t *chip = snd_pcm_substream_chip(substream); 395 stream_t *stream = (stream_t *) substream->runtime->private_data; 396 int dma = stream->dma; 397 snd_pcm_uframes_t current_ptr = 0; 398 399 spin_lock(&chip->lock); 400 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 401 current_ptr = vortex_adbdma_getlinearpos(chip, dma); 402 #ifndef CHIP_AU8810 403 else 404 current_ptr = vortex_wtdma_getlinearpos(chip, dma); 405 #endif 406 //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr); 407 spin_unlock(&chip->lock); 408 return (bytes_to_frames(substream->runtime, current_ptr)); 409 } 410 411 /* operators */ 412 static struct snd_pcm_ops snd_vortex_playback_ops = { 413 .open = snd_vortex_pcm_open, 414 .close = snd_vortex_pcm_close, 415 .ioctl = snd_pcm_lib_ioctl, 416 .hw_params = snd_vortex_pcm_hw_params, 417 .hw_free = snd_vortex_pcm_hw_free, 418 .prepare = snd_vortex_pcm_prepare, 419 .trigger = snd_vortex_pcm_trigger, 420 .pointer = snd_vortex_pcm_pointer, 421 .page = snd_pcm_sgbuf_ops_page, 422 }; 423 424 /* 425 * definitions of capture are omitted here... 426 */ 427 428 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = { 429 CARD_NAME " ADB", 430 CARD_NAME " SPDIF", 431 CARD_NAME " A3D", 432 CARD_NAME " WT", 433 CARD_NAME " I2S", 434 }; 435 static char *vortex_pcm_name[VORTEX_PCM_LAST] = { 436 "adb", 437 "spdif", 438 "a3d", 439 "wt", 440 "i2s", 441 }; 442 443 /* SPDIF kcontrol */ 444 445 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 446 { 447 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 448 uinfo->count = 1; 449 return 0; 450 } 451 452 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 453 { 454 ucontrol->value.iec958.status[0] = 0xff; 455 ucontrol->value.iec958.status[1] = 0xff; 456 ucontrol->value.iec958.status[2] = 0xff; 457 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS; 458 return 0; 459 } 460 461 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 462 { 463 vortex_t *vortex = snd_kcontrol_chip(kcontrol); 464 ucontrol->value.iec958.status[0] = 0x00; 465 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID; 466 ucontrol->value.iec958.status[2] = 0x00; 467 switch (vortex->spdif_sr) { 468 case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break; 469 case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break; 470 case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break; 471 } 472 return 0; 473 } 474 475 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 476 { 477 vortex_t *vortex = snd_kcontrol_chip(kcontrol); 478 int spdif_sr = 48000; 479 switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) { 480 case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break; 481 case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break; 482 case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break; 483 } 484 if (spdif_sr == vortex->spdif_sr) 485 return 0; 486 vortex->spdif_sr = spdif_sr; 487 vortex_spdif_init(vortex, vortex->spdif_sr, 1); 488 return 1; 489 } 490 491 /* spdif controls */ 492 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = { 493 { 494 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 495 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 496 .info = snd_vortex_spdif_info, 497 .get = snd_vortex_spdif_get, 498 .put = snd_vortex_spdif_put, 499 }, 500 { 501 .access = SNDRV_CTL_ELEM_ACCESS_READ, 502 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 503 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 504 .info = snd_vortex_spdif_info, 505 .get = snd_vortex_spdif_mask_get 506 }, 507 }; 508 509 /* create a pcm device */ 510 static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr) 511 { 512 struct snd_pcm *pcm; 513 struct snd_kcontrol *kctl; 514 int i; 515 int err, nr_capt; 516 517 if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST) 518 return -ENODEV; 519 520 /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the 521 * same dma engine. WT uses it own separate dma engine which can't capture. */ 522 if (idx == VORTEX_PCM_ADB) 523 nr_capt = nr; 524 else 525 nr_capt = 0; 526 err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr, 527 nr_capt, &pcm); 528 if (err < 0) 529 return err; 530 snprintf(pcm->name, sizeof(pcm->name), 531 "%s %s", CARD_NAME_SHORT, vortex_pcm_name[idx]); 532 chip->pcm[idx] = pcm; 533 // This is an evil hack, but it saves a lot of duplicated code. 534 VORTEX_PCM_TYPE(pcm) = idx; 535 pcm->private_data = chip; 536 /* set operators */ 537 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 538 &snd_vortex_playback_ops); 539 if (idx == VORTEX_PCM_ADB) 540 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 541 &snd_vortex_playback_ops); 542 543 /* pre-allocation of Scatter-Gather buffers */ 544 545 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG, 546 snd_dma_pci_data(chip->pci_dev), 547 0x10000, 0x10000); 548 549 if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) { 550 for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) { 551 kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip); 552 if (!kctl) 553 return -ENOMEM; 554 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 555 return err; 556 } 557 } 558 return 0; 559 } 560