xref: /linux/sound/parisc/harmony.c (revision f9aec1648df09d55436a0e3a94acff1df507751f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Hewlett-Packard Harmony audio driver
3  *
4  *   This is a driver for the Harmony audio chipset found
5  *   on the LASI ASIC of various early HP PA-RISC workstations.
6  *
7  *   Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}>
8  *
9  *     Based on the previous Harmony incarnations by,
10  *       Copyright 2000 (c) Linuxcare Canada, Alex deVries
11  *       Copyright 2000-2003 (c) Helge Deller
12  *       Copyright 2001 (c) Matthieu Delahaye
13  *       Copyright 2001 (c) Jean-Christophe Vaugeois
14  *       Copyright 2003 (c) Laurent Canet
15  *       Copyright 2004 (c) Stuart Brady
16  *
17  * Notes:
18  *   - graveyard and silence buffers last for lifetime of
19  *     the driver. playback and capture buffers are allocated
20  *     per _open()/_close().
21  *
22  * TODO:
23  */
24 
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/time.h>
28 #include <linux/wait.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/io.h>
35 
36 #include <sound/core.h>
37 #include <sound/pcm.h>
38 #include <sound/control.h>
39 #include <sound/rawmidi.h>
40 #include <sound/initval.h>
41 #include <sound/info.h>
42 
43 #include <asm/hardware.h>
44 #include <asm/parisc-device.h>
45 
46 #include "harmony.h"
47 
48 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
49 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
50 module_param(index, int, 0444);
51 MODULE_PARM_DESC(index, "Index value for Harmony driver.");
52 module_param(id, charp, 0444);
53 MODULE_PARM_DESC(id, "ID string for Harmony driver.");
54 
55 
56 static const struct parisc_device_id snd_harmony_devtable[] __initconst = {
57 	/* bushmaster / flounder */
58 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A },
59 	/* 712 / 715 */
60 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B },
61 	/* pace */
62 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E },
63 	/* outfield / coral II */
64 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F },
65 	{ 0, }
66 };
67 
68 MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable);
69 
70 #define NAME "harmony"
71 #define PFX  NAME ": "
72 
73 static const unsigned int snd_harmony_rates[] = {
74 	5512, 6615, 8000, 9600,
75 	11025, 16000, 18900, 22050,
76 	27428, 32000, 33075, 37800,
77 	44100, 48000
78 };
79 
80 static const unsigned int rate_bits[14] = {
81 	HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
82 	HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
83 	HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
84 	HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
85 	HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
86 };
87 
88 static const struct snd_pcm_hw_constraint_list hw_constraint_rates = {
89 	.count = ARRAY_SIZE(snd_harmony_rates),
90 	.list = snd_harmony_rates,
91 	.mask = 0,
92 };
93 
94 static inline unsigned long
95 harmony_read(struct snd_harmony *h, unsigned r)
96 {
97 	return __raw_readl(h->iobase + r);
98 }
99 
100 static inline void
101 harmony_write(struct snd_harmony *h, unsigned r, unsigned long v)
102 {
103 	__raw_writel(v, h->iobase + r);
104 }
105 
106 static inline void
107 harmony_wait_for_control(struct snd_harmony *h)
108 {
109 	while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ;
110 }
111 
112 static inline void
113 harmony_reset(struct snd_harmony *h)
114 {
115 	harmony_write(h, HARMONY_RESET, 1);
116 	mdelay(50);
117 	harmony_write(h, HARMONY_RESET, 0);
118 }
119 
120 static void
121 harmony_disable_interrupts(struct snd_harmony *h)
122 {
123 	u32 dstatus;
124 	harmony_wait_for_control(h);
125 	dstatus = harmony_read(h, HARMONY_DSTATUS);
126 	dstatus &= ~HARMONY_DSTATUS_IE;
127 	harmony_write(h, HARMONY_DSTATUS, dstatus);
128 }
129 
130 static void
131 harmony_enable_interrupts(struct snd_harmony *h)
132 {
133 	u32 dstatus;
134 	harmony_wait_for_control(h);
135 	dstatus = harmony_read(h, HARMONY_DSTATUS);
136 	dstatus |= HARMONY_DSTATUS_IE;
137 	harmony_write(h, HARMONY_DSTATUS, dstatus);
138 }
139 
140 static void
141 harmony_mute(struct snd_harmony *h)
142 {
143 	unsigned long flags;
144 
145 	spin_lock_irqsave(&h->mixer_lock, flags);
146 	harmony_wait_for_control(h);
147 	harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE);
148 	spin_unlock_irqrestore(&h->mixer_lock, flags);
149 }
150 
151 static void
152 harmony_unmute(struct snd_harmony *h)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&h->mixer_lock, flags);
157 	harmony_wait_for_control(h);
158 	harmony_write(h, HARMONY_GAINCTL, h->st.gain);
159 	spin_unlock_irqrestore(&h->mixer_lock, flags);
160 }
161 
162 static void
163 harmony_set_control(struct snd_harmony *h)
164 {
165 	u32 ctrl;
166 	unsigned long flags;
167 
168 	spin_lock_irqsave(&h->lock, flags);
169 
170 	ctrl = (HARMONY_CNTL_C      |
171 		(h->st.format << 6) |
172 		(h->st.stereo << 5) |
173 		(h->st.rate));
174 
175 	harmony_wait_for_control(h);
176 	harmony_write(h, HARMONY_CNTL, ctrl);
177 
178 	spin_unlock_irqrestore(&h->lock, flags);
179 }
180 
181 static irqreturn_t
182 snd_harmony_interrupt(int irq, void *dev)
183 {
184 	u32 dstatus;
185 	struct snd_harmony *h = dev;
186 
187 	spin_lock(&h->lock);
188 	harmony_disable_interrupts(h);
189 	harmony_wait_for_control(h);
190 	dstatus = harmony_read(h, HARMONY_DSTATUS);
191 	spin_unlock(&h->lock);
192 
193 	if (dstatus & HARMONY_DSTATUS_PN) {
194 		if (h->psubs && h->st.playing) {
195 			spin_lock(&h->lock);
196 			h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */
197 			h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */
198 
199 			harmony_write(h, HARMONY_PNXTADD,
200 				      h->pbuf.addr + h->pbuf.buf);
201 			h->stats.play_intr++;
202 			spin_unlock(&h->lock);
203                         snd_pcm_period_elapsed(h->psubs);
204 		} else {
205 			spin_lock(&h->lock);
206 			harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
207 			h->stats.silence_intr++;
208 			spin_unlock(&h->lock);
209 		}
210 	}
211 
212 	if (dstatus & HARMONY_DSTATUS_RN) {
213 		if (h->csubs && h->st.capturing) {
214 			spin_lock(&h->lock);
215 			h->cbuf.buf += h->cbuf.count;
216 			h->cbuf.buf %= h->cbuf.size;
217 
218 			harmony_write(h, HARMONY_RNXTADD,
219 				      h->cbuf.addr + h->cbuf.buf);
220 			h->stats.rec_intr++;
221 			spin_unlock(&h->lock);
222                         snd_pcm_period_elapsed(h->csubs);
223 		} else {
224 			spin_lock(&h->lock);
225 			harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
226 			h->stats.graveyard_intr++;
227 			spin_unlock(&h->lock);
228 		}
229 	}
230 
231 	spin_lock(&h->lock);
232 	harmony_enable_interrupts(h);
233 	spin_unlock(&h->lock);
234 
235 	return IRQ_HANDLED;
236 }
237 
238 static unsigned int
239 snd_harmony_rate_bits(int rate)
240 {
241 	unsigned int i;
242 
243 	for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++)
244 		if (snd_harmony_rates[i] == rate)
245 			return rate_bits[i];
246 
247 	return HARMONY_SR_44KHZ;
248 }
249 
250 static const struct snd_pcm_hardware snd_harmony_playback =
251 {
252 	.info =	(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
253 		 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
254 		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
255 	.formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
256 		    SNDRV_PCM_FMTBIT_A_LAW),
257 	.rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
258 		  SNDRV_PCM_RATE_KNOT),
259 	.rate_min = 5512,
260 	.rate_max = 48000,
261 	.channels_min =	1,
262 	.channels_max =	2,
263 	.buffer_bytes_max = MAX_BUF_SIZE,
264 	.period_bytes_min = BUF_SIZE,
265 	.period_bytes_max = BUF_SIZE,
266 	.periods_min = 1,
267 	.periods_max = MAX_BUFS,
268 	.fifo_size = 0,
269 };
270 
271 static const struct snd_pcm_hardware snd_harmony_capture =
272 {
273         .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
274                  SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
275                  SNDRV_PCM_INFO_BLOCK_TRANSFER),
276         .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
277                     SNDRV_PCM_FMTBIT_A_LAW),
278         .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
279 		  SNDRV_PCM_RATE_KNOT),
280         .rate_min = 5512,
281         .rate_max = 48000,
282         .channels_min = 1,
283         .channels_max = 2,
284         .buffer_bytes_max = MAX_BUF_SIZE,
285         .period_bytes_min = BUF_SIZE,
286         .period_bytes_max = BUF_SIZE,
287         .periods_min = 1,
288         .periods_max = MAX_BUFS,
289         .fifo_size = 0,
290 };
291 
292 static int
293 snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd)
294 {
295 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
296 
297 	if (h->st.capturing)
298 		return -EBUSY;
299 
300 	spin_lock(&h->lock);
301 	switch (cmd) {
302 	case SNDRV_PCM_TRIGGER_START:
303 		h->st.playing = 1;
304 		harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr);
305 		harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
306 		harmony_unmute(h);
307 		harmony_enable_interrupts(h);
308 		break;
309 	case SNDRV_PCM_TRIGGER_STOP:
310 		h->st.playing = 0;
311 		harmony_mute(h);
312 		harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
313 		harmony_disable_interrupts(h);
314 		break;
315 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
316 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
317 	case SNDRV_PCM_TRIGGER_SUSPEND:
318 	default:
319 		spin_unlock(&h->lock);
320 		snd_BUG();
321 		return -EINVAL;
322 	}
323 	spin_unlock(&h->lock);
324 
325 	return 0;
326 }
327 
328 static int
329 snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd)
330 {
331         struct snd_harmony *h = snd_pcm_substream_chip(ss);
332 
333 	if (h->st.playing)
334 		return -EBUSY;
335 
336 	spin_lock(&h->lock);
337         switch (cmd) {
338         case SNDRV_PCM_TRIGGER_START:
339 		h->st.capturing = 1;
340                 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
341                 harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr);
342 		harmony_unmute(h);
343                 harmony_enable_interrupts(h);
344 		break;
345         case SNDRV_PCM_TRIGGER_STOP:
346 		h->st.capturing = 0;
347 		harmony_mute(h);
348 		harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
349 		harmony_disable_interrupts(h);
350 		break;
351         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
352         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
353         case SNDRV_PCM_TRIGGER_SUSPEND:
354 	default:
355 		spin_unlock(&h->lock);
356 		snd_BUG();
357                 return -EINVAL;
358         }
359 	spin_unlock(&h->lock);
360 
361         return 0;
362 }
363 
364 static int
365 snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force)
366 {
367 	int o = h->st.format;
368 	int n;
369 
370 	switch(fmt) {
371 	case SNDRV_PCM_FORMAT_S16_BE:
372 		n = HARMONY_DF_16BIT_LINEAR;
373 		break;
374 	case SNDRV_PCM_FORMAT_A_LAW:
375 		n = HARMONY_DF_8BIT_ALAW;
376 		break;
377 	case SNDRV_PCM_FORMAT_MU_LAW:
378 		n = HARMONY_DF_8BIT_ULAW;
379 		break;
380 	default:
381 		n = HARMONY_DF_16BIT_LINEAR;
382 		break;
383 	}
384 
385 	if (force || o != n) {
386 		snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ /
387 					   (snd_pcm_format_physical_width(fmt)
388 					    / 8));
389 	}
390 
391 	return n;
392 }
393 
394 static int
395 snd_harmony_playback_prepare(struct snd_pcm_substream *ss)
396 {
397 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
398 	struct snd_pcm_runtime *rt = ss->runtime;
399 
400 	if (h->st.capturing)
401 		return -EBUSY;
402 
403 	h->pbuf.size = snd_pcm_lib_buffer_bytes(ss);
404 	h->pbuf.count = snd_pcm_lib_period_bytes(ss);
405 	if (h->pbuf.buf >= h->pbuf.size)
406 		h->pbuf.buf = 0;
407 	h->st.playing = 0;
408 
409 	h->st.rate = snd_harmony_rate_bits(rt->rate);
410 	h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
411 
412 	if (rt->channels == 2)
413 		h->st.stereo = HARMONY_SS_STEREO;
414 	else
415 		h->st.stereo = HARMONY_SS_MONO;
416 
417 	harmony_set_control(h);
418 
419 	h->pbuf.addr = rt->dma_addr;
420 
421 	return 0;
422 }
423 
424 static int
425 snd_harmony_capture_prepare(struct snd_pcm_substream *ss)
426 {
427         struct snd_harmony *h = snd_pcm_substream_chip(ss);
428         struct snd_pcm_runtime *rt = ss->runtime;
429 
430 	if (h->st.playing)
431 		return -EBUSY;
432 
433         h->cbuf.size = snd_pcm_lib_buffer_bytes(ss);
434         h->cbuf.count = snd_pcm_lib_period_bytes(ss);
435 	if (h->cbuf.buf >= h->cbuf.size)
436 	        h->cbuf.buf = 0;
437 	h->st.capturing = 0;
438 
439         h->st.rate = snd_harmony_rate_bits(rt->rate);
440         h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
441 
442         if (rt->channels == 2)
443                 h->st.stereo = HARMONY_SS_STEREO;
444         else
445                 h->st.stereo = HARMONY_SS_MONO;
446 
447         harmony_set_control(h);
448 
449         h->cbuf.addr = rt->dma_addr;
450 
451         return 0;
452 }
453 
454 static snd_pcm_uframes_t
455 snd_harmony_playback_pointer(struct snd_pcm_substream *ss)
456 {
457 	struct snd_pcm_runtime *rt = ss->runtime;
458 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
459 	unsigned long pcuradd;
460 	unsigned long played;
461 
462 	if (!(h->st.playing) || (h->psubs == NULL))
463 		return 0;
464 
465 	if ((h->pbuf.addr == 0) || (h->pbuf.size == 0))
466 		return 0;
467 
468 	pcuradd = harmony_read(h, HARMONY_PCURADD);
469 	played = pcuradd - h->pbuf.addr;
470 
471 #ifdef HARMONY_DEBUG
472 	printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n",
473 	       pcuradd, h->pbuf.addr, played);
474 #endif
475 
476 	if (pcuradd > h->pbuf.addr + h->pbuf.size) {
477 		return 0;
478 	}
479 
480 	return bytes_to_frames(rt, played);
481 }
482 
483 static snd_pcm_uframes_t
484 snd_harmony_capture_pointer(struct snd_pcm_substream *ss)
485 {
486         struct snd_pcm_runtime *rt = ss->runtime;
487         struct snd_harmony *h = snd_pcm_substream_chip(ss);
488         unsigned long rcuradd;
489         unsigned long caught;
490 
491         if (!(h->st.capturing) || (h->csubs == NULL))
492                 return 0;
493 
494         if ((h->cbuf.addr == 0) || (h->cbuf.size == 0))
495                 return 0;
496 
497         rcuradd = harmony_read(h, HARMONY_RCURADD);
498         caught = rcuradd - h->cbuf.addr;
499 
500 #ifdef HARMONY_DEBUG
501         printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n",
502                rcuradd, h->cbuf.addr, caught);
503 #endif
504 
505         if (rcuradd > h->cbuf.addr + h->cbuf.size) {
506 		return 0;
507 	}
508 
509         return bytes_to_frames(rt, caught);
510 }
511 
512 static int
513 snd_harmony_playback_open(struct snd_pcm_substream *ss)
514 {
515 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
516 	struct snd_pcm_runtime *rt = ss->runtime;
517 	int err;
518 
519 	h->psubs = ss;
520 	rt->hw = snd_harmony_playback;
521 	snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
522 				   &hw_constraint_rates);
523 
524 	err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
525 	if (err < 0)
526 		return err;
527 
528 	return 0;
529 }
530 
531 static int
532 snd_harmony_capture_open(struct snd_pcm_substream *ss)
533 {
534         struct snd_harmony *h = snd_pcm_substream_chip(ss);
535         struct snd_pcm_runtime *rt = ss->runtime;
536         int err;
537 
538         h->csubs = ss;
539         rt->hw = snd_harmony_capture;
540         snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
541                                    &hw_constraint_rates);
542 
543         err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
544         if (err < 0)
545                 return err;
546 
547         return 0;
548 }
549 
550 static int
551 snd_harmony_playback_close(struct snd_pcm_substream *ss)
552 {
553 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
554 	h->psubs = NULL;
555 	return 0;
556 }
557 
558 static int
559 snd_harmony_capture_close(struct snd_pcm_substream *ss)
560 {
561         struct snd_harmony *h = snd_pcm_substream_chip(ss);
562         h->csubs = NULL;
563         return 0;
564 }
565 
566 static const struct snd_pcm_ops snd_harmony_playback_ops = {
567 	.open =	snd_harmony_playback_open,
568 	.close = snd_harmony_playback_close,
569 	.prepare = snd_harmony_playback_prepare,
570 	.trigger = snd_harmony_playback_trigger,
571  	.pointer = snd_harmony_playback_pointer,
572 };
573 
574 static const struct snd_pcm_ops snd_harmony_capture_ops = {
575         .open = snd_harmony_capture_open,
576         .close = snd_harmony_capture_close,
577         .prepare = snd_harmony_capture_prepare,
578         .trigger = snd_harmony_capture_trigger,
579         .pointer = snd_harmony_capture_pointer,
580 };
581 
582 static int
583 snd_harmony_pcm_init(struct snd_harmony *h)
584 {
585 	struct snd_pcm *pcm;
586 	int err;
587 
588 	if (snd_BUG_ON(!h))
589 		return -EINVAL;
590 
591 	harmony_disable_interrupts(h);
592 
593    	err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm);
594 	if (err < 0)
595 		return err;
596 
597 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
598 			&snd_harmony_playback_ops);
599 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
600 			&snd_harmony_capture_ops);
601 
602 	pcm->private_data = h;
603 	pcm->info_flags = 0;
604 	strcpy(pcm->name, "harmony");
605 	h->pcm = pcm;
606 
607 	h->psubs = NULL;
608 	h->csubs = NULL;
609 
610 	/* initialize graveyard buffer */
611 	h->dma.type = SNDRV_DMA_TYPE_DEV;
612 	h->dma.dev = &h->dev->dev;
613 	err = snd_dma_alloc_pages(h->dma.type,
614 				  h->dma.dev,
615 				  BUF_SIZE*GRAVEYARD_BUFS,
616 				  &h->gdma);
617 	if (err < 0) {
618 		printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n");
619 		return err;
620 	}
621 
622 	/* initialize silence buffers */
623 	err = snd_dma_alloc_pages(h->dma.type,
624 				  h->dma.dev,
625 				  BUF_SIZE*SILENCE_BUFS,
626 				  &h->sdma);
627 	if (err < 0) {
628 		printk(KERN_ERR PFX "cannot allocate silence buffer!\n");
629 		return err;
630 	}
631 
632 	/* pre-allocate space for DMA */
633 	snd_pcm_set_managed_buffer_all(pcm, h->dma.type, h->dma.dev,
634 				       MAX_BUF_SIZE, MAX_BUF_SIZE);
635 
636 	h->st.format = snd_harmony_set_data_format(h,
637 		SNDRV_PCM_FORMAT_S16_BE, 1);
638 
639 	return 0;
640 }
641 
642 static void
643 snd_harmony_set_new_gain(struct snd_harmony *h)
644 {
645  	harmony_wait_for_control(h);
646 	harmony_write(h, HARMONY_GAINCTL, h->st.gain);
647 }
648 
649 static int
650 snd_harmony_mixercontrol_info(struct snd_kcontrol *kc,
651 			      struct snd_ctl_elem_info *uinfo)
652 {
653 	int mask = (kc->private_value >> 16) & 0xff;
654 	int left_shift = (kc->private_value) & 0xff;
655 	int right_shift = (kc->private_value >> 8) & 0xff;
656 
657 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN :
658 		       SNDRV_CTL_ELEM_TYPE_INTEGER;
659 	uinfo->count = left_shift == right_shift ? 1 : 2;
660 	uinfo->value.integer.min = 0;
661 	uinfo->value.integer.max = mask;
662 
663 	return 0;
664 }
665 
666 static int
667 snd_harmony_volume_get(struct snd_kcontrol *kc,
668 		       struct snd_ctl_elem_value *ucontrol)
669 {
670 	struct snd_harmony *h = snd_kcontrol_chip(kc);
671 	int shift_left = (kc->private_value) & 0xff;
672 	int shift_right = (kc->private_value >> 8) & 0xff;
673 	int mask = (kc->private_value >> 16) & 0xff;
674 	int invert = (kc->private_value >> 24) & 0xff;
675 	int left, right;
676 
677 	spin_lock_irq(&h->mixer_lock);
678 
679 	left = (h->st.gain >> shift_left) & mask;
680 	right = (h->st.gain >> shift_right) & mask;
681 	if (invert) {
682 		left = mask - left;
683 		right = mask - right;
684 	}
685 
686 	ucontrol->value.integer.value[0] = left;
687 	if (shift_left != shift_right)
688 		ucontrol->value.integer.value[1] = right;
689 
690 	spin_unlock_irq(&h->mixer_lock);
691 
692 	return 0;
693 }
694 
695 static int
696 snd_harmony_volume_put(struct snd_kcontrol *kc,
697 		       struct snd_ctl_elem_value *ucontrol)
698 {
699 	struct snd_harmony *h = snd_kcontrol_chip(kc);
700 	int shift_left = (kc->private_value) & 0xff;
701 	int shift_right = (kc->private_value >> 8) & 0xff;
702 	int mask = (kc->private_value >> 16) & 0xff;
703 	int invert = (kc->private_value >> 24) & 0xff;
704 	int left, right;
705 	int old_gain = h->st.gain;
706 
707 	spin_lock_irq(&h->mixer_lock);
708 
709 	left = ucontrol->value.integer.value[0] & mask;
710 	if (invert)
711 		left = mask - left;
712 	h->st.gain &= ~( (mask << shift_left ) );
713  	h->st.gain |= (left << shift_left);
714 
715 	if (shift_left != shift_right) {
716 		right = ucontrol->value.integer.value[1] & mask;
717 		if (invert)
718 			right = mask - right;
719 		h->st.gain &= ~( (mask << shift_right) );
720 		h->st.gain |= (right << shift_right);
721 	}
722 
723 	snd_harmony_set_new_gain(h);
724 
725 	spin_unlock_irq(&h->mixer_lock);
726 
727 	return h->st.gain != old_gain;
728 }
729 
730 static int
731 snd_harmony_captureroute_info(struct snd_kcontrol *kc,
732 			      struct snd_ctl_elem_info *uinfo)
733 {
734 	static const char * const texts[2] = { "Line", "Mic" };
735 
736 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
737 }
738 
739 static int
740 snd_harmony_captureroute_get(struct snd_kcontrol *kc,
741 			     struct snd_ctl_elem_value *ucontrol)
742 {
743 	struct snd_harmony *h = snd_kcontrol_chip(kc);
744 	int value;
745 
746 	spin_lock_irq(&h->mixer_lock);
747 
748 	value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1;
749 	ucontrol->value.enumerated.item[0] = value;
750 
751 	spin_unlock_irq(&h->mixer_lock);
752 
753 	return 0;
754 }
755 
756 static int
757 snd_harmony_captureroute_put(struct snd_kcontrol *kc,
758 			     struct snd_ctl_elem_value *ucontrol)
759 {
760 	struct snd_harmony *h = snd_kcontrol_chip(kc);
761 	int value;
762 	int old_gain = h->st.gain;
763 
764 	spin_lock_irq(&h->mixer_lock);
765 
766 	value = ucontrol->value.enumerated.item[0] & 1;
767 	h->st.gain &= ~HARMONY_GAIN_IS_MASK;
768  	h->st.gain |= value << HARMONY_GAIN_IS_SHIFT;
769 
770 	snd_harmony_set_new_gain(h);
771 
772 	spin_unlock_irq(&h->mixer_lock);
773 
774 	return h->st.gain != old_gain;
775 }
776 
777 #define HARMONY_CONTROLS	ARRAY_SIZE(snd_harmony_controls)
778 
779 #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
780 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,                \
781   .info = snd_harmony_mixercontrol_info,                             \
782   .get = snd_harmony_volume_get, .put = snd_harmony_volume_put,      \
783   .private_value = ((left_shift) | ((right_shift) << 8) |            \
784                    ((mask) << 16) | ((invert) << 24)) }
785 
786 static const struct snd_kcontrol_new snd_harmony_controls[] = {
787 	HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT,
788 		       HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1),
789 	HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT,
790 		       HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0),
791 	HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT,
792 		       HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1),
793 	{
794 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
795 		.name = "Input Route",
796 		.info = snd_harmony_captureroute_info,
797 		.get = snd_harmony_captureroute_get,
798 		.put = snd_harmony_captureroute_put
799 	},
800 	HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT,
801 		       HARMONY_GAIN_SE_SHIFT, 1, 0),
802 	HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT,
803 		       HARMONY_GAIN_LE_SHIFT, 1, 0),
804 	HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT,
805 		       HARMONY_GAIN_HE_SHIFT, 1, 0),
806 };
807 
808 static void
809 snd_harmony_mixer_reset(struct snd_harmony *h)
810 {
811 	harmony_mute(h);
812 	harmony_reset(h);
813 	h->st.gain = HARMONY_GAIN_DEFAULT;
814 	harmony_unmute(h);
815 }
816 
817 static int
818 snd_harmony_mixer_init(struct snd_harmony *h)
819 {
820 	struct snd_card *card;
821 	int idx, err;
822 
823 	if (snd_BUG_ON(!h))
824 		return -EINVAL;
825 	card = h->card;
826 	strcpy(card->mixername, "Harmony Gain control interface");
827 
828 	for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
829 		err = snd_ctl_add(card,
830 				  snd_ctl_new1(&snd_harmony_controls[idx], h));
831 		if (err < 0)
832 			return err;
833 	}
834 
835 	snd_harmony_mixer_reset(h);
836 
837 	return 0;
838 }
839 
840 static int
841 snd_harmony_free(struct snd_harmony *h)
842 {
843         if (h->gdma.addr)
844                 snd_dma_free_pages(&h->gdma);
845         if (h->sdma.addr)
846                 snd_dma_free_pages(&h->sdma);
847 
848 	if (h->irq >= 0)
849 		free_irq(h->irq, h);
850 
851 	iounmap(h->iobase);
852 	kfree(h);
853 	return 0;
854 }
855 
856 static int
857 snd_harmony_dev_free(struct snd_device *dev)
858 {
859 	struct snd_harmony *h = dev->device_data;
860 	return snd_harmony_free(h);
861 }
862 
863 static int
864 snd_harmony_create(struct snd_card *card,
865 		   struct parisc_device *padev,
866 		   struct snd_harmony **rchip)
867 {
868 	int err;
869 	struct snd_harmony *h;
870 	static const struct snd_device_ops ops = {
871 		.dev_free = snd_harmony_dev_free,
872 	};
873 
874 	*rchip = NULL;
875 
876 	h = kzalloc(sizeof(*h), GFP_KERNEL);
877 	if (h == NULL)
878 		return -ENOMEM;
879 
880 	h->hpa = padev->hpa.start;
881 	h->card = card;
882 	h->dev = padev;
883 	h->irq = -1;
884 	h->iobase = ioremap(padev->hpa.start, HARMONY_SIZE);
885 	if (h->iobase == NULL) {
886 		printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n",
887 		       (unsigned long)padev->hpa.start);
888 		err = -EBUSY;
889 		goto free_and_ret;
890 	}
891 
892 	err = request_irq(padev->irq, snd_harmony_interrupt, 0,
893 			  "harmony", h);
894 	if (err) {
895 		printk(KERN_ERR PFX "could not obtain interrupt %d",
896 		       padev->irq);
897 		goto free_and_ret;
898 	}
899 	h->irq = padev->irq;
900 
901 	spin_lock_init(&h->mixer_lock);
902 	spin_lock_init(&h->lock);
903 
904 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, h, &ops);
905 	if (err < 0)
906 		goto free_and_ret;
907 
908 	*rchip = h;
909 
910 	return 0;
911 
912 free_and_ret:
913 	snd_harmony_free(h);
914 	return err;
915 }
916 
917 static int __init
918 snd_harmony_probe(struct parisc_device *padev)
919 {
920 	int err;
921 	struct snd_card *card;
922 	struct snd_harmony *h;
923 
924 	err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card);
925 	if (err < 0)
926 		return err;
927 
928 	err = snd_harmony_create(card, padev, &h);
929 	if (err < 0)
930 		goto free_and_ret;
931 
932 	err = snd_harmony_pcm_init(h);
933 	if (err < 0)
934 		goto free_and_ret;
935 
936 	err = snd_harmony_mixer_init(h);
937 	if (err < 0)
938 		goto free_and_ret;
939 
940 	strcpy(card->driver, "harmony");
941 	strcpy(card->shortname, "Harmony");
942 	sprintf(card->longname, "%s at 0x%lx, irq %i",
943 		card->shortname, h->hpa, h->irq);
944 
945 	err = snd_card_register(card);
946 	if (err < 0)
947 		goto free_and_ret;
948 
949 	parisc_set_drvdata(padev, card);
950 	return 0;
951 
952 free_and_ret:
953 	snd_card_free(card);
954 	return err;
955 }
956 
957 static void __exit
958 snd_harmony_remove(struct parisc_device *padev)
959 {
960 	snd_card_free(parisc_get_drvdata(padev));
961 }
962 
963 static struct parisc_driver snd_harmony_driver __refdata = {
964 	.name = "harmony",
965 	.id_table = snd_harmony_devtable,
966 	.probe = snd_harmony_probe,
967 	.remove = __exit_p(snd_harmony_remove),
968 };
969 
970 static int __init
971 alsa_harmony_init(void)
972 {
973 	return register_parisc_driver(&snd_harmony_driver);
974 }
975 
976 static void __exit
977 alsa_harmony_fini(void)
978 {
979 	unregister_parisc_driver(&snd_harmony_driver);
980 }
981 
982 MODULE_LICENSE("GPL");
983 MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>");
984 MODULE_DESCRIPTION("Harmony sound driver");
985 
986 module_init(alsa_harmony_init);
987 module_exit(alsa_harmony_fini);
988