xref: /linux/sound/parisc/harmony.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Hewlett-Packard Harmony audio driver
3  *
4  *   This is a driver for the Harmony audio chipset found
5  *   on the LASI ASIC of various early HP PA-RISC workstations.
6  *
7  *   Copyright (C) 2004, Kyle McMartin <kyle@{debian.org,parisc-linux.org}>
8  *
9  *     Based on the previous Harmony incarnations by,
10  *       Copyright 2000 (c) Linuxcare Canada, Alex deVries
11  *       Copyright 2000-2003 (c) Helge Deller
12  *       Copyright 2001 (c) Matthieu Delahaye
13  *       Copyright 2001 (c) Jean-Christophe Vaugeois
14  *       Copyright 2003 (c) Laurent Canet
15  *       Copyright 2004 (c) Stuart Brady
16  *
17  * Notes:
18  *   - graveyard and silence buffers last for lifetime of
19  *     the driver. playback and capture buffers are allocated
20  *     per _open()/_close().
21  *
22  * TODO:
23  */
24 
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/time.h>
28 #include <linux/wait.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/interrupt.h>
32 #include <linux/spinlock.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/io.h>
35 
36 #include <sound/core.h>
37 #include <sound/pcm.h>
38 #include <sound/control.h>
39 #include <sound/rawmidi.h>
40 #include <sound/initval.h>
41 #include <sound/info.h>
42 
43 #include <asm/hardware.h>
44 #include <asm/parisc-device.h>
45 
46 #include "harmony.h"
47 
48 static int index = SNDRV_DEFAULT_IDX1;	/* Index 0-MAX */
49 static char *id = SNDRV_DEFAULT_STR1;	/* ID for this card */
50 module_param(index, int, 0444);
51 MODULE_PARM_DESC(index, "Index value for Harmony driver.");
52 module_param(id, charp, 0444);
53 MODULE_PARM_DESC(id, "ID string for Harmony driver.");
54 
55 
56 static const struct parisc_device_id snd_harmony_devtable[] __initconst = {
57 	/* bushmaster / flounder */
58 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007A },
59 	/* 712 / 715 */
60 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007B },
61 	/* pace */
62 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007E },
63 	/* outfield / coral II */
64 	{ HPHW_FIO, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x0007F },
65 	{ 0, }
66 };
67 
68 MODULE_DEVICE_TABLE(parisc, snd_harmony_devtable);
69 
70 #define NAME "harmony"
71 #define PFX  NAME ": "
72 
73 static const unsigned int snd_harmony_rates[] = {
74 	5512, 6615, 8000, 9600,
75 	11025, 16000, 18900, 22050,
76 	27428, 32000, 33075, 37800,
77 	44100, 48000
78 };
79 
80 static const unsigned int rate_bits[14] = {
81 	HARMONY_SR_5KHZ, HARMONY_SR_6KHZ, HARMONY_SR_8KHZ,
82 	HARMONY_SR_9KHZ, HARMONY_SR_11KHZ, HARMONY_SR_16KHZ,
83 	HARMONY_SR_18KHZ, HARMONY_SR_22KHZ, HARMONY_SR_27KHZ,
84 	HARMONY_SR_32KHZ, HARMONY_SR_33KHZ, HARMONY_SR_37KHZ,
85 	HARMONY_SR_44KHZ, HARMONY_SR_48KHZ
86 };
87 
88 static const struct snd_pcm_hw_constraint_list hw_constraint_rates = {
89 	.count = ARRAY_SIZE(snd_harmony_rates),
90 	.list = snd_harmony_rates,
91 	.mask = 0,
92 };
93 
94 static inline unsigned long
95 harmony_read(struct snd_harmony *h, unsigned r)
96 {
97 	return __raw_readl(h->iobase + r);
98 }
99 
100 static inline void
101 harmony_write(struct snd_harmony *h, unsigned r, unsigned long v)
102 {
103 	__raw_writel(v, h->iobase + r);
104 }
105 
106 static inline void
107 harmony_wait_for_control(struct snd_harmony *h)
108 {
109 	while (harmony_read(h, HARMONY_CNTL) & HARMONY_CNTL_C) ;
110 }
111 
112 static inline void
113 harmony_reset(struct snd_harmony *h)
114 {
115 	harmony_write(h, HARMONY_RESET, 1);
116 	mdelay(50);
117 	harmony_write(h, HARMONY_RESET, 0);
118 }
119 
120 static void
121 harmony_disable_interrupts(struct snd_harmony *h)
122 {
123 	u32 dstatus;
124 	harmony_wait_for_control(h);
125 	dstatus = harmony_read(h, HARMONY_DSTATUS);
126 	dstatus &= ~HARMONY_DSTATUS_IE;
127 	harmony_write(h, HARMONY_DSTATUS, dstatus);
128 }
129 
130 static void
131 harmony_enable_interrupts(struct snd_harmony *h)
132 {
133 	u32 dstatus;
134 	harmony_wait_for_control(h);
135 	dstatus = harmony_read(h, HARMONY_DSTATUS);
136 	dstatus |= HARMONY_DSTATUS_IE;
137 	harmony_write(h, HARMONY_DSTATUS, dstatus);
138 }
139 
140 static void
141 harmony_mute(struct snd_harmony *h)
142 {
143 	unsigned long flags;
144 
145 	spin_lock_irqsave(&h->mixer_lock, flags);
146 	harmony_wait_for_control(h);
147 	harmony_write(h, HARMONY_GAINCTL, HARMONY_GAIN_SILENCE);
148 	spin_unlock_irqrestore(&h->mixer_lock, flags);
149 }
150 
151 static void
152 harmony_unmute(struct snd_harmony *h)
153 {
154 	unsigned long flags;
155 
156 	spin_lock_irqsave(&h->mixer_lock, flags);
157 	harmony_wait_for_control(h);
158 	harmony_write(h, HARMONY_GAINCTL, h->st.gain);
159 	spin_unlock_irqrestore(&h->mixer_lock, flags);
160 }
161 
162 static void
163 harmony_set_control(struct snd_harmony *h)
164 {
165 	u32 ctrl;
166 	unsigned long flags;
167 
168 	spin_lock_irqsave(&h->lock, flags);
169 
170 	ctrl = (HARMONY_CNTL_C      |
171 		(h->st.format << 6) |
172 		(h->st.stereo << 5) |
173 		(h->st.rate));
174 
175 	harmony_wait_for_control(h);
176 	harmony_write(h, HARMONY_CNTL, ctrl);
177 
178 	spin_unlock_irqrestore(&h->lock, flags);
179 }
180 
181 static irqreturn_t
182 snd_harmony_interrupt(int irq, void *dev)
183 {
184 	u32 dstatus;
185 	struct snd_harmony *h = dev;
186 
187 	spin_lock(&h->lock);
188 	harmony_disable_interrupts(h);
189 	harmony_wait_for_control(h);
190 	dstatus = harmony_read(h, HARMONY_DSTATUS);
191 	spin_unlock(&h->lock);
192 
193 	if (dstatus & HARMONY_DSTATUS_PN) {
194 		if (h->psubs && h->st.playing) {
195 			spin_lock(&h->lock);
196 			h->pbuf.buf += h->pbuf.count; /* PAGE_SIZE */
197 			h->pbuf.buf %= h->pbuf.size; /* MAX_BUFS*PAGE_SIZE */
198 
199 			harmony_write(h, HARMONY_PNXTADD,
200 				      h->pbuf.addr + h->pbuf.buf);
201 			h->stats.play_intr++;
202 			spin_unlock(&h->lock);
203                         snd_pcm_period_elapsed(h->psubs);
204 		} else {
205 			spin_lock(&h->lock);
206 			harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
207 			h->stats.silence_intr++;
208 			spin_unlock(&h->lock);
209 		}
210 	}
211 
212 	if (dstatus & HARMONY_DSTATUS_RN) {
213 		if (h->csubs && h->st.capturing) {
214 			spin_lock(&h->lock);
215 			h->cbuf.buf += h->cbuf.count;
216 			h->cbuf.buf %= h->cbuf.size;
217 
218 			harmony_write(h, HARMONY_RNXTADD,
219 				      h->cbuf.addr + h->cbuf.buf);
220 			h->stats.rec_intr++;
221 			spin_unlock(&h->lock);
222                         snd_pcm_period_elapsed(h->csubs);
223 		} else {
224 			spin_lock(&h->lock);
225 			harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
226 			h->stats.graveyard_intr++;
227 			spin_unlock(&h->lock);
228 		}
229 	}
230 
231 	spin_lock(&h->lock);
232 	harmony_enable_interrupts(h);
233 	spin_unlock(&h->lock);
234 
235 	return IRQ_HANDLED;
236 }
237 
238 static unsigned int
239 snd_harmony_rate_bits(int rate)
240 {
241 	unsigned int i;
242 
243 	for (i = 0; i < ARRAY_SIZE(snd_harmony_rates); i++)
244 		if (snd_harmony_rates[i] == rate)
245 			return rate_bits[i];
246 
247 	return HARMONY_SR_44KHZ;
248 }
249 
250 static const struct snd_pcm_hardware snd_harmony_playback =
251 {
252 	.info =	(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
253 		 SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
254 		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
255 	.formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
256 		    SNDRV_PCM_FMTBIT_A_LAW),
257 	.rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
258 		  SNDRV_PCM_RATE_KNOT),
259 	.rate_min = 5512,
260 	.rate_max = 48000,
261 	.channels_min =	1,
262 	.channels_max =	2,
263 	.buffer_bytes_max = MAX_BUF_SIZE,
264 	.period_bytes_min = BUF_SIZE,
265 	.period_bytes_max = BUF_SIZE,
266 	.periods_min = 1,
267 	.periods_max = MAX_BUFS,
268 	.fifo_size = 0,
269 };
270 
271 static const struct snd_pcm_hardware snd_harmony_capture =
272 {
273         .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
274                  SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP_VALID |
275                  SNDRV_PCM_INFO_BLOCK_TRANSFER),
276         .formats = (SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_MU_LAW |
277                     SNDRV_PCM_FMTBIT_A_LAW),
278         .rates = (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000 |
279 		  SNDRV_PCM_RATE_KNOT),
280         .rate_min = 5512,
281         .rate_max = 48000,
282         .channels_min = 1,
283         .channels_max = 2,
284         .buffer_bytes_max = MAX_BUF_SIZE,
285         .period_bytes_min = BUF_SIZE,
286         .period_bytes_max = BUF_SIZE,
287         .periods_min = 1,
288         .periods_max = MAX_BUFS,
289         .fifo_size = 0,
290 };
291 
292 static int
293 snd_harmony_playback_trigger(struct snd_pcm_substream *ss, int cmd)
294 {
295 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
296 
297 	if (h->st.capturing)
298 		return -EBUSY;
299 
300 	spin_lock(&h->lock);
301 	switch (cmd) {
302 	case SNDRV_PCM_TRIGGER_START:
303 		h->st.playing = 1;
304 		harmony_write(h, HARMONY_PNXTADD, h->pbuf.addr);
305 		harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
306 		harmony_unmute(h);
307 		harmony_enable_interrupts(h);
308 		break;
309 	case SNDRV_PCM_TRIGGER_STOP:
310 		h->st.playing = 0;
311 		harmony_mute(h);
312 		harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
313 		harmony_disable_interrupts(h);
314 		break;
315 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
316 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
317 	case SNDRV_PCM_TRIGGER_SUSPEND:
318 	default:
319 		spin_unlock(&h->lock);
320 		snd_BUG();
321 		return -EINVAL;
322 	}
323 	spin_unlock(&h->lock);
324 
325 	return 0;
326 }
327 
328 static int
329 snd_harmony_capture_trigger(struct snd_pcm_substream *ss, int cmd)
330 {
331         struct snd_harmony *h = snd_pcm_substream_chip(ss);
332 
333 	if (h->st.playing)
334 		return -EBUSY;
335 
336 	spin_lock(&h->lock);
337         switch (cmd) {
338         case SNDRV_PCM_TRIGGER_START:
339 		h->st.capturing = 1;
340                 harmony_write(h, HARMONY_PNXTADD, h->sdma.addr);
341                 harmony_write(h, HARMONY_RNXTADD, h->cbuf.addr);
342 		harmony_unmute(h);
343                 harmony_enable_interrupts(h);
344 		break;
345         case SNDRV_PCM_TRIGGER_STOP:
346 		h->st.capturing = 0;
347 		harmony_mute(h);
348 		harmony_write(h, HARMONY_RNXTADD, h->gdma.addr);
349 		harmony_disable_interrupts(h);
350 		break;
351         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
352         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
353         case SNDRV_PCM_TRIGGER_SUSPEND:
354 	default:
355 		spin_unlock(&h->lock);
356 		snd_BUG();
357                 return -EINVAL;
358         }
359 	spin_unlock(&h->lock);
360 
361         return 0;
362 }
363 
364 static int
365 snd_harmony_set_data_format(struct snd_harmony *h, int fmt, int force)
366 {
367 	int o = h->st.format;
368 	int n;
369 
370 	switch(fmt) {
371 	case SNDRV_PCM_FORMAT_S16_BE:
372 		n = HARMONY_DF_16BIT_LINEAR;
373 		break;
374 	case SNDRV_PCM_FORMAT_A_LAW:
375 		n = HARMONY_DF_8BIT_ALAW;
376 		break;
377 	case SNDRV_PCM_FORMAT_MU_LAW:
378 		n = HARMONY_DF_8BIT_ULAW;
379 		break;
380 	default:
381 		n = HARMONY_DF_16BIT_LINEAR;
382 		break;
383 	}
384 
385 	if (force || o != n) {
386 		snd_pcm_format_set_silence(fmt, h->sdma.area, SILENCE_BUFSZ /
387 					   (snd_pcm_format_physical_width(fmt)
388 					    / 8));
389 	}
390 
391 	return n;
392 }
393 
394 static int
395 snd_harmony_playback_prepare(struct snd_pcm_substream *ss)
396 {
397 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
398 	struct snd_pcm_runtime *rt = ss->runtime;
399 
400 	if (h->st.capturing)
401 		return -EBUSY;
402 
403 	h->pbuf.size = snd_pcm_lib_buffer_bytes(ss);
404 	h->pbuf.count = snd_pcm_lib_period_bytes(ss);
405 	if (h->pbuf.buf >= h->pbuf.size)
406 		h->pbuf.buf = 0;
407 	h->st.playing = 0;
408 
409 	h->st.rate = snd_harmony_rate_bits(rt->rate);
410 	h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
411 
412 	if (rt->channels == 2)
413 		h->st.stereo = HARMONY_SS_STEREO;
414 	else
415 		h->st.stereo = HARMONY_SS_MONO;
416 
417 	harmony_set_control(h);
418 
419 	h->pbuf.addr = rt->dma_addr;
420 
421 	return 0;
422 }
423 
424 static int
425 snd_harmony_capture_prepare(struct snd_pcm_substream *ss)
426 {
427         struct snd_harmony *h = snd_pcm_substream_chip(ss);
428         struct snd_pcm_runtime *rt = ss->runtime;
429 
430 	if (h->st.playing)
431 		return -EBUSY;
432 
433         h->cbuf.size = snd_pcm_lib_buffer_bytes(ss);
434         h->cbuf.count = snd_pcm_lib_period_bytes(ss);
435 	if (h->cbuf.buf >= h->cbuf.size)
436 	        h->cbuf.buf = 0;
437 	h->st.capturing = 0;
438 
439         h->st.rate = snd_harmony_rate_bits(rt->rate);
440         h->st.format = snd_harmony_set_data_format(h, rt->format, 0);
441 
442         if (rt->channels == 2)
443                 h->st.stereo = HARMONY_SS_STEREO;
444         else
445                 h->st.stereo = HARMONY_SS_MONO;
446 
447         harmony_set_control(h);
448 
449         h->cbuf.addr = rt->dma_addr;
450 
451         return 0;
452 }
453 
454 static snd_pcm_uframes_t
455 snd_harmony_playback_pointer(struct snd_pcm_substream *ss)
456 {
457 	struct snd_pcm_runtime *rt = ss->runtime;
458 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
459 	unsigned long pcuradd;
460 	unsigned long played;
461 
462 	if (!(h->st.playing) || (h->psubs == NULL))
463 		return 0;
464 
465 	if ((h->pbuf.addr == 0) || (h->pbuf.size == 0))
466 		return 0;
467 
468 	pcuradd = harmony_read(h, HARMONY_PCURADD);
469 	played = pcuradd - h->pbuf.addr;
470 
471 #ifdef HARMONY_DEBUG
472 	printk(KERN_DEBUG PFX "playback_pointer is 0x%lx-0x%lx = %d bytes\n",
473 	       pcuradd, h->pbuf.addr, played);
474 #endif
475 
476 	if (pcuradd > h->pbuf.addr + h->pbuf.size) {
477 		return 0;
478 	}
479 
480 	return bytes_to_frames(rt, played);
481 }
482 
483 static snd_pcm_uframes_t
484 snd_harmony_capture_pointer(struct snd_pcm_substream *ss)
485 {
486         struct snd_pcm_runtime *rt = ss->runtime;
487         struct snd_harmony *h = snd_pcm_substream_chip(ss);
488         unsigned long rcuradd;
489         unsigned long caught;
490 
491         if (!(h->st.capturing) || (h->csubs == NULL))
492                 return 0;
493 
494         if ((h->cbuf.addr == 0) || (h->cbuf.size == 0))
495                 return 0;
496 
497         rcuradd = harmony_read(h, HARMONY_RCURADD);
498         caught = rcuradd - h->cbuf.addr;
499 
500 #ifdef HARMONY_DEBUG
501         printk(KERN_DEBUG PFX "capture_pointer is 0x%lx-0x%lx = %d bytes\n",
502                rcuradd, h->cbuf.addr, caught);
503 #endif
504 
505         if (rcuradd > h->cbuf.addr + h->cbuf.size) {
506 		return 0;
507 	}
508 
509         return bytes_to_frames(rt, caught);
510 }
511 
512 static int
513 snd_harmony_playback_open(struct snd_pcm_substream *ss)
514 {
515 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
516 	struct snd_pcm_runtime *rt = ss->runtime;
517 	int err;
518 
519 	h->psubs = ss;
520 	rt->hw = snd_harmony_playback;
521 	snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
522 				   &hw_constraint_rates);
523 
524 	err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
525 	if (err < 0)
526 		return err;
527 
528 	return 0;
529 }
530 
531 static int
532 snd_harmony_capture_open(struct snd_pcm_substream *ss)
533 {
534         struct snd_harmony *h = snd_pcm_substream_chip(ss);
535         struct snd_pcm_runtime *rt = ss->runtime;
536         int err;
537 
538         h->csubs = ss;
539         rt->hw = snd_harmony_capture;
540         snd_pcm_hw_constraint_list(rt, 0, SNDRV_PCM_HW_PARAM_RATE,
541                                    &hw_constraint_rates);
542 
543         err = snd_pcm_hw_constraint_integer(rt, SNDRV_PCM_HW_PARAM_PERIODS);
544         if (err < 0)
545                 return err;
546 
547         return 0;
548 }
549 
550 static int
551 snd_harmony_playback_close(struct snd_pcm_substream *ss)
552 {
553 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
554 	h->psubs = NULL;
555 	return 0;
556 }
557 
558 static int
559 snd_harmony_capture_close(struct snd_pcm_substream *ss)
560 {
561         struct snd_harmony *h = snd_pcm_substream_chip(ss);
562         h->csubs = NULL;
563         return 0;
564 }
565 
566 static int
567 snd_harmony_hw_params(struct snd_pcm_substream *ss,
568 		      struct snd_pcm_hw_params *hw)
569 {
570 	struct snd_harmony *h = snd_pcm_substream_chip(ss);
571 
572 	if (h->dma.type == SNDRV_DMA_TYPE_CONTINUOUS)
573 		ss->runtime->dma_addr = __pa(ss->runtime->dma_area);
574 
575 	return 0;
576 }
577 
578 static const struct snd_pcm_ops snd_harmony_playback_ops = {
579 	.open =	snd_harmony_playback_open,
580 	.close = snd_harmony_playback_close,
581 	.hw_params = snd_harmony_hw_params,
582 	.prepare = snd_harmony_playback_prepare,
583 	.trigger = snd_harmony_playback_trigger,
584  	.pointer = snd_harmony_playback_pointer,
585 };
586 
587 static const struct snd_pcm_ops snd_harmony_capture_ops = {
588         .open = snd_harmony_capture_open,
589         .close = snd_harmony_capture_close,
590         .hw_params = snd_harmony_hw_params,
591         .prepare = snd_harmony_capture_prepare,
592         .trigger = snd_harmony_capture_trigger,
593         .pointer = snd_harmony_capture_pointer,
594 };
595 
596 static int
597 snd_harmony_pcm_init(struct snd_harmony *h)
598 {
599 	struct snd_pcm *pcm;
600 	int err;
601 
602 	if (snd_BUG_ON(!h))
603 		return -EINVAL;
604 
605 	harmony_disable_interrupts(h);
606 
607    	err = snd_pcm_new(h->card, "harmony", 0, 1, 1, &pcm);
608 	if (err < 0)
609 		return err;
610 
611 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
612 			&snd_harmony_playback_ops);
613 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
614 			&snd_harmony_capture_ops);
615 
616 	pcm->private_data = h;
617 	pcm->info_flags = 0;
618 	strcpy(pcm->name, "harmony");
619 	h->pcm = pcm;
620 
621 	h->psubs = NULL;
622 	h->csubs = NULL;
623 
624 	/* initialize graveyard buffer */
625 	h->dma.type = SNDRV_DMA_TYPE_DEV;
626 	h->dma.dev = &h->dev->dev;
627 	err = snd_dma_alloc_pages(h->dma.type,
628 				  h->dma.dev,
629 				  BUF_SIZE*GRAVEYARD_BUFS,
630 				  &h->gdma);
631 	if (err < 0) {
632 		printk(KERN_ERR PFX "cannot allocate graveyard buffer!\n");
633 		return err;
634 	}
635 
636 	/* initialize silence buffers */
637 	err = snd_dma_alloc_pages(h->dma.type,
638 				  h->dma.dev,
639 				  BUF_SIZE*SILENCE_BUFS,
640 				  &h->sdma);
641 	if (err < 0) {
642 		printk(KERN_ERR PFX "cannot allocate silence buffer!\n");
643 		return err;
644 	}
645 
646 	/* pre-allocate space for DMA */
647 	snd_pcm_set_managed_buffer_all(pcm, h->dma.type, h->dma.dev,
648 				       MAX_BUF_SIZE, MAX_BUF_SIZE);
649 
650 	h->st.format = snd_harmony_set_data_format(h,
651 		SNDRV_PCM_FORMAT_S16_BE, 1);
652 
653 	return 0;
654 }
655 
656 static void
657 snd_harmony_set_new_gain(struct snd_harmony *h)
658 {
659  	harmony_wait_for_control(h);
660 	harmony_write(h, HARMONY_GAINCTL, h->st.gain);
661 }
662 
663 static int
664 snd_harmony_mixercontrol_info(struct snd_kcontrol *kc,
665 			      struct snd_ctl_elem_info *uinfo)
666 {
667 	int mask = (kc->private_value >> 16) & 0xff;
668 	int left_shift = (kc->private_value) & 0xff;
669 	int right_shift = (kc->private_value >> 8) & 0xff;
670 
671 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN :
672 		       SNDRV_CTL_ELEM_TYPE_INTEGER;
673 	uinfo->count = left_shift == right_shift ? 1 : 2;
674 	uinfo->value.integer.min = 0;
675 	uinfo->value.integer.max = mask;
676 
677 	return 0;
678 }
679 
680 static int
681 snd_harmony_volume_get(struct snd_kcontrol *kc,
682 		       struct snd_ctl_elem_value *ucontrol)
683 {
684 	struct snd_harmony *h = snd_kcontrol_chip(kc);
685 	int shift_left = (kc->private_value) & 0xff;
686 	int shift_right = (kc->private_value >> 8) & 0xff;
687 	int mask = (kc->private_value >> 16) & 0xff;
688 	int invert = (kc->private_value >> 24) & 0xff;
689 	int left, right;
690 
691 	spin_lock_irq(&h->mixer_lock);
692 
693 	left = (h->st.gain >> shift_left) & mask;
694 	right = (h->st.gain >> shift_right) & mask;
695 	if (invert) {
696 		left = mask - left;
697 		right = mask - right;
698 	}
699 
700 	ucontrol->value.integer.value[0] = left;
701 	if (shift_left != shift_right)
702 		ucontrol->value.integer.value[1] = right;
703 
704 	spin_unlock_irq(&h->mixer_lock);
705 
706 	return 0;
707 }
708 
709 static int
710 snd_harmony_volume_put(struct snd_kcontrol *kc,
711 		       struct snd_ctl_elem_value *ucontrol)
712 {
713 	struct snd_harmony *h = snd_kcontrol_chip(kc);
714 	int shift_left = (kc->private_value) & 0xff;
715 	int shift_right = (kc->private_value >> 8) & 0xff;
716 	int mask = (kc->private_value >> 16) & 0xff;
717 	int invert = (kc->private_value >> 24) & 0xff;
718 	int left, right;
719 	int old_gain = h->st.gain;
720 
721 	spin_lock_irq(&h->mixer_lock);
722 
723 	left = ucontrol->value.integer.value[0] & mask;
724 	if (invert)
725 		left = mask - left;
726 	h->st.gain &= ~( (mask << shift_left ) );
727  	h->st.gain |= (left << shift_left);
728 
729 	if (shift_left != shift_right) {
730 		right = ucontrol->value.integer.value[1] & mask;
731 		if (invert)
732 			right = mask - right;
733 		h->st.gain &= ~( (mask << shift_right) );
734 		h->st.gain |= (right << shift_right);
735 	}
736 
737 	snd_harmony_set_new_gain(h);
738 
739 	spin_unlock_irq(&h->mixer_lock);
740 
741 	return h->st.gain != old_gain;
742 }
743 
744 static int
745 snd_harmony_captureroute_info(struct snd_kcontrol *kc,
746 			      struct snd_ctl_elem_info *uinfo)
747 {
748 	static const char * const texts[2] = { "Line", "Mic" };
749 
750 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
751 }
752 
753 static int
754 snd_harmony_captureroute_get(struct snd_kcontrol *kc,
755 			     struct snd_ctl_elem_value *ucontrol)
756 {
757 	struct snd_harmony *h = snd_kcontrol_chip(kc);
758 	int value;
759 
760 	spin_lock_irq(&h->mixer_lock);
761 
762 	value = (h->st.gain >> HARMONY_GAIN_IS_SHIFT) & 1;
763 	ucontrol->value.enumerated.item[0] = value;
764 
765 	spin_unlock_irq(&h->mixer_lock);
766 
767 	return 0;
768 }
769 
770 static int
771 snd_harmony_captureroute_put(struct snd_kcontrol *kc,
772 			     struct snd_ctl_elem_value *ucontrol)
773 {
774 	struct snd_harmony *h = snd_kcontrol_chip(kc);
775 	int value;
776 	int old_gain = h->st.gain;
777 
778 	spin_lock_irq(&h->mixer_lock);
779 
780 	value = ucontrol->value.enumerated.item[0] & 1;
781 	h->st.gain &= ~HARMONY_GAIN_IS_MASK;
782  	h->st.gain |= value << HARMONY_GAIN_IS_SHIFT;
783 
784 	snd_harmony_set_new_gain(h);
785 
786 	spin_unlock_irq(&h->mixer_lock);
787 
788 	return h->st.gain != old_gain;
789 }
790 
791 #define HARMONY_CONTROLS	ARRAY_SIZE(snd_harmony_controls)
792 
793 #define HARMONY_VOLUME(xname, left_shift, right_shift, mask, invert) \
794 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname,                \
795   .info = snd_harmony_mixercontrol_info,                             \
796   .get = snd_harmony_volume_get, .put = snd_harmony_volume_put,      \
797   .private_value = ((left_shift) | ((right_shift) << 8) |            \
798                    ((mask) << 16) | ((invert) << 24)) }
799 
800 static const struct snd_kcontrol_new snd_harmony_controls[] = {
801 	HARMONY_VOLUME("Master Playback Volume", HARMONY_GAIN_LO_SHIFT,
802 		       HARMONY_GAIN_RO_SHIFT, HARMONY_GAIN_OUT, 1),
803 	HARMONY_VOLUME("Capture Volume", HARMONY_GAIN_LI_SHIFT,
804 		       HARMONY_GAIN_RI_SHIFT, HARMONY_GAIN_IN, 0),
805 	HARMONY_VOLUME("Monitor Volume", HARMONY_GAIN_MA_SHIFT,
806 		       HARMONY_GAIN_MA_SHIFT, HARMONY_GAIN_MA, 1),
807 	{
808 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
809 		.name = "Input Route",
810 		.info = snd_harmony_captureroute_info,
811 		.get = snd_harmony_captureroute_get,
812 		.put = snd_harmony_captureroute_put
813 	},
814 	HARMONY_VOLUME("Internal Speaker Switch", HARMONY_GAIN_SE_SHIFT,
815 		       HARMONY_GAIN_SE_SHIFT, 1, 0),
816 	HARMONY_VOLUME("Line-Out Switch", HARMONY_GAIN_LE_SHIFT,
817 		       HARMONY_GAIN_LE_SHIFT, 1, 0),
818 	HARMONY_VOLUME("Headphones Switch", HARMONY_GAIN_HE_SHIFT,
819 		       HARMONY_GAIN_HE_SHIFT, 1, 0),
820 };
821 
822 static void
823 snd_harmony_mixer_reset(struct snd_harmony *h)
824 {
825 	harmony_mute(h);
826 	harmony_reset(h);
827 	h->st.gain = HARMONY_GAIN_DEFAULT;
828 	harmony_unmute(h);
829 }
830 
831 static int
832 snd_harmony_mixer_init(struct snd_harmony *h)
833 {
834 	struct snd_card *card;
835 	int idx, err;
836 
837 	if (snd_BUG_ON(!h))
838 		return -EINVAL;
839 	card = h->card;
840 	strcpy(card->mixername, "Harmony Gain control interface");
841 
842 	for (idx = 0; idx < HARMONY_CONTROLS; idx++) {
843 		err = snd_ctl_add(card,
844 				  snd_ctl_new1(&snd_harmony_controls[idx], h));
845 		if (err < 0)
846 			return err;
847 	}
848 
849 	snd_harmony_mixer_reset(h);
850 
851 	return 0;
852 }
853 
854 static int
855 snd_harmony_free(struct snd_harmony *h)
856 {
857         if (h->gdma.addr)
858                 snd_dma_free_pages(&h->gdma);
859         if (h->sdma.addr)
860                 snd_dma_free_pages(&h->sdma);
861 
862 	if (h->irq >= 0)
863 		free_irq(h->irq, h);
864 
865 	iounmap(h->iobase);
866 	kfree(h);
867 	return 0;
868 }
869 
870 static int
871 snd_harmony_dev_free(struct snd_device *dev)
872 {
873 	struct snd_harmony *h = dev->device_data;
874 	return snd_harmony_free(h);
875 }
876 
877 static int
878 snd_harmony_create(struct snd_card *card,
879 		   struct parisc_device *padev,
880 		   struct snd_harmony **rchip)
881 {
882 	int err;
883 	struct snd_harmony *h;
884 	static const struct snd_device_ops ops = {
885 		.dev_free = snd_harmony_dev_free,
886 	};
887 
888 	*rchip = NULL;
889 
890 	h = kzalloc(sizeof(*h), GFP_KERNEL);
891 	if (h == NULL)
892 		return -ENOMEM;
893 
894 	h->hpa = padev->hpa.start;
895 	h->card = card;
896 	h->dev = padev;
897 	h->irq = -1;
898 	h->iobase = ioremap(padev->hpa.start, HARMONY_SIZE);
899 	if (h->iobase == NULL) {
900 		printk(KERN_ERR PFX "unable to remap hpa 0x%lx\n",
901 		       (unsigned long)padev->hpa.start);
902 		err = -EBUSY;
903 		goto free_and_ret;
904 	}
905 
906 	err = request_irq(padev->irq, snd_harmony_interrupt, 0,
907 			  "harmony", h);
908 	if (err) {
909 		printk(KERN_ERR PFX "could not obtain interrupt %d",
910 		       padev->irq);
911 		goto free_and_ret;
912 	}
913 	h->irq = padev->irq;
914 
915 	spin_lock_init(&h->mixer_lock);
916 	spin_lock_init(&h->lock);
917 
918         if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
919                                   h, &ops)) < 0) {
920                 goto free_and_ret;
921         }
922 
923 	*rchip = h;
924 
925 	return 0;
926 
927 free_and_ret:
928 	snd_harmony_free(h);
929 	return err;
930 }
931 
932 static int __init
933 snd_harmony_probe(struct parisc_device *padev)
934 {
935 	int err;
936 	struct snd_card *card;
937 	struct snd_harmony *h;
938 
939 	err = snd_card_new(&padev->dev, index, id, THIS_MODULE, 0, &card);
940 	if (err < 0)
941 		return err;
942 
943 	err = snd_harmony_create(card, padev, &h);
944 	if (err < 0)
945 		goto free_and_ret;
946 
947 	err = snd_harmony_pcm_init(h);
948 	if (err < 0)
949 		goto free_and_ret;
950 
951 	err = snd_harmony_mixer_init(h);
952 	if (err < 0)
953 		goto free_and_ret;
954 
955 	strcpy(card->driver, "harmony");
956 	strcpy(card->shortname, "Harmony");
957 	sprintf(card->longname, "%s at 0x%lx, irq %i",
958 		card->shortname, h->hpa, h->irq);
959 
960 	err = snd_card_register(card);
961 	if (err < 0)
962 		goto free_and_ret;
963 
964 	parisc_set_drvdata(padev, card);
965 	return 0;
966 
967 free_and_ret:
968 	snd_card_free(card);
969 	return err;
970 }
971 
972 static int __exit
973 snd_harmony_remove(struct parisc_device *padev)
974 {
975 	snd_card_free(parisc_get_drvdata(padev));
976 	return 0;
977 }
978 
979 static struct parisc_driver snd_harmony_driver __refdata = {
980 	.name = "harmony",
981 	.id_table = snd_harmony_devtable,
982 	.probe = snd_harmony_probe,
983 	.remove = __exit_p(snd_harmony_remove),
984 };
985 
986 static int __init
987 alsa_harmony_init(void)
988 {
989 	return register_parisc_driver(&snd_harmony_driver);
990 }
991 
992 static void __exit
993 alsa_harmony_fini(void)
994 {
995 	unregister_parisc_driver(&snd_harmony_driver);
996 }
997 
998 MODULE_LICENSE("GPL");
999 MODULE_AUTHOR("Kyle McMartin <kyle@parisc-linux.org>");
1000 MODULE_DESCRIPTION("Harmony sound driver");
1001 
1002 module_init(alsa_harmony_init);
1003 module_exit(alsa_harmony_fini);
1004