xref: /linux/sound/mips/hal2.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Driver for A2 audio system used in SGI machines
4  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
5  *
6  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
7  *  was based on code from Ulf Carlsson
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/platform_device.h>
14 #include <linux/io.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 
18 #include <asm/sgi/hpc3.h>
19 #include <asm/sgi/ip22.h>
20 
21 #include <sound/core.h>
22 #include <sound/control.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm-indirect.h>
25 #include <sound/initval.h>
26 
27 #include "hal2.h"
28 
29 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
30 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
31 
32 module_param(index, int, 0444);
33 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
34 module_param(id, charp, 0444);
35 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
36 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
37 MODULE_AUTHOR("Thomas Bogendoerfer");
38 MODULE_LICENSE("GPL");
39 
40 
41 #define H2_BLOCK_SIZE	1024
42 #define H2_BUF_SIZE	16384
43 
44 struct hal2_pbus {
45 	struct hpc3_pbus_dmacregs *pbus;
46 	int pbusnr;
47 	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
48 };
49 
50 struct hal2_desc {
51 	struct hpc_dma_desc desc;
52 	u32 pad;			/* padding */
53 };
54 
55 struct hal2_codec {
56 	struct snd_pcm_indirect pcm_indirect;
57 	struct snd_pcm_substream *substream;
58 
59 	unsigned char *buffer;
60 	dma_addr_t buffer_dma;
61 	struct hal2_desc *desc;
62 	dma_addr_t desc_dma;
63 	int desc_count;
64 	struct hal2_pbus pbus;
65 	int voices;			/* mono/stereo */
66 	unsigned int sample_rate;
67 	unsigned int master;		/* Master frequency */
68 	unsigned short mod;		/* MOD value */
69 	unsigned short inc;		/* INC value */
70 };
71 
72 #define H2_MIX_OUTPUT_ATT	0
73 #define H2_MIX_INPUT_GAIN	1
74 
75 struct snd_hal2 {
76 	struct snd_card *card;
77 
78 	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
79 	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
80 	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
81 	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
82 
83 	struct hal2_codec dac;
84 	struct hal2_codec adc;
85 };
86 
87 #define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
88 
89 #define H2_READ_ADDR(addr)	(addr | (1<<7))
90 #define H2_WRITE_ADDR(addr)	(addr)
91 
92 static inline u32 hal2_read(u32 *reg)
93 {
94 	return __raw_readl(reg);
95 }
96 
97 static inline void hal2_write(u32 val, u32 *reg)
98 {
99 	__raw_writel(val, reg);
100 }
101 
102 
103 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
104 {
105 	u32 ret;
106 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
107 
108 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
109 	H2_INDIRECT_WAIT(regs);
110 	ret = hal2_read(&regs->idr0) & 0xffff;
111 	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
112 	H2_INDIRECT_WAIT(regs);
113 	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
114 	return ret;
115 }
116 
117 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
118 {
119 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
120 
121 	hal2_write(val, &regs->idr0);
122 	hal2_write(0, &regs->idr1);
123 	hal2_write(0, &regs->idr2);
124 	hal2_write(0, &regs->idr3);
125 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
126 	H2_INDIRECT_WAIT(regs);
127 }
128 
129 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
130 {
131 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
132 
133 	hal2_write(val & 0xffff, &regs->idr0);
134 	hal2_write(val >> 16, &regs->idr1);
135 	hal2_write(0, &regs->idr2);
136 	hal2_write(0, &regs->idr3);
137 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138 	H2_INDIRECT_WAIT(regs);
139 }
140 
141 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
142 {
143 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
144 
145 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
146 	H2_INDIRECT_WAIT(regs);
147 	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
148 	hal2_write(0, &regs->idr1);
149 	hal2_write(0, &regs->idr2);
150 	hal2_write(0, &regs->idr3);
151 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
152 	H2_INDIRECT_WAIT(regs);
153 }
154 
155 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
156 {
157 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
158 
159 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
160 	H2_INDIRECT_WAIT(regs);
161 	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
162 	hal2_write(0, &regs->idr1);
163 	hal2_write(0, &regs->idr2);
164 	hal2_write(0, &regs->idr3);
165 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
166 	H2_INDIRECT_WAIT(regs);
167 }
168 
169 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
170 			       struct snd_ctl_elem_info *uinfo)
171 {
172 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
173 	uinfo->count = 2;
174 	uinfo->value.integer.min = 0;
175 	switch ((int)kcontrol->private_value) {
176 	case H2_MIX_OUTPUT_ATT:
177 		uinfo->value.integer.max = 31;
178 		break;
179 	case H2_MIX_INPUT_GAIN:
180 		uinfo->value.integer.max = 15;
181 		break;
182 	}
183 	return 0;
184 }
185 
186 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
187 			       struct snd_ctl_elem_value *ucontrol)
188 {
189 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
190 	u32 tmp;
191 	int l, r;
192 
193 	switch ((int)kcontrol->private_value) {
194 	case H2_MIX_OUTPUT_ATT:
195 		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
196 		if (tmp & H2I_C2_MUTE) {
197 			l = 0;
198 			r = 0;
199 		} else {
200 			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
201 			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
202 		}
203 		break;
204 	case H2_MIX_INPUT_GAIN:
205 		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
206 		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
207 		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
208 		break;
209 	default:
210 		return -EINVAL;
211 	}
212 	ucontrol->value.integer.value[0] = l;
213 	ucontrol->value.integer.value[1] = r;
214 
215 	return 0;
216 }
217 
218 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
219 			 struct snd_ctl_elem_value *ucontrol)
220 {
221 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
222 	u32 old, new;
223 	int l, r;
224 
225 	l = ucontrol->value.integer.value[0];
226 	r = ucontrol->value.integer.value[1];
227 
228 	switch ((int)kcontrol->private_value) {
229 	case H2_MIX_OUTPUT_ATT:
230 		old = hal2_i_read32(hal2, H2I_DAC_C2);
231 		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
232 		if (l | r) {
233 			l = 31 - l;
234 			r = 31 - r;
235 			new |= (l << H2I_C2_L_ATT_SHIFT);
236 			new |= (r << H2I_C2_R_ATT_SHIFT);
237 		} else
238 			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
239 		hal2_i_write32(hal2, H2I_DAC_C2, new);
240 		break;
241 	case H2_MIX_INPUT_GAIN:
242 		old = hal2_i_read32(hal2, H2I_ADC_C2);
243 		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
244 		new |= (l << H2I_C2_L_GAIN_SHIFT);
245 		new |= (r << H2I_C2_R_GAIN_SHIFT);
246 		hal2_i_write32(hal2, H2I_ADC_C2, new);
247 		break;
248 	default:
249 		return -EINVAL;
250 	}
251 	return old != new;
252 }
253 
254 static const struct snd_kcontrol_new hal2_ctrl_headphone = {
255 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
256 	.name           = "Headphone Playback Volume",
257 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
258 	.private_value  = H2_MIX_OUTPUT_ATT,
259 	.info           = hal2_gain_info,
260 	.get            = hal2_gain_get,
261 	.put            = hal2_gain_put,
262 };
263 
264 static const struct snd_kcontrol_new hal2_ctrl_mic = {
265 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
266 	.name           = "Mic Capture Volume",
267 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
268 	.private_value  = H2_MIX_INPUT_GAIN,
269 	.info           = hal2_gain_info,
270 	.get            = hal2_gain_get,
271 	.put            = hal2_gain_put,
272 };
273 
274 static int hal2_mixer_create(struct snd_hal2 *hal2)
275 {
276 	int err;
277 
278 	/* mute DAC */
279 	hal2_i_write32(hal2, H2I_DAC_C2,
280 		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
281 	/* mute ADC */
282 	hal2_i_write32(hal2, H2I_ADC_C2, 0);
283 
284 	err = snd_ctl_add(hal2->card,
285 			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
286 	if (err < 0)
287 		return err;
288 
289 	err = snd_ctl_add(hal2->card,
290 			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
291 	if (err < 0)
292 		return err;
293 
294 	return 0;
295 }
296 
297 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
298 {
299 	struct snd_hal2 *hal2 = dev_id;
300 	irqreturn_t ret = IRQ_NONE;
301 
302 	/* decide what caused this interrupt */
303 	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
304 		snd_pcm_period_elapsed(hal2->dac.substream);
305 		ret = IRQ_HANDLED;
306 	}
307 	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
308 		snd_pcm_period_elapsed(hal2->adc.substream);
309 		ret = IRQ_HANDLED;
310 	}
311 	return ret;
312 }
313 
314 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
315 {
316 	unsigned short mod;
317 
318 	if (44100 % rate < 48000 % rate) {
319 		mod = 4 * 44100 / rate;
320 		codec->master = 44100;
321 	} else {
322 		mod = 4 * 48000 / rate;
323 		codec->master = 48000;
324 	}
325 
326 	codec->inc = 4;
327 	codec->mod = mod;
328 	rate = 4 * codec->master / mod;
329 
330 	return rate;
331 }
332 
333 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
334 {
335 	unsigned int master = hal2->dac.master;
336 	int inc = hal2->dac.inc;
337 	int mod = hal2->dac.mod;
338 
339 	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
340 	hal2_i_write32(hal2, H2I_BRES1_C2,
341 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
342 }
343 
344 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
345 {
346 	unsigned int master = hal2->adc.master;
347 	int inc = hal2->adc.inc;
348 	int mod = hal2->adc.mod;
349 
350 	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
351 	hal2_i_write32(hal2, H2I_BRES2_C2,
352 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
353 }
354 
355 static void hal2_setup_dac(struct snd_hal2 *hal2)
356 {
357 	unsigned int fifobeg, fifoend, highwater, sample_size;
358 	struct hal2_pbus *pbus = &hal2->dac.pbus;
359 
360 	/* Now we set up some PBUS information. The PBUS needs information about
361 	 * what portion of the fifo it will use. If it's receiving or
362 	 * transmitting, and finally whether the stream is little endian or big
363 	 * endian. The information is written later, on the start call.
364 	 */
365 	sample_size = 2 * hal2->dac.voices;
366 	/* Fifo should be set to hold exactly four samples. Highwater mark
367 	 * should be set to two samples. */
368 	highwater = (sample_size * 2) >> 1;	/* halfwords */
369 	fifobeg = 0;				/* playback is first */
370 	fifoend = (sample_size * 4) >> 3;	/* doublewords */
371 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
372 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
373 	/* We disable everything before we do anything at all */
374 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
375 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
376 	/* Setup the HAL2 for playback */
377 	hal2_set_dac_rate(hal2);
378 	/* Set endianess */
379 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
380 	/* Set DMA bus */
381 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
382 	/* We are using 1st Bresenham clock generator for playback */
383 	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
384 			| (1 << H2I_C1_CLKID_SHIFT)
385 			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
386 }
387 
388 static void hal2_setup_adc(struct snd_hal2 *hal2)
389 {
390 	unsigned int fifobeg, fifoend, highwater, sample_size;
391 	struct hal2_pbus *pbus = &hal2->adc.pbus;
392 
393 	sample_size = 2 * hal2->adc.voices;
394 	highwater = (sample_size * 2) >> 1;		/* halfwords */
395 	fifobeg = (4 * 4) >> 3;				/* record is second */
396 	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
397 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
398 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
399 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
400 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
401 	/* Setup the HAL2 for record */
402 	hal2_set_adc_rate(hal2);
403 	/* Set endianess */
404 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
405 	/* Set DMA bus */
406 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
407 	/* We are using 2nd Bresenham clock generator for record */
408 	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
409 			| (2 << H2I_C1_CLKID_SHIFT)
410 			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
411 }
412 
413 static void hal2_start_dac(struct snd_hal2 *hal2)
414 {
415 	struct hal2_pbus *pbus = &hal2->dac.pbus;
416 
417 	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
418 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
419 	/* enable DAC */
420 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
421 }
422 
423 static void hal2_start_adc(struct snd_hal2 *hal2)
424 {
425 	struct hal2_pbus *pbus = &hal2->adc.pbus;
426 
427 	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
428 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
429 	/* enable ADC */
430 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
431 }
432 
433 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
434 {
435 	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
436 	/* The HAL2 itself may remain enabled safely */
437 }
438 
439 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
440 {
441 	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
442 }
443 
444 static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec,
445 		enum dma_data_direction buffer_dir)
446 {
447 	struct device *dev = hal2->card->dev;
448 	struct hal2_desc *desc;
449 	dma_addr_t desc_dma, buffer_dma;
450 	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
451 	int i;
452 
453 	codec->buffer = dma_alloc_noncoherent(dev, H2_BUF_SIZE, &buffer_dma,
454 					buffer_dir, GFP_KERNEL);
455 	if (!codec->buffer)
456 		return -ENOMEM;
457 	desc = dma_alloc_noncoherent(dev, count * sizeof(struct hal2_desc),
458 			&desc_dma, DMA_BIDIRECTIONAL, GFP_KERNEL);
459 	if (!desc) {
460 		dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, buffer_dma,
461 				buffer_dir);
462 		return -ENOMEM;
463 	}
464 	codec->buffer_dma = buffer_dma;
465 	codec->desc_dma = desc_dma;
466 	codec->desc = desc;
467 	for (i = 0; i < count; i++) {
468 		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
469 		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
470 		desc->desc.pnext = (i == count - 1) ?
471 		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
472 		desc++;
473 	}
474 	dma_sync_single_for_device(dev, codec->desc_dma,
475 				   count * sizeof(struct hal2_desc),
476 				   DMA_BIDIRECTIONAL);
477 	codec->desc_count = count;
478 	return 0;
479 }
480 
481 static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec,
482 		enum dma_data_direction buffer_dir)
483 {
484 	struct device *dev = hal2->card->dev;
485 
486 	dma_free_noncoherent(dev, codec->desc_count * sizeof(struct hal2_desc),
487 		       codec->desc, codec->desc_dma, DMA_BIDIRECTIONAL);
488 	dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
489 			buffer_dir);
490 }
491 
492 static const struct snd_pcm_hardware hal2_pcm_hw = {
493 	.info = (SNDRV_PCM_INFO_MMAP |
494 		 SNDRV_PCM_INFO_MMAP_VALID |
495 		 SNDRV_PCM_INFO_INTERLEAVED |
496 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
497 		 SNDRV_PCM_INFO_SYNC_APPLPTR),
498 	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
499 	.rates =            SNDRV_PCM_RATE_8000_48000,
500 	.rate_min =         8000,
501 	.rate_max =         48000,
502 	.channels_min =     2,
503 	.channels_max =     2,
504 	.buffer_bytes_max = 65536,
505 	.period_bytes_min = 1024,
506 	.period_bytes_max = 65536,
507 	.periods_min =      2,
508 	.periods_max =      1024,
509 };
510 
511 static int hal2_playback_open(struct snd_pcm_substream *substream)
512 {
513 	struct snd_pcm_runtime *runtime = substream->runtime;
514 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
515 
516 	runtime->hw = hal2_pcm_hw;
517 	return hal2_alloc_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE);
518 }
519 
520 static int hal2_playback_close(struct snd_pcm_substream *substream)
521 {
522 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
523 
524 	hal2_free_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE);
525 	return 0;
526 }
527 
528 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
529 {
530 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
531 	struct snd_pcm_runtime *runtime = substream->runtime;
532 	struct hal2_codec *dac = &hal2->dac;
533 
534 	dac->voices = runtime->channels;
535 	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
536 	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
537 	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
538 	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
539 	dac->pcm_indirect.hw_io = dac->buffer_dma;
540 	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
541 	dac->substream = substream;
542 	hal2_setup_dac(hal2);
543 	return 0;
544 }
545 
546 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
547 {
548 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
549 
550 	switch (cmd) {
551 	case SNDRV_PCM_TRIGGER_START:
552 		hal2_start_dac(hal2);
553 		break;
554 	case SNDRV_PCM_TRIGGER_STOP:
555 		hal2_stop_dac(hal2);
556 		break;
557 	default:
558 		return -EINVAL;
559 	}
560 	return 0;
561 }
562 
563 static snd_pcm_uframes_t
564 hal2_playback_pointer(struct snd_pcm_substream *substream)
565 {
566 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
567 	struct hal2_codec *dac = &hal2->dac;
568 
569 	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
570 						 dac->pbus.pbus->pbdma_bptr);
571 }
572 
573 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
574 				   struct snd_pcm_indirect *rec, size_t bytes)
575 {
576 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
577 	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
578 
579 	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
580 	dma_sync_single_for_device(hal2->card->dev,
581 			hal2->dac.buffer_dma + rec->hw_data, bytes,
582 			DMA_TO_DEVICE);
583 
584 }
585 
586 static int hal2_playback_ack(struct snd_pcm_substream *substream)
587 {
588 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
589 	struct hal2_codec *dac = &hal2->dac;
590 
591 	return snd_pcm_indirect_playback_transfer(substream,
592 						  &dac->pcm_indirect,
593 						  hal2_playback_transfer);
594 }
595 
596 static int hal2_capture_open(struct snd_pcm_substream *substream)
597 {
598 	struct snd_pcm_runtime *runtime = substream->runtime;
599 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
600 
601 	runtime->hw = hal2_pcm_hw;
602 	return hal2_alloc_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE);
603 }
604 
605 static int hal2_capture_close(struct snd_pcm_substream *substream)
606 {
607 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
608 
609 	hal2_free_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE);
610 	return 0;
611 }
612 
613 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
614 {
615 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
616 	struct snd_pcm_runtime *runtime = substream->runtime;
617 	struct hal2_codec *adc = &hal2->adc;
618 
619 	adc->voices = runtime->channels;
620 	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
621 	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
622 	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
623 	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
624 	adc->pcm_indirect.hw_io = adc->buffer_dma;
625 	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
626 	adc->substream = substream;
627 	hal2_setup_adc(hal2);
628 	return 0;
629 }
630 
631 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
632 {
633 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
634 
635 	switch (cmd) {
636 	case SNDRV_PCM_TRIGGER_START:
637 		hal2_start_adc(hal2);
638 		break;
639 	case SNDRV_PCM_TRIGGER_STOP:
640 		hal2_stop_adc(hal2);
641 		break;
642 	default:
643 		return -EINVAL;
644 	}
645 	return 0;
646 }
647 
648 static snd_pcm_uframes_t
649 hal2_capture_pointer(struct snd_pcm_substream *substream)
650 {
651 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
652 	struct hal2_codec *adc = &hal2->adc;
653 
654 	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
655 						adc->pbus.pbus->pbdma_bptr);
656 }
657 
658 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
659 				  struct snd_pcm_indirect *rec, size_t bytes)
660 {
661 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
662 	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
663 
664 	dma_sync_single_for_cpu(hal2->card->dev,
665 			hal2->adc.buffer_dma + rec->hw_data, bytes,
666 			DMA_FROM_DEVICE);
667 	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
668 }
669 
670 static int hal2_capture_ack(struct snd_pcm_substream *substream)
671 {
672 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
673 	struct hal2_codec *adc = &hal2->adc;
674 
675 	return snd_pcm_indirect_capture_transfer(substream,
676 						 &adc->pcm_indirect,
677 						 hal2_capture_transfer);
678 }
679 
680 static const struct snd_pcm_ops hal2_playback_ops = {
681 	.open =        hal2_playback_open,
682 	.close =       hal2_playback_close,
683 	.prepare =     hal2_playback_prepare,
684 	.trigger =     hal2_playback_trigger,
685 	.pointer =     hal2_playback_pointer,
686 	.ack =         hal2_playback_ack,
687 };
688 
689 static const struct snd_pcm_ops hal2_capture_ops = {
690 	.open =        hal2_capture_open,
691 	.close =       hal2_capture_close,
692 	.prepare =     hal2_capture_prepare,
693 	.trigger =     hal2_capture_trigger,
694 	.pointer =     hal2_capture_pointer,
695 	.ack =         hal2_capture_ack,
696 };
697 
698 static int hal2_pcm_create(struct snd_hal2 *hal2)
699 {
700 	struct snd_pcm *pcm;
701 	int err;
702 
703 	/* create first pcm device with one outputs and one input */
704 	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
705 	if (err < 0)
706 		return err;
707 
708 	pcm->private_data = hal2;
709 	strcpy(pcm->name, "SGI HAL2");
710 
711 	/* set operators */
712 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
713 			&hal2_playback_ops);
714 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
715 			&hal2_capture_ops);
716 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
717 				       NULL, 0, 1024 * 1024);
718 
719 	return 0;
720 }
721 
722 static int hal2_dev_free(struct snd_device *device)
723 {
724 	struct snd_hal2 *hal2 = device->device_data;
725 
726 	free_irq(SGI_HPCDMA_IRQ, hal2);
727 	kfree(hal2);
728 	return 0;
729 }
730 
731 static const struct snd_device_ops hal2_ops = {
732 	.dev_free = hal2_dev_free,
733 };
734 
735 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
736 			    int index)
737 {
738 	codec->pbus.pbusnr = index;
739 	codec->pbus.pbus = &hpc3->pbdma[index];
740 }
741 
742 static int hal2_detect(struct snd_hal2 *hal2)
743 {
744 	unsigned short board, major, minor;
745 	unsigned short rev;
746 
747 	/* reset HAL2 */
748 	hal2_write(0, &hal2->ctl_regs->isr);
749 
750 	/* release reset */
751 	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
752 		   &hal2->ctl_regs->isr);
753 
754 
755 	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
756 	rev = hal2_read(&hal2->ctl_regs->rev);
757 	if (rev & H2_REV_AUDIO_PRESENT)
758 		return -ENODEV;
759 
760 	board = (rev & H2_REV_BOARD_M) >> 12;
761 	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
762 	minor = (rev & H2_REV_MINOR_CHIP_M);
763 
764 	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
765 	       board, major, minor);
766 
767 	return 0;
768 }
769 
770 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
771 {
772 	struct snd_hal2 *hal2;
773 	struct hpc3_regs *hpc3 = hpc3c0;
774 	int err;
775 
776 	hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL);
777 	if (!hal2)
778 		return -ENOMEM;
779 
780 	hal2->card = card;
781 
782 	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
783 			"SGI HAL2", hal2)) {
784 		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
785 		kfree(hal2);
786 		return -EAGAIN;
787 	}
788 
789 	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
790 	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
791 	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
792 	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
793 
794 	if (hal2_detect(hal2) < 0) {
795 		kfree(hal2);
796 		return -ENODEV;
797 	}
798 
799 	hal2_init_codec(&hal2->dac, hpc3, 0);
800 	hal2_init_codec(&hal2->adc, hpc3, 1);
801 
802 	/*
803 	 * All DMA channel interfaces in HAL2 are designed to operate with
804 	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
805 	 * in D5. HAL2 is a 16-bit device which can accept both big and little
806 	 * endian format. It assumes that even address bytes are on high
807 	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
808 	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
809 	 */
810 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
811 			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
812 			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
813 			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
814 			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
815 			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
816 				HPC3_DMACFG_DS16 | \
817 				HPC3_DMACFG_EVENHI | \
818 				HPC3_DMACFG_RTIME | \
819 			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
820 				HPC3_DMACFG_DRQLIVE)
821 	/*
822 	 * Ignore what's mentioned in the specification and write value which
823 	 * works in The Real World (TM)
824 	 */
825 	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
826 	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
827 
828 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
829 	if (err < 0) {
830 		free_irq(SGI_HPCDMA_IRQ, hal2);
831 		kfree(hal2);
832 		return err;
833 	}
834 	*rchip = hal2;
835 	return 0;
836 }
837 
838 static int hal2_probe(struct platform_device *pdev)
839 {
840 	struct snd_card *card;
841 	struct snd_hal2 *chip;
842 	int err;
843 
844 	err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
845 	if (err < 0)
846 		return err;
847 
848 	err = hal2_create(card, &chip);
849 	if (err < 0) {
850 		snd_card_free(card);
851 		return err;
852 	}
853 
854 	err = hal2_pcm_create(chip);
855 	if (err < 0) {
856 		snd_card_free(card);
857 		return err;
858 	}
859 	err = hal2_mixer_create(chip);
860 	if (err < 0) {
861 		snd_card_free(card);
862 		return err;
863 	}
864 
865 	strcpy(card->driver, "SGI HAL2 Audio");
866 	strcpy(card->shortname, "SGI HAL2 Audio");
867 	sprintf(card->longname, "%s irq %i",
868 		card->shortname,
869 		SGI_HPCDMA_IRQ);
870 
871 	err = snd_card_register(card);
872 	if (err < 0) {
873 		snd_card_free(card);
874 		return err;
875 	}
876 	platform_set_drvdata(pdev, card);
877 	return 0;
878 }
879 
880 static void hal2_remove(struct platform_device *pdev)
881 {
882 	struct snd_card *card = platform_get_drvdata(pdev);
883 
884 	snd_card_free(card);
885 }
886 
887 static struct platform_driver hal2_driver = {
888 	.probe	= hal2_probe,
889 	.remove_new = hal2_remove,
890 	.driver = {
891 		.name	= "sgihal2",
892 	}
893 };
894 
895 module_platform_driver(hal2_driver);
896