xref: /linux/sound/firewire/fireworks/fireworks_pcm.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fireworks_pcm.c - a part of driver for Fireworks based devices
4  *
5  * Copyright (c) 2009-2010 Clemens Ladisch
6  * Copyright (c) 2013-2014 Takashi Sakamoto
7  */
8 #include "./fireworks.h"
9 
10 /*
11  * NOTE:
12  * Fireworks changes its AMDTP channels for PCM data according to its sampling
13  * rate. There are three modes. Here _XX is either _rx or _tx.
14  *  0:  32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
15  *  1:  88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
16  *  2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
17  *
18  * The number of PCM channels for analog input and output are always fixed but
19  * the number of PCM channels for digital input and output are differed.
20  *
21  * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
22  * model, the number of PCM channels for digital input has more restriction
23  * depending on which digital interface is selected.
24  *  - S/PDIF coaxial and optical	: use input 1-2
25  *  - ADAT optical at 32.0-48.0 kHz	: use input 1-8
26  *  - ADAT optical at 88.2-96.0 kHz	: use input 1-4 (S/MUX format)
27  *
28  * The data in AMDTP channels for blank PCM channels are zero.
29  */
30 static const unsigned int freq_table[] = {
31 	/* multiplier mode 0 */
32 	[0] = 32000,
33 	[1] = 44100,
34 	[2] = 48000,
35 	/* multiplier mode 1 */
36 	[3] = 88200,
37 	[4] = 96000,
38 	/* multiplier mode 2 */
39 	[5] = 176400,
40 	[6] = 192000,
41 };
42 
43 static inline unsigned int
44 get_multiplier_mode_with_index(unsigned int index)
45 {
46 	return ((int)index - 1) / 2;
47 }
48 
49 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
50 {
51 	unsigned int i;
52 
53 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
54 		if (freq_table[i] == sampling_rate) {
55 			*mode = get_multiplier_mode_with_index(i);
56 			return 0;
57 		}
58 	}
59 
60 	return -EINVAL;
61 }
62 
63 static int
64 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
65 {
66 	unsigned int *pcm_channels = rule->private;
67 	struct snd_interval *r =
68 		hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
69 	const struct snd_interval *c =
70 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
71 	struct snd_interval t = {
72 		.min = UINT_MAX, .max = 0, .integer = 1
73 	};
74 	unsigned int i, mode;
75 
76 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
77 		mode = get_multiplier_mode_with_index(i);
78 		if (!snd_interval_test(c, pcm_channels[mode]))
79 			continue;
80 
81 		t.min = min(t.min, freq_table[i]);
82 		t.max = max(t.max, freq_table[i]);
83 	}
84 
85 	return snd_interval_refine(r, &t);
86 }
87 
88 static int
89 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
90 {
91 	unsigned int *pcm_channels = rule->private;
92 	struct snd_interval *c =
93 		hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
94 	const struct snd_interval *r =
95 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
96 	struct snd_interval t = {
97 		.min = UINT_MAX, .max = 0, .integer = 1
98 	};
99 	unsigned int i, mode;
100 
101 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
102 		mode = get_multiplier_mode_with_index(i);
103 		if (!snd_interval_test(r, freq_table[i]))
104 			continue;
105 
106 		t.min = min(t.min, pcm_channels[mode]);
107 		t.max = max(t.max, pcm_channels[mode]);
108 	}
109 
110 	return snd_interval_refine(c, &t);
111 }
112 
113 static void
114 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
115 {
116 	unsigned int i, mode;
117 
118 	hw->channels_min = UINT_MAX;
119 	hw->channels_max = 0;
120 
121 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
122 		mode = get_multiplier_mode_with_index(i);
123 		if (pcm_channels[mode] == 0)
124 			continue;
125 
126 		hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
127 		hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
128 	}
129 }
130 
131 static int
132 pcm_init_hw_params(struct snd_efw *efw,
133 		   struct snd_pcm_substream *substream)
134 {
135 	struct snd_pcm_runtime *runtime = substream->runtime;
136 	struct amdtp_stream *s;
137 	unsigned int *pcm_channels;
138 	int err;
139 
140 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
141 		runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
142 		s = &efw->tx_stream;
143 		pcm_channels = efw->pcm_capture_channels;
144 	} else {
145 		runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
146 		s = &efw->rx_stream;
147 		pcm_channels = efw->pcm_playback_channels;
148 	}
149 
150 	/* limit rates */
151 	runtime->hw.rates = efw->supported_sampling_rate;
152 	snd_pcm_limit_hw_rates(runtime);
153 
154 	limit_channels(&runtime->hw, pcm_channels);
155 
156 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
157 				  hw_rule_channels, pcm_channels,
158 				  SNDRV_PCM_HW_PARAM_RATE, -1);
159 	if (err < 0)
160 		goto end;
161 
162 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
163 				  hw_rule_rate, pcm_channels,
164 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
165 	if (err < 0)
166 		goto end;
167 
168 	err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
169 end:
170 	return err;
171 }
172 
173 static int pcm_open(struct snd_pcm_substream *substream)
174 {
175 	struct snd_efw *efw = substream->private_data;
176 	struct amdtp_domain *d = &efw->domain;
177 	enum snd_efw_clock_source clock_source;
178 	int err;
179 
180 	err = snd_efw_stream_lock_try(efw);
181 	if (err < 0)
182 		return err;
183 
184 	err = pcm_init_hw_params(efw, substream);
185 	if (err < 0)
186 		goto err_locked;
187 
188 	err = snd_efw_command_get_clock_source(efw, &clock_source);
189 	if (err < 0)
190 		goto err_locked;
191 
192 	mutex_lock(&efw->mutex);
193 
194 	// When source of clock is not internal or any stream is reserved for
195 	// transmission of PCM frames, the available sampling rate is limited
196 	// at current one.
197 	if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
198 	    (efw->substreams_counter > 0 && d->events_per_period > 0)) {
199 		unsigned int frames_per_period = d->events_per_period;
200 		unsigned int frames_per_buffer = d->events_per_buffer;
201 		unsigned int sampling_rate;
202 
203 		err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
204 		if (err < 0) {
205 			mutex_unlock(&efw->mutex);
206 			goto err_locked;
207 		}
208 		substream->runtime->hw.rate_min = sampling_rate;
209 		substream->runtime->hw.rate_max = sampling_rate;
210 
211 		if (frames_per_period > 0) {
212 			err = snd_pcm_hw_constraint_minmax(substream->runtime,
213 					SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
214 					frames_per_period, frames_per_period);
215 			if (err < 0) {
216 				mutex_unlock(&efw->mutex);
217 				goto err_locked;
218 			}
219 
220 			err = snd_pcm_hw_constraint_minmax(substream->runtime,
221 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
222 					frames_per_buffer, frames_per_buffer);
223 			if (err < 0) {
224 				mutex_unlock(&efw->mutex);
225 				goto err_locked;
226 			}
227 		}
228 	}
229 
230 	mutex_unlock(&efw->mutex);
231 
232 	snd_pcm_set_sync(substream);
233 
234 	return 0;
235 err_locked:
236 	snd_efw_stream_lock_release(efw);
237 	return err;
238 }
239 
240 static int pcm_close(struct snd_pcm_substream *substream)
241 {
242 	struct snd_efw *efw = substream->private_data;
243 	snd_efw_stream_lock_release(efw);
244 	return 0;
245 }
246 
247 static int pcm_hw_params(struct snd_pcm_substream *substream,
248 				 struct snd_pcm_hw_params *hw_params)
249 {
250 	struct snd_efw *efw = substream->private_data;
251 	int err = 0;
252 
253 	if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) {
254 		unsigned int rate = params_rate(hw_params);
255 		unsigned int frames_per_period = params_period_size(hw_params);
256 		unsigned int frames_per_buffer = params_buffer_size(hw_params);
257 
258 		mutex_lock(&efw->mutex);
259 		err = snd_efw_stream_reserve_duplex(efw, rate,
260 					frames_per_period, frames_per_buffer);
261 		if (err >= 0)
262 			++efw->substreams_counter;
263 		mutex_unlock(&efw->mutex);
264 	}
265 
266 	return err;
267 }
268 
269 static int pcm_hw_free(struct snd_pcm_substream *substream)
270 {
271 	struct snd_efw *efw = substream->private_data;
272 
273 	mutex_lock(&efw->mutex);
274 
275 	if (substream->runtime->state != SNDRV_PCM_STATE_OPEN)
276 		--efw->substreams_counter;
277 
278 	snd_efw_stream_stop_duplex(efw);
279 
280 	mutex_unlock(&efw->mutex);
281 
282 	return 0;
283 }
284 
285 static int pcm_capture_prepare(struct snd_pcm_substream *substream)
286 {
287 	struct snd_efw *efw = substream->private_data;
288 	int err;
289 
290 	err = snd_efw_stream_start_duplex(efw);
291 	if (err >= 0)
292 		amdtp_stream_pcm_prepare(&efw->tx_stream);
293 
294 	return err;
295 }
296 static int pcm_playback_prepare(struct snd_pcm_substream *substream)
297 {
298 	struct snd_efw *efw = substream->private_data;
299 	int err;
300 
301 	err = snd_efw_stream_start_duplex(efw);
302 	if (err >= 0)
303 		amdtp_stream_pcm_prepare(&efw->rx_stream);
304 
305 	return err;
306 }
307 
308 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
309 {
310 	struct snd_efw *efw = substream->private_data;
311 
312 	switch (cmd) {
313 	case SNDRV_PCM_TRIGGER_START:
314 		amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
315 		break;
316 	case SNDRV_PCM_TRIGGER_STOP:
317 		amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
318 		break;
319 	default:
320 		return -EINVAL;
321 	}
322 
323 	return 0;
324 }
325 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
326 {
327 	struct snd_efw *efw = substream->private_data;
328 
329 	switch (cmd) {
330 	case SNDRV_PCM_TRIGGER_START:
331 		amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
332 		break;
333 	case SNDRV_PCM_TRIGGER_STOP:
334 		amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
335 		break;
336 	default:
337 		return -EINVAL;
338 	}
339 
340 	return 0;
341 }
342 
343 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
344 {
345 	struct snd_efw *efw = sbstrm->private_data;
346 
347 	return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream);
348 }
349 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
350 {
351 	struct snd_efw *efw = sbstrm->private_data;
352 
353 	return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream);
354 }
355 
356 static int pcm_capture_ack(struct snd_pcm_substream *substream)
357 {
358 	struct snd_efw *efw = substream->private_data;
359 
360 	return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream);
361 }
362 
363 static int pcm_playback_ack(struct snd_pcm_substream *substream)
364 {
365 	struct snd_efw *efw = substream->private_data;
366 
367 	return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream);
368 }
369 
370 int snd_efw_create_pcm_devices(struct snd_efw *efw)
371 {
372 	static const struct snd_pcm_ops capture_ops = {
373 		.open		= pcm_open,
374 		.close		= pcm_close,
375 		.hw_params	= pcm_hw_params,
376 		.hw_free	= pcm_hw_free,
377 		.prepare	= pcm_capture_prepare,
378 		.trigger	= pcm_capture_trigger,
379 		.pointer	= pcm_capture_pointer,
380 		.ack		= pcm_capture_ack,
381 	};
382 	static const struct snd_pcm_ops playback_ops = {
383 		.open		= pcm_open,
384 		.close		= pcm_close,
385 		.hw_params	= pcm_hw_params,
386 		.hw_free	= pcm_hw_free,
387 		.prepare	= pcm_playback_prepare,
388 		.trigger	= pcm_playback_trigger,
389 		.pointer	= pcm_playback_pointer,
390 		.ack		= pcm_playback_ack,
391 	};
392 	struct snd_pcm *pcm;
393 	int err;
394 
395 	err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
396 	if (err < 0)
397 		goto end;
398 
399 	pcm->private_data = efw;
400 	snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
401 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
402 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
403 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0);
404 end:
405 	return err;
406 }
407 
408