1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fireworks_pcm.c - a part of driver for Fireworks based devices 4 * 5 * Copyright (c) 2009-2010 Clemens Ladisch 6 * Copyright (c) 2013-2014 Takashi Sakamoto 7 */ 8 #include "./fireworks.h" 9 10 /* 11 * NOTE: 12 * Fireworks changes its AMDTP channels for PCM data according to its sampling 13 * rate. There are three modes. Here _XX is either _rx or _tx. 14 * 0: 32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied 15 * 1: 88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied 16 * 2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied 17 * 18 * The number of PCM channels for analog input and output are always fixed but 19 * the number of PCM channels for digital input and output are differed. 20 * 21 * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some 22 * model, the number of PCM channels for digital input has more restriction 23 * depending on which digital interface is selected. 24 * - S/PDIF coaxial and optical : use input 1-2 25 * - ADAT optical at 32.0-48.0 kHz : use input 1-8 26 * - ADAT optical at 88.2-96.0 kHz : use input 1-4 (S/MUX format) 27 * 28 * The data in AMDTP channels for blank PCM channels are zero. 29 */ 30 static const unsigned int freq_table[] = { 31 /* multiplier mode 0 */ 32 [0] = 32000, 33 [1] = 44100, 34 [2] = 48000, 35 /* multiplier mode 1 */ 36 [3] = 88200, 37 [4] = 96000, 38 /* multiplier mode 2 */ 39 [5] = 176400, 40 [6] = 192000, 41 }; 42 43 static inline unsigned int 44 get_multiplier_mode_with_index(unsigned int index) 45 { 46 return ((int)index - 1) / 2; 47 } 48 49 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode) 50 { 51 unsigned int i; 52 53 for (i = 0; i < ARRAY_SIZE(freq_table); i++) { 54 if (freq_table[i] == sampling_rate) { 55 *mode = get_multiplier_mode_with_index(i); 56 return 0; 57 } 58 } 59 60 return -EINVAL; 61 } 62 63 static int 64 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 65 { 66 unsigned int *pcm_channels = rule->private; 67 struct snd_interval *r = 68 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 69 const struct snd_interval *c = 70 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS); 71 struct snd_interval t = { 72 .min = UINT_MAX, .max = 0, .integer = 1 73 }; 74 unsigned int i, mode; 75 76 for (i = 0; i < ARRAY_SIZE(freq_table); i++) { 77 mode = get_multiplier_mode_with_index(i); 78 if (!snd_interval_test(c, pcm_channels[mode])) 79 continue; 80 81 t.min = min(t.min, freq_table[i]); 82 t.max = max(t.max, freq_table[i]); 83 } 84 85 return snd_interval_refine(r, &t); 86 } 87 88 static int 89 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 90 { 91 unsigned int *pcm_channels = rule->private; 92 struct snd_interval *c = 93 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS); 94 const struct snd_interval *r = 95 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 96 struct snd_interval t = { 97 .min = UINT_MAX, .max = 0, .integer = 1 98 }; 99 unsigned int i, mode; 100 101 for (i = 0; i < ARRAY_SIZE(freq_table); i++) { 102 mode = get_multiplier_mode_with_index(i); 103 if (!snd_interval_test(r, freq_table[i])) 104 continue; 105 106 t.min = min(t.min, pcm_channels[mode]); 107 t.max = max(t.max, pcm_channels[mode]); 108 } 109 110 return snd_interval_refine(c, &t); 111 } 112 113 static void 114 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels) 115 { 116 unsigned int i, mode; 117 118 hw->channels_min = UINT_MAX; 119 hw->channels_max = 0; 120 121 for (i = 0; i < ARRAY_SIZE(freq_table); i++) { 122 mode = get_multiplier_mode_with_index(i); 123 if (pcm_channels[mode] == 0) 124 continue; 125 126 hw->channels_min = min(hw->channels_min, pcm_channels[mode]); 127 hw->channels_max = max(hw->channels_max, pcm_channels[mode]); 128 } 129 } 130 131 static int 132 pcm_init_hw_params(struct snd_efw *efw, 133 struct snd_pcm_substream *substream) 134 { 135 struct snd_pcm_runtime *runtime = substream->runtime; 136 struct amdtp_stream *s; 137 unsigned int *pcm_channels; 138 int err; 139 140 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) { 141 runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS; 142 s = &efw->tx_stream; 143 pcm_channels = efw->pcm_capture_channels; 144 } else { 145 runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS; 146 s = &efw->rx_stream; 147 pcm_channels = efw->pcm_playback_channels; 148 } 149 150 /* limit rates */ 151 runtime->hw.rates = efw->supported_sampling_rate; 152 snd_pcm_limit_hw_rates(runtime); 153 154 limit_channels(&runtime->hw, pcm_channels); 155 156 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, 157 hw_rule_channels, pcm_channels, 158 SNDRV_PCM_HW_PARAM_RATE, -1); 159 if (err < 0) 160 goto end; 161 162 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 163 hw_rule_rate, pcm_channels, 164 SNDRV_PCM_HW_PARAM_CHANNELS, -1); 165 if (err < 0) 166 goto end; 167 168 err = amdtp_am824_add_pcm_hw_constraints(s, runtime); 169 end: 170 return err; 171 } 172 173 static int pcm_open(struct snd_pcm_substream *substream) 174 { 175 struct snd_efw *efw = substream->private_data; 176 struct amdtp_domain *d = &efw->domain; 177 enum snd_efw_clock_source clock_source; 178 int err; 179 180 err = snd_efw_stream_lock_try(efw); 181 if (err < 0) 182 return err; 183 184 err = pcm_init_hw_params(efw, substream); 185 if (err < 0) 186 goto err_locked; 187 188 err = snd_efw_command_get_clock_source(efw, &clock_source); 189 if (err < 0) 190 goto err_locked; 191 192 mutex_lock(&efw->mutex); 193 194 // When source of clock is not internal or any stream is reserved for 195 // transmission of PCM frames, the available sampling rate is limited 196 // at current one. 197 if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) || 198 (efw->substreams_counter > 0 && d->events_per_period > 0)) { 199 unsigned int frames_per_period = d->events_per_period; 200 unsigned int frames_per_buffer = d->events_per_buffer; 201 unsigned int sampling_rate; 202 203 err = snd_efw_command_get_sampling_rate(efw, &sampling_rate); 204 if (err < 0) { 205 mutex_unlock(&efw->mutex); 206 goto err_locked; 207 } 208 substream->runtime->hw.rate_min = sampling_rate; 209 substream->runtime->hw.rate_max = sampling_rate; 210 211 if (frames_per_period > 0) { 212 err = snd_pcm_hw_constraint_minmax(substream->runtime, 213 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 214 frames_per_period, frames_per_period); 215 if (err < 0) { 216 mutex_unlock(&efw->mutex); 217 goto err_locked; 218 } 219 220 err = snd_pcm_hw_constraint_minmax(substream->runtime, 221 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 222 frames_per_buffer, frames_per_buffer); 223 if (err < 0) { 224 mutex_unlock(&efw->mutex); 225 goto err_locked; 226 } 227 } 228 } 229 230 mutex_unlock(&efw->mutex); 231 232 snd_pcm_set_sync(substream); 233 234 return 0; 235 err_locked: 236 snd_efw_stream_lock_release(efw); 237 return err; 238 } 239 240 static int pcm_close(struct snd_pcm_substream *substream) 241 { 242 struct snd_efw *efw = substream->private_data; 243 snd_efw_stream_lock_release(efw); 244 return 0; 245 } 246 247 static int pcm_hw_params(struct snd_pcm_substream *substream, 248 struct snd_pcm_hw_params *hw_params) 249 { 250 struct snd_efw *efw = substream->private_data; 251 int err = 0; 252 253 if (substream->runtime->state == SNDRV_PCM_STATE_OPEN) { 254 unsigned int rate = params_rate(hw_params); 255 unsigned int frames_per_period = params_period_size(hw_params); 256 unsigned int frames_per_buffer = params_buffer_size(hw_params); 257 258 mutex_lock(&efw->mutex); 259 err = snd_efw_stream_reserve_duplex(efw, rate, 260 frames_per_period, frames_per_buffer); 261 if (err >= 0) 262 ++efw->substreams_counter; 263 mutex_unlock(&efw->mutex); 264 } 265 266 return err; 267 } 268 269 static int pcm_hw_free(struct snd_pcm_substream *substream) 270 { 271 struct snd_efw *efw = substream->private_data; 272 273 mutex_lock(&efw->mutex); 274 275 if (substream->runtime->state != SNDRV_PCM_STATE_OPEN) 276 --efw->substreams_counter; 277 278 snd_efw_stream_stop_duplex(efw); 279 280 mutex_unlock(&efw->mutex); 281 282 return 0; 283 } 284 285 static int pcm_capture_prepare(struct snd_pcm_substream *substream) 286 { 287 struct snd_efw *efw = substream->private_data; 288 int err; 289 290 err = snd_efw_stream_start_duplex(efw); 291 if (err >= 0) 292 amdtp_stream_pcm_prepare(&efw->tx_stream); 293 294 return err; 295 } 296 static int pcm_playback_prepare(struct snd_pcm_substream *substream) 297 { 298 struct snd_efw *efw = substream->private_data; 299 int err; 300 301 err = snd_efw_stream_start_duplex(efw); 302 if (err >= 0) 303 amdtp_stream_pcm_prepare(&efw->rx_stream); 304 305 return err; 306 } 307 308 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd) 309 { 310 struct snd_efw *efw = substream->private_data; 311 312 switch (cmd) { 313 case SNDRV_PCM_TRIGGER_START: 314 amdtp_stream_pcm_trigger(&efw->tx_stream, substream); 315 break; 316 case SNDRV_PCM_TRIGGER_STOP: 317 amdtp_stream_pcm_trigger(&efw->tx_stream, NULL); 318 break; 319 default: 320 return -EINVAL; 321 } 322 323 return 0; 324 } 325 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd) 326 { 327 struct snd_efw *efw = substream->private_data; 328 329 switch (cmd) { 330 case SNDRV_PCM_TRIGGER_START: 331 amdtp_stream_pcm_trigger(&efw->rx_stream, substream); 332 break; 333 case SNDRV_PCM_TRIGGER_STOP: 334 amdtp_stream_pcm_trigger(&efw->rx_stream, NULL); 335 break; 336 default: 337 return -EINVAL; 338 } 339 340 return 0; 341 } 342 343 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm) 344 { 345 struct snd_efw *efw = sbstrm->private_data; 346 347 return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream); 348 } 349 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm) 350 { 351 struct snd_efw *efw = sbstrm->private_data; 352 353 return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream); 354 } 355 356 static int pcm_capture_ack(struct snd_pcm_substream *substream) 357 { 358 struct snd_efw *efw = substream->private_data; 359 360 return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream); 361 } 362 363 static int pcm_playback_ack(struct snd_pcm_substream *substream) 364 { 365 struct snd_efw *efw = substream->private_data; 366 367 return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream); 368 } 369 370 int snd_efw_create_pcm_devices(struct snd_efw *efw) 371 { 372 static const struct snd_pcm_ops capture_ops = { 373 .open = pcm_open, 374 .close = pcm_close, 375 .hw_params = pcm_hw_params, 376 .hw_free = pcm_hw_free, 377 .prepare = pcm_capture_prepare, 378 .trigger = pcm_capture_trigger, 379 .pointer = pcm_capture_pointer, 380 .ack = pcm_capture_ack, 381 }; 382 static const struct snd_pcm_ops playback_ops = { 383 .open = pcm_open, 384 .close = pcm_close, 385 .hw_params = pcm_hw_params, 386 .hw_free = pcm_hw_free, 387 .prepare = pcm_playback_prepare, 388 .trigger = pcm_playback_trigger, 389 .pointer = pcm_playback_pointer, 390 .ack = pcm_playback_ack, 391 }; 392 struct snd_pcm *pcm; 393 int err; 394 395 err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm); 396 if (err < 0) 397 goto end; 398 399 pcm->private_data = efw; 400 pcm->nonatomic = true; 401 snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname); 402 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops); 403 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops); 404 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0); 405 end: 406 return err; 407 } 408 409