1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 static void pcm_period_work(struct work_struct *work); 81 82 /** 83 * amdtp_stream_init - initialize an AMDTP stream structure 84 * @s: the AMDTP stream to initialize 85 * @unit: the target of the stream 86 * @dir: the direction of stream 87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 88 * @fmt: the value of fmt field in CIP header 89 * @process_ctx_payloads: callback handler to process payloads of isoc context 90 * @protocol_size: the size to allocate newly for protocol 91 */ 92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 93 enum amdtp_stream_direction dir, unsigned int flags, 94 unsigned int fmt, 95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 96 unsigned int protocol_size) 97 { 98 if (process_ctx_payloads == NULL) 99 return -EINVAL; 100 101 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 102 if (!s->protocol) 103 return -ENOMEM; 104 105 s->unit = unit; 106 s->direction = dir; 107 s->flags = flags; 108 s->context = ERR_PTR(-1); 109 mutex_init(&s->mutex); 110 INIT_WORK(&s->period_work, pcm_period_work); 111 s->packet_index = 0; 112 113 init_waitqueue_head(&s->ready_wait); 114 115 s->fmt = fmt; 116 s->process_ctx_payloads = process_ctx_payloads; 117 118 return 0; 119 } 120 EXPORT_SYMBOL(amdtp_stream_init); 121 122 /** 123 * amdtp_stream_destroy - free stream resources 124 * @s: the AMDTP stream to destroy 125 */ 126 void amdtp_stream_destroy(struct amdtp_stream *s) 127 { 128 /* Not initialized. */ 129 if (s->protocol == NULL) 130 return; 131 132 WARN_ON(amdtp_stream_running(s)); 133 kfree(s->protocol); 134 mutex_destroy(&s->mutex); 135 } 136 EXPORT_SYMBOL(amdtp_stream_destroy); 137 138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 8, 140 [CIP_SFC_44100] = 8, 141 [CIP_SFC_48000] = 8, 142 [CIP_SFC_88200] = 16, 143 [CIP_SFC_96000] = 16, 144 [CIP_SFC_176400] = 32, 145 [CIP_SFC_192000] = 32, 146 }; 147 EXPORT_SYMBOL(amdtp_syt_intervals); 148 149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 150 [CIP_SFC_32000] = 32000, 151 [CIP_SFC_44100] = 44100, 152 [CIP_SFC_48000] = 48000, 153 [CIP_SFC_88200] = 88200, 154 [CIP_SFC_96000] = 96000, 155 [CIP_SFC_176400] = 176400, 156 [CIP_SFC_192000] = 192000, 157 }; 158 EXPORT_SYMBOL(amdtp_rate_table); 159 160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 161 struct snd_pcm_hw_rule *rule) 162 { 163 struct snd_interval *s = hw_param_interval(params, rule->var); 164 const struct snd_interval *r = 165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 166 struct snd_interval t = {0}; 167 unsigned int step = 0; 168 int i; 169 170 for (i = 0; i < CIP_SFC_COUNT; ++i) { 171 if (snd_interval_test(r, amdtp_rate_table[i])) 172 step = max(step, amdtp_syt_intervals[i]); 173 } 174 175 if (step == 0) 176 return -EINVAL; 177 178 t.min = roundup(s->min, step); 179 t.max = rounddown(s->max, step); 180 t.integer = 1; 181 182 return snd_interval_refine(s, &t); 183 } 184 185 /** 186 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 187 * @s: the AMDTP stream, which must be initialized. 188 * @runtime: the PCM substream runtime 189 */ 190 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 191 struct snd_pcm_runtime *runtime) 192 { 193 struct snd_pcm_hardware *hw = &runtime->hw; 194 unsigned int ctx_header_size; 195 unsigned int maximum_usec_per_period; 196 int err; 197 198 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 199 SNDRV_PCM_INFO_INTERLEAVED | 200 SNDRV_PCM_INFO_JOINT_DUPLEX | 201 SNDRV_PCM_INFO_MMAP | 202 SNDRV_PCM_INFO_MMAP_VALID | 203 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 204 205 hw->periods_min = 2; 206 hw->periods_max = UINT_MAX; 207 208 /* bytes for a frame */ 209 hw->period_bytes_min = 4 * hw->channels_max; 210 211 /* Just to prevent from allocating much pages. */ 212 hw->period_bytes_max = hw->period_bytes_min * 2048; 213 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 214 215 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 216 // context when total size of accumulated context header reaches 217 // PAGE_SIZE. This kicks work for the isoc context and brings 218 // callback in the middle of scheduled interrupts. 219 // Although AMDTP streams in the same domain use the same events per 220 // IRQ, use the largest size of context header between IT/IR contexts. 221 // Here, use the value of context header in IR context is for both 222 // contexts. 223 if (!(s->flags & CIP_NO_HEADER)) 224 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 225 else 226 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 227 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 228 CYCLES_PER_SECOND / ctx_header_size; 229 230 // In IEC 61883-6, one isoc packet can transfer events up to the value 231 // of syt interval. This comes from the interval of isoc cycle. As 1394 232 // OHCI controller can generate hardware IRQ per isoc packet, the 233 // interval is 125 usec. 234 // However, there are two ways of transmission in IEC 61883-6; blocking 235 // and non-blocking modes. In blocking mode, the sequence of isoc packet 236 // includes 'empty' or 'NODATA' packets which include no event. In 237 // non-blocking mode, the number of events per packet is variable up to 238 // the syt interval. 239 // Due to the above protocol design, the minimum PCM frames per 240 // interrupt should be double of the value of syt interval, thus it is 241 // 250 usec. 242 err = snd_pcm_hw_constraint_minmax(runtime, 243 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 244 250, maximum_usec_per_period); 245 if (err < 0) 246 goto end; 247 248 /* Non-Blocking stream has no more constraints */ 249 if (!(s->flags & CIP_BLOCKING)) 250 goto end; 251 252 /* 253 * One AMDTP packet can include some frames. In blocking mode, the 254 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 255 * depending on its sampling rate. For accurate period interrupt, it's 256 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 257 */ 258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 259 apply_constraint_to_size, NULL, 260 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 261 SNDRV_PCM_HW_PARAM_RATE, -1); 262 if (err < 0) 263 goto end; 264 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 265 apply_constraint_to_size, NULL, 266 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 267 SNDRV_PCM_HW_PARAM_RATE, -1); 268 if (err < 0) 269 goto end; 270 end: 271 return err; 272 } 273 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 274 275 /** 276 * amdtp_stream_set_parameters - set stream parameters 277 * @s: the AMDTP stream to configure 278 * @rate: the sample rate 279 * @data_block_quadlets: the size of a data block in quadlet unit 280 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP 281 * events. 282 * 283 * The parameters must be set before the stream is started, and must not be 284 * changed while the stream is running. 285 */ 286 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 287 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) 288 { 289 unsigned int sfc; 290 291 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 292 if (amdtp_rate_table[sfc] == rate) 293 break; 294 } 295 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 296 return -EINVAL; 297 298 s->sfc = sfc; 299 s->data_block_quadlets = data_block_quadlets; 300 s->syt_interval = amdtp_syt_intervals[sfc]; 301 302 // default buffering in the device. 303 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 304 305 // additional buffering needed to adjust for no-data packets. 306 if (s->flags & CIP_BLOCKING) 307 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 308 309 s->pcm_frame_multiplier = pcm_frame_multiplier; 310 311 return 0; 312 } 313 EXPORT_SYMBOL(amdtp_stream_set_parameters); 314 315 // The CIP header is processed in context header apart from context payload. 316 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 317 { 318 unsigned int multiplier; 319 320 if (s->flags & CIP_JUMBO_PAYLOAD) 321 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 322 else 323 multiplier = 1; 324 325 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 326 } 327 328 /** 329 * amdtp_stream_get_max_payload - get the stream's packet size 330 * @s: the AMDTP stream 331 * 332 * This function must not be called before the stream has been configured 333 * with amdtp_stream_set_parameters(). 334 */ 335 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 336 { 337 unsigned int cip_header_size; 338 339 if (!(s->flags & CIP_NO_HEADER)) 340 cip_header_size = CIP_HEADER_SIZE; 341 else 342 cip_header_size = 0; 343 344 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 345 } 346 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 347 348 /** 349 * amdtp_stream_pcm_prepare - prepare PCM device for running 350 * @s: the AMDTP stream 351 * 352 * This function should be called from the PCM device's .prepare callback. 353 */ 354 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 355 { 356 cancel_work_sync(&s->period_work); 357 s->pcm_buffer_pointer = 0; 358 s->pcm_period_pointer = 0; 359 } 360 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 361 362 #define prev_packet_desc(s, desc) \ 363 list_prev_entry_circular(desc, &s->packet_descs_list, link) 364 365 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 366 unsigned int size, unsigned int pos, unsigned int count) 367 { 368 const unsigned int syt_interval = s->syt_interval; 369 int i; 370 371 for (i = 0; i < count; ++i) { 372 struct seq_desc *desc = descs + pos; 373 374 if (desc->syt_offset != CIP_SYT_NO_INFO) 375 desc->data_blocks = syt_interval; 376 else 377 desc->data_blocks = 0; 378 379 pos = (pos + 1) % size; 380 } 381 } 382 383 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 384 unsigned int size, unsigned int pos, 385 unsigned int count) 386 { 387 const enum cip_sfc sfc = s->sfc; 388 unsigned int state = s->ctx_data.rx.data_block_state; 389 int i; 390 391 for (i = 0; i < count; ++i) { 392 struct seq_desc *desc = descs + pos; 393 394 if (!cip_sfc_is_base_44100(sfc)) { 395 // Sample_rate / 8000 is an integer, and precomputed. 396 desc->data_blocks = state; 397 } else { 398 unsigned int phase = state; 399 400 /* 401 * This calculates the number of data blocks per packet so that 402 * 1) the overall rate is correct and exactly synchronized to 403 * the bus clock, and 404 * 2) packets with a rounded-up number of blocks occur as early 405 * as possible in the sequence (to prevent underruns of the 406 * device's buffer). 407 */ 408 if (sfc == CIP_SFC_44100) 409 /* 6 6 5 6 5 6 5 ... */ 410 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 411 else 412 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 413 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 414 if (++phase >= (80 >> (sfc >> 1))) 415 phase = 0; 416 state = phase; 417 } 418 419 pos = (pos + 1) % size; 420 } 421 422 s->ctx_data.rx.data_block_state = state; 423 } 424 425 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 426 unsigned int *syt_offset_state, enum cip_sfc sfc) 427 { 428 unsigned int syt_offset; 429 430 if (*last_syt_offset < TICKS_PER_CYCLE) { 431 if (!cip_sfc_is_base_44100(sfc)) 432 syt_offset = *last_syt_offset + *syt_offset_state; 433 else { 434 /* 435 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 436 * n * SYT_INTERVAL * 24576000 / sample_rate 437 * Modulo TICKS_PER_CYCLE, the difference between successive 438 * elements is about 1386.23. Rounding the results of this 439 * formula to the SYT precision results in a sequence of 440 * differences that begins with: 441 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 442 * This code generates _exactly_ the same sequence. 443 */ 444 unsigned int phase = *syt_offset_state; 445 unsigned int index = phase % 13; 446 447 syt_offset = *last_syt_offset; 448 syt_offset += 1386 + ((index && !(index & 3)) || 449 phase == 146); 450 if (++phase >= 147) 451 phase = 0; 452 *syt_offset_state = phase; 453 } 454 } else 455 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 456 *last_syt_offset = syt_offset; 457 458 if (syt_offset >= TICKS_PER_CYCLE) 459 syt_offset = CIP_SYT_NO_INFO; 460 461 return syt_offset; 462 } 463 464 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 465 unsigned int size, unsigned int pos, unsigned int count) 466 { 467 const enum cip_sfc sfc = s->sfc; 468 unsigned int last = s->ctx_data.rx.last_syt_offset; 469 unsigned int state = s->ctx_data.rx.syt_offset_state; 470 int i; 471 472 for (i = 0; i < count; ++i) { 473 struct seq_desc *desc = descs + pos; 474 475 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 476 477 pos = (pos + 1) % size; 478 } 479 480 s->ctx_data.rx.last_syt_offset = last; 481 s->ctx_data.rx.syt_offset_state = state; 482 } 483 484 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 485 unsigned int transfer_delay) 486 { 487 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 488 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 489 unsigned int syt_offset; 490 491 // Round up. 492 if (syt_cycle_lo < cycle_lo) 493 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 494 syt_cycle_lo -= cycle_lo; 495 496 // Subtract transfer delay so that the synchronization offset is not so large 497 // at transmission. 498 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 499 if (syt_offset < transfer_delay) 500 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 501 502 return syt_offset - transfer_delay; 503 } 504 505 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 506 // Additionally, the sequence of tx packets is severely checked against any discontinuity 507 // before filling entries in the queue. The calculation is safe even if it looks fragile by 508 // overrun. 509 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 510 { 511 const unsigned int cache_size = s->ctx_data.tx.cache.size; 512 unsigned int cycles = s->ctx_data.tx.cache.pos; 513 514 if (cycles < head) 515 cycles += cache_size; 516 cycles -= head; 517 518 return cycles; 519 } 520 521 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) 522 { 523 const unsigned int transfer_delay = s->transfer_delay; 524 const unsigned int cache_size = s->ctx_data.tx.cache.size; 525 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 526 unsigned int cache_pos = s->ctx_data.tx.cache.pos; 527 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 528 int i; 529 530 for (i = 0; i < desc_count; ++i) { 531 struct seq_desc *dst = cache + cache_pos; 532 533 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 534 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 535 else 536 dst->syt_offset = CIP_SYT_NO_INFO; 537 dst->data_blocks = src->data_blocks; 538 539 cache_pos = (cache_pos + 1) % cache_size; 540 src = amdtp_stream_next_packet_desc(s, src); 541 } 542 543 s->ctx_data.tx.cache.pos = cache_pos; 544 } 545 546 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 547 unsigned int pos, unsigned int count) 548 { 549 pool_ideal_syt_offsets(s, descs, size, pos, count); 550 551 if (s->flags & CIP_BLOCKING) 552 pool_blocking_data_blocks(s, descs, size, pos, count); 553 else 554 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); 555 } 556 557 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 558 unsigned int pos, unsigned int count) 559 { 560 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 561 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 562 const unsigned int cache_size = target->ctx_data.tx.cache.size; 563 unsigned int cache_pos = s->ctx_data.rx.cache_pos; 564 int i; 565 566 for (i = 0; i < count; ++i) { 567 descs[pos] = cache[cache_pos]; 568 cache_pos = (cache_pos + 1) % cache_size; 569 pos = (pos + 1) % size; 570 } 571 572 s->ctx_data.rx.cache_pos = cache_pos; 573 } 574 575 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 576 unsigned int pos, unsigned int count) 577 { 578 struct amdtp_domain *d = s->domain; 579 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 580 unsigned int pos, unsigned int count); 581 582 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 583 pool_seq_descs = pool_ideal_seq_descs; 584 } else { 585 if (!d->replay.on_the_fly) { 586 pool_seq_descs = pool_replayed_seq; 587 } else { 588 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 589 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 590 const unsigned int cache_pos = s->ctx_data.rx.cache_pos; 591 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); 592 593 if (cached_cycles > count && cached_cycles > cache_size / 2) 594 pool_seq_descs = pool_replayed_seq; 595 else 596 pool_seq_descs = pool_ideal_seq_descs; 597 } 598 } 599 600 pool_seq_descs(s, descs, size, pos, count); 601 } 602 603 static void update_pcm_pointers(struct amdtp_stream *s, 604 struct snd_pcm_substream *pcm, 605 unsigned int frames) 606 { 607 unsigned int ptr; 608 609 ptr = s->pcm_buffer_pointer + frames; 610 if (ptr >= pcm->runtime->buffer_size) 611 ptr -= pcm->runtime->buffer_size; 612 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 613 614 s->pcm_period_pointer += frames; 615 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 616 s->pcm_period_pointer -= pcm->runtime->period_size; 617 618 // The program in user process should periodically check the status of intermediate 619 // buffer associated to PCM substream to process PCM frames in the buffer, instead 620 // of receiving notification of period elapsed by poll wait. 621 // 622 // Use another work item for period elapsed event to prevent the following AB/BA 623 // deadlock: 624 // 625 // thread 1 thread 2 626 // ================================= ================================= 627 // A.work item (process) pcm ioctl (process) 628 // v v 629 // process_rx_packets() B.PCM stream lock 630 // process_tx_packets() v 631 // v callbacks in snd_pcm_ops 632 // update_pcm_pointers() v 633 // snd_pcm_elapsed() fw_iso_context_flush_completions() 634 // snd_pcm_stream_lock_irqsave() disable_work_sync() 635 // v v 636 // wait until release of B wait until A exits 637 if (!pcm->runtime->no_period_wakeup) 638 queue_work(system_highpri_wq, &s->period_work); 639 } 640 } 641 642 static void pcm_period_work(struct work_struct *work) 643 { 644 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 645 period_work); 646 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 647 648 if (pcm) 649 snd_pcm_period_elapsed(pcm); 650 } 651 652 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 653 bool sched_irq) 654 { 655 int err; 656 657 params->interrupt = sched_irq; 658 params->tag = s->tag; 659 params->sy = 0; 660 661 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 662 s->buffer.packets[s->packet_index].offset); 663 if (err < 0) { 664 dev_err(&s->unit->device, "queueing error: %d\n", err); 665 goto end; 666 } 667 668 if (++s->packet_index >= s->queue_size) 669 s->packet_index = 0; 670 end: 671 return err; 672 } 673 674 static inline int queue_out_packet(struct amdtp_stream *s, 675 struct fw_iso_packet *params, bool sched_irq) 676 { 677 params->skip = 678 !!(params->header_length == 0 && params->payload_length == 0); 679 return queue_packet(s, params, sched_irq); 680 } 681 682 static inline int queue_in_packet(struct amdtp_stream *s, 683 struct fw_iso_packet *params) 684 { 685 // Queue one packet for IR context. 686 params->header_length = s->ctx_data.tx.ctx_header_size; 687 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 688 params->skip = false; 689 return queue_packet(s, params, false); 690 } 691 692 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 693 unsigned int data_block_counter, unsigned int syt) 694 { 695 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 696 (s->data_block_quadlets << CIP_DBS_SHIFT) | 697 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 698 data_block_counter); 699 cip_header[1] = cpu_to_be32(CIP_EOH | 700 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 701 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 702 (syt & CIP_SYT_MASK)); 703 } 704 705 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 706 struct fw_iso_packet *params, unsigned int header_length, 707 unsigned int data_blocks, 708 unsigned int data_block_counter, 709 unsigned int syt, unsigned int index, u32 curr_cycle_time) 710 { 711 unsigned int payload_length; 712 __be32 *cip_header; 713 714 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 715 params->payload_length = payload_length; 716 717 if (header_length > 0) { 718 cip_header = (__be32 *)params->header; 719 generate_cip_header(s, cip_header, data_block_counter, syt); 720 params->header_length = header_length; 721 } else { 722 cip_header = NULL; 723 } 724 725 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 726 data_block_counter, s->packet_index, index, curr_cycle_time); 727 } 728 729 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 730 unsigned int payload_length, 731 unsigned int *data_blocks, 732 unsigned int *data_block_counter, unsigned int *syt) 733 { 734 u32 cip_header[2]; 735 unsigned int sph; 736 unsigned int fmt; 737 unsigned int fdf; 738 unsigned int dbc; 739 bool lost; 740 741 cip_header[0] = be32_to_cpu(buf[0]); 742 cip_header[1] = be32_to_cpu(buf[1]); 743 744 /* 745 * This module supports 'Two-quadlet CIP header with SYT field'. 746 * For convenience, also check FMT field is AM824 or not. 747 */ 748 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 749 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 750 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 751 dev_info_ratelimited(&s->unit->device, 752 "Invalid CIP header for AMDTP: %08X:%08X\n", 753 cip_header[0], cip_header[1]); 754 return -EAGAIN; 755 } 756 757 /* Check valid protocol or not. */ 758 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 759 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 760 if (sph != s->sph || fmt != s->fmt) { 761 dev_info_ratelimited(&s->unit->device, 762 "Detect unexpected protocol: %08x %08x\n", 763 cip_header[0], cip_header[1]); 764 return -EAGAIN; 765 } 766 767 /* Calculate data blocks */ 768 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 769 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 770 *data_blocks = 0; 771 } else { 772 unsigned int data_block_quadlets = 773 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 774 /* avoid division by zero */ 775 if (data_block_quadlets == 0) { 776 dev_err(&s->unit->device, 777 "Detect invalid value in dbs field: %08X\n", 778 cip_header[0]); 779 return -EPROTO; 780 } 781 if (s->flags & CIP_WRONG_DBS) 782 data_block_quadlets = s->data_block_quadlets; 783 784 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 785 } 786 787 /* Check data block counter continuity */ 788 dbc = cip_header[0] & CIP_DBC_MASK; 789 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 790 *data_block_counter != UINT_MAX) 791 dbc = *data_block_counter; 792 793 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 794 *data_block_counter == UINT_MAX) { 795 lost = false; 796 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 797 lost = dbc != *data_block_counter; 798 } else { 799 unsigned int dbc_interval; 800 801 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { 802 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 803 dbc_interval = s->ctx_data.tx.dbc_interval; 804 else 805 dbc_interval = *data_blocks; 806 } else { 807 dbc_interval = payload_length / sizeof(__be32); 808 } 809 810 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 811 } 812 813 if (lost) { 814 dev_err(&s->unit->device, 815 "Detect discontinuity of CIP: %02X %02X\n", 816 *data_block_counter, dbc); 817 return -EIO; 818 } 819 820 *data_block_counter = dbc; 821 822 if (!(s->flags & CIP_UNAWARE_SYT)) 823 *syt = cip_header[1] & CIP_SYT_MASK; 824 825 return 0; 826 } 827 828 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 829 const __be32 *ctx_header, 830 unsigned int *data_blocks, 831 unsigned int *data_block_counter, 832 unsigned int *syt, unsigned int packet_index, unsigned int index, 833 u32 curr_cycle_time) 834 { 835 unsigned int payload_length; 836 const __be32 *cip_header; 837 unsigned int cip_header_size; 838 839 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 840 841 if (!(s->flags & CIP_NO_HEADER)) 842 cip_header_size = CIP_HEADER_SIZE; 843 else 844 cip_header_size = 0; 845 846 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 847 dev_err(&s->unit->device, 848 "Detect jumbo payload: %04x %04x\n", 849 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 850 return -EIO; 851 } 852 853 if (cip_header_size > 0) { 854 if (payload_length >= cip_header_size) { 855 int err; 856 857 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 858 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 859 data_blocks, data_block_counter, syt); 860 if (err < 0) 861 return err; 862 } else { 863 // Handle the cycle so that empty packet arrives. 864 cip_header = NULL; 865 *data_blocks = 0; 866 *syt = 0; 867 } 868 } else { 869 cip_header = NULL; 870 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 871 *syt = 0; 872 873 if (*data_block_counter == UINT_MAX) 874 *data_block_counter = 0; 875 } 876 877 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 878 *data_block_counter, packet_index, index, curr_cycle_time); 879 880 return 0; 881 } 882 883 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 884 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 885 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 886 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) 887 { 888 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); 889 } 890 891 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 892 { 893 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 894 return compute_ohci_iso_ctx_cycle_count(tstamp); 895 } 896 897 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 898 { 899 cycle += addend; 900 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 901 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 902 return cycle; 903 } 904 905 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) 906 { 907 if (minuend < subtrahend) 908 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 909 910 return minuend - subtrahend; 911 } 912 913 static int compare_ohci_cycle_count(u32 lval, u32 rval) 914 { 915 if (lval == rval) 916 return 0; 917 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 918 return -1; 919 else 920 return 1; 921 } 922 923 // Align to actual cycle count for the packet which is going to be scheduled. 924 // This module queued the same number of isochronous cycle as the size of queue 925 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 926 // the size of queue for scheduled cycle. 927 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 928 unsigned int queue_size) 929 { 930 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 931 return increment_ohci_cycle_count(cycle, queue_size); 932 } 933 934 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 935 const __be32 *ctx_header, unsigned int packet_count, 936 unsigned int *desc_count) 937 { 938 unsigned int next_cycle = s->next_cycle; 939 unsigned int dbc = s->data_block_counter; 940 unsigned int packet_index = s->packet_index; 941 unsigned int queue_size = s->queue_size; 942 u32 curr_cycle_time = 0; 943 int i; 944 int err; 945 946 if (trace_amdtp_packet_enabled()) 947 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 948 949 *desc_count = 0; 950 for (i = 0; i < packet_count; ++i) { 951 unsigned int cycle; 952 bool lost; 953 unsigned int data_blocks; 954 unsigned int syt; 955 956 cycle = compute_ohci_cycle_count(ctx_header[1]); 957 lost = (next_cycle != cycle); 958 if (lost) { 959 if (s->flags & CIP_NO_HEADER) { 960 // Fireface skips transmission just for an isoc cycle corresponding 961 // to empty packet. 962 unsigned int prev_cycle = next_cycle; 963 964 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 965 lost = (next_cycle != cycle); 966 if (!lost) { 967 // Prepare a description for the skipped cycle for 968 // sequence replay. 969 desc->cycle = prev_cycle; 970 desc->syt = 0; 971 desc->data_blocks = 0; 972 desc->data_block_counter = dbc; 973 desc->ctx_payload = NULL; 974 desc = amdtp_stream_next_packet_desc(s, desc); 975 ++(*desc_count); 976 } 977 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 978 // OXFW970 skips transmission for several isoc cycles during 979 // asynchronous transaction. The sequence replay is impossible due 980 // to the reason. 981 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 982 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 983 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); 984 } 985 if (lost) { 986 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 987 next_cycle, cycle); 988 return -EIO; 989 } 990 } 991 992 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 993 packet_index, i, curr_cycle_time); 994 if (err < 0) 995 return err; 996 997 desc->cycle = cycle; 998 desc->syt = syt; 999 desc->data_blocks = data_blocks; 1000 desc->data_block_counter = dbc; 1001 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 1002 1003 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1004 dbc = (dbc + desc->data_blocks) & 0xff; 1005 1006 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 1007 desc = amdtp_stream_next_packet_desc(s, desc); 1008 ++(*desc_count); 1009 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1010 packet_index = (packet_index + 1) % queue_size; 1011 } 1012 1013 s->next_cycle = next_cycle; 1014 s->data_block_counter = dbc; 1015 1016 return 0; 1017 } 1018 1019 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 1020 unsigned int transfer_delay) 1021 { 1022 unsigned int syt; 1023 1024 syt_offset += transfer_delay; 1025 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 1026 (syt_offset % TICKS_PER_CYCLE); 1027 return syt & CIP_SYT_MASK; 1028 } 1029 1030 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 1031 const __be32 *ctx_header, unsigned int packet_count) 1032 { 1033 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 1034 unsigned int seq_size = s->ctx_data.rx.seq.size; 1035 unsigned int seq_pos = s->ctx_data.rx.seq.pos; 1036 unsigned int dbc = s->data_block_counter; 1037 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 1038 int i; 1039 1040 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); 1041 1042 for (i = 0; i < packet_count; ++i) { 1043 unsigned int index = (s->packet_index + i) % s->queue_size; 1044 const struct seq_desc *seq = seq_descs + seq_pos; 1045 1046 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1047 1048 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1049 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1050 else 1051 desc->syt = CIP_SYT_NO_INFO; 1052 1053 desc->data_blocks = seq->data_blocks; 1054 1055 if (s->flags & CIP_DBC_IS_END_EVENT) 1056 dbc = (dbc + desc->data_blocks) & 0xff; 1057 1058 desc->data_block_counter = dbc; 1059 1060 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1061 dbc = (dbc + desc->data_blocks) & 0xff; 1062 1063 desc->ctx_payload = s->buffer.packets[index].buffer; 1064 1065 seq_pos = (seq_pos + 1) % seq_size; 1066 desc = amdtp_stream_next_packet_desc(s, desc); 1067 1068 ++ctx_header; 1069 } 1070 1071 s->data_block_counter = dbc; 1072 s->ctx_data.rx.seq.pos = seq_pos; 1073 } 1074 1075 static inline void cancel_stream(struct amdtp_stream *s) 1076 { 1077 struct work_struct *work = current_work(); 1078 1079 s->packet_index = -1; 1080 1081 // Detect work items for any isochronous context. The work item for pcm_period_work() 1082 // should be avoided since the call of snd_pcm_period_elapsed() can reach via 1083 // snd_pcm_ops.pointer() under acquiring PCM stream(group) lock and causes dead lock at 1084 // snd_pcm_stop_xrun(). 1085 if (work && work != &s->period_work) 1086 amdtp_stream_pcm_abort(s); 1087 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1088 } 1089 1090 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, 1091 const struct pkt_desc *desc, unsigned int count) 1092 { 1093 unsigned int data_block_count = 0; 1094 u32 latest_cycle; 1095 u32 cycle_time; 1096 u32 curr_cycle; 1097 u32 cycle_gap; 1098 int i, err; 1099 1100 if (count == 0) 1101 goto end; 1102 1103 // Forward to the latest record. 1104 for (i = 0; i < count - 1; ++i) 1105 desc = amdtp_stream_next_packet_desc(s, desc); 1106 latest_cycle = desc->cycle; 1107 1108 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); 1109 if (err < 0) 1110 goto end; 1111 1112 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp 1113 // format of 1394 OHCI isochronous context. 1114 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); 1115 1116 if (s->direction == AMDTP_IN_STREAM) { 1117 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since 1118 // it corresponds to arrived isochronous packet. 1119 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) 1120 goto end; 1121 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); 1122 1123 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated 1124 // value expectedly corresponds to a few packets (0-2) since the packet arrived at 1125 // the most recent isochronous cycle has been already processed. 1126 for (i = 0; i < cycle_gap; ++i) { 1127 desc = amdtp_stream_next_packet_desc(s, desc); 1128 data_block_count += desc->data_blocks; 1129 } 1130 } else { 1131 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle 1132 // since it was already scheduled. 1133 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) 1134 goto end; 1135 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); 1136 1137 // NOTE: use history of scheduled packets. 1138 for (i = 0; i < cycle_gap; ++i) { 1139 data_block_count += desc->data_blocks; 1140 desc = prev_packet_desc(s, desc); 1141 } 1142 } 1143 end: 1144 return data_block_count * s->pcm_frame_multiplier; 1145 } 1146 1147 static void process_ctx_payloads(struct amdtp_stream *s, 1148 const struct pkt_desc *desc, 1149 unsigned int count) 1150 { 1151 struct snd_pcm_substream *pcm; 1152 int i; 1153 1154 pcm = READ_ONCE(s->pcm); 1155 s->process_ctx_payloads(s, desc, count, pcm); 1156 1157 if (pcm) { 1158 unsigned int data_block_count = 0; 1159 1160 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); 1161 1162 for (i = 0; i < count; ++i) { 1163 data_block_count += desc->data_blocks; 1164 desc = amdtp_stream_next_packet_desc(s, desc); 1165 } 1166 1167 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); 1168 } 1169 } 1170 1171 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1172 void *header, void *private_data) 1173 { 1174 struct amdtp_stream *s = private_data; 1175 const struct amdtp_domain *d = s->domain; 1176 const __be32 *ctx_header = header; 1177 const unsigned int events_per_period = d->events_per_period; 1178 unsigned int event_count = s->ctx_data.rx.event_count; 1179 struct pkt_desc *desc = s->packet_descs_cursor; 1180 unsigned int pkt_header_length; 1181 unsigned int packets; 1182 u32 curr_cycle_time; 1183 bool need_hw_irq; 1184 int i; 1185 1186 if (s->packet_index < 0) 1187 return; 1188 1189 // Calculate the number of packets in buffer and check XRUN. 1190 packets = header_length / sizeof(*ctx_header); 1191 1192 generate_rx_packet_descs(s, desc, ctx_header, packets); 1193 1194 process_ctx_payloads(s, desc, packets); 1195 1196 if (!(s->flags & CIP_NO_HEADER)) 1197 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1198 else 1199 pkt_header_length = 0; 1200 1201 if (s == d->irq_target) { 1202 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1203 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1204 // with some requests, instead of scheduled hardware IRQ of an IT context. 1205 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1206 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1207 } else { 1208 need_hw_irq = false; 1209 } 1210 1211 if (trace_amdtp_packet_enabled()) 1212 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 1213 1214 for (i = 0; i < packets; ++i) { 1215 DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS); 1216 bool sched_irq = false; 1217 1218 build_it_pkt_header(s, desc->cycle, template, pkt_header_length, 1219 desc->data_blocks, desc->data_block_counter, 1220 desc->syt, i, curr_cycle_time); 1221 1222 if (s == s->domain->irq_target) { 1223 event_count += desc->data_blocks; 1224 if (event_count >= events_per_period) { 1225 event_count -= events_per_period; 1226 sched_irq = need_hw_irq; 1227 } 1228 } 1229 1230 if (queue_out_packet(s, template, sched_irq) < 0) { 1231 cancel_stream(s); 1232 return; 1233 } 1234 1235 desc = amdtp_stream_next_packet_desc(s, desc); 1236 } 1237 1238 s->ctx_data.rx.event_count = event_count; 1239 s->packet_descs_cursor = desc; 1240 } 1241 1242 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1243 void *header, void *private_data) 1244 { 1245 struct amdtp_stream *s = private_data; 1246 struct amdtp_domain *d = s->domain; 1247 const __be32 *ctx_header = header; 1248 unsigned int packets; 1249 unsigned int cycle; 1250 int i; 1251 1252 if (s->packet_index < 0) 1253 return; 1254 1255 packets = header_length / sizeof(*ctx_header); 1256 1257 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1258 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1259 1260 for (i = 0; i < packets; ++i) { 1261 struct fw_iso_packet params = { 1262 .header_length = 0, 1263 .payload_length = 0, 1264 }; 1265 bool sched_irq = (s == d->irq_target && i == packets - 1); 1266 1267 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1268 cancel_stream(s); 1269 return; 1270 } 1271 } 1272 } 1273 1274 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1275 void *header, void *private_data); 1276 1277 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1278 size_t header_length, void *header, void *private_data) 1279 { 1280 struct amdtp_stream *s = private_data; 1281 struct amdtp_domain *d = s->domain; 1282 __be32 *ctx_header = header; 1283 const unsigned int queue_size = s->queue_size; 1284 unsigned int packets; 1285 unsigned int offset; 1286 1287 if (s->packet_index < 0) 1288 return; 1289 1290 packets = header_length / sizeof(*ctx_header); 1291 1292 offset = 0; 1293 while (offset < packets) { 1294 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1295 1296 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1297 break; 1298 1299 ++offset; 1300 } 1301 1302 if (offset > 0) { 1303 unsigned int length = sizeof(*ctx_header) * offset; 1304 1305 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1306 if (amdtp_streaming_error(s)) 1307 return; 1308 1309 ctx_header += offset; 1310 header_length -= length; 1311 } 1312 1313 if (offset < packets) { 1314 s->ready_processing = true; 1315 wake_up(&s->ready_wait); 1316 1317 if (d->replay.enable) 1318 s->ctx_data.rx.cache_pos = 0; 1319 1320 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1321 if (amdtp_streaming_error(s)) 1322 return; 1323 1324 if (s == d->irq_target) 1325 s->context->callback.sc = irq_target_callback; 1326 else 1327 s->context->callback.sc = process_rx_packets; 1328 } 1329 } 1330 1331 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1332 void *header, void *private_data) 1333 { 1334 struct amdtp_stream *s = private_data; 1335 __be32 *ctx_header = header; 1336 struct pkt_desc *desc = s->packet_descs_cursor; 1337 unsigned int packet_count; 1338 unsigned int desc_count; 1339 int i; 1340 int err; 1341 1342 if (s->packet_index < 0) 1343 return; 1344 1345 // Calculate the number of packets in buffer and check XRUN. 1346 packet_count = header_length / s->ctx_data.tx.ctx_header_size; 1347 1348 desc_count = 0; 1349 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); 1350 if (err < 0) { 1351 if (err != -EAGAIN) { 1352 cancel_stream(s); 1353 return; 1354 } 1355 } else { 1356 struct amdtp_domain *d = s->domain; 1357 1358 process_ctx_payloads(s, desc, desc_count); 1359 1360 if (d->replay.enable) 1361 cache_seq(s, desc, desc_count); 1362 1363 for (i = 0; i < desc_count; ++i) 1364 desc = amdtp_stream_next_packet_desc(s, desc); 1365 s->packet_descs_cursor = desc; 1366 } 1367 1368 for (i = 0; i < packet_count; ++i) { 1369 struct fw_iso_packet params = {0}; 1370 1371 if (queue_in_packet(s, ¶ms) < 0) { 1372 cancel_stream(s); 1373 return; 1374 } 1375 } 1376 } 1377 1378 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1379 void *header, void *private_data) 1380 { 1381 struct amdtp_stream *s = private_data; 1382 const __be32 *ctx_header = header; 1383 unsigned int packets; 1384 unsigned int cycle; 1385 int i; 1386 1387 if (s->packet_index < 0) 1388 return; 1389 1390 packets = header_length / s->ctx_data.tx.ctx_header_size; 1391 1392 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1393 cycle = compute_ohci_cycle_count(ctx_header[1]); 1394 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1395 1396 for (i = 0; i < packets; ++i) { 1397 struct fw_iso_packet params = {0}; 1398 1399 if (queue_in_packet(s, ¶ms) < 0) { 1400 cancel_stream(s); 1401 return; 1402 } 1403 } 1404 } 1405 1406 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1407 size_t header_length, void *header, void *private_data) 1408 { 1409 struct amdtp_stream *s = private_data; 1410 struct amdtp_domain *d = s->domain; 1411 __be32 *ctx_header; 1412 unsigned int packets; 1413 unsigned int offset; 1414 1415 if (s->packet_index < 0) 1416 return; 1417 1418 packets = header_length / s->ctx_data.tx.ctx_header_size; 1419 1420 offset = 0; 1421 ctx_header = header; 1422 while (offset < packets) { 1423 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1424 1425 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1426 break; 1427 1428 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1429 ++offset; 1430 } 1431 1432 ctx_header = header; 1433 1434 if (offset > 0) { 1435 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1436 1437 drop_tx_packets(context, tstamp, length, ctx_header, s); 1438 if (amdtp_streaming_error(s)) 1439 return; 1440 1441 ctx_header += length / sizeof(*ctx_header); 1442 header_length -= length; 1443 } 1444 1445 if (offset < packets) { 1446 s->ready_processing = true; 1447 wake_up(&s->ready_wait); 1448 1449 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1450 if (amdtp_streaming_error(s)) 1451 return; 1452 1453 context->callback.sc = process_tx_packets; 1454 } 1455 } 1456 1457 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1458 size_t header_length, void *header, void *private_data) 1459 { 1460 struct amdtp_stream *s = private_data; 1461 struct amdtp_domain *d = s->domain; 1462 __be32 *ctx_header; 1463 unsigned int count; 1464 unsigned int events; 1465 int i; 1466 1467 if (s->packet_index < 0) 1468 return; 1469 1470 count = header_length / s->ctx_data.tx.ctx_header_size; 1471 1472 // Attempt to detect any event in the batch of packets. 1473 events = 0; 1474 ctx_header = header; 1475 for (i = 0; i < count; ++i) { 1476 unsigned int payload_quads = 1477 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1478 unsigned int data_blocks; 1479 1480 if (s->flags & CIP_NO_HEADER) { 1481 data_blocks = payload_quads / s->data_block_quadlets; 1482 } else { 1483 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1484 1485 if (payload_quads < CIP_HEADER_QUADLETS) { 1486 data_blocks = 0; 1487 } else { 1488 payload_quads -= CIP_HEADER_QUADLETS; 1489 1490 if (s->flags & CIP_UNAWARE_SYT) { 1491 data_blocks = payload_quads / s->data_block_quadlets; 1492 } else { 1493 u32 cip1 = be32_to_cpu(cip_headers[1]); 1494 1495 // NODATA packet can includes any data blocks but they are 1496 // not available as event. 1497 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1498 data_blocks = 0; 1499 else 1500 data_blocks = payload_quads / s->data_block_quadlets; 1501 } 1502 } 1503 } 1504 1505 events += data_blocks; 1506 1507 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1508 } 1509 1510 drop_tx_packets(context, tstamp, header_length, header, s); 1511 1512 if (events > 0) 1513 s->ctx_data.tx.event_starts = true; 1514 1515 // Decide the cycle count to begin processing content of packet in IR contexts. 1516 { 1517 unsigned int stream_count = 0; 1518 unsigned int event_starts_count = 0; 1519 unsigned int cycle = UINT_MAX; 1520 1521 list_for_each_entry(s, &d->streams, list) { 1522 if (s->direction == AMDTP_IN_STREAM) { 1523 ++stream_count; 1524 if (s->ctx_data.tx.event_starts) 1525 ++event_starts_count; 1526 } 1527 } 1528 1529 if (stream_count == event_starts_count) { 1530 unsigned int next_cycle; 1531 1532 list_for_each_entry(s, &d->streams, list) { 1533 if (s->direction != AMDTP_IN_STREAM) 1534 continue; 1535 1536 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1537 d->processing_cycle.tx_init_skip); 1538 if (cycle == UINT_MAX || 1539 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1540 cycle = next_cycle; 1541 1542 s->context->callback.sc = process_tx_packets_intermediately; 1543 } 1544 1545 d->processing_cycle.tx_start = cycle; 1546 } 1547 } 1548 } 1549 1550 static void process_ctxs_in_domain(struct amdtp_domain *d) 1551 { 1552 struct amdtp_stream *s; 1553 1554 list_for_each_entry(s, &d->streams, list) { 1555 if (s != d->irq_target && amdtp_stream_running(s)) 1556 fw_iso_context_flush_completions(s->context); 1557 1558 if (amdtp_streaming_error(s)) 1559 goto error; 1560 } 1561 1562 return; 1563 error: 1564 if (amdtp_stream_running(d->irq_target)) 1565 cancel_stream(d->irq_target); 1566 1567 list_for_each_entry(s, &d->streams, list) { 1568 if (amdtp_stream_running(s)) 1569 cancel_stream(s); 1570 } 1571 } 1572 1573 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1574 void *header, void *private_data) 1575 { 1576 struct amdtp_stream *s = private_data; 1577 struct amdtp_domain *d = s->domain; 1578 1579 process_rx_packets(context, tstamp, header_length, header, private_data); 1580 process_ctxs_in_domain(d); 1581 } 1582 1583 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1584 size_t header_length, void *header, void *private_data) 1585 { 1586 struct amdtp_stream *s = private_data; 1587 struct amdtp_domain *d = s->domain; 1588 1589 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1590 process_ctxs_in_domain(d); 1591 } 1592 1593 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1594 size_t header_length, void *header, void *private_data) 1595 { 1596 struct amdtp_stream *s = private_data; 1597 struct amdtp_domain *d = s->domain; 1598 bool ready_to_start; 1599 1600 skip_rx_packets(context, tstamp, header_length, header, private_data); 1601 process_ctxs_in_domain(d); 1602 1603 if (d->replay.enable && !d->replay.on_the_fly) { 1604 unsigned int rx_count = 0; 1605 unsigned int rx_ready_count = 0; 1606 struct amdtp_stream *rx; 1607 1608 list_for_each_entry(rx, &d->streams, list) { 1609 struct amdtp_stream *tx; 1610 unsigned int cached_cycles; 1611 1612 if (rx->direction != AMDTP_OUT_STREAM) 1613 continue; 1614 ++rx_count; 1615 1616 tx = rx->ctx_data.rx.replay_target; 1617 cached_cycles = calculate_cached_cycle_count(tx, 0); 1618 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1619 ++rx_ready_count; 1620 } 1621 1622 ready_to_start = (rx_count == rx_ready_count); 1623 } else { 1624 ready_to_start = true; 1625 } 1626 1627 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1628 // contexts are expected to start and get callback when reaching here. 1629 if (ready_to_start) { 1630 unsigned int cycle = s->next_cycle; 1631 list_for_each_entry(s, &d->streams, list) { 1632 if (s->direction != AMDTP_OUT_STREAM) 1633 continue; 1634 1635 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1636 cycle = s->next_cycle; 1637 1638 if (s == d->irq_target) 1639 s->context->callback.sc = irq_target_callback_intermediately; 1640 else 1641 s->context->callback.sc = process_rx_packets_intermediately; 1642 } 1643 1644 d->processing_cycle.rx_start = cycle; 1645 } 1646 } 1647 1648 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1649 // transmit first packet. 1650 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1651 u32 tstamp, size_t header_length, 1652 void *header, void *private_data) 1653 { 1654 struct amdtp_stream *s = private_data; 1655 struct amdtp_domain *d = s->domain; 1656 1657 if (s->direction == AMDTP_IN_STREAM) { 1658 context->callback.sc = drop_tx_packets_initially; 1659 } else { 1660 if (s == d->irq_target) 1661 context->callback.sc = irq_target_callback_skip; 1662 else 1663 context->callback.sc = skip_rx_packets; 1664 } 1665 1666 context->callback.sc(context, tstamp, header_length, header, s); 1667 } 1668 1669 /** 1670 * amdtp_stream_start - start transferring packets 1671 * @s: the AMDTP stream to start 1672 * @channel: the isochronous channel on the bus 1673 * @speed: firewire speed code 1674 * @queue_size: The number of packets in the queue. 1675 * @idle_irq_interval: the interval to queue packet during initial state. 1676 * 1677 * The stream cannot be started until it has been configured with 1678 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1679 * device can be started. 1680 */ 1681 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1682 unsigned int queue_size, unsigned int idle_irq_interval) 1683 { 1684 bool is_irq_target = (s == s->domain->irq_target); 1685 unsigned int ctx_header_size; 1686 unsigned int max_ctx_payload_size; 1687 enum dma_data_direction dir; 1688 struct pkt_desc *descs; 1689 int i, type, tag, err; 1690 1691 mutex_lock(&s->mutex); 1692 1693 if (WARN_ON(amdtp_stream_running(s) || 1694 (s->data_block_quadlets < 1))) { 1695 err = -EBADFD; 1696 goto err_unlock; 1697 } 1698 1699 if (s->direction == AMDTP_IN_STREAM) { 1700 // NOTE: IT context should be used for constant IRQ. 1701 if (is_irq_target) { 1702 err = -EINVAL; 1703 goto err_unlock; 1704 } 1705 1706 s->data_block_counter = UINT_MAX; 1707 } else { 1708 s->data_block_counter = 0; 1709 } 1710 1711 // initialize packet buffer. 1712 if (s->direction == AMDTP_IN_STREAM) { 1713 dir = DMA_FROM_DEVICE; 1714 type = FW_ISO_CONTEXT_RECEIVE; 1715 if (!(s->flags & CIP_NO_HEADER)) 1716 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1717 else 1718 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1719 } else { 1720 dir = DMA_TO_DEVICE; 1721 type = FW_ISO_CONTEXT_TRANSMIT; 1722 ctx_header_size = 0; // No effect for IT context. 1723 } 1724 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1725 1726 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1727 if (err < 0) 1728 goto err_unlock; 1729 s->queue_size = queue_size; 1730 1731 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1732 type, channel, speed, ctx_header_size, 1733 amdtp_stream_first_callback, s); 1734 if (IS_ERR(s->context)) { 1735 err = PTR_ERR(s->context); 1736 if (err == -EBUSY) 1737 dev_err(&s->unit->device, 1738 "no free stream on this controller\n"); 1739 goto err_buffer; 1740 } 1741 1742 amdtp_stream_update(s); 1743 1744 if (s->direction == AMDTP_IN_STREAM) { 1745 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1746 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1747 s->ctx_data.tx.event_starts = false; 1748 1749 if (s->domain->replay.enable) { 1750 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1751 // possible to cache much unexpectedly. 1752 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1753 queue_size * 3 / 2); 1754 s->ctx_data.tx.cache.pos = 0; 1755 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1756 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1757 if (!s->ctx_data.tx.cache.descs) { 1758 err = -ENOMEM; 1759 goto err_context; 1760 } 1761 } 1762 } else { 1763 static const struct { 1764 unsigned int data_block; 1765 unsigned int syt_offset; 1766 } *entry, initial_state[] = { 1767 [CIP_SFC_32000] = { 4, 3072 }, 1768 [CIP_SFC_48000] = { 6, 1024 }, 1769 [CIP_SFC_96000] = { 12, 1024 }, 1770 [CIP_SFC_192000] = { 24, 1024 }, 1771 [CIP_SFC_44100] = { 0, 67 }, 1772 [CIP_SFC_88200] = { 0, 67 }, 1773 [CIP_SFC_176400] = { 0, 67 }, 1774 }; 1775 1776 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1777 if (!s->ctx_data.rx.seq.descs) { 1778 err = -ENOMEM; 1779 goto err_context; 1780 } 1781 s->ctx_data.rx.seq.size = queue_size; 1782 s->ctx_data.rx.seq.pos = 0; 1783 1784 entry = &initial_state[s->sfc]; 1785 s->ctx_data.rx.data_block_state = entry->data_block; 1786 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1787 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1788 1789 s->ctx_data.rx.event_count = 0; 1790 } 1791 1792 if (s->flags & CIP_NO_HEADER) 1793 s->tag = TAG_NO_CIP_HEADER; 1794 else 1795 s->tag = TAG_CIP; 1796 1797 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request 1798 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It 1799 // could take a round over queue of AMDTP packet descriptors and small loss of history. For 1800 // safe, keep more 8 elements for the queue, equivalent to 1 ms. 1801 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); 1802 if (!descs) { 1803 err = -ENOMEM; 1804 goto err_context; 1805 } 1806 s->packet_descs = descs; 1807 1808 INIT_LIST_HEAD(&s->packet_descs_list); 1809 for (i = 0; i < s->queue_size; ++i) { 1810 INIT_LIST_HEAD(&descs->link); 1811 list_add_tail(&descs->link, &s->packet_descs_list); 1812 ++descs; 1813 } 1814 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); 1815 1816 s->packet_index = 0; 1817 do { 1818 struct fw_iso_packet params; 1819 1820 if (s->direction == AMDTP_IN_STREAM) { 1821 err = queue_in_packet(s, ¶ms); 1822 } else { 1823 bool sched_irq = false; 1824 1825 params.header_length = 0; 1826 params.payload_length = 0; 1827 1828 if (is_irq_target) { 1829 sched_irq = !((s->packet_index + 1) % 1830 idle_irq_interval); 1831 } 1832 1833 err = queue_out_packet(s, ¶ms, sched_irq); 1834 } 1835 if (err < 0) 1836 goto err_pkt_descs; 1837 } while (s->packet_index > 0); 1838 1839 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1840 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1841 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1842 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1843 1844 s->ready_processing = false; 1845 err = fw_iso_context_start(s->context, -1, 0, tag); 1846 if (err < 0) 1847 goto err_pkt_descs; 1848 1849 mutex_unlock(&s->mutex); 1850 1851 return 0; 1852 err_pkt_descs: 1853 kfree(s->packet_descs); 1854 s->packet_descs = NULL; 1855 err_context: 1856 if (s->direction == AMDTP_OUT_STREAM) { 1857 kfree(s->ctx_data.rx.seq.descs); 1858 } else { 1859 if (s->domain->replay.enable) 1860 kfree(s->ctx_data.tx.cache.descs); 1861 } 1862 fw_iso_context_destroy(s->context); 1863 s->context = ERR_PTR(-1); 1864 err_buffer: 1865 iso_packets_buffer_destroy(&s->buffer, s->unit); 1866 err_unlock: 1867 mutex_unlock(&s->mutex); 1868 1869 return err; 1870 } 1871 1872 /** 1873 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1874 * @d: the AMDTP domain. 1875 * @s: the AMDTP stream that transports the PCM data 1876 * 1877 * Returns the current buffer position, in frames. 1878 */ 1879 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1880 struct amdtp_stream *s) 1881 { 1882 struct amdtp_stream *irq_target = d->irq_target; 1883 1884 if (irq_target && amdtp_stream_running(irq_target)) { 1885 // The work item to call snd_pcm_period_elapsed() can reach here by the call of 1886 // snd_pcm_ops.pointer(), however less packets would be available then. Therefore 1887 // the following call is just for user process contexts. 1888 if (current_work() != &s->period_work) 1889 fw_iso_context_flush_completions(irq_target->context); 1890 } 1891 1892 return READ_ONCE(s->pcm_buffer_pointer); 1893 } 1894 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1895 1896 /** 1897 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1898 * @d: the AMDTP domain. 1899 * @s: the AMDTP stream that transfers the PCM frames 1900 * 1901 * Returns zero always. 1902 */ 1903 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1904 { 1905 struct amdtp_stream *irq_target = d->irq_target; 1906 1907 // Process isochronous packets for recent isochronous cycle to handle 1908 // queued PCM frames. 1909 if (irq_target && amdtp_stream_running(irq_target)) 1910 fw_iso_context_flush_completions(irq_target->context); 1911 1912 return 0; 1913 } 1914 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1915 1916 /** 1917 * amdtp_stream_update - update the stream after a bus reset 1918 * @s: the AMDTP stream 1919 */ 1920 void amdtp_stream_update(struct amdtp_stream *s) 1921 { 1922 /* Precomputing. */ 1923 WRITE_ONCE(s->source_node_id_field, 1924 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1925 } 1926 EXPORT_SYMBOL(amdtp_stream_update); 1927 1928 /** 1929 * amdtp_stream_stop - stop sending packets 1930 * @s: the AMDTP stream to stop 1931 * 1932 * All PCM and MIDI devices of the stream must be stopped before the stream 1933 * itself can be stopped. 1934 */ 1935 static void amdtp_stream_stop(struct amdtp_stream *s) 1936 { 1937 mutex_lock(&s->mutex); 1938 1939 if (!amdtp_stream_running(s)) { 1940 mutex_unlock(&s->mutex); 1941 return; 1942 } 1943 1944 cancel_work_sync(&s->period_work); 1945 fw_iso_context_stop(s->context); 1946 fw_iso_context_destroy(s->context); 1947 s->context = ERR_PTR(-1); 1948 iso_packets_buffer_destroy(&s->buffer, s->unit); 1949 kfree(s->packet_descs); 1950 s->packet_descs = NULL; 1951 1952 if (s->direction == AMDTP_OUT_STREAM) { 1953 kfree(s->ctx_data.rx.seq.descs); 1954 } else { 1955 if (s->domain->replay.enable) 1956 kfree(s->ctx_data.tx.cache.descs); 1957 } 1958 1959 mutex_unlock(&s->mutex); 1960 } 1961 1962 /** 1963 * amdtp_stream_pcm_abort - abort the running PCM device 1964 * @s: the AMDTP stream about to be stopped 1965 * 1966 * If the isochronous stream needs to be stopped asynchronously, call this 1967 * function first to stop the PCM device. 1968 */ 1969 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1970 { 1971 struct snd_pcm_substream *pcm; 1972 1973 pcm = READ_ONCE(s->pcm); 1974 if (pcm) 1975 snd_pcm_stop_xrun(pcm); 1976 } 1977 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1978 1979 /** 1980 * amdtp_domain_init - initialize an AMDTP domain structure 1981 * @d: the AMDTP domain to initialize. 1982 */ 1983 int amdtp_domain_init(struct amdtp_domain *d) 1984 { 1985 INIT_LIST_HEAD(&d->streams); 1986 1987 d->events_per_period = 0; 1988 1989 return 0; 1990 } 1991 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1992 1993 /** 1994 * amdtp_domain_destroy - destroy an AMDTP domain structure 1995 * @d: the AMDTP domain to destroy. 1996 */ 1997 void amdtp_domain_destroy(struct amdtp_domain *d) 1998 { 1999 // At present nothing to do. 2000 return; 2001 } 2002 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 2003 2004 /** 2005 * amdtp_domain_add_stream - register isoc context into the domain. 2006 * @d: the AMDTP domain. 2007 * @s: the AMDTP stream. 2008 * @channel: the isochronous channel on the bus. 2009 * @speed: firewire speed code. 2010 */ 2011 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 2012 int channel, int speed) 2013 { 2014 struct amdtp_stream *tmp; 2015 2016 list_for_each_entry(tmp, &d->streams, list) { 2017 if (s == tmp) 2018 return -EBUSY; 2019 } 2020 2021 list_add(&s->list, &d->streams); 2022 2023 s->channel = channel; 2024 s->speed = speed; 2025 s->domain = d; 2026 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 2030 2031 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 2032 // is less than the number of rx streams, the first tx stream is selected. 2033 static int make_association(struct amdtp_domain *d) 2034 { 2035 unsigned int dst_index = 0; 2036 struct amdtp_stream *rx; 2037 2038 // Make association to replay target. 2039 list_for_each_entry(rx, &d->streams, list) { 2040 if (rx->direction == AMDTP_OUT_STREAM) { 2041 unsigned int src_index = 0; 2042 struct amdtp_stream *tx = NULL; 2043 struct amdtp_stream *s; 2044 2045 list_for_each_entry(s, &d->streams, list) { 2046 if (s->direction == AMDTP_IN_STREAM) { 2047 if (dst_index == src_index) { 2048 tx = s; 2049 break; 2050 } 2051 2052 ++src_index; 2053 } 2054 } 2055 if (!tx) { 2056 // Select the first entry. 2057 list_for_each_entry(s, &d->streams, list) { 2058 if (s->direction == AMDTP_IN_STREAM) { 2059 tx = s; 2060 break; 2061 } 2062 } 2063 // No target is available to replay sequence. 2064 if (!tx) 2065 return -EINVAL; 2066 } 2067 2068 rx->ctx_data.rx.replay_target = tx; 2069 2070 ++dst_index; 2071 } 2072 } 2073 2074 return 0; 2075 } 2076 2077 /** 2078 * amdtp_domain_start - start sending packets for isoc context in the domain. 2079 * @d: the AMDTP domain. 2080 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 2081 * contexts. 2082 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 2083 * IT context. 2084 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 2085 * according to arrival of events in tx packets. 2086 */ 2087 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 2088 bool replay_on_the_fly) 2089 { 2090 unsigned int events_per_buffer = d->events_per_buffer; 2091 unsigned int events_per_period = d->events_per_period; 2092 unsigned int queue_size; 2093 struct amdtp_stream *s; 2094 bool found = false; 2095 int err; 2096 2097 if (replay_seq) { 2098 err = make_association(d); 2099 if (err < 0) 2100 return err; 2101 } 2102 d->replay.enable = replay_seq; 2103 d->replay.on_the_fly = replay_on_the_fly; 2104 2105 // Select an IT context as IRQ target. 2106 list_for_each_entry(s, &d->streams, list) { 2107 if (s->direction == AMDTP_OUT_STREAM) { 2108 found = true; 2109 break; 2110 } 2111 } 2112 if (!found) 2113 return -ENXIO; 2114 d->irq_target = s; 2115 2116 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 2117 2118 // This is a case that AMDTP streams in domain run just for MIDI 2119 // substream. Use the number of events equivalent to 10 msec as 2120 // interval of hardware IRQ. 2121 if (events_per_period == 0) 2122 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 2123 if (events_per_buffer == 0) 2124 events_per_buffer = events_per_period * 3; 2125 2126 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 2127 amdtp_rate_table[d->irq_target->sfc]); 2128 2129 list_for_each_entry(s, &d->streams, list) { 2130 unsigned int idle_irq_interval = 0; 2131 2132 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2133 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2134 amdtp_rate_table[d->irq_target->sfc]); 2135 } 2136 2137 // Starts immediately but actually DMA context starts several hundred cycles later. 2138 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2139 if (err < 0) 2140 goto error; 2141 } 2142 2143 return 0; 2144 error: 2145 list_for_each_entry(s, &d->streams, list) 2146 amdtp_stream_stop(s); 2147 return err; 2148 } 2149 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2150 2151 /** 2152 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2153 * @d: the AMDTP domain to which the isoc contexts belong. 2154 */ 2155 void amdtp_domain_stop(struct amdtp_domain *d) 2156 { 2157 struct amdtp_stream *s, *next; 2158 2159 if (d->irq_target) 2160 amdtp_stream_stop(d->irq_target); 2161 2162 list_for_each_entry_safe(s, next, &d->streams, list) { 2163 list_del(&s->list); 2164 2165 if (s != d->irq_target) 2166 amdtp_stream_stop(s); 2167 } 2168 2169 d->events_per_period = 0; 2170 d->irq_target = NULL; 2171 } 2172 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2173