1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 static void pcm_period_work(struct work_struct *work); 81 82 /** 83 * amdtp_stream_init - initialize an AMDTP stream structure 84 * @s: the AMDTP stream to initialize 85 * @unit: the target of the stream 86 * @dir: the direction of stream 87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 88 * @fmt: the value of fmt field in CIP header 89 * @process_ctx_payloads: callback handler to process payloads of isoc context 90 * @protocol_size: the size to allocate newly for protocol 91 */ 92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 93 enum amdtp_stream_direction dir, unsigned int flags, 94 unsigned int fmt, 95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 96 unsigned int protocol_size) 97 { 98 if (process_ctx_payloads == NULL) 99 return -EINVAL; 100 101 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 102 if (!s->protocol) 103 return -ENOMEM; 104 105 s->unit = unit; 106 s->direction = dir; 107 s->flags = flags; 108 s->context = ERR_PTR(-1); 109 mutex_init(&s->mutex); 110 INIT_WORK(&s->period_work, pcm_period_work); 111 s->packet_index = 0; 112 113 init_waitqueue_head(&s->ready_wait); 114 115 s->fmt = fmt; 116 s->process_ctx_payloads = process_ctx_payloads; 117 118 return 0; 119 } 120 EXPORT_SYMBOL(amdtp_stream_init); 121 122 /** 123 * amdtp_stream_destroy - free stream resources 124 * @s: the AMDTP stream to destroy 125 */ 126 void amdtp_stream_destroy(struct amdtp_stream *s) 127 { 128 /* Not initialized. */ 129 if (s->protocol == NULL) 130 return; 131 132 WARN_ON(amdtp_stream_running(s)); 133 kfree(s->protocol); 134 mutex_destroy(&s->mutex); 135 } 136 EXPORT_SYMBOL(amdtp_stream_destroy); 137 138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 8, 140 [CIP_SFC_44100] = 8, 141 [CIP_SFC_48000] = 8, 142 [CIP_SFC_88200] = 16, 143 [CIP_SFC_96000] = 16, 144 [CIP_SFC_176400] = 32, 145 [CIP_SFC_192000] = 32, 146 }; 147 EXPORT_SYMBOL(amdtp_syt_intervals); 148 149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 150 [CIP_SFC_32000] = 32000, 151 [CIP_SFC_44100] = 44100, 152 [CIP_SFC_48000] = 48000, 153 [CIP_SFC_88200] = 88200, 154 [CIP_SFC_96000] = 96000, 155 [CIP_SFC_176400] = 176400, 156 [CIP_SFC_192000] = 192000, 157 }; 158 EXPORT_SYMBOL(amdtp_rate_table); 159 160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 161 struct snd_pcm_hw_rule *rule) 162 { 163 struct snd_interval *s = hw_param_interval(params, rule->var); 164 const struct snd_interval *r = 165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 166 struct snd_interval t = {0}; 167 unsigned int step = 0; 168 int i; 169 170 for (i = 0; i < CIP_SFC_COUNT; ++i) { 171 if (snd_interval_test(r, amdtp_rate_table[i])) 172 step = max(step, amdtp_syt_intervals[i]); 173 } 174 175 t.min = roundup(s->min, step); 176 t.max = rounddown(s->max, step); 177 t.integer = 1; 178 179 return snd_interval_refine(s, &t); 180 } 181 182 /** 183 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 184 * @s: the AMDTP stream, which must be initialized. 185 * @runtime: the PCM substream runtime 186 */ 187 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 188 struct snd_pcm_runtime *runtime) 189 { 190 struct snd_pcm_hardware *hw = &runtime->hw; 191 unsigned int ctx_header_size; 192 unsigned int maximum_usec_per_period; 193 int err; 194 195 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 196 SNDRV_PCM_INFO_INTERLEAVED | 197 SNDRV_PCM_INFO_JOINT_DUPLEX | 198 SNDRV_PCM_INFO_MMAP | 199 SNDRV_PCM_INFO_MMAP_VALID | 200 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 201 202 hw->periods_min = 2; 203 hw->periods_max = UINT_MAX; 204 205 /* bytes for a frame */ 206 hw->period_bytes_min = 4 * hw->channels_max; 207 208 /* Just to prevent from allocating much pages. */ 209 hw->period_bytes_max = hw->period_bytes_min * 2048; 210 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 211 212 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 213 // context when total size of accumulated context header reaches 214 // PAGE_SIZE. This kicks work for the isoc context and brings 215 // callback in the middle of scheduled interrupts. 216 // Although AMDTP streams in the same domain use the same events per 217 // IRQ, use the largest size of context header between IT/IR contexts. 218 // Here, use the value of context header in IR context is for both 219 // contexts. 220 if (!(s->flags & CIP_NO_HEADER)) 221 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 222 else 223 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 224 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 225 CYCLES_PER_SECOND / ctx_header_size; 226 227 // In IEC 61883-6, one isoc packet can transfer events up to the value 228 // of syt interval. This comes from the interval of isoc cycle. As 1394 229 // OHCI controller can generate hardware IRQ per isoc packet, the 230 // interval is 125 usec. 231 // However, there are two ways of transmission in IEC 61883-6; blocking 232 // and non-blocking modes. In blocking mode, the sequence of isoc packet 233 // includes 'empty' or 'NODATA' packets which include no event. In 234 // non-blocking mode, the number of events per packet is variable up to 235 // the syt interval. 236 // Due to the above protocol design, the minimum PCM frames per 237 // interrupt should be double of the value of syt interval, thus it is 238 // 250 usec. 239 err = snd_pcm_hw_constraint_minmax(runtime, 240 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 241 250, maximum_usec_per_period); 242 if (err < 0) 243 goto end; 244 245 /* Non-Blocking stream has no more constraints */ 246 if (!(s->flags & CIP_BLOCKING)) 247 goto end; 248 249 /* 250 * One AMDTP packet can include some frames. In blocking mode, the 251 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 252 * depending on its sampling rate. For accurate period interrupt, it's 253 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 254 */ 255 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 256 apply_constraint_to_size, NULL, 257 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 258 SNDRV_PCM_HW_PARAM_RATE, -1); 259 if (err < 0) 260 goto end; 261 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 262 apply_constraint_to_size, NULL, 263 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 264 SNDRV_PCM_HW_PARAM_RATE, -1); 265 if (err < 0) 266 goto end; 267 end: 268 return err; 269 } 270 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 271 272 /** 273 * amdtp_stream_set_parameters - set stream parameters 274 * @s: the AMDTP stream to configure 275 * @rate: the sample rate 276 * @data_block_quadlets: the size of a data block in quadlet unit 277 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP 278 * events. 279 * 280 * The parameters must be set before the stream is started, and must not be 281 * changed while the stream is running. 282 */ 283 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 284 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) 285 { 286 unsigned int sfc; 287 288 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 289 if (amdtp_rate_table[sfc] == rate) 290 break; 291 } 292 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 293 return -EINVAL; 294 295 s->sfc = sfc; 296 s->data_block_quadlets = data_block_quadlets; 297 s->syt_interval = amdtp_syt_intervals[sfc]; 298 299 // default buffering in the device. 300 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 301 302 // additional buffering needed to adjust for no-data packets. 303 if (s->flags & CIP_BLOCKING) 304 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 305 306 s->pcm_frame_multiplier = pcm_frame_multiplier; 307 308 return 0; 309 } 310 EXPORT_SYMBOL(amdtp_stream_set_parameters); 311 312 // The CIP header is processed in context header apart from context payload. 313 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 314 { 315 unsigned int multiplier; 316 317 if (s->flags & CIP_JUMBO_PAYLOAD) 318 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 319 else 320 multiplier = 1; 321 322 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 323 } 324 325 /** 326 * amdtp_stream_get_max_payload - get the stream's packet size 327 * @s: the AMDTP stream 328 * 329 * This function must not be called before the stream has been configured 330 * with amdtp_stream_set_parameters(). 331 */ 332 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 333 { 334 unsigned int cip_header_size; 335 336 if (!(s->flags & CIP_NO_HEADER)) 337 cip_header_size = CIP_HEADER_SIZE; 338 else 339 cip_header_size = 0; 340 341 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 342 } 343 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 344 345 /** 346 * amdtp_stream_pcm_prepare - prepare PCM device for running 347 * @s: the AMDTP stream 348 * 349 * This function should be called from the PCM device's .prepare callback. 350 */ 351 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 352 { 353 cancel_work_sync(&s->period_work); 354 s->pcm_buffer_pointer = 0; 355 s->pcm_period_pointer = 0; 356 } 357 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 358 359 #define prev_packet_desc(s, desc) \ 360 list_prev_entry_circular(desc, &s->packet_descs_list, link) 361 362 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 363 unsigned int size, unsigned int pos, unsigned int count) 364 { 365 const unsigned int syt_interval = s->syt_interval; 366 int i; 367 368 for (i = 0; i < count; ++i) { 369 struct seq_desc *desc = descs + pos; 370 371 if (desc->syt_offset != CIP_SYT_NO_INFO) 372 desc->data_blocks = syt_interval; 373 else 374 desc->data_blocks = 0; 375 376 pos = (pos + 1) % size; 377 } 378 } 379 380 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 381 unsigned int size, unsigned int pos, 382 unsigned int count) 383 { 384 const enum cip_sfc sfc = s->sfc; 385 unsigned int state = s->ctx_data.rx.data_block_state; 386 int i; 387 388 for (i = 0; i < count; ++i) { 389 struct seq_desc *desc = descs + pos; 390 391 if (!cip_sfc_is_base_44100(sfc)) { 392 // Sample_rate / 8000 is an integer, and precomputed. 393 desc->data_blocks = state; 394 } else { 395 unsigned int phase = state; 396 397 /* 398 * This calculates the number of data blocks per packet so that 399 * 1) the overall rate is correct and exactly synchronized to 400 * the bus clock, and 401 * 2) packets with a rounded-up number of blocks occur as early 402 * as possible in the sequence (to prevent underruns of the 403 * device's buffer). 404 */ 405 if (sfc == CIP_SFC_44100) 406 /* 6 6 5 6 5 6 5 ... */ 407 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 408 else 409 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 410 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 411 if (++phase >= (80 >> (sfc >> 1))) 412 phase = 0; 413 state = phase; 414 } 415 416 pos = (pos + 1) % size; 417 } 418 419 s->ctx_data.rx.data_block_state = state; 420 } 421 422 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 423 unsigned int *syt_offset_state, enum cip_sfc sfc) 424 { 425 unsigned int syt_offset; 426 427 if (*last_syt_offset < TICKS_PER_CYCLE) { 428 if (!cip_sfc_is_base_44100(sfc)) 429 syt_offset = *last_syt_offset + *syt_offset_state; 430 else { 431 /* 432 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 433 * n * SYT_INTERVAL * 24576000 / sample_rate 434 * Modulo TICKS_PER_CYCLE, the difference between successive 435 * elements is about 1386.23. Rounding the results of this 436 * formula to the SYT precision results in a sequence of 437 * differences that begins with: 438 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 439 * This code generates _exactly_ the same sequence. 440 */ 441 unsigned int phase = *syt_offset_state; 442 unsigned int index = phase % 13; 443 444 syt_offset = *last_syt_offset; 445 syt_offset += 1386 + ((index && !(index & 3)) || 446 phase == 146); 447 if (++phase >= 147) 448 phase = 0; 449 *syt_offset_state = phase; 450 } 451 } else 452 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 453 *last_syt_offset = syt_offset; 454 455 if (syt_offset >= TICKS_PER_CYCLE) 456 syt_offset = CIP_SYT_NO_INFO; 457 458 return syt_offset; 459 } 460 461 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 462 unsigned int size, unsigned int pos, unsigned int count) 463 { 464 const enum cip_sfc sfc = s->sfc; 465 unsigned int last = s->ctx_data.rx.last_syt_offset; 466 unsigned int state = s->ctx_data.rx.syt_offset_state; 467 int i; 468 469 for (i = 0; i < count; ++i) { 470 struct seq_desc *desc = descs + pos; 471 472 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 473 474 pos = (pos + 1) % size; 475 } 476 477 s->ctx_data.rx.last_syt_offset = last; 478 s->ctx_data.rx.syt_offset_state = state; 479 } 480 481 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 482 unsigned int transfer_delay) 483 { 484 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 485 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 486 unsigned int syt_offset; 487 488 // Round up. 489 if (syt_cycle_lo < cycle_lo) 490 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 491 syt_cycle_lo -= cycle_lo; 492 493 // Subtract transfer delay so that the synchronization offset is not so large 494 // at transmission. 495 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 496 if (syt_offset < transfer_delay) 497 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 498 499 return syt_offset - transfer_delay; 500 } 501 502 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 503 // Additionally, the sequence of tx packets is severely checked against any discontinuity 504 // before filling entries in the queue. The calculation is safe even if it looks fragile by 505 // overrun. 506 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 507 { 508 const unsigned int cache_size = s->ctx_data.tx.cache.size; 509 unsigned int cycles = s->ctx_data.tx.cache.pos; 510 511 if (cycles < head) 512 cycles += cache_size; 513 cycles -= head; 514 515 return cycles; 516 } 517 518 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) 519 { 520 const unsigned int transfer_delay = s->transfer_delay; 521 const unsigned int cache_size = s->ctx_data.tx.cache.size; 522 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 523 unsigned int cache_pos = s->ctx_data.tx.cache.pos; 524 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 525 int i; 526 527 for (i = 0; i < desc_count; ++i) { 528 struct seq_desc *dst = cache + cache_pos; 529 530 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 531 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 532 else 533 dst->syt_offset = CIP_SYT_NO_INFO; 534 dst->data_blocks = src->data_blocks; 535 536 cache_pos = (cache_pos + 1) % cache_size; 537 src = amdtp_stream_next_packet_desc(s, src); 538 } 539 540 s->ctx_data.tx.cache.pos = cache_pos; 541 } 542 543 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 544 unsigned int pos, unsigned int count) 545 { 546 pool_ideal_syt_offsets(s, descs, size, pos, count); 547 548 if (s->flags & CIP_BLOCKING) 549 pool_blocking_data_blocks(s, descs, size, pos, count); 550 else 551 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); 552 } 553 554 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 555 unsigned int pos, unsigned int count) 556 { 557 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 558 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 559 const unsigned int cache_size = target->ctx_data.tx.cache.size; 560 unsigned int cache_pos = s->ctx_data.rx.cache_pos; 561 int i; 562 563 for (i = 0; i < count; ++i) { 564 descs[pos] = cache[cache_pos]; 565 cache_pos = (cache_pos + 1) % cache_size; 566 pos = (pos + 1) % size; 567 } 568 569 s->ctx_data.rx.cache_pos = cache_pos; 570 } 571 572 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 573 unsigned int pos, unsigned int count) 574 { 575 struct amdtp_domain *d = s->domain; 576 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 577 unsigned int pos, unsigned int count); 578 579 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 580 pool_seq_descs = pool_ideal_seq_descs; 581 } else { 582 if (!d->replay.on_the_fly) { 583 pool_seq_descs = pool_replayed_seq; 584 } else { 585 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 586 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 587 const unsigned int cache_pos = s->ctx_data.rx.cache_pos; 588 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); 589 590 if (cached_cycles > count && cached_cycles > cache_size / 2) 591 pool_seq_descs = pool_replayed_seq; 592 else 593 pool_seq_descs = pool_ideal_seq_descs; 594 } 595 } 596 597 pool_seq_descs(s, descs, size, pos, count); 598 } 599 600 static void update_pcm_pointers(struct amdtp_stream *s, 601 struct snd_pcm_substream *pcm, 602 unsigned int frames) 603 { 604 unsigned int ptr; 605 606 ptr = s->pcm_buffer_pointer + frames; 607 if (ptr >= pcm->runtime->buffer_size) 608 ptr -= pcm->runtime->buffer_size; 609 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 610 611 s->pcm_period_pointer += frames; 612 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 613 s->pcm_period_pointer -= pcm->runtime->period_size; 614 615 // The program in user process should periodically check the status of intermediate 616 // buffer associated to PCM substream to process PCM frames in the buffer, instead 617 // of receiving notification of period elapsed by poll wait. 618 if (!pcm->runtime->no_period_wakeup) 619 queue_work(system_highpri_wq, &s->period_work); 620 } 621 } 622 623 static void pcm_period_work(struct work_struct *work) 624 { 625 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 626 period_work); 627 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 628 629 if (pcm) 630 snd_pcm_period_elapsed(pcm); 631 } 632 633 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 634 bool sched_irq) 635 { 636 int err; 637 638 params->interrupt = sched_irq; 639 params->tag = s->tag; 640 params->sy = 0; 641 642 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 643 s->buffer.packets[s->packet_index].offset); 644 if (err < 0) { 645 dev_err(&s->unit->device, "queueing error: %d\n", err); 646 goto end; 647 } 648 649 if (++s->packet_index >= s->queue_size) 650 s->packet_index = 0; 651 end: 652 return err; 653 } 654 655 static inline int queue_out_packet(struct amdtp_stream *s, 656 struct fw_iso_packet *params, bool sched_irq) 657 { 658 params->skip = 659 !!(params->header_length == 0 && params->payload_length == 0); 660 return queue_packet(s, params, sched_irq); 661 } 662 663 static inline int queue_in_packet(struct amdtp_stream *s, 664 struct fw_iso_packet *params) 665 { 666 // Queue one packet for IR context. 667 params->header_length = s->ctx_data.tx.ctx_header_size; 668 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 669 params->skip = false; 670 return queue_packet(s, params, false); 671 } 672 673 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 674 unsigned int data_block_counter, unsigned int syt) 675 { 676 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 677 (s->data_block_quadlets << CIP_DBS_SHIFT) | 678 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 679 data_block_counter); 680 cip_header[1] = cpu_to_be32(CIP_EOH | 681 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 682 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 683 (syt & CIP_SYT_MASK)); 684 } 685 686 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 687 struct fw_iso_packet *params, unsigned int header_length, 688 unsigned int data_blocks, 689 unsigned int data_block_counter, 690 unsigned int syt, unsigned int index, u32 curr_cycle_time) 691 { 692 unsigned int payload_length; 693 __be32 *cip_header; 694 695 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 696 params->payload_length = payload_length; 697 698 if (header_length > 0) { 699 cip_header = (__be32 *)params->header; 700 generate_cip_header(s, cip_header, data_block_counter, syt); 701 params->header_length = header_length; 702 } else { 703 cip_header = NULL; 704 } 705 706 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 707 data_block_counter, s->packet_index, index, curr_cycle_time); 708 } 709 710 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 711 unsigned int payload_length, 712 unsigned int *data_blocks, 713 unsigned int *data_block_counter, unsigned int *syt) 714 { 715 u32 cip_header[2]; 716 unsigned int sph; 717 unsigned int fmt; 718 unsigned int fdf; 719 unsigned int dbc; 720 bool lost; 721 722 cip_header[0] = be32_to_cpu(buf[0]); 723 cip_header[1] = be32_to_cpu(buf[1]); 724 725 /* 726 * This module supports 'Two-quadlet CIP header with SYT field'. 727 * For convenience, also check FMT field is AM824 or not. 728 */ 729 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 730 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 731 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 732 dev_info_ratelimited(&s->unit->device, 733 "Invalid CIP header for AMDTP: %08X:%08X\n", 734 cip_header[0], cip_header[1]); 735 return -EAGAIN; 736 } 737 738 /* Check valid protocol or not. */ 739 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 740 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 741 if (sph != s->sph || fmt != s->fmt) { 742 dev_info_ratelimited(&s->unit->device, 743 "Detect unexpected protocol: %08x %08x\n", 744 cip_header[0], cip_header[1]); 745 return -EAGAIN; 746 } 747 748 /* Calculate data blocks */ 749 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 750 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 751 *data_blocks = 0; 752 } else { 753 unsigned int data_block_quadlets = 754 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 755 /* avoid division by zero */ 756 if (data_block_quadlets == 0) { 757 dev_err(&s->unit->device, 758 "Detect invalid value in dbs field: %08X\n", 759 cip_header[0]); 760 return -EPROTO; 761 } 762 if (s->flags & CIP_WRONG_DBS) 763 data_block_quadlets = s->data_block_quadlets; 764 765 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 766 } 767 768 /* Check data block counter continuity */ 769 dbc = cip_header[0] & CIP_DBC_MASK; 770 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 771 *data_block_counter != UINT_MAX) 772 dbc = *data_block_counter; 773 774 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 775 *data_block_counter == UINT_MAX) { 776 lost = false; 777 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 778 lost = dbc != *data_block_counter; 779 } else { 780 unsigned int dbc_interval; 781 782 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { 783 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 784 dbc_interval = s->ctx_data.tx.dbc_interval; 785 else 786 dbc_interval = *data_blocks; 787 } else { 788 dbc_interval = payload_length / sizeof(__be32); 789 } 790 791 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 792 } 793 794 if (lost) { 795 dev_err(&s->unit->device, 796 "Detect discontinuity of CIP: %02X %02X\n", 797 *data_block_counter, dbc); 798 return -EIO; 799 } 800 801 *data_block_counter = dbc; 802 803 if (!(s->flags & CIP_UNAWARE_SYT)) 804 *syt = cip_header[1] & CIP_SYT_MASK; 805 806 return 0; 807 } 808 809 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 810 const __be32 *ctx_header, 811 unsigned int *data_blocks, 812 unsigned int *data_block_counter, 813 unsigned int *syt, unsigned int packet_index, unsigned int index, 814 u32 curr_cycle_time) 815 { 816 unsigned int payload_length; 817 const __be32 *cip_header; 818 unsigned int cip_header_size; 819 820 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 821 822 if (!(s->flags & CIP_NO_HEADER)) 823 cip_header_size = CIP_HEADER_SIZE; 824 else 825 cip_header_size = 0; 826 827 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 828 dev_err(&s->unit->device, 829 "Detect jumbo payload: %04x %04x\n", 830 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 831 return -EIO; 832 } 833 834 if (cip_header_size > 0) { 835 if (payload_length >= cip_header_size) { 836 int err; 837 838 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 839 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 840 data_blocks, data_block_counter, syt); 841 if (err < 0) 842 return err; 843 } else { 844 // Handle the cycle so that empty packet arrives. 845 cip_header = NULL; 846 *data_blocks = 0; 847 *syt = 0; 848 } 849 } else { 850 cip_header = NULL; 851 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 852 *syt = 0; 853 854 if (*data_block_counter == UINT_MAX) 855 *data_block_counter = 0; 856 } 857 858 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 859 *data_block_counter, packet_index, index, curr_cycle_time); 860 861 return 0; 862 } 863 864 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 865 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 866 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 867 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) 868 { 869 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); 870 } 871 872 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 873 { 874 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 875 return compute_ohci_iso_ctx_cycle_count(tstamp); 876 } 877 878 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 879 { 880 cycle += addend; 881 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 882 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 883 return cycle; 884 } 885 886 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) 887 { 888 if (minuend < subtrahend) 889 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 890 891 return minuend - subtrahend; 892 } 893 894 static int compare_ohci_cycle_count(u32 lval, u32 rval) 895 { 896 if (lval == rval) 897 return 0; 898 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 899 return -1; 900 else 901 return 1; 902 } 903 904 // Align to actual cycle count for the packet which is going to be scheduled. 905 // This module queued the same number of isochronous cycle as the size of queue 906 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 907 // the size of queue for scheduled cycle. 908 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 909 unsigned int queue_size) 910 { 911 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 912 return increment_ohci_cycle_count(cycle, queue_size); 913 } 914 915 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 916 const __be32 *ctx_header, unsigned int packet_count, 917 unsigned int *desc_count) 918 { 919 unsigned int next_cycle = s->next_cycle; 920 unsigned int dbc = s->data_block_counter; 921 unsigned int packet_index = s->packet_index; 922 unsigned int queue_size = s->queue_size; 923 u32 curr_cycle_time = 0; 924 int i; 925 int err; 926 927 if (trace_amdtp_packet_enabled()) 928 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 929 930 *desc_count = 0; 931 for (i = 0; i < packet_count; ++i) { 932 unsigned int cycle; 933 bool lost; 934 unsigned int data_blocks; 935 unsigned int syt; 936 937 cycle = compute_ohci_cycle_count(ctx_header[1]); 938 lost = (next_cycle != cycle); 939 if (lost) { 940 if (s->flags & CIP_NO_HEADER) { 941 // Fireface skips transmission just for an isoc cycle corresponding 942 // to empty packet. 943 unsigned int prev_cycle = next_cycle; 944 945 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 946 lost = (next_cycle != cycle); 947 if (!lost) { 948 // Prepare a description for the skipped cycle for 949 // sequence replay. 950 desc->cycle = prev_cycle; 951 desc->syt = 0; 952 desc->data_blocks = 0; 953 desc->data_block_counter = dbc; 954 desc->ctx_payload = NULL; 955 desc = amdtp_stream_next_packet_desc(s, desc); 956 ++(*desc_count); 957 } 958 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 959 // OXFW970 skips transmission for several isoc cycles during 960 // asynchronous transaction. The sequence replay is impossible due 961 // to the reason. 962 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 963 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 964 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); 965 } 966 if (lost) { 967 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 968 next_cycle, cycle); 969 return -EIO; 970 } 971 } 972 973 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 974 packet_index, i, curr_cycle_time); 975 if (err < 0) 976 return err; 977 978 desc->cycle = cycle; 979 desc->syt = syt; 980 desc->data_blocks = data_blocks; 981 desc->data_block_counter = dbc; 982 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 983 984 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 985 dbc = (dbc + desc->data_blocks) & 0xff; 986 987 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 988 desc = amdtp_stream_next_packet_desc(s, desc); 989 ++(*desc_count); 990 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 991 packet_index = (packet_index + 1) % queue_size; 992 } 993 994 s->next_cycle = next_cycle; 995 s->data_block_counter = dbc; 996 997 return 0; 998 } 999 1000 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 1001 unsigned int transfer_delay) 1002 { 1003 unsigned int syt; 1004 1005 syt_offset += transfer_delay; 1006 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 1007 (syt_offset % TICKS_PER_CYCLE); 1008 return syt & CIP_SYT_MASK; 1009 } 1010 1011 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 1012 const __be32 *ctx_header, unsigned int packet_count) 1013 { 1014 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 1015 unsigned int seq_size = s->ctx_data.rx.seq.size; 1016 unsigned int seq_pos = s->ctx_data.rx.seq.pos; 1017 unsigned int dbc = s->data_block_counter; 1018 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 1019 int i; 1020 1021 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); 1022 1023 for (i = 0; i < packet_count; ++i) { 1024 unsigned int index = (s->packet_index + i) % s->queue_size; 1025 const struct seq_desc *seq = seq_descs + seq_pos; 1026 1027 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1028 1029 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1030 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1031 else 1032 desc->syt = CIP_SYT_NO_INFO; 1033 1034 desc->data_blocks = seq->data_blocks; 1035 1036 if (s->flags & CIP_DBC_IS_END_EVENT) 1037 dbc = (dbc + desc->data_blocks) & 0xff; 1038 1039 desc->data_block_counter = dbc; 1040 1041 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1042 dbc = (dbc + desc->data_blocks) & 0xff; 1043 1044 desc->ctx_payload = s->buffer.packets[index].buffer; 1045 1046 seq_pos = (seq_pos + 1) % seq_size; 1047 desc = amdtp_stream_next_packet_desc(s, desc); 1048 1049 ++ctx_header; 1050 } 1051 1052 s->data_block_counter = dbc; 1053 s->ctx_data.rx.seq.pos = seq_pos; 1054 } 1055 1056 static inline void cancel_stream(struct amdtp_stream *s) 1057 { 1058 s->packet_index = -1; 1059 if (in_softirq()) 1060 amdtp_stream_pcm_abort(s); 1061 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1062 } 1063 1064 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, 1065 const struct pkt_desc *desc, unsigned int count) 1066 { 1067 unsigned int data_block_count = 0; 1068 u32 latest_cycle; 1069 u32 cycle_time; 1070 u32 curr_cycle; 1071 u32 cycle_gap; 1072 int i, err; 1073 1074 if (count == 0) 1075 goto end; 1076 1077 // Forward to the latest record. 1078 for (i = 0; i < count - 1; ++i) 1079 desc = amdtp_stream_next_packet_desc(s, desc); 1080 latest_cycle = desc->cycle; 1081 1082 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); 1083 if (err < 0) 1084 goto end; 1085 1086 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp 1087 // format of 1394 OHCI isochronous context. 1088 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); 1089 1090 if (s->direction == AMDTP_IN_STREAM) { 1091 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since 1092 // it corresponds to arrived isochronous packet. 1093 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) 1094 goto end; 1095 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); 1096 1097 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated 1098 // value expectedly corresponds to a few packets (0-2) since the packet arrived at 1099 // the most recent isochronous cycle has been already processed. 1100 for (i = 0; i < cycle_gap; ++i) { 1101 desc = amdtp_stream_next_packet_desc(s, desc); 1102 data_block_count += desc->data_blocks; 1103 } 1104 } else { 1105 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle 1106 // since it was already scheduled. 1107 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) 1108 goto end; 1109 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); 1110 1111 // NOTE: use history of scheduled packets. 1112 for (i = 0; i < cycle_gap; ++i) { 1113 data_block_count += desc->data_blocks; 1114 desc = prev_packet_desc(s, desc); 1115 } 1116 } 1117 end: 1118 return data_block_count * s->pcm_frame_multiplier; 1119 } 1120 1121 static void process_ctx_payloads(struct amdtp_stream *s, 1122 const struct pkt_desc *desc, 1123 unsigned int count) 1124 { 1125 struct snd_pcm_substream *pcm; 1126 int i; 1127 1128 pcm = READ_ONCE(s->pcm); 1129 s->process_ctx_payloads(s, desc, count, pcm); 1130 1131 if (pcm) { 1132 unsigned int data_block_count = 0; 1133 1134 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); 1135 1136 for (i = 0; i < count; ++i) { 1137 data_block_count += desc->data_blocks; 1138 desc = amdtp_stream_next_packet_desc(s, desc); 1139 } 1140 1141 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); 1142 } 1143 } 1144 1145 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1146 void *header, void *private_data) 1147 { 1148 struct amdtp_stream *s = private_data; 1149 const struct amdtp_domain *d = s->domain; 1150 const __be32 *ctx_header = header; 1151 const unsigned int events_per_period = d->events_per_period; 1152 unsigned int event_count = s->ctx_data.rx.event_count; 1153 struct pkt_desc *desc = s->packet_descs_cursor; 1154 unsigned int pkt_header_length; 1155 unsigned int packets; 1156 u32 curr_cycle_time; 1157 bool need_hw_irq; 1158 int i; 1159 1160 if (s->packet_index < 0) 1161 return; 1162 1163 // Calculate the number of packets in buffer and check XRUN. 1164 packets = header_length / sizeof(*ctx_header); 1165 1166 generate_rx_packet_descs(s, desc, ctx_header, packets); 1167 1168 process_ctx_payloads(s, desc, packets); 1169 1170 if (!(s->flags & CIP_NO_HEADER)) 1171 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1172 else 1173 pkt_header_length = 0; 1174 1175 if (s == d->irq_target) { 1176 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1177 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1178 // with some requests, instead of scheduled hardware IRQ of an IT context. 1179 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1180 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1181 } else { 1182 need_hw_irq = false; 1183 } 1184 1185 if (trace_amdtp_packet_enabled()) 1186 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 1187 1188 for (i = 0; i < packets; ++i) { 1189 DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS); 1190 bool sched_irq = false; 1191 1192 build_it_pkt_header(s, desc->cycle, template, pkt_header_length, 1193 desc->data_blocks, desc->data_block_counter, 1194 desc->syt, i, curr_cycle_time); 1195 1196 if (s == s->domain->irq_target) { 1197 event_count += desc->data_blocks; 1198 if (event_count >= events_per_period) { 1199 event_count -= events_per_period; 1200 sched_irq = need_hw_irq; 1201 } 1202 } 1203 1204 if (queue_out_packet(s, template, sched_irq) < 0) { 1205 cancel_stream(s); 1206 return; 1207 } 1208 1209 desc = amdtp_stream_next_packet_desc(s, desc); 1210 } 1211 1212 s->ctx_data.rx.event_count = event_count; 1213 s->packet_descs_cursor = desc; 1214 } 1215 1216 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1217 void *header, void *private_data) 1218 { 1219 struct amdtp_stream *s = private_data; 1220 struct amdtp_domain *d = s->domain; 1221 const __be32 *ctx_header = header; 1222 unsigned int packets; 1223 unsigned int cycle; 1224 int i; 1225 1226 if (s->packet_index < 0) 1227 return; 1228 1229 packets = header_length / sizeof(*ctx_header); 1230 1231 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1232 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1233 1234 for (i = 0; i < packets; ++i) { 1235 struct fw_iso_packet params = { 1236 .header_length = 0, 1237 .payload_length = 0, 1238 }; 1239 bool sched_irq = (s == d->irq_target && i == packets - 1); 1240 1241 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1242 cancel_stream(s); 1243 return; 1244 } 1245 } 1246 } 1247 1248 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1249 void *header, void *private_data); 1250 1251 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1252 size_t header_length, void *header, void *private_data) 1253 { 1254 struct amdtp_stream *s = private_data; 1255 struct amdtp_domain *d = s->domain; 1256 __be32 *ctx_header = header; 1257 const unsigned int queue_size = s->queue_size; 1258 unsigned int packets; 1259 unsigned int offset; 1260 1261 if (s->packet_index < 0) 1262 return; 1263 1264 packets = header_length / sizeof(*ctx_header); 1265 1266 offset = 0; 1267 while (offset < packets) { 1268 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1269 1270 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1271 break; 1272 1273 ++offset; 1274 } 1275 1276 if (offset > 0) { 1277 unsigned int length = sizeof(*ctx_header) * offset; 1278 1279 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1280 if (amdtp_streaming_error(s)) 1281 return; 1282 1283 ctx_header += offset; 1284 header_length -= length; 1285 } 1286 1287 if (offset < packets) { 1288 s->ready_processing = true; 1289 wake_up(&s->ready_wait); 1290 1291 if (d->replay.enable) 1292 s->ctx_data.rx.cache_pos = 0; 1293 1294 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1295 if (amdtp_streaming_error(s)) 1296 return; 1297 1298 if (s == d->irq_target) 1299 s->context->callback.sc = irq_target_callback; 1300 else 1301 s->context->callback.sc = process_rx_packets; 1302 } 1303 } 1304 1305 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1306 void *header, void *private_data) 1307 { 1308 struct amdtp_stream *s = private_data; 1309 __be32 *ctx_header = header; 1310 struct pkt_desc *desc = s->packet_descs_cursor; 1311 unsigned int packet_count; 1312 unsigned int desc_count; 1313 int i; 1314 int err; 1315 1316 if (s->packet_index < 0) 1317 return; 1318 1319 // Calculate the number of packets in buffer and check XRUN. 1320 packet_count = header_length / s->ctx_data.tx.ctx_header_size; 1321 1322 desc_count = 0; 1323 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); 1324 if (err < 0) { 1325 if (err != -EAGAIN) { 1326 cancel_stream(s); 1327 return; 1328 } 1329 } else { 1330 struct amdtp_domain *d = s->domain; 1331 1332 process_ctx_payloads(s, desc, desc_count); 1333 1334 if (d->replay.enable) 1335 cache_seq(s, desc, desc_count); 1336 1337 for (i = 0; i < desc_count; ++i) 1338 desc = amdtp_stream_next_packet_desc(s, desc); 1339 s->packet_descs_cursor = desc; 1340 } 1341 1342 for (i = 0; i < packet_count; ++i) { 1343 struct fw_iso_packet params = {0}; 1344 1345 if (queue_in_packet(s, ¶ms) < 0) { 1346 cancel_stream(s); 1347 return; 1348 } 1349 } 1350 } 1351 1352 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1353 void *header, void *private_data) 1354 { 1355 struct amdtp_stream *s = private_data; 1356 const __be32 *ctx_header = header; 1357 unsigned int packets; 1358 unsigned int cycle; 1359 int i; 1360 1361 if (s->packet_index < 0) 1362 return; 1363 1364 packets = header_length / s->ctx_data.tx.ctx_header_size; 1365 1366 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1367 cycle = compute_ohci_cycle_count(ctx_header[1]); 1368 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1369 1370 for (i = 0; i < packets; ++i) { 1371 struct fw_iso_packet params = {0}; 1372 1373 if (queue_in_packet(s, ¶ms) < 0) { 1374 cancel_stream(s); 1375 return; 1376 } 1377 } 1378 } 1379 1380 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1381 size_t header_length, void *header, void *private_data) 1382 { 1383 struct amdtp_stream *s = private_data; 1384 struct amdtp_domain *d = s->domain; 1385 __be32 *ctx_header; 1386 unsigned int packets; 1387 unsigned int offset; 1388 1389 if (s->packet_index < 0) 1390 return; 1391 1392 packets = header_length / s->ctx_data.tx.ctx_header_size; 1393 1394 offset = 0; 1395 ctx_header = header; 1396 while (offset < packets) { 1397 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1398 1399 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1400 break; 1401 1402 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1403 ++offset; 1404 } 1405 1406 ctx_header = header; 1407 1408 if (offset > 0) { 1409 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1410 1411 drop_tx_packets(context, tstamp, length, ctx_header, s); 1412 if (amdtp_streaming_error(s)) 1413 return; 1414 1415 ctx_header += length / sizeof(*ctx_header); 1416 header_length -= length; 1417 } 1418 1419 if (offset < packets) { 1420 s->ready_processing = true; 1421 wake_up(&s->ready_wait); 1422 1423 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1424 if (amdtp_streaming_error(s)) 1425 return; 1426 1427 context->callback.sc = process_tx_packets; 1428 } 1429 } 1430 1431 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1432 size_t header_length, void *header, void *private_data) 1433 { 1434 struct amdtp_stream *s = private_data; 1435 struct amdtp_domain *d = s->domain; 1436 __be32 *ctx_header; 1437 unsigned int count; 1438 unsigned int events; 1439 int i; 1440 1441 if (s->packet_index < 0) 1442 return; 1443 1444 count = header_length / s->ctx_data.tx.ctx_header_size; 1445 1446 // Attempt to detect any event in the batch of packets. 1447 events = 0; 1448 ctx_header = header; 1449 for (i = 0; i < count; ++i) { 1450 unsigned int payload_quads = 1451 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1452 unsigned int data_blocks; 1453 1454 if (s->flags & CIP_NO_HEADER) { 1455 data_blocks = payload_quads / s->data_block_quadlets; 1456 } else { 1457 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1458 1459 if (payload_quads < CIP_HEADER_QUADLETS) { 1460 data_blocks = 0; 1461 } else { 1462 payload_quads -= CIP_HEADER_QUADLETS; 1463 1464 if (s->flags & CIP_UNAWARE_SYT) { 1465 data_blocks = payload_quads / s->data_block_quadlets; 1466 } else { 1467 u32 cip1 = be32_to_cpu(cip_headers[1]); 1468 1469 // NODATA packet can includes any data blocks but they are 1470 // not available as event. 1471 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1472 data_blocks = 0; 1473 else 1474 data_blocks = payload_quads / s->data_block_quadlets; 1475 } 1476 } 1477 } 1478 1479 events += data_blocks; 1480 1481 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1482 } 1483 1484 drop_tx_packets(context, tstamp, header_length, header, s); 1485 1486 if (events > 0) 1487 s->ctx_data.tx.event_starts = true; 1488 1489 // Decide the cycle count to begin processing content of packet in IR contexts. 1490 { 1491 unsigned int stream_count = 0; 1492 unsigned int event_starts_count = 0; 1493 unsigned int cycle = UINT_MAX; 1494 1495 list_for_each_entry(s, &d->streams, list) { 1496 if (s->direction == AMDTP_IN_STREAM) { 1497 ++stream_count; 1498 if (s->ctx_data.tx.event_starts) 1499 ++event_starts_count; 1500 } 1501 } 1502 1503 if (stream_count == event_starts_count) { 1504 unsigned int next_cycle; 1505 1506 list_for_each_entry(s, &d->streams, list) { 1507 if (s->direction != AMDTP_IN_STREAM) 1508 continue; 1509 1510 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1511 d->processing_cycle.tx_init_skip); 1512 if (cycle == UINT_MAX || 1513 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1514 cycle = next_cycle; 1515 1516 s->context->callback.sc = process_tx_packets_intermediately; 1517 } 1518 1519 d->processing_cycle.tx_start = cycle; 1520 } 1521 } 1522 } 1523 1524 static void process_ctxs_in_domain(struct amdtp_domain *d) 1525 { 1526 struct amdtp_stream *s; 1527 1528 list_for_each_entry(s, &d->streams, list) { 1529 if (s != d->irq_target && amdtp_stream_running(s)) 1530 fw_iso_context_flush_completions(s->context); 1531 1532 if (amdtp_streaming_error(s)) 1533 goto error; 1534 } 1535 1536 return; 1537 error: 1538 if (amdtp_stream_running(d->irq_target)) 1539 cancel_stream(d->irq_target); 1540 1541 list_for_each_entry(s, &d->streams, list) { 1542 if (amdtp_stream_running(s)) 1543 cancel_stream(s); 1544 } 1545 } 1546 1547 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1548 void *header, void *private_data) 1549 { 1550 struct amdtp_stream *s = private_data; 1551 struct amdtp_domain *d = s->domain; 1552 1553 process_rx_packets(context, tstamp, header_length, header, private_data); 1554 process_ctxs_in_domain(d); 1555 } 1556 1557 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1558 size_t header_length, void *header, void *private_data) 1559 { 1560 struct amdtp_stream *s = private_data; 1561 struct amdtp_domain *d = s->domain; 1562 1563 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1564 process_ctxs_in_domain(d); 1565 } 1566 1567 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1568 size_t header_length, void *header, void *private_data) 1569 { 1570 struct amdtp_stream *s = private_data; 1571 struct amdtp_domain *d = s->domain; 1572 bool ready_to_start; 1573 1574 skip_rx_packets(context, tstamp, header_length, header, private_data); 1575 process_ctxs_in_domain(d); 1576 1577 if (d->replay.enable && !d->replay.on_the_fly) { 1578 unsigned int rx_count = 0; 1579 unsigned int rx_ready_count = 0; 1580 struct amdtp_stream *rx; 1581 1582 list_for_each_entry(rx, &d->streams, list) { 1583 struct amdtp_stream *tx; 1584 unsigned int cached_cycles; 1585 1586 if (rx->direction != AMDTP_OUT_STREAM) 1587 continue; 1588 ++rx_count; 1589 1590 tx = rx->ctx_data.rx.replay_target; 1591 cached_cycles = calculate_cached_cycle_count(tx, 0); 1592 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1593 ++rx_ready_count; 1594 } 1595 1596 ready_to_start = (rx_count == rx_ready_count); 1597 } else { 1598 ready_to_start = true; 1599 } 1600 1601 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1602 // contexts are expected to start and get callback when reaching here. 1603 if (ready_to_start) { 1604 unsigned int cycle = s->next_cycle; 1605 list_for_each_entry(s, &d->streams, list) { 1606 if (s->direction != AMDTP_OUT_STREAM) 1607 continue; 1608 1609 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1610 cycle = s->next_cycle; 1611 1612 if (s == d->irq_target) 1613 s->context->callback.sc = irq_target_callback_intermediately; 1614 else 1615 s->context->callback.sc = process_rx_packets_intermediately; 1616 } 1617 1618 d->processing_cycle.rx_start = cycle; 1619 } 1620 } 1621 1622 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1623 // transmit first packet. 1624 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1625 u32 tstamp, size_t header_length, 1626 void *header, void *private_data) 1627 { 1628 struct amdtp_stream *s = private_data; 1629 struct amdtp_domain *d = s->domain; 1630 1631 if (s->direction == AMDTP_IN_STREAM) { 1632 context->callback.sc = drop_tx_packets_initially; 1633 } else { 1634 if (s == d->irq_target) 1635 context->callback.sc = irq_target_callback_skip; 1636 else 1637 context->callback.sc = skip_rx_packets; 1638 } 1639 1640 context->callback.sc(context, tstamp, header_length, header, s); 1641 } 1642 1643 /** 1644 * amdtp_stream_start - start transferring packets 1645 * @s: the AMDTP stream to start 1646 * @channel: the isochronous channel on the bus 1647 * @speed: firewire speed code 1648 * @queue_size: The number of packets in the queue. 1649 * @idle_irq_interval: the interval to queue packet during initial state. 1650 * 1651 * The stream cannot be started until it has been configured with 1652 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1653 * device can be started. 1654 */ 1655 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1656 unsigned int queue_size, unsigned int idle_irq_interval) 1657 { 1658 bool is_irq_target = (s == s->domain->irq_target); 1659 unsigned int ctx_header_size; 1660 unsigned int max_ctx_payload_size; 1661 enum dma_data_direction dir; 1662 struct pkt_desc *descs; 1663 int i, type, tag, err; 1664 1665 mutex_lock(&s->mutex); 1666 1667 if (WARN_ON(amdtp_stream_running(s) || 1668 (s->data_block_quadlets < 1))) { 1669 err = -EBADFD; 1670 goto err_unlock; 1671 } 1672 1673 if (s->direction == AMDTP_IN_STREAM) { 1674 // NOTE: IT context should be used for constant IRQ. 1675 if (is_irq_target) { 1676 err = -EINVAL; 1677 goto err_unlock; 1678 } 1679 1680 s->data_block_counter = UINT_MAX; 1681 } else { 1682 s->data_block_counter = 0; 1683 } 1684 1685 // initialize packet buffer. 1686 if (s->direction == AMDTP_IN_STREAM) { 1687 dir = DMA_FROM_DEVICE; 1688 type = FW_ISO_CONTEXT_RECEIVE; 1689 if (!(s->flags & CIP_NO_HEADER)) 1690 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1691 else 1692 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1693 } else { 1694 dir = DMA_TO_DEVICE; 1695 type = FW_ISO_CONTEXT_TRANSMIT; 1696 ctx_header_size = 0; // No effect for IT context. 1697 } 1698 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1699 1700 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1701 if (err < 0) 1702 goto err_unlock; 1703 s->queue_size = queue_size; 1704 1705 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1706 type, channel, speed, ctx_header_size, 1707 amdtp_stream_first_callback, s); 1708 if (IS_ERR(s->context)) { 1709 err = PTR_ERR(s->context); 1710 if (err == -EBUSY) 1711 dev_err(&s->unit->device, 1712 "no free stream on this controller\n"); 1713 goto err_buffer; 1714 } 1715 1716 amdtp_stream_update(s); 1717 1718 if (s->direction == AMDTP_IN_STREAM) { 1719 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1720 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1721 s->ctx_data.tx.event_starts = false; 1722 1723 if (s->domain->replay.enable) { 1724 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1725 // possible to cache much unexpectedly. 1726 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1727 queue_size * 3 / 2); 1728 s->ctx_data.tx.cache.pos = 0; 1729 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1730 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1731 if (!s->ctx_data.tx.cache.descs) { 1732 err = -ENOMEM; 1733 goto err_context; 1734 } 1735 } 1736 } else { 1737 static const struct { 1738 unsigned int data_block; 1739 unsigned int syt_offset; 1740 } *entry, initial_state[] = { 1741 [CIP_SFC_32000] = { 4, 3072 }, 1742 [CIP_SFC_48000] = { 6, 1024 }, 1743 [CIP_SFC_96000] = { 12, 1024 }, 1744 [CIP_SFC_192000] = { 24, 1024 }, 1745 [CIP_SFC_44100] = { 0, 67 }, 1746 [CIP_SFC_88200] = { 0, 67 }, 1747 [CIP_SFC_176400] = { 0, 67 }, 1748 }; 1749 1750 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1751 if (!s->ctx_data.rx.seq.descs) { 1752 err = -ENOMEM; 1753 goto err_context; 1754 } 1755 s->ctx_data.rx.seq.size = queue_size; 1756 s->ctx_data.rx.seq.pos = 0; 1757 1758 entry = &initial_state[s->sfc]; 1759 s->ctx_data.rx.data_block_state = entry->data_block; 1760 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1761 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1762 1763 s->ctx_data.rx.event_count = 0; 1764 } 1765 1766 if (s->flags & CIP_NO_HEADER) 1767 s->tag = TAG_NO_CIP_HEADER; 1768 else 1769 s->tag = TAG_CIP; 1770 1771 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request 1772 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It 1773 // could take a round over queue of AMDTP packet descriptors and small loss of history. For 1774 // safe, keep more 8 elements for the queue, equivalent to 1 ms. 1775 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); 1776 if (!descs) { 1777 err = -ENOMEM; 1778 goto err_context; 1779 } 1780 s->packet_descs = descs; 1781 1782 INIT_LIST_HEAD(&s->packet_descs_list); 1783 for (i = 0; i < s->queue_size; ++i) { 1784 INIT_LIST_HEAD(&descs->link); 1785 list_add_tail(&descs->link, &s->packet_descs_list); 1786 ++descs; 1787 } 1788 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); 1789 1790 s->packet_index = 0; 1791 do { 1792 struct fw_iso_packet params; 1793 1794 if (s->direction == AMDTP_IN_STREAM) { 1795 err = queue_in_packet(s, ¶ms); 1796 } else { 1797 bool sched_irq = false; 1798 1799 params.header_length = 0; 1800 params.payload_length = 0; 1801 1802 if (is_irq_target) { 1803 sched_irq = !((s->packet_index + 1) % 1804 idle_irq_interval); 1805 } 1806 1807 err = queue_out_packet(s, ¶ms, sched_irq); 1808 } 1809 if (err < 0) 1810 goto err_pkt_descs; 1811 } while (s->packet_index > 0); 1812 1813 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1814 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1815 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1816 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1817 1818 s->ready_processing = false; 1819 err = fw_iso_context_start(s->context, -1, 0, tag); 1820 if (err < 0) 1821 goto err_pkt_descs; 1822 1823 mutex_unlock(&s->mutex); 1824 1825 return 0; 1826 err_pkt_descs: 1827 kfree(s->packet_descs); 1828 s->packet_descs = NULL; 1829 err_context: 1830 if (s->direction == AMDTP_OUT_STREAM) { 1831 kfree(s->ctx_data.rx.seq.descs); 1832 } else { 1833 if (s->domain->replay.enable) 1834 kfree(s->ctx_data.tx.cache.descs); 1835 } 1836 fw_iso_context_destroy(s->context); 1837 s->context = ERR_PTR(-1); 1838 err_buffer: 1839 iso_packets_buffer_destroy(&s->buffer, s->unit); 1840 err_unlock: 1841 mutex_unlock(&s->mutex); 1842 1843 return err; 1844 } 1845 1846 /** 1847 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1848 * @d: the AMDTP domain. 1849 * @s: the AMDTP stream that transports the PCM data 1850 * 1851 * Returns the current buffer position, in frames. 1852 */ 1853 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1854 struct amdtp_stream *s) 1855 { 1856 struct amdtp_stream *irq_target = d->irq_target; 1857 1858 if (irq_target && amdtp_stream_running(irq_target)) { 1859 // use wq to prevent AB/BA deadlock competition for 1860 // substream lock: 1861 // fw_iso_context_flush_completions() acquires 1862 // lock by ohci_flush_iso_completions(), 1863 // amdtp-stream process_rx_packets() attempts to 1864 // acquire same lock by snd_pcm_elapsed() 1865 if (current_work() != &s->period_work) 1866 fw_iso_context_flush_completions(irq_target->context); 1867 } 1868 1869 return READ_ONCE(s->pcm_buffer_pointer); 1870 } 1871 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1872 1873 /** 1874 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1875 * @d: the AMDTP domain. 1876 * @s: the AMDTP stream that transfers the PCM frames 1877 * 1878 * Returns zero always. 1879 */ 1880 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1881 { 1882 struct amdtp_stream *irq_target = d->irq_target; 1883 1884 // Process isochronous packets for recent isochronous cycle to handle 1885 // queued PCM frames. 1886 if (irq_target && amdtp_stream_running(irq_target)) 1887 fw_iso_context_flush_completions(irq_target->context); 1888 1889 return 0; 1890 } 1891 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1892 1893 /** 1894 * amdtp_stream_update - update the stream after a bus reset 1895 * @s: the AMDTP stream 1896 */ 1897 void amdtp_stream_update(struct amdtp_stream *s) 1898 { 1899 /* Precomputing. */ 1900 WRITE_ONCE(s->source_node_id_field, 1901 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1902 } 1903 EXPORT_SYMBOL(amdtp_stream_update); 1904 1905 /** 1906 * amdtp_stream_stop - stop sending packets 1907 * @s: the AMDTP stream to stop 1908 * 1909 * All PCM and MIDI devices of the stream must be stopped before the stream 1910 * itself can be stopped. 1911 */ 1912 static void amdtp_stream_stop(struct amdtp_stream *s) 1913 { 1914 mutex_lock(&s->mutex); 1915 1916 if (!amdtp_stream_running(s)) { 1917 mutex_unlock(&s->mutex); 1918 return; 1919 } 1920 1921 cancel_work_sync(&s->period_work); 1922 fw_iso_context_stop(s->context); 1923 fw_iso_context_destroy(s->context); 1924 s->context = ERR_PTR(-1); 1925 iso_packets_buffer_destroy(&s->buffer, s->unit); 1926 kfree(s->packet_descs); 1927 s->packet_descs = NULL; 1928 1929 if (s->direction == AMDTP_OUT_STREAM) { 1930 kfree(s->ctx_data.rx.seq.descs); 1931 } else { 1932 if (s->domain->replay.enable) 1933 kfree(s->ctx_data.tx.cache.descs); 1934 } 1935 1936 mutex_unlock(&s->mutex); 1937 } 1938 1939 /** 1940 * amdtp_stream_pcm_abort - abort the running PCM device 1941 * @s: the AMDTP stream about to be stopped 1942 * 1943 * If the isochronous stream needs to be stopped asynchronously, call this 1944 * function first to stop the PCM device. 1945 */ 1946 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1947 { 1948 struct snd_pcm_substream *pcm; 1949 1950 pcm = READ_ONCE(s->pcm); 1951 if (pcm) 1952 snd_pcm_stop_xrun(pcm); 1953 } 1954 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1955 1956 /** 1957 * amdtp_domain_init - initialize an AMDTP domain structure 1958 * @d: the AMDTP domain to initialize. 1959 */ 1960 int amdtp_domain_init(struct amdtp_domain *d) 1961 { 1962 INIT_LIST_HEAD(&d->streams); 1963 1964 d->events_per_period = 0; 1965 1966 return 0; 1967 } 1968 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1969 1970 /** 1971 * amdtp_domain_destroy - destroy an AMDTP domain structure 1972 * @d: the AMDTP domain to destroy. 1973 */ 1974 void amdtp_domain_destroy(struct amdtp_domain *d) 1975 { 1976 // At present nothing to do. 1977 return; 1978 } 1979 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1980 1981 /** 1982 * amdtp_domain_add_stream - register isoc context into the domain. 1983 * @d: the AMDTP domain. 1984 * @s: the AMDTP stream. 1985 * @channel: the isochronous channel on the bus. 1986 * @speed: firewire speed code. 1987 */ 1988 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1989 int channel, int speed) 1990 { 1991 struct amdtp_stream *tmp; 1992 1993 list_for_each_entry(tmp, &d->streams, list) { 1994 if (s == tmp) 1995 return -EBUSY; 1996 } 1997 1998 list_add(&s->list, &d->streams); 1999 2000 s->channel = channel; 2001 s->speed = speed; 2002 s->domain = d; 2003 2004 return 0; 2005 } 2006 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 2007 2008 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 2009 // is less than the number of rx streams, the first tx stream is selected. 2010 static int make_association(struct amdtp_domain *d) 2011 { 2012 unsigned int dst_index = 0; 2013 struct amdtp_stream *rx; 2014 2015 // Make association to replay target. 2016 list_for_each_entry(rx, &d->streams, list) { 2017 if (rx->direction == AMDTP_OUT_STREAM) { 2018 unsigned int src_index = 0; 2019 struct amdtp_stream *tx = NULL; 2020 struct amdtp_stream *s; 2021 2022 list_for_each_entry(s, &d->streams, list) { 2023 if (s->direction == AMDTP_IN_STREAM) { 2024 if (dst_index == src_index) { 2025 tx = s; 2026 break; 2027 } 2028 2029 ++src_index; 2030 } 2031 } 2032 if (!tx) { 2033 // Select the first entry. 2034 list_for_each_entry(s, &d->streams, list) { 2035 if (s->direction == AMDTP_IN_STREAM) { 2036 tx = s; 2037 break; 2038 } 2039 } 2040 // No target is available to replay sequence. 2041 if (!tx) 2042 return -EINVAL; 2043 } 2044 2045 rx->ctx_data.rx.replay_target = tx; 2046 2047 ++dst_index; 2048 } 2049 } 2050 2051 return 0; 2052 } 2053 2054 /** 2055 * amdtp_domain_start - start sending packets for isoc context in the domain. 2056 * @d: the AMDTP domain. 2057 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 2058 * contexts. 2059 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 2060 * IT context. 2061 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 2062 * according to arrival of events in tx packets. 2063 */ 2064 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 2065 bool replay_on_the_fly) 2066 { 2067 unsigned int events_per_buffer = d->events_per_buffer; 2068 unsigned int events_per_period = d->events_per_period; 2069 unsigned int queue_size; 2070 struct amdtp_stream *s; 2071 bool found = false; 2072 int err; 2073 2074 if (replay_seq) { 2075 err = make_association(d); 2076 if (err < 0) 2077 return err; 2078 } 2079 d->replay.enable = replay_seq; 2080 d->replay.on_the_fly = replay_on_the_fly; 2081 2082 // Select an IT context as IRQ target. 2083 list_for_each_entry(s, &d->streams, list) { 2084 if (s->direction == AMDTP_OUT_STREAM) { 2085 found = true; 2086 break; 2087 } 2088 } 2089 if (!found) 2090 return -ENXIO; 2091 d->irq_target = s; 2092 2093 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 2094 2095 // This is a case that AMDTP streams in domain run just for MIDI 2096 // substream. Use the number of events equivalent to 10 msec as 2097 // interval of hardware IRQ. 2098 if (events_per_period == 0) 2099 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 2100 if (events_per_buffer == 0) 2101 events_per_buffer = events_per_period * 3; 2102 2103 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 2104 amdtp_rate_table[d->irq_target->sfc]); 2105 2106 list_for_each_entry(s, &d->streams, list) { 2107 unsigned int idle_irq_interval = 0; 2108 2109 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2110 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2111 amdtp_rate_table[d->irq_target->sfc]); 2112 } 2113 2114 // Starts immediately but actually DMA context starts several hundred cycles later. 2115 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2116 if (err < 0) 2117 goto error; 2118 } 2119 2120 return 0; 2121 error: 2122 list_for_each_entry(s, &d->streams, list) 2123 amdtp_stream_stop(s); 2124 return err; 2125 } 2126 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2127 2128 /** 2129 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2130 * @d: the AMDTP domain to which the isoc contexts belong. 2131 */ 2132 void amdtp_domain_stop(struct amdtp_domain *d) 2133 { 2134 struct amdtp_stream *s, *next; 2135 2136 if (d->irq_target) 2137 amdtp_stream_stop(d->irq_target); 2138 2139 list_for_each_entry_safe(s, next, &d->streams, list) { 2140 list_del(&s->list); 2141 2142 if (s != d->irq_target) 2143 amdtp_stream_stop(s); 2144 } 2145 2146 d->events_per_period = 0; 2147 d->irq_target = NULL; 2148 } 2149 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2150