1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 static void pcm_period_work(struct work_struct *work); 81 82 /** 83 * amdtp_stream_init - initialize an AMDTP stream structure 84 * @s: the AMDTP stream to initialize 85 * @unit: the target of the stream 86 * @dir: the direction of stream 87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 88 * @fmt: the value of fmt field in CIP header 89 * @process_ctx_payloads: callback handler to process payloads of isoc context 90 * @protocol_size: the size to allocate newly for protocol 91 */ 92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 93 enum amdtp_stream_direction dir, unsigned int flags, 94 unsigned int fmt, 95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 96 unsigned int protocol_size) 97 { 98 if (process_ctx_payloads == NULL) 99 return -EINVAL; 100 101 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 102 if (!s->protocol) 103 return -ENOMEM; 104 105 s->unit = unit; 106 s->direction = dir; 107 s->flags = flags; 108 s->context = ERR_PTR(-1); 109 mutex_init(&s->mutex); 110 INIT_WORK(&s->period_work, pcm_period_work); 111 s->packet_index = 0; 112 113 init_waitqueue_head(&s->ready_wait); 114 115 s->fmt = fmt; 116 s->process_ctx_payloads = process_ctx_payloads; 117 118 return 0; 119 } 120 EXPORT_SYMBOL(amdtp_stream_init); 121 122 /** 123 * amdtp_stream_destroy - free stream resources 124 * @s: the AMDTP stream to destroy 125 */ 126 void amdtp_stream_destroy(struct amdtp_stream *s) 127 { 128 /* Not initialized. */ 129 if (s->protocol == NULL) 130 return; 131 132 WARN_ON(amdtp_stream_running(s)); 133 kfree(s->protocol); 134 mutex_destroy(&s->mutex); 135 } 136 EXPORT_SYMBOL(amdtp_stream_destroy); 137 138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 8, 140 [CIP_SFC_44100] = 8, 141 [CIP_SFC_48000] = 8, 142 [CIP_SFC_88200] = 16, 143 [CIP_SFC_96000] = 16, 144 [CIP_SFC_176400] = 32, 145 [CIP_SFC_192000] = 32, 146 }; 147 EXPORT_SYMBOL(amdtp_syt_intervals); 148 149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 150 [CIP_SFC_32000] = 32000, 151 [CIP_SFC_44100] = 44100, 152 [CIP_SFC_48000] = 48000, 153 [CIP_SFC_88200] = 88200, 154 [CIP_SFC_96000] = 96000, 155 [CIP_SFC_176400] = 176400, 156 [CIP_SFC_192000] = 192000, 157 }; 158 EXPORT_SYMBOL(amdtp_rate_table); 159 160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 161 struct snd_pcm_hw_rule *rule) 162 { 163 struct snd_interval *s = hw_param_interval(params, rule->var); 164 const struct snd_interval *r = 165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 166 struct snd_interval t = {0}; 167 unsigned int step = 0; 168 int i; 169 170 for (i = 0; i < CIP_SFC_COUNT; ++i) { 171 if (snd_interval_test(r, amdtp_rate_table[i])) 172 step = max(step, amdtp_syt_intervals[i]); 173 } 174 175 t.min = roundup(s->min, step); 176 t.max = rounddown(s->max, step); 177 t.integer = 1; 178 179 return snd_interval_refine(s, &t); 180 } 181 182 /** 183 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 184 * @s: the AMDTP stream, which must be initialized. 185 * @runtime: the PCM substream runtime 186 */ 187 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 188 struct snd_pcm_runtime *runtime) 189 { 190 struct snd_pcm_hardware *hw = &runtime->hw; 191 unsigned int ctx_header_size; 192 unsigned int maximum_usec_per_period; 193 int err; 194 195 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 196 SNDRV_PCM_INFO_INTERLEAVED | 197 SNDRV_PCM_INFO_JOINT_DUPLEX | 198 SNDRV_PCM_INFO_MMAP | 199 SNDRV_PCM_INFO_MMAP_VALID | 200 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 201 202 hw->periods_min = 2; 203 hw->periods_max = UINT_MAX; 204 205 /* bytes for a frame */ 206 hw->period_bytes_min = 4 * hw->channels_max; 207 208 /* Just to prevent from allocating much pages. */ 209 hw->period_bytes_max = hw->period_bytes_min * 2048; 210 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 211 212 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 213 // context when total size of accumulated context header reaches 214 // PAGE_SIZE. This kicks work for the isoc context and brings 215 // callback in the middle of scheduled interrupts. 216 // Although AMDTP streams in the same domain use the same events per 217 // IRQ, use the largest size of context header between IT/IR contexts. 218 // Here, use the value of context header in IR context is for both 219 // contexts. 220 if (!(s->flags & CIP_NO_HEADER)) 221 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 222 else 223 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 224 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 225 CYCLES_PER_SECOND / ctx_header_size; 226 227 // In IEC 61883-6, one isoc packet can transfer events up to the value 228 // of syt interval. This comes from the interval of isoc cycle. As 1394 229 // OHCI controller can generate hardware IRQ per isoc packet, the 230 // interval is 125 usec. 231 // However, there are two ways of transmission in IEC 61883-6; blocking 232 // and non-blocking modes. In blocking mode, the sequence of isoc packet 233 // includes 'empty' or 'NODATA' packets which include no event. In 234 // non-blocking mode, the number of events per packet is variable up to 235 // the syt interval. 236 // Due to the above protocol design, the minimum PCM frames per 237 // interrupt should be double of the value of syt interval, thus it is 238 // 250 usec. 239 err = snd_pcm_hw_constraint_minmax(runtime, 240 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 241 250, maximum_usec_per_period); 242 if (err < 0) 243 goto end; 244 245 /* Non-Blocking stream has no more constraints */ 246 if (!(s->flags & CIP_BLOCKING)) 247 goto end; 248 249 /* 250 * One AMDTP packet can include some frames. In blocking mode, the 251 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 252 * depending on its sampling rate. For accurate period interrupt, it's 253 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 254 */ 255 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 256 apply_constraint_to_size, NULL, 257 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 258 SNDRV_PCM_HW_PARAM_RATE, -1); 259 if (err < 0) 260 goto end; 261 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 262 apply_constraint_to_size, NULL, 263 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 264 SNDRV_PCM_HW_PARAM_RATE, -1); 265 if (err < 0) 266 goto end; 267 end: 268 return err; 269 } 270 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 271 272 /** 273 * amdtp_stream_set_parameters - set stream parameters 274 * @s: the AMDTP stream to configure 275 * @rate: the sample rate 276 * @data_block_quadlets: the size of a data block in quadlet unit 277 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP 278 * events. 279 * 280 * The parameters must be set before the stream is started, and must not be 281 * changed while the stream is running. 282 */ 283 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 284 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) 285 { 286 unsigned int sfc; 287 288 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 289 if (amdtp_rate_table[sfc] == rate) 290 break; 291 } 292 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 293 return -EINVAL; 294 295 s->sfc = sfc; 296 s->data_block_quadlets = data_block_quadlets; 297 s->syt_interval = amdtp_syt_intervals[sfc]; 298 299 // default buffering in the device. 300 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 301 302 // additional buffering needed to adjust for no-data packets. 303 if (s->flags & CIP_BLOCKING) 304 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 305 306 s->pcm_frame_multiplier = pcm_frame_multiplier; 307 308 return 0; 309 } 310 EXPORT_SYMBOL(amdtp_stream_set_parameters); 311 312 // The CIP header is processed in context header apart from context payload. 313 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 314 { 315 unsigned int multiplier; 316 317 if (s->flags & CIP_JUMBO_PAYLOAD) 318 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 319 else 320 multiplier = 1; 321 322 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 323 } 324 325 /** 326 * amdtp_stream_get_max_payload - get the stream's packet size 327 * @s: the AMDTP stream 328 * 329 * This function must not be called before the stream has been configured 330 * with amdtp_stream_set_parameters(). 331 */ 332 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 333 { 334 unsigned int cip_header_size; 335 336 if (!(s->flags & CIP_NO_HEADER)) 337 cip_header_size = CIP_HEADER_SIZE; 338 else 339 cip_header_size = 0; 340 341 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 342 } 343 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 344 345 /** 346 * amdtp_stream_pcm_prepare - prepare PCM device for running 347 * @s: the AMDTP stream 348 * 349 * This function should be called from the PCM device's .prepare callback. 350 */ 351 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 352 { 353 cancel_work_sync(&s->period_work); 354 s->pcm_buffer_pointer = 0; 355 s->pcm_period_pointer = 0; 356 } 357 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 358 359 #define prev_packet_desc(s, desc) \ 360 list_prev_entry_circular(desc, &s->packet_descs_list, link) 361 362 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 363 unsigned int size, unsigned int pos, unsigned int count) 364 { 365 const unsigned int syt_interval = s->syt_interval; 366 int i; 367 368 for (i = 0; i < count; ++i) { 369 struct seq_desc *desc = descs + pos; 370 371 if (desc->syt_offset != CIP_SYT_NO_INFO) 372 desc->data_blocks = syt_interval; 373 else 374 desc->data_blocks = 0; 375 376 pos = (pos + 1) % size; 377 } 378 } 379 380 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 381 unsigned int size, unsigned int pos, 382 unsigned int count) 383 { 384 const enum cip_sfc sfc = s->sfc; 385 unsigned int state = s->ctx_data.rx.data_block_state; 386 int i; 387 388 for (i = 0; i < count; ++i) { 389 struct seq_desc *desc = descs + pos; 390 391 if (!cip_sfc_is_base_44100(sfc)) { 392 // Sample_rate / 8000 is an integer, and precomputed. 393 desc->data_blocks = state; 394 } else { 395 unsigned int phase = state; 396 397 /* 398 * This calculates the number of data blocks per packet so that 399 * 1) the overall rate is correct and exactly synchronized to 400 * the bus clock, and 401 * 2) packets with a rounded-up number of blocks occur as early 402 * as possible in the sequence (to prevent underruns of the 403 * device's buffer). 404 */ 405 if (sfc == CIP_SFC_44100) 406 /* 6 6 5 6 5 6 5 ... */ 407 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 408 else 409 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 410 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 411 if (++phase >= (80 >> (sfc >> 1))) 412 phase = 0; 413 state = phase; 414 } 415 416 pos = (pos + 1) % size; 417 } 418 419 s->ctx_data.rx.data_block_state = state; 420 } 421 422 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 423 unsigned int *syt_offset_state, enum cip_sfc sfc) 424 { 425 unsigned int syt_offset; 426 427 if (*last_syt_offset < TICKS_PER_CYCLE) { 428 if (!cip_sfc_is_base_44100(sfc)) 429 syt_offset = *last_syt_offset + *syt_offset_state; 430 else { 431 /* 432 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 433 * n * SYT_INTERVAL * 24576000 / sample_rate 434 * Modulo TICKS_PER_CYCLE, the difference between successive 435 * elements is about 1386.23. Rounding the results of this 436 * formula to the SYT precision results in a sequence of 437 * differences that begins with: 438 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 439 * This code generates _exactly_ the same sequence. 440 */ 441 unsigned int phase = *syt_offset_state; 442 unsigned int index = phase % 13; 443 444 syt_offset = *last_syt_offset; 445 syt_offset += 1386 + ((index && !(index & 3)) || 446 phase == 146); 447 if (++phase >= 147) 448 phase = 0; 449 *syt_offset_state = phase; 450 } 451 } else 452 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 453 *last_syt_offset = syt_offset; 454 455 if (syt_offset >= TICKS_PER_CYCLE) 456 syt_offset = CIP_SYT_NO_INFO; 457 458 return syt_offset; 459 } 460 461 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 462 unsigned int size, unsigned int pos, unsigned int count) 463 { 464 const enum cip_sfc sfc = s->sfc; 465 unsigned int last = s->ctx_data.rx.last_syt_offset; 466 unsigned int state = s->ctx_data.rx.syt_offset_state; 467 int i; 468 469 for (i = 0; i < count; ++i) { 470 struct seq_desc *desc = descs + pos; 471 472 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 473 474 pos = (pos + 1) % size; 475 } 476 477 s->ctx_data.rx.last_syt_offset = last; 478 s->ctx_data.rx.syt_offset_state = state; 479 } 480 481 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 482 unsigned int transfer_delay) 483 { 484 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 485 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 486 unsigned int syt_offset; 487 488 // Round up. 489 if (syt_cycle_lo < cycle_lo) 490 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 491 syt_cycle_lo -= cycle_lo; 492 493 // Subtract transfer delay so that the synchronization offset is not so large 494 // at transmission. 495 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 496 if (syt_offset < transfer_delay) 497 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 498 499 return syt_offset - transfer_delay; 500 } 501 502 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 503 // Additionally, the sequence of tx packets is severely checked against any discontinuity 504 // before filling entries in the queue. The calculation is safe even if it looks fragile by 505 // overrun. 506 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 507 { 508 const unsigned int cache_size = s->ctx_data.tx.cache.size; 509 unsigned int cycles = s->ctx_data.tx.cache.pos; 510 511 if (cycles < head) 512 cycles += cache_size; 513 cycles -= head; 514 515 return cycles; 516 } 517 518 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) 519 { 520 const unsigned int transfer_delay = s->transfer_delay; 521 const unsigned int cache_size = s->ctx_data.tx.cache.size; 522 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 523 unsigned int cache_pos = s->ctx_data.tx.cache.pos; 524 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 525 int i; 526 527 for (i = 0; i < desc_count; ++i) { 528 struct seq_desc *dst = cache + cache_pos; 529 530 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 531 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 532 else 533 dst->syt_offset = CIP_SYT_NO_INFO; 534 dst->data_blocks = src->data_blocks; 535 536 cache_pos = (cache_pos + 1) % cache_size; 537 src = amdtp_stream_next_packet_desc(s, src); 538 } 539 540 s->ctx_data.tx.cache.pos = cache_pos; 541 } 542 543 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 544 unsigned int pos, unsigned int count) 545 { 546 pool_ideal_syt_offsets(s, descs, size, pos, count); 547 548 if (s->flags & CIP_BLOCKING) 549 pool_blocking_data_blocks(s, descs, size, pos, count); 550 else 551 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); 552 } 553 554 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 555 unsigned int pos, unsigned int count) 556 { 557 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 558 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 559 const unsigned int cache_size = target->ctx_data.tx.cache.size; 560 unsigned int cache_pos = s->ctx_data.rx.cache_pos; 561 int i; 562 563 for (i = 0; i < count; ++i) { 564 descs[pos] = cache[cache_pos]; 565 cache_pos = (cache_pos + 1) % cache_size; 566 pos = (pos + 1) % size; 567 } 568 569 s->ctx_data.rx.cache_pos = cache_pos; 570 } 571 572 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 573 unsigned int pos, unsigned int count) 574 { 575 struct amdtp_domain *d = s->domain; 576 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 577 unsigned int pos, unsigned int count); 578 579 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 580 pool_seq_descs = pool_ideal_seq_descs; 581 } else { 582 if (!d->replay.on_the_fly) { 583 pool_seq_descs = pool_replayed_seq; 584 } else { 585 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 586 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 587 const unsigned int cache_pos = s->ctx_data.rx.cache_pos; 588 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); 589 590 if (cached_cycles > count && cached_cycles > cache_size / 2) 591 pool_seq_descs = pool_replayed_seq; 592 else 593 pool_seq_descs = pool_ideal_seq_descs; 594 } 595 } 596 597 pool_seq_descs(s, descs, size, pos, count); 598 } 599 600 static void update_pcm_pointers(struct amdtp_stream *s, 601 struct snd_pcm_substream *pcm, 602 unsigned int frames) 603 { 604 unsigned int ptr; 605 606 ptr = s->pcm_buffer_pointer + frames; 607 if (ptr >= pcm->runtime->buffer_size) 608 ptr -= pcm->runtime->buffer_size; 609 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 610 611 s->pcm_period_pointer += frames; 612 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 613 s->pcm_period_pointer -= pcm->runtime->period_size; 614 615 // The program in user process should periodically check the status of intermediate 616 // buffer associated to PCM substream to process PCM frames in the buffer, instead 617 // of receiving notification of period elapsed by poll wait. 618 // 619 // Use another work item for period elapsed event to prevent the following AB/BA 620 // deadlock: 621 // 622 // thread 1 thread 2 623 // ================================= ================================= 624 // A.work item (process) pcm ioctl (process) 625 // v v 626 // process_rx_packets() B.PCM stream lock 627 // process_tx_packets() v 628 // v callbacks in snd_pcm_ops 629 // update_pcm_pointers() v 630 // snd_pcm_elapsed() fw_iso_context_flush_completions() 631 // snd_pcm_stream_lock_irqsave() disable_work_sync() 632 // v v 633 // wait until release of B wait until A exits 634 if (!pcm->runtime->no_period_wakeup) 635 queue_work(system_highpri_wq, &s->period_work); 636 } 637 } 638 639 static void pcm_period_work(struct work_struct *work) 640 { 641 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 642 period_work); 643 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 644 645 if (pcm) 646 snd_pcm_period_elapsed(pcm); 647 } 648 649 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 650 bool sched_irq) 651 { 652 int err; 653 654 params->interrupt = sched_irq; 655 params->tag = s->tag; 656 params->sy = 0; 657 658 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 659 s->buffer.packets[s->packet_index].offset); 660 if (err < 0) { 661 dev_err(&s->unit->device, "queueing error: %d\n", err); 662 goto end; 663 } 664 665 if (++s->packet_index >= s->queue_size) 666 s->packet_index = 0; 667 end: 668 return err; 669 } 670 671 static inline int queue_out_packet(struct amdtp_stream *s, 672 struct fw_iso_packet *params, bool sched_irq) 673 { 674 params->skip = 675 !!(params->header_length == 0 && params->payload_length == 0); 676 return queue_packet(s, params, sched_irq); 677 } 678 679 static inline int queue_in_packet(struct amdtp_stream *s, 680 struct fw_iso_packet *params) 681 { 682 // Queue one packet for IR context. 683 params->header_length = s->ctx_data.tx.ctx_header_size; 684 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 685 params->skip = false; 686 return queue_packet(s, params, false); 687 } 688 689 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 690 unsigned int data_block_counter, unsigned int syt) 691 { 692 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 693 (s->data_block_quadlets << CIP_DBS_SHIFT) | 694 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 695 data_block_counter); 696 cip_header[1] = cpu_to_be32(CIP_EOH | 697 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 698 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 699 (syt & CIP_SYT_MASK)); 700 } 701 702 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 703 struct fw_iso_packet *params, unsigned int header_length, 704 unsigned int data_blocks, 705 unsigned int data_block_counter, 706 unsigned int syt, unsigned int index, u32 curr_cycle_time) 707 { 708 unsigned int payload_length; 709 __be32 *cip_header; 710 711 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 712 params->payload_length = payload_length; 713 714 if (header_length > 0) { 715 cip_header = (__be32 *)params->header; 716 generate_cip_header(s, cip_header, data_block_counter, syt); 717 params->header_length = header_length; 718 } else { 719 cip_header = NULL; 720 } 721 722 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 723 data_block_counter, s->packet_index, index, curr_cycle_time); 724 } 725 726 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 727 unsigned int payload_length, 728 unsigned int *data_blocks, 729 unsigned int *data_block_counter, unsigned int *syt) 730 { 731 u32 cip_header[2]; 732 unsigned int sph; 733 unsigned int fmt; 734 unsigned int fdf; 735 unsigned int dbc; 736 bool lost; 737 738 cip_header[0] = be32_to_cpu(buf[0]); 739 cip_header[1] = be32_to_cpu(buf[1]); 740 741 /* 742 * This module supports 'Two-quadlet CIP header with SYT field'. 743 * For convenience, also check FMT field is AM824 or not. 744 */ 745 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 746 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 747 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 748 dev_info_ratelimited(&s->unit->device, 749 "Invalid CIP header for AMDTP: %08X:%08X\n", 750 cip_header[0], cip_header[1]); 751 return -EAGAIN; 752 } 753 754 /* Check valid protocol or not. */ 755 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 756 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 757 if (sph != s->sph || fmt != s->fmt) { 758 dev_info_ratelimited(&s->unit->device, 759 "Detect unexpected protocol: %08x %08x\n", 760 cip_header[0], cip_header[1]); 761 return -EAGAIN; 762 } 763 764 /* Calculate data blocks */ 765 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 766 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 767 *data_blocks = 0; 768 } else { 769 unsigned int data_block_quadlets = 770 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 771 /* avoid division by zero */ 772 if (data_block_quadlets == 0) { 773 dev_err(&s->unit->device, 774 "Detect invalid value in dbs field: %08X\n", 775 cip_header[0]); 776 return -EPROTO; 777 } 778 if (s->flags & CIP_WRONG_DBS) 779 data_block_quadlets = s->data_block_quadlets; 780 781 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 782 } 783 784 /* Check data block counter continuity */ 785 dbc = cip_header[0] & CIP_DBC_MASK; 786 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 787 *data_block_counter != UINT_MAX) 788 dbc = *data_block_counter; 789 790 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 791 *data_block_counter == UINT_MAX) { 792 lost = false; 793 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 794 lost = dbc != *data_block_counter; 795 } else { 796 unsigned int dbc_interval; 797 798 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { 799 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 800 dbc_interval = s->ctx_data.tx.dbc_interval; 801 else 802 dbc_interval = *data_blocks; 803 } else { 804 dbc_interval = payload_length / sizeof(__be32); 805 } 806 807 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 808 } 809 810 if (lost) { 811 dev_err(&s->unit->device, 812 "Detect discontinuity of CIP: %02X %02X\n", 813 *data_block_counter, dbc); 814 return -EIO; 815 } 816 817 *data_block_counter = dbc; 818 819 if (!(s->flags & CIP_UNAWARE_SYT)) 820 *syt = cip_header[1] & CIP_SYT_MASK; 821 822 return 0; 823 } 824 825 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 826 const __be32 *ctx_header, 827 unsigned int *data_blocks, 828 unsigned int *data_block_counter, 829 unsigned int *syt, unsigned int packet_index, unsigned int index, 830 u32 curr_cycle_time) 831 { 832 unsigned int payload_length; 833 const __be32 *cip_header; 834 unsigned int cip_header_size; 835 836 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 837 838 if (!(s->flags & CIP_NO_HEADER)) 839 cip_header_size = CIP_HEADER_SIZE; 840 else 841 cip_header_size = 0; 842 843 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 844 dev_err(&s->unit->device, 845 "Detect jumbo payload: %04x %04x\n", 846 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 847 return -EIO; 848 } 849 850 if (cip_header_size > 0) { 851 if (payload_length >= cip_header_size) { 852 int err; 853 854 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 855 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 856 data_blocks, data_block_counter, syt); 857 if (err < 0) 858 return err; 859 } else { 860 // Handle the cycle so that empty packet arrives. 861 cip_header = NULL; 862 *data_blocks = 0; 863 *syt = 0; 864 } 865 } else { 866 cip_header = NULL; 867 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 868 *syt = 0; 869 870 if (*data_block_counter == UINT_MAX) 871 *data_block_counter = 0; 872 } 873 874 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 875 *data_block_counter, packet_index, index, curr_cycle_time); 876 877 return 0; 878 } 879 880 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 881 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 882 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 883 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) 884 { 885 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); 886 } 887 888 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 889 { 890 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 891 return compute_ohci_iso_ctx_cycle_count(tstamp); 892 } 893 894 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 895 { 896 cycle += addend; 897 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 898 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 899 return cycle; 900 } 901 902 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) 903 { 904 if (minuend < subtrahend) 905 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 906 907 return minuend - subtrahend; 908 } 909 910 static int compare_ohci_cycle_count(u32 lval, u32 rval) 911 { 912 if (lval == rval) 913 return 0; 914 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 915 return -1; 916 else 917 return 1; 918 } 919 920 // Align to actual cycle count for the packet which is going to be scheduled. 921 // This module queued the same number of isochronous cycle as the size of queue 922 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 923 // the size of queue for scheduled cycle. 924 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 925 unsigned int queue_size) 926 { 927 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 928 return increment_ohci_cycle_count(cycle, queue_size); 929 } 930 931 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 932 const __be32 *ctx_header, unsigned int packet_count, 933 unsigned int *desc_count) 934 { 935 unsigned int next_cycle = s->next_cycle; 936 unsigned int dbc = s->data_block_counter; 937 unsigned int packet_index = s->packet_index; 938 unsigned int queue_size = s->queue_size; 939 u32 curr_cycle_time = 0; 940 int i; 941 int err; 942 943 if (trace_amdtp_packet_enabled()) 944 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 945 946 *desc_count = 0; 947 for (i = 0; i < packet_count; ++i) { 948 unsigned int cycle; 949 bool lost; 950 unsigned int data_blocks; 951 unsigned int syt; 952 953 cycle = compute_ohci_cycle_count(ctx_header[1]); 954 lost = (next_cycle != cycle); 955 if (lost) { 956 if (s->flags & CIP_NO_HEADER) { 957 // Fireface skips transmission just for an isoc cycle corresponding 958 // to empty packet. 959 unsigned int prev_cycle = next_cycle; 960 961 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 962 lost = (next_cycle != cycle); 963 if (!lost) { 964 // Prepare a description for the skipped cycle for 965 // sequence replay. 966 desc->cycle = prev_cycle; 967 desc->syt = 0; 968 desc->data_blocks = 0; 969 desc->data_block_counter = dbc; 970 desc->ctx_payload = NULL; 971 desc = amdtp_stream_next_packet_desc(s, desc); 972 ++(*desc_count); 973 } 974 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 975 // OXFW970 skips transmission for several isoc cycles during 976 // asynchronous transaction. The sequence replay is impossible due 977 // to the reason. 978 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 979 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 980 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); 981 } 982 if (lost) { 983 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 984 next_cycle, cycle); 985 return -EIO; 986 } 987 } 988 989 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 990 packet_index, i, curr_cycle_time); 991 if (err < 0) 992 return err; 993 994 desc->cycle = cycle; 995 desc->syt = syt; 996 desc->data_blocks = data_blocks; 997 desc->data_block_counter = dbc; 998 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 999 1000 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1001 dbc = (dbc + desc->data_blocks) & 0xff; 1002 1003 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 1004 desc = amdtp_stream_next_packet_desc(s, desc); 1005 ++(*desc_count); 1006 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1007 packet_index = (packet_index + 1) % queue_size; 1008 } 1009 1010 s->next_cycle = next_cycle; 1011 s->data_block_counter = dbc; 1012 1013 return 0; 1014 } 1015 1016 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 1017 unsigned int transfer_delay) 1018 { 1019 unsigned int syt; 1020 1021 syt_offset += transfer_delay; 1022 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 1023 (syt_offset % TICKS_PER_CYCLE); 1024 return syt & CIP_SYT_MASK; 1025 } 1026 1027 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 1028 const __be32 *ctx_header, unsigned int packet_count) 1029 { 1030 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 1031 unsigned int seq_size = s->ctx_data.rx.seq.size; 1032 unsigned int seq_pos = s->ctx_data.rx.seq.pos; 1033 unsigned int dbc = s->data_block_counter; 1034 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 1035 int i; 1036 1037 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); 1038 1039 for (i = 0; i < packet_count; ++i) { 1040 unsigned int index = (s->packet_index + i) % s->queue_size; 1041 const struct seq_desc *seq = seq_descs + seq_pos; 1042 1043 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1044 1045 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1046 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1047 else 1048 desc->syt = CIP_SYT_NO_INFO; 1049 1050 desc->data_blocks = seq->data_blocks; 1051 1052 if (s->flags & CIP_DBC_IS_END_EVENT) 1053 dbc = (dbc + desc->data_blocks) & 0xff; 1054 1055 desc->data_block_counter = dbc; 1056 1057 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1058 dbc = (dbc + desc->data_blocks) & 0xff; 1059 1060 desc->ctx_payload = s->buffer.packets[index].buffer; 1061 1062 seq_pos = (seq_pos + 1) % seq_size; 1063 desc = amdtp_stream_next_packet_desc(s, desc); 1064 1065 ++ctx_header; 1066 } 1067 1068 s->data_block_counter = dbc; 1069 s->ctx_data.rx.seq.pos = seq_pos; 1070 } 1071 1072 static inline void cancel_stream(struct amdtp_stream *s) 1073 { 1074 struct work_struct *work = current_work(); 1075 1076 s->packet_index = -1; 1077 1078 // Detect work items for any isochronous context. The work item for pcm_period_work() 1079 // should be avoided since the call of snd_pcm_period_elapsed() can reach via 1080 // snd_pcm_ops.pointer() under acquiring PCM stream(group) lock and causes dead lock at 1081 // snd_pcm_stop_xrun(). 1082 if (work && work != &s->period_work) 1083 amdtp_stream_pcm_abort(s); 1084 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1085 } 1086 1087 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, 1088 const struct pkt_desc *desc, unsigned int count) 1089 { 1090 unsigned int data_block_count = 0; 1091 u32 latest_cycle; 1092 u32 cycle_time; 1093 u32 curr_cycle; 1094 u32 cycle_gap; 1095 int i, err; 1096 1097 if (count == 0) 1098 goto end; 1099 1100 // Forward to the latest record. 1101 for (i = 0; i < count - 1; ++i) 1102 desc = amdtp_stream_next_packet_desc(s, desc); 1103 latest_cycle = desc->cycle; 1104 1105 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); 1106 if (err < 0) 1107 goto end; 1108 1109 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp 1110 // format of 1394 OHCI isochronous context. 1111 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); 1112 1113 if (s->direction == AMDTP_IN_STREAM) { 1114 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since 1115 // it corresponds to arrived isochronous packet. 1116 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) 1117 goto end; 1118 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); 1119 1120 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated 1121 // value expectedly corresponds to a few packets (0-2) since the packet arrived at 1122 // the most recent isochronous cycle has been already processed. 1123 for (i = 0; i < cycle_gap; ++i) { 1124 desc = amdtp_stream_next_packet_desc(s, desc); 1125 data_block_count += desc->data_blocks; 1126 } 1127 } else { 1128 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle 1129 // since it was already scheduled. 1130 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) 1131 goto end; 1132 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); 1133 1134 // NOTE: use history of scheduled packets. 1135 for (i = 0; i < cycle_gap; ++i) { 1136 data_block_count += desc->data_blocks; 1137 desc = prev_packet_desc(s, desc); 1138 } 1139 } 1140 end: 1141 return data_block_count * s->pcm_frame_multiplier; 1142 } 1143 1144 static void process_ctx_payloads(struct amdtp_stream *s, 1145 const struct pkt_desc *desc, 1146 unsigned int count) 1147 { 1148 struct snd_pcm_substream *pcm; 1149 int i; 1150 1151 pcm = READ_ONCE(s->pcm); 1152 s->process_ctx_payloads(s, desc, count, pcm); 1153 1154 if (pcm) { 1155 unsigned int data_block_count = 0; 1156 1157 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); 1158 1159 for (i = 0; i < count; ++i) { 1160 data_block_count += desc->data_blocks; 1161 desc = amdtp_stream_next_packet_desc(s, desc); 1162 } 1163 1164 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); 1165 } 1166 } 1167 1168 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1169 void *header, void *private_data) 1170 { 1171 struct amdtp_stream *s = private_data; 1172 const struct amdtp_domain *d = s->domain; 1173 const __be32 *ctx_header = header; 1174 const unsigned int events_per_period = d->events_per_period; 1175 unsigned int event_count = s->ctx_data.rx.event_count; 1176 struct pkt_desc *desc = s->packet_descs_cursor; 1177 unsigned int pkt_header_length; 1178 unsigned int packets; 1179 u32 curr_cycle_time; 1180 bool need_hw_irq; 1181 int i; 1182 1183 if (s->packet_index < 0) 1184 return; 1185 1186 // Calculate the number of packets in buffer and check XRUN. 1187 packets = header_length / sizeof(*ctx_header); 1188 1189 generate_rx_packet_descs(s, desc, ctx_header, packets); 1190 1191 process_ctx_payloads(s, desc, packets); 1192 1193 if (!(s->flags & CIP_NO_HEADER)) 1194 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1195 else 1196 pkt_header_length = 0; 1197 1198 if (s == d->irq_target) { 1199 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1200 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1201 // with some requests, instead of scheduled hardware IRQ of an IT context. 1202 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1203 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1204 } else { 1205 need_hw_irq = false; 1206 } 1207 1208 if (trace_amdtp_packet_enabled()) 1209 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 1210 1211 for (i = 0; i < packets; ++i) { 1212 DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS); 1213 bool sched_irq = false; 1214 1215 build_it_pkt_header(s, desc->cycle, template, pkt_header_length, 1216 desc->data_blocks, desc->data_block_counter, 1217 desc->syt, i, curr_cycle_time); 1218 1219 if (s == s->domain->irq_target) { 1220 event_count += desc->data_blocks; 1221 if (event_count >= events_per_period) { 1222 event_count -= events_per_period; 1223 sched_irq = need_hw_irq; 1224 } 1225 } 1226 1227 if (queue_out_packet(s, template, sched_irq) < 0) { 1228 cancel_stream(s); 1229 return; 1230 } 1231 1232 desc = amdtp_stream_next_packet_desc(s, desc); 1233 } 1234 1235 s->ctx_data.rx.event_count = event_count; 1236 s->packet_descs_cursor = desc; 1237 } 1238 1239 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1240 void *header, void *private_data) 1241 { 1242 struct amdtp_stream *s = private_data; 1243 struct amdtp_domain *d = s->domain; 1244 const __be32 *ctx_header = header; 1245 unsigned int packets; 1246 unsigned int cycle; 1247 int i; 1248 1249 if (s->packet_index < 0) 1250 return; 1251 1252 packets = header_length / sizeof(*ctx_header); 1253 1254 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1255 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1256 1257 for (i = 0; i < packets; ++i) { 1258 struct fw_iso_packet params = { 1259 .header_length = 0, 1260 .payload_length = 0, 1261 }; 1262 bool sched_irq = (s == d->irq_target && i == packets - 1); 1263 1264 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1265 cancel_stream(s); 1266 return; 1267 } 1268 } 1269 } 1270 1271 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1272 void *header, void *private_data); 1273 1274 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1275 size_t header_length, void *header, void *private_data) 1276 { 1277 struct amdtp_stream *s = private_data; 1278 struct amdtp_domain *d = s->domain; 1279 __be32 *ctx_header = header; 1280 const unsigned int queue_size = s->queue_size; 1281 unsigned int packets; 1282 unsigned int offset; 1283 1284 if (s->packet_index < 0) 1285 return; 1286 1287 packets = header_length / sizeof(*ctx_header); 1288 1289 offset = 0; 1290 while (offset < packets) { 1291 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1292 1293 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1294 break; 1295 1296 ++offset; 1297 } 1298 1299 if (offset > 0) { 1300 unsigned int length = sizeof(*ctx_header) * offset; 1301 1302 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1303 if (amdtp_streaming_error(s)) 1304 return; 1305 1306 ctx_header += offset; 1307 header_length -= length; 1308 } 1309 1310 if (offset < packets) { 1311 s->ready_processing = true; 1312 wake_up(&s->ready_wait); 1313 1314 if (d->replay.enable) 1315 s->ctx_data.rx.cache_pos = 0; 1316 1317 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1318 if (amdtp_streaming_error(s)) 1319 return; 1320 1321 if (s == d->irq_target) 1322 s->context->callback.sc = irq_target_callback; 1323 else 1324 s->context->callback.sc = process_rx_packets; 1325 } 1326 } 1327 1328 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1329 void *header, void *private_data) 1330 { 1331 struct amdtp_stream *s = private_data; 1332 __be32 *ctx_header = header; 1333 struct pkt_desc *desc = s->packet_descs_cursor; 1334 unsigned int packet_count; 1335 unsigned int desc_count; 1336 int i; 1337 int err; 1338 1339 if (s->packet_index < 0) 1340 return; 1341 1342 // Calculate the number of packets in buffer and check XRUN. 1343 packet_count = header_length / s->ctx_data.tx.ctx_header_size; 1344 1345 desc_count = 0; 1346 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); 1347 if (err < 0) { 1348 if (err != -EAGAIN) { 1349 cancel_stream(s); 1350 return; 1351 } 1352 } else { 1353 struct amdtp_domain *d = s->domain; 1354 1355 process_ctx_payloads(s, desc, desc_count); 1356 1357 if (d->replay.enable) 1358 cache_seq(s, desc, desc_count); 1359 1360 for (i = 0; i < desc_count; ++i) 1361 desc = amdtp_stream_next_packet_desc(s, desc); 1362 s->packet_descs_cursor = desc; 1363 } 1364 1365 for (i = 0; i < packet_count; ++i) { 1366 struct fw_iso_packet params = {0}; 1367 1368 if (queue_in_packet(s, ¶ms) < 0) { 1369 cancel_stream(s); 1370 return; 1371 } 1372 } 1373 } 1374 1375 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1376 void *header, void *private_data) 1377 { 1378 struct amdtp_stream *s = private_data; 1379 const __be32 *ctx_header = header; 1380 unsigned int packets; 1381 unsigned int cycle; 1382 int i; 1383 1384 if (s->packet_index < 0) 1385 return; 1386 1387 packets = header_length / s->ctx_data.tx.ctx_header_size; 1388 1389 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1390 cycle = compute_ohci_cycle_count(ctx_header[1]); 1391 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1392 1393 for (i = 0; i < packets; ++i) { 1394 struct fw_iso_packet params = {0}; 1395 1396 if (queue_in_packet(s, ¶ms) < 0) { 1397 cancel_stream(s); 1398 return; 1399 } 1400 } 1401 } 1402 1403 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1404 size_t header_length, void *header, void *private_data) 1405 { 1406 struct amdtp_stream *s = private_data; 1407 struct amdtp_domain *d = s->domain; 1408 __be32 *ctx_header; 1409 unsigned int packets; 1410 unsigned int offset; 1411 1412 if (s->packet_index < 0) 1413 return; 1414 1415 packets = header_length / s->ctx_data.tx.ctx_header_size; 1416 1417 offset = 0; 1418 ctx_header = header; 1419 while (offset < packets) { 1420 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1421 1422 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1423 break; 1424 1425 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1426 ++offset; 1427 } 1428 1429 ctx_header = header; 1430 1431 if (offset > 0) { 1432 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1433 1434 drop_tx_packets(context, tstamp, length, ctx_header, s); 1435 if (amdtp_streaming_error(s)) 1436 return; 1437 1438 ctx_header += length / sizeof(*ctx_header); 1439 header_length -= length; 1440 } 1441 1442 if (offset < packets) { 1443 s->ready_processing = true; 1444 wake_up(&s->ready_wait); 1445 1446 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1447 if (amdtp_streaming_error(s)) 1448 return; 1449 1450 context->callback.sc = process_tx_packets; 1451 } 1452 } 1453 1454 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1455 size_t header_length, void *header, void *private_data) 1456 { 1457 struct amdtp_stream *s = private_data; 1458 struct amdtp_domain *d = s->domain; 1459 __be32 *ctx_header; 1460 unsigned int count; 1461 unsigned int events; 1462 int i; 1463 1464 if (s->packet_index < 0) 1465 return; 1466 1467 count = header_length / s->ctx_data.tx.ctx_header_size; 1468 1469 // Attempt to detect any event in the batch of packets. 1470 events = 0; 1471 ctx_header = header; 1472 for (i = 0; i < count; ++i) { 1473 unsigned int payload_quads = 1474 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1475 unsigned int data_blocks; 1476 1477 if (s->flags & CIP_NO_HEADER) { 1478 data_blocks = payload_quads / s->data_block_quadlets; 1479 } else { 1480 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1481 1482 if (payload_quads < CIP_HEADER_QUADLETS) { 1483 data_blocks = 0; 1484 } else { 1485 payload_quads -= CIP_HEADER_QUADLETS; 1486 1487 if (s->flags & CIP_UNAWARE_SYT) { 1488 data_blocks = payload_quads / s->data_block_quadlets; 1489 } else { 1490 u32 cip1 = be32_to_cpu(cip_headers[1]); 1491 1492 // NODATA packet can includes any data blocks but they are 1493 // not available as event. 1494 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1495 data_blocks = 0; 1496 else 1497 data_blocks = payload_quads / s->data_block_quadlets; 1498 } 1499 } 1500 } 1501 1502 events += data_blocks; 1503 1504 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1505 } 1506 1507 drop_tx_packets(context, tstamp, header_length, header, s); 1508 1509 if (events > 0) 1510 s->ctx_data.tx.event_starts = true; 1511 1512 // Decide the cycle count to begin processing content of packet in IR contexts. 1513 { 1514 unsigned int stream_count = 0; 1515 unsigned int event_starts_count = 0; 1516 unsigned int cycle = UINT_MAX; 1517 1518 list_for_each_entry(s, &d->streams, list) { 1519 if (s->direction == AMDTP_IN_STREAM) { 1520 ++stream_count; 1521 if (s->ctx_data.tx.event_starts) 1522 ++event_starts_count; 1523 } 1524 } 1525 1526 if (stream_count == event_starts_count) { 1527 unsigned int next_cycle; 1528 1529 list_for_each_entry(s, &d->streams, list) { 1530 if (s->direction != AMDTP_IN_STREAM) 1531 continue; 1532 1533 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1534 d->processing_cycle.tx_init_skip); 1535 if (cycle == UINT_MAX || 1536 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1537 cycle = next_cycle; 1538 1539 s->context->callback.sc = process_tx_packets_intermediately; 1540 } 1541 1542 d->processing_cycle.tx_start = cycle; 1543 } 1544 } 1545 } 1546 1547 static void process_ctxs_in_domain(struct amdtp_domain *d) 1548 { 1549 struct amdtp_stream *s; 1550 1551 list_for_each_entry(s, &d->streams, list) { 1552 if (s != d->irq_target && amdtp_stream_running(s)) 1553 fw_iso_context_flush_completions(s->context); 1554 1555 if (amdtp_streaming_error(s)) 1556 goto error; 1557 } 1558 1559 return; 1560 error: 1561 if (amdtp_stream_running(d->irq_target)) 1562 cancel_stream(d->irq_target); 1563 1564 list_for_each_entry(s, &d->streams, list) { 1565 if (amdtp_stream_running(s)) 1566 cancel_stream(s); 1567 } 1568 } 1569 1570 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1571 void *header, void *private_data) 1572 { 1573 struct amdtp_stream *s = private_data; 1574 struct amdtp_domain *d = s->domain; 1575 1576 process_rx_packets(context, tstamp, header_length, header, private_data); 1577 process_ctxs_in_domain(d); 1578 } 1579 1580 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1581 size_t header_length, void *header, void *private_data) 1582 { 1583 struct amdtp_stream *s = private_data; 1584 struct amdtp_domain *d = s->domain; 1585 1586 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1587 process_ctxs_in_domain(d); 1588 } 1589 1590 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1591 size_t header_length, void *header, void *private_data) 1592 { 1593 struct amdtp_stream *s = private_data; 1594 struct amdtp_domain *d = s->domain; 1595 bool ready_to_start; 1596 1597 skip_rx_packets(context, tstamp, header_length, header, private_data); 1598 process_ctxs_in_domain(d); 1599 1600 if (d->replay.enable && !d->replay.on_the_fly) { 1601 unsigned int rx_count = 0; 1602 unsigned int rx_ready_count = 0; 1603 struct amdtp_stream *rx; 1604 1605 list_for_each_entry(rx, &d->streams, list) { 1606 struct amdtp_stream *tx; 1607 unsigned int cached_cycles; 1608 1609 if (rx->direction != AMDTP_OUT_STREAM) 1610 continue; 1611 ++rx_count; 1612 1613 tx = rx->ctx_data.rx.replay_target; 1614 cached_cycles = calculate_cached_cycle_count(tx, 0); 1615 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1616 ++rx_ready_count; 1617 } 1618 1619 ready_to_start = (rx_count == rx_ready_count); 1620 } else { 1621 ready_to_start = true; 1622 } 1623 1624 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1625 // contexts are expected to start and get callback when reaching here. 1626 if (ready_to_start) { 1627 unsigned int cycle = s->next_cycle; 1628 list_for_each_entry(s, &d->streams, list) { 1629 if (s->direction != AMDTP_OUT_STREAM) 1630 continue; 1631 1632 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1633 cycle = s->next_cycle; 1634 1635 if (s == d->irq_target) 1636 s->context->callback.sc = irq_target_callback_intermediately; 1637 else 1638 s->context->callback.sc = process_rx_packets_intermediately; 1639 } 1640 1641 d->processing_cycle.rx_start = cycle; 1642 } 1643 } 1644 1645 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1646 // transmit first packet. 1647 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1648 u32 tstamp, size_t header_length, 1649 void *header, void *private_data) 1650 { 1651 struct amdtp_stream *s = private_data; 1652 struct amdtp_domain *d = s->domain; 1653 1654 if (s->direction == AMDTP_IN_STREAM) { 1655 context->callback.sc = drop_tx_packets_initially; 1656 } else { 1657 if (s == d->irq_target) 1658 context->callback.sc = irq_target_callback_skip; 1659 else 1660 context->callback.sc = skip_rx_packets; 1661 } 1662 1663 context->callback.sc(context, tstamp, header_length, header, s); 1664 } 1665 1666 /** 1667 * amdtp_stream_start - start transferring packets 1668 * @s: the AMDTP stream to start 1669 * @channel: the isochronous channel on the bus 1670 * @speed: firewire speed code 1671 * @queue_size: The number of packets in the queue. 1672 * @idle_irq_interval: the interval to queue packet during initial state. 1673 * 1674 * The stream cannot be started until it has been configured with 1675 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1676 * device can be started. 1677 */ 1678 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1679 unsigned int queue_size, unsigned int idle_irq_interval) 1680 { 1681 bool is_irq_target = (s == s->domain->irq_target); 1682 unsigned int ctx_header_size; 1683 unsigned int max_ctx_payload_size; 1684 enum dma_data_direction dir; 1685 struct pkt_desc *descs; 1686 int i, type, tag, err; 1687 1688 mutex_lock(&s->mutex); 1689 1690 if (WARN_ON(amdtp_stream_running(s) || 1691 (s->data_block_quadlets < 1))) { 1692 err = -EBADFD; 1693 goto err_unlock; 1694 } 1695 1696 if (s->direction == AMDTP_IN_STREAM) { 1697 // NOTE: IT context should be used for constant IRQ. 1698 if (is_irq_target) { 1699 err = -EINVAL; 1700 goto err_unlock; 1701 } 1702 1703 s->data_block_counter = UINT_MAX; 1704 } else { 1705 s->data_block_counter = 0; 1706 } 1707 1708 // initialize packet buffer. 1709 if (s->direction == AMDTP_IN_STREAM) { 1710 dir = DMA_FROM_DEVICE; 1711 type = FW_ISO_CONTEXT_RECEIVE; 1712 if (!(s->flags & CIP_NO_HEADER)) 1713 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1714 else 1715 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1716 } else { 1717 dir = DMA_TO_DEVICE; 1718 type = FW_ISO_CONTEXT_TRANSMIT; 1719 ctx_header_size = 0; // No effect for IT context. 1720 } 1721 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1722 1723 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1724 if (err < 0) 1725 goto err_unlock; 1726 s->queue_size = queue_size; 1727 1728 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1729 type, channel, speed, ctx_header_size, 1730 amdtp_stream_first_callback, s); 1731 if (IS_ERR(s->context)) { 1732 err = PTR_ERR(s->context); 1733 if (err == -EBUSY) 1734 dev_err(&s->unit->device, 1735 "no free stream on this controller\n"); 1736 goto err_buffer; 1737 } 1738 1739 amdtp_stream_update(s); 1740 1741 if (s->direction == AMDTP_IN_STREAM) { 1742 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1743 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1744 s->ctx_data.tx.event_starts = false; 1745 1746 if (s->domain->replay.enable) { 1747 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1748 // possible to cache much unexpectedly. 1749 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1750 queue_size * 3 / 2); 1751 s->ctx_data.tx.cache.pos = 0; 1752 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1753 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1754 if (!s->ctx_data.tx.cache.descs) { 1755 err = -ENOMEM; 1756 goto err_context; 1757 } 1758 } 1759 } else { 1760 static const struct { 1761 unsigned int data_block; 1762 unsigned int syt_offset; 1763 } *entry, initial_state[] = { 1764 [CIP_SFC_32000] = { 4, 3072 }, 1765 [CIP_SFC_48000] = { 6, 1024 }, 1766 [CIP_SFC_96000] = { 12, 1024 }, 1767 [CIP_SFC_192000] = { 24, 1024 }, 1768 [CIP_SFC_44100] = { 0, 67 }, 1769 [CIP_SFC_88200] = { 0, 67 }, 1770 [CIP_SFC_176400] = { 0, 67 }, 1771 }; 1772 1773 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1774 if (!s->ctx_data.rx.seq.descs) { 1775 err = -ENOMEM; 1776 goto err_context; 1777 } 1778 s->ctx_data.rx.seq.size = queue_size; 1779 s->ctx_data.rx.seq.pos = 0; 1780 1781 entry = &initial_state[s->sfc]; 1782 s->ctx_data.rx.data_block_state = entry->data_block; 1783 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1784 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1785 1786 s->ctx_data.rx.event_count = 0; 1787 } 1788 1789 if (s->flags & CIP_NO_HEADER) 1790 s->tag = TAG_NO_CIP_HEADER; 1791 else 1792 s->tag = TAG_CIP; 1793 1794 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request 1795 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It 1796 // could take a round over queue of AMDTP packet descriptors and small loss of history. For 1797 // safe, keep more 8 elements for the queue, equivalent to 1 ms. 1798 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); 1799 if (!descs) { 1800 err = -ENOMEM; 1801 goto err_context; 1802 } 1803 s->packet_descs = descs; 1804 1805 INIT_LIST_HEAD(&s->packet_descs_list); 1806 for (i = 0; i < s->queue_size; ++i) { 1807 INIT_LIST_HEAD(&descs->link); 1808 list_add_tail(&descs->link, &s->packet_descs_list); 1809 ++descs; 1810 } 1811 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); 1812 1813 s->packet_index = 0; 1814 do { 1815 struct fw_iso_packet params; 1816 1817 if (s->direction == AMDTP_IN_STREAM) { 1818 err = queue_in_packet(s, ¶ms); 1819 } else { 1820 bool sched_irq = false; 1821 1822 params.header_length = 0; 1823 params.payload_length = 0; 1824 1825 if (is_irq_target) { 1826 sched_irq = !((s->packet_index + 1) % 1827 idle_irq_interval); 1828 } 1829 1830 err = queue_out_packet(s, ¶ms, sched_irq); 1831 } 1832 if (err < 0) 1833 goto err_pkt_descs; 1834 } while (s->packet_index > 0); 1835 1836 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1837 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1838 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1839 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1840 1841 s->ready_processing = false; 1842 err = fw_iso_context_start(s->context, -1, 0, tag); 1843 if (err < 0) 1844 goto err_pkt_descs; 1845 1846 mutex_unlock(&s->mutex); 1847 1848 return 0; 1849 err_pkt_descs: 1850 kfree(s->packet_descs); 1851 s->packet_descs = NULL; 1852 err_context: 1853 if (s->direction == AMDTP_OUT_STREAM) { 1854 kfree(s->ctx_data.rx.seq.descs); 1855 } else { 1856 if (s->domain->replay.enable) 1857 kfree(s->ctx_data.tx.cache.descs); 1858 } 1859 fw_iso_context_destroy(s->context); 1860 s->context = ERR_PTR(-1); 1861 err_buffer: 1862 iso_packets_buffer_destroy(&s->buffer, s->unit); 1863 err_unlock: 1864 mutex_unlock(&s->mutex); 1865 1866 return err; 1867 } 1868 1869 /** 1870 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1871 * @d: the AMDTP domain. 1872 * @s: the AMDTP stream that transports the PCM data 1873 * 1874 * Returns the current buffer position, in frames. 1875 */ 1876 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1877 struct amdtp_stream *s) 1878 { 1879 struct amdtp_stream *irq_target = d->irq_target; 1880 1881 if (irq_target && amdtp_stream_running(irq_target)) { 1882 // The work item to call snd_pcm_period_elapsed() can reach here by the call of 1883 // snd_pcm_ops.pointer(), however less packets would be available then. Therefore 1884 // the following call is just for user process contexts. 1885 if (current_work() != &s->period_work) 1886 fw_iso_context_flush_completions(irq_target->context); 1887 } 1888 1889 return READ_ONCE(s->pcm_buffer_pointer); 1890 } 1891 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1892 1893 /** 1894 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1895 * @d: the AMDTP domain. 1896 * @s: the AMDTP stream that transfers the PCM frames 1897 * 1898 * Returns zero always. 1899 */ 1900 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1901 { 1902 struct amdtp_stream *irq_target = d->irq_target; 1903 1904 // Process isochronous packets for recent isochronous cycle to handle 1905 // queued PCM frames. 1906 if (irq_target && amdtp_stream_running(irq_target)) 1907 fw_iso_context_flush_completions(irq_target->context); 1908 1909 return 0; 1910 } 1911 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1912 1913 /** 1914 * amdtp_stream_update - update the stream after a bus reset 1915 * @s: the AMDTP stream 1916 */ 1917 void amdtp_stream_update(struct amdtp_stream *s) 1918 { 1919 /* Precomputing. */ 1920 WRITE_ONCE(s->source_node_id_field, 1921 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1922 } 1923 EXPORT_SYMBOL(amdtp_stream_update); 1924 1925 /** 1926 * amdtp_stream_stop - stop sending packets 1927 * @s: the AMDTP stream to stop 1928 * 1929 * All PCM and MIDI devices of the stream must be stopped before the stream 1930 * itself can be stopped. 1931 */ 1932 static void amdtp_stream_stop(struct amdtp_stream *s) 1933 { 1934 mutex_lock(&s->mutex); 1935 1936 if (!amdtp_stream_running(s)) { 1937 mutex_unlock(&s->mutex); 1938 return; 1939 } 1940 1941 cancel_work_sync(&s->period_work); 1942 fw_iso_context_stop(s->context); 1943 fw_iso_context_destroy(s->context); 1944 s->context = ERR_PTR(-1); 1945 iso_packets_buffer_destroy(&s->buffer, s->unit); 1946 kfree(s->packet_descs); 1947 s->packet_descs = NULL; 1948 1949 if (s->direction == AMDTP_OUT_STREAM) { 1950 kfree(s->ctx_data.rx.seq.descs); 1951 } else { 1952 if (s->domain->replay.enable) 1953 kfree(s->ctx_data.tx.cache.descs); 1954 } 1955 1956 mutex_unlock(&s->mutex); 1957 } 1958 1959 /** 1960 * amdtp_stream_pcm_abort - abort the running PCM device 1961 * @s: the AMDTP stream about to be stopped 1962 * 1963 * If the isochronous stream needs to be stopped asynchronously, call this 1964 * function first to stop the PCM device. 1965 */ 1966 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1967 { 1968 struct snd_pcm_substream *pcm; 1969 1970 pcm = READ_ONCE(s->pcm); 1971 if (pcm) 1972 snd_pcm_stop_xrun(pcm); 1973 } 1974 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1975 1976 /** 1977 * amdtp_domain_init - initialize an AMDTP domain structure 1978 * @d: the AMDTP domain to initialize. 1979 */ 1980 int amdtp_domain_init(struct amdtp_domain *d) 1981 { 1982 INIT_LIST_HEAD(&d->streams); 1983 1984 d->events_per_period = 0; 1985 1986 return 0; 1987 } 1988 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1989 1990 /** 1991 * amdtp_domain_destroy - destroy an AMDTP domain structure 1992 * @d: the AMDTP domain to destroy. 1993 */ 1994 void amdtp_domain_destroy(struct amdtp_domain *d) 1995 { 1996 // At present nothing to do. 1997 return; 1998 } 1999 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 2000 2001 /** 2002 * amdtp_domain_add_stream - register isoc context into the domain. 2003 * @d: the AMDTP domain. 2004 * @s: the AMDTP stream. 2005 * @channel: the isochronous channel on the bus. 2006 * @speed: firewire speed code. 2007 */ 2008 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 2009 int channel, int speed) 2010 { 2011 struct amdtp_stream *tmp; 2012 2013 list_for_each_entry(tmp, &d->streams, list) { 2014 if (s == tmp) 2015 return -EBUSY; 2016 } 2017 2018 list_add(&s->list, &d->streams); 2019 2020 s->channel = channel; 2021 s->speed = speed; 2022 s->domain = d; 2023 2024 return 0; 2025 } 2026 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 2027 2028 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 2029 // is less than the number of rx streams, the first tx stream is selected. 2030 static int make_association(struct amdtp_domain *d) 2031 { 2032 unsigned int dst_index = 0; 2033 struct amdtp_stream *rx; 2034 2035 // Make association to replay target. 2036 list_for_each_entry(rx, &d->streams, list) { 2037 if (rx->direction == AMDTP_OUT_STREAM) { 2038 unsigned int src_index = 0; 2039 struct amdtp_stream *tx = NULL; 2040 struct amdtp_stream *s; 2041 2042 list_for_each_entry(s, &d->streams, list) { 2043 if (s->direction == AMDTP_IN_STREAM) { 2044 if (dst_index == src_index) { 2045 tx = s; 2046 break; 2047 } 2048 2049 ++src_index; 2050 } 2051 } 2052 if (!tx) { 2053 // Select the first entry. 2054 list_for_each_entry(s, &d->streams, list) { 2055 if (s->direction == AMDTP_IN_STREAM) { 2056 tx = s; 2057 break; 2058 } 2059 } 2060 // No target is available to replay sequence. 2061 if (!tx) 2062 return -EINVAL; 2063 } 2064 2065 rx->ctx_data.rx.replay_target = tx; 2066 2067 ++dst_index; 2068 } 2069 } 2070 2071 return 0; 2072 } 2073 2074 /** 2075 * amdtp_domain_start - start sending packets for isoc context in the domain. 2076 * @d: the AMDTP domain. 2077 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 2078 * contexts. 2079 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 2080 * IT context. 2081 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 2082 * according to arrival of events in tx packets. 2083 */ 2084 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 2085 bool replay_on_the_fly) 2086 { 2087 unsigned int events_per_buffer = d->events_per_buffer; 2088 unsigned int events_per_period = d->events_per_period; 2089 unsigned int queue_size; 2090 struct amdtp_stream *s; 2091 bool found = false; 2092 int err; 2093 2094 if (replay_seq) { 2095 err = make_association(d); 2096 if (err < 0) 2097 return err; 2098 } 2099 d->replay.enable = replay_seq; 2100 d->replay.on_the_fly = replay_on_the_fly; 2101 2102 // Select an IT context as IRQ target. 2103 list_for_each_entry(s, &d->streams, list) { 2104 if (s->direction == AMDTP_OUT_STREAM) { 2105 found = true; 2106 break; 2107 } 2108 } 2109 if (!found) 2110 return -ENXIO; 2111 d->irq_target = s; 2112 2113 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 2114 2115 // This is a case that AMDTP streams in domain run just for MIDI 2116 // substream. Use the number of events equivalent to 10 msec as 2117 // interval of hardware IRQ. 2118 if (events_per_period == 0) 2119 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 2120 if (events_per_buffer == 0) 2121 events_per_buffer = events_per_period * 3; 2122 2123 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 2124 amdtp_rate_table[d->irq_target->sfc]); 2125 2126 list_for_each_entry(s, &d->streams, list) { 2127 unsigned int idle_irq_interval = 0; 2128 2129 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2130 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2131 amdtp_rate_table[d->irq_target->sfc]); 2132 } 2133 2134 // Starts immediately but actually DMA context starts several hundred cycles later. 2135 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2136 if (err < 0) 2137 goto error; 2138 } 2139 2140 return 0; 2141 error: 2142 list_for_each_entry(s, &d->streams, list) 2143 amdtp_stream_stop(s); 2144 return err; 2145 } 2146 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2147 2148 /** 2149 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2150 * @d: the AMDTP domain to which the isoc contexts belong. 2151 */ 2152 void amdtp_domain_stop(struct amdtp_domain *d) 2153 { 2154 struct amdtp_stream *s, *next; 2155 2156 if (d->irq_target) 2157 amdtp_stream_stop(d->irq_target); 2158 2159 list_for_each_entry_safe(s, next, &d->streams, list) { 2160 list_del(&s->list); 2161 2162 if (s != d->irq_target) 2163 amdtp_stream_stop(s); 2164 } 2165 2166 d->events_per_period = 0; 2167 d->irq_target = NULL; 2168 } 2169 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2170