xref: /linux/sound/firewire/amdtp-stream.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18 
19 #define TICKS_PER_CYCLE		3072
20 #define CYCLES_PER_SECOND	8000
21 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22 
23 /* Always support Linux tracing subsystem. */
24 #define CREATE_TRACE_POINTS
25 #include "amdtp-stream-trace.h"
26 
27 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
28 
29 /* isochronous header parameters */
30 #define ISO_DATA_LENGTH_SHIFT	16
31 #define TAG_NO_CIP_HEADER	0
32 #define TAG_CIP			1
33 
34 /* common isochronous packet header parameters */
35 #define CIP_EOH_SHIFT		31
36 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
37 #define CIP_EOH_MASK		0x80000000
38 #define CIP_SID_SHIFT		24
39 #define CIP_SID_MASK		0x3f000000
40 #define CIP_DBS_MASK		0x00ff0000
41 #define CIP_DBS_SHIFT		16
42 #define CIP_SPH_MASK		0x00000400
43 #define CIP_SPH_SHIFT		10
44 #define CIP_DBC_MASK		0x000000ff
45 #define CIP_FMT_SHIFT		24
46 #define CIP_FMT_MASK		0x3f000000
47 #define CIP_FDF_MASK		0x00ff0000
48 #define CIP_FDF_SHIFT		16
49 #define CIP_SYT_MASK		0x0000ffff
50 #define CIP_SYT_NO_INFO		0xffff
51 
52 /* Audio and Music transfer protocol specific parameters */
53 #define CIP_FMT_AM		0x10
54 #define AMDTP_FDF_NO_DATA	0xff
55 
56 // For iso header, tstamp and 2 CIP header.
57 #define IR_CTX_HEADER_SIZE_CIP		16
58 // For iso header and tstamp.
59 #define IR_CTX_HEADER_SIZE_NO_CIP	8
60 #define HEADER_TSTAMP_MASK	0x0000ffff
61 
62 #define IT_PKT_HEADER_SIZE_CIP		8 // For 2 CIP header.
63 #define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing.
64 
65 static void pcm_period_tasklet(unsigned long data);
66 
67 /**
68  * amdtp_stream_init - initialize an AMDTP stream structure
69  * @s: the AMDTP stream to initialize
70  * @unit: the target of the stream
71  * @dir: the direction of stream
72  * @flags: the packet transmission method to use
73  * @fmt: the value of fmt field in CIP header
74  * @process_ctx_payloads: callback handler to process payloads of isoc context
75  * @protocol_size: the size to allocate newly for protocol
76  */
77 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
78 		      enum amdtp_stream_direction dir, enum cip_flags flags,
79 		      unsigned int fmt,
80 		      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
81 		      unsigned int protocol_size)
82 {
83 	if (process_ctx_payloads == NULL)
84 		return -EINVAL;
85 
86 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
87 	if (!s->protocol)
88 		return -ENOMEM;
89 
90 	s->unit = unit;
91 	s->direction = dir;
92 	s->flags = flags;
93 	s->context = ERR_PTR(-1);
94 	mutex_init(&s->mutex);
95 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
96 	s->packet_index = 0;
97 
98 	init_waitqueue_head(&s->callback_wait);
99 	s->callbacked = false;
100 
101 	s->fmt = fmt;
102 	s->process_ctx_payloads = process_ctx_payloads;
103 
104 	if (dir == AMDTP_OUT_STREAM)
105 		s->ctx_data.rx.syt_override = -1;
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL(amdtp_stream_init);
110 
111 /**
112  * amdtp_stream_destroy - free stream resources
113  * @s: the AMDTP stream to destroy
114  */
115 void amdtp_stream_destroy(struct amdtp_stream *s)
116 {
117 	/* Not initialized. */
118 	if (s->protocol == NULL)
119 		return;
120 
121 	WARN_ON(amdtp_stream_running(s));
122 	kfree(s->protocol);
123 	mutex_destroy(&s->mutex);
124 }
125 EXPORT_SYMBOL(amdtp_stream_destroy);
126 
127 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
128 	[CIP_SFC_32000]  =  8,
129 	[CIP_SFC_44100]  =  8,
130 	[CIP_SFC_48000]  =  8,
131 	[CIP_SFC_88200]  = 16,
132 	[CIP_SFC_96000]  = 16,
133 	[CIP_SFC_176400] = 32,
134 	[CIP_SFC_192000] = 32,
135 };
136 EXPORT_SYMBOL(amdtp_syt_intervals);
137 
138 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
139 	[CIP_SFC_32000]  =  32000,
140 	[CIP_SFC_44100]  =  44100,
141 	[CIP_SFC_48000]  =  48000,
142 	[CIP_SFC_88200]  =  88200,
143 	[CIP_SFC_96000]  =  96000,
144 	[CIP_SFC_176400] = 176400,
145 	[CIP_SFC_192000] = 192000,
146 };
147 EXPORT_SYMBOL(amdtp_rate_table);
148 
149 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
150 				    struct snd_pcm_hw_rule *rule)
151 {
152 	struct snd_interval *s = hw_param_interval(params, rule->var);
153 	const struct snd_interval *r =
154 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
155 	struct snd_interval t = {0};
156 	unsigned int step = 0;
157 	int i;
158 
159 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
160 		if (snd_interval_test(r, amdtp_rate_table[i]))
161 			step = max(step, amdtp_syt_intervals[i]);
162 	}
163 
164 	t.min = roundup(s->min, step);
165 	t.max = rounddown(s->max, step);
166 	t.integer = 1;
167 
168 	return snd_interval_refine(s, &t);
169 }
170 
171 /**
172  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
173  * @s:		the AMDTP stream, which must be initialized.
174  * @runtime:	the PCM substream runtime
175  */
176 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
177 					struct snd_pcm_runtime *runtime)
178 {
179 	struct snd_pcm_hardware *hw = &runtime->hw;
180 	unsigned int ctx_header_size;
181 	unsigned int maximum_usec_per_period;
182 	int err;
183 
184 	hw->info = SNDRV_PCM_INFO_BATCH |
185 		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
186 		   SNDRV_PCM_INFO_INTERLEAVED |
187 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
188 		   SNDRV_PCM_INFO_MMAP |
189 		   SNDRV_PCM_INFO_MMAP_VALID;
190 
191 	/* SNDRV_PCM_INFO_BATCH */
192 	hw->periods_min = 2;
193 	hw->periods_max = UINT_MAX;
194 
195 	/* bytes for a frame */
196 	hw->period_bytes_min = 4 * hw->channels_max;
197 
198 	/* Just to prevent from allocating much pages. */
199 	hw->period_bytes_max = hw->period_bytes_min * 2048;
200 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
201 
202 	// Linux driver for 1394 OHCI controller voluntarily flushes isoc
203 	// context when total size of accumulated context header reaches
204 	// PAGE_SIZE. This kicks tasklet for the isoc context and brings
205 	// callback in the middle of scheduled interrupts.
206 	// Although AMDTP streams in the same domain use the same events per
207 	// IRQ, use the largest size of context header between IT/IR contexts.
208 	// Here, use the value of context header in IR context is for both
209 	// contexts.
210 	if (!(s->flags & CIP_NO_HEADER))
211 		ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
212 	else
213 		ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
214 	maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
215 				  CYCLES_PER_SECOND / ctx_header_size;
216 
217 	// In IEC 61883-6, one isoc packet can transfer events up to the value
218 	// of syt interval. This comes from the interval of isoc cycle. As 1394
219 	// OHCI controller can generate hardware IRQ per isoc packet, the
220 	// interval is 125 usec.
221 	// However, there are two ways of transmission in IEC 61883-6; blocking
222 	// and non-blocking modes. In blocking mode, the sequence of isoc packet
223 	// includes 'empty' or 'NODATA' packets which include no event. In
224 	// non-blocking mode, the number of events per packet is variable up to
225 	// the syt interval.
226 	// Due to the above protocol design, the minimum PCM frames per
227 	// interrupt should be double of the value of syt interval, thus it is
228 	// 250 usec.
229 	err = snd_pcm_hw_constraint_minmax(runtime,
230 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
231 					   250, maximum_usec_per_period);
232 	if (err < 0)
233 		goto end;
234 
235 	/* Non-Blocking stream has no more constraints */
236 	if (!(s->flags & CIP_BLOCKING))
237 		goto end;
238 
239 	/*
240 	 * One AMDTP packet can include some frames. In blocking mode, the
241 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
242 	 * depending on its sampling rate. For accurate period interrupt, it's
243 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
244 	 */
245 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
246 				  apply_constraint_to_size, NULL,
247 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
248 				  SNDRV_PCM_HW_PARAM_RATE, -1);
249 	if (err < 0)
250 		goto end;
251 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
252 				  apply_constraint_to_size, NULL,
253 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
254 				  SNDRV_PCM_HW_PARAM_RATE, -1);
255 	if (err < 0)
256 		goto end;
257 end:
258 	return err;
259 }
260 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
261 
262 /**
263  * amdtp_stream_set_parameters - set stream parameters
264  * @s: the AMDTP stream to configure
265  * @rate: the sample rate
266  * @data_block_quadlets: the size of a data block in quadlet unit
267  *
268  * The parameters must be set before the stream is started, and must not be
269  * changed while the stream is running.
270  */
271 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
272 				unsigned int data_block_quadlets)
273 {
274 	unsigned int sfc;
275 
276 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
277 		if (amdtp_rate_table[sfc] == rate)
278 			break;
279 	}
280 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
281 		return -EINVAL;
282 
283 	s->sfc = sfc;
284 	s->data_block_quadlets = data_block_quadlets;
285 	s->syt_interval = amdtp_syt_intervals[sfc];
286 
287 	// default buffering in the device.
288 	if (s->direction == AMDTP_OUT_STREAM) {
289 		s->ctx_data.rx.transfer_delay =
290 					TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
291 
292 		if (s->flags & CIP_BLOCKING) {
293 			// additional buffering needed to adjust for no-data
294 			// packets.
295 			s->ctx_data.rx.transfer_delay +=
296 				TICKS_PER_SECOND * s->syt_interval / rate;
297 		}
298 	}
299 
300 	return 0;
301 }
302 EXPORT_SYMBOL(amdtp_stream_set_parameters);
303 
304 /**
305  * amdtp_stream_get_max_payload - get the stream's packet size
306  * @s: the AMDTP stream
307  *
308  * This function must not be called before the stream has been configured
309  * with amdtp_stream_set_parameters().
310  */
311 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
312 {
313 	unsigned int multiplier = 1;
314 	unsigned int cip_header_size = 0;
315 
316 	if (s->flags & CIP_JUMBO_PAYLOAD)
317 		multiplier = 5;
318 	if (!(s->flags & CIP_NO_HEADER))
319 		cip_header_size = sizeof(__be32) * 2;
320 
321 	return cip_header_size +
322 		s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
323 }
324 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
325 
326 /**
327  * amdtp_stream_pcm_prepare - prepare PCM device for running
328  * @s: the AMDTP stream
329  *
330  * This function should be called from the PCM device's .prepare callback.
331  */
332 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
333 {
334 	tasklet_kill(&s->period_tasklet);
335 	s->pcm_buffer_pointer = 0;
336 	s->pcm_period_pointer = 0;
337 }
338 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
339 
340 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
341 					  unsigned int syt)
342 {
343 	unsigned int phase, data_blocks;
344 
345 	/* Blocking mode. */
346 	if (s->flags & CIP_BLOCKING) {
347 		/* This module generate empty packet for 'no data'. */
348 		if (syt == CIP_SYT_NO_INFO)
349 			data_blocks = 0;
350 		else
351 			data_blocks = s->syt_interval;
352 	/* Non-blocking mode. */
353 	} else {
354 		if (!cip_sfc_is_base_44100(s->sfc)) {
355 			// Sample_rate / 8000 is an integer, and precomputed.
356 			data_blocks = s->ctx_data.rx.data_block_state;
357 		} else {
358 			phase = s->ctx_data.rx.data_block_state;
359 
360 		/*
361 		 * This calculates the number of data blocks per packet so that
362 		 * 1) the overall rate is correct and exactly synchronized to
363 		 *    the bus clock, and
364 		 * 2) packets with a rounded-up number of blocks occur as early
365 		 *    as possible in the sequence (to prevent underruns of the
366 		 *    device's buffer).
367 		 */
368 			if (s->sfc == CIP_SFC_44100)
369 				/* 6 6 5 6 5 6 5 ... */
370 				data_blocks = 5 + ((phase & 1) ^
371 						   (phase == 0 || phase >= 40));
372 			else
373 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
374 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
375 			if (++phase >= (80 >> (s->sfc >> 1)))
376 				phase = 0;
377 			s->ctx_data.rx.data_block_state = phase;
378 		}
379 	}
380 
381 	return data_blocks;
382 }
383 
384 static unsigned int calculate_syt(struct amdtp_stream *s,
385 				  unsigned int cycle)
386 {
387 	unsigned int syt_offset, phase, index, syt;
388 
389 	if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) {
390 		if (!cip_sfc_is_base_44100(s->sfc))
391 			syt_offset = s->ctx_data.rx.last_syt_offset +
392 				     s->ctx_data.rx.syt_offset_state;
393 		else {
394 		/*
395 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
396 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
397 		 * Modulo TICKS_PER_CYCLE, the difference between successive
398 		 * elements is about 1386.23.  Rounding the results of this
399 		 * formula to the SYT precision results in a sequence of
400 		 * differences that begins with:
401 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
402 		 * This code generates _exactly_ the same sequence.
403 		 */
404 			phase = s->ctx_data.rx.syt_offset_state;
405 			index = phase % 13;
406 			syt_offset = s->ctx_data.rx.last_syt_offset;
407 			syt_offset += 1386 + ((index && !(index & 3)) ||
408 					      phase == 146);
409 			if (++phase >= 147)
410 				phase = 0;
411 			s->ctx_data.rx.syt_offset_state = phase;
412 		}
413 	} else
414 		syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE;
415 	s->ctx_data.rx.last_syt_offset = syt_offset;
416 
417 	if (syt_offset < TICKS_PER_CYCLE) {
418 		syt_offset += s->ctx_data.rx.transfer_delay;
419 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
420 		syt += syt_offset % TICKS_PER_CYCLE;
421 
422 		return syt & CIP_SYT_MASK;
423 	} else {
424 		return CIP_SYT_NO_INFO;
425 	}
426 }
427 
428 static void update_pcm_pointers(struct amdtp_stream *s,
429 				struct snd_pcm_substream *pcm,
430 				unsigned int frames)
431 {
432 	unsigned int ptr;
433 
434 	ptr = s->pcm_buffer_pointer + frames;
435 	if (ptr >= pcm->runtime->buffer_size)
436 		ptr -= pcm->runtime->buffer_size;
437 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
438 
439 	s->pcm_period_pointer += frames;
440 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
441 		s->pcm_period_pointer -= pcm->runtime->period_size;
442 		tasklet_hi_schedule(&s->period_tasklet);
443 	}
444 }
445 
446 static void pcm_period_tasklet(unsigned long data)
447 {
448 	struct amdtp_stream *s = (void *)data;
449 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
450 
451 	if (pcm)
452 		snd_pcm_period_elapsed(pcm);
453 }
454 
455 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
456 			bool sched_irq)
457 {
458 	int err;
459 
460 	params->interrupt = sched_irq;
461 	params->tag = s->tag;
462 	params->sy = 0;
463 
464 	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
465 				   s->buffer.packets[s->packet_index].offset);
466 	if (err < 0) {
467 		dev_err(&s->unit->device, "queueing error: %d\n", err);
468 		goto end;
469 	}
470 
471 	if (++s->packet_index >= s->queue_size)
472 		s->packet_index = 0;
473 end:
474 	return err;
475 }
476 
477 static inline int queue_out_packet(struct amdtp_stream *s,
478 				   struct fw_iso_packet *params, bool sched_irq)
479 {
480 	params->skip =
481 		!!(params->header_length == 0 && params->payload_length == 0);
482 	return queue_packet(s, params, sched_irq);
483 }
484 
485 static inline int queue_in_packet(struct amdtp_stream *s,
486 				  struct fw_iso_packet *params)
487 {
488 	// Queue one packet for IR context.
489 	params->header_length = s->ctx_data.tx.ctx_header_size;
490 	params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
491 	params->skip = false;
492 	return queue_packet(s, params, false);
493 }
494 
495 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
496 			unsigned int data_block_counter, unsigned int syt)
497 {
498 	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
499 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
500 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
501 				data_block_counter);
502 	cip_header[1] = cpu_to_be32(CIP_EOH |
503 			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
504 			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
505 			(syt & CIP_SYT_MASK));
506 }
507 
508 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
509 				struct fw_iso_packet *params,
510 				unsigned int data_blocks,
511 				unsigned int data_block_counter,
512 				unsigned int syt, unsigned int index)
513 {
514 	unsigned int payload_length;
515 	__be32 *cip_header;
516 
517 	payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
518 	params->payload_length = payload_length;
519 
520 	if (!(s->flags & CIP_NO_HEADER)) {
521 		cip_header = (__be32 *)params->header;
522 		generate_cip_header(s, cip_header, data_block_counter, syt);
523 		params->header_length = 2 * sizeof(__be32);
524 		payload_length += params->header_length;
525 	} else {
526 		cip_header = NULL;
527 	}
528 
529 	trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
530 			   data_block_counter, index);
531 }
532 
533 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
534 			    unsigned int payload_length,
535 			    unsigned int *data_blocks,
536 			    unsigned int *data_block_counter, unsigned int *syt)
537 {
538 	u32 cip_header[2];
539 	unsigned int sph;
540 	unsigned int fmt;
541 	unsigned int fdf;
542 	unsigned int dbc;
543 	bool lost;
544 
545 	cip_header[0] = be32_to_cpu(buf[0]);
546 	cip_header[1] = be32_to_cpu(buf[1]);
547 
548 	/*
549 	 * This module supports 'Two-quadlet CIP header with SYT field'.
550 	 * For convenience, also check FMT field is AM824 or not.
551 	 */
552 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
553 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
554 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
555 		dev_info_ratelimited(&s->unit->device,
556 				"Invalid CIP header for AMDTP: %08X:%08X\n",
557 				cip_header[0], cip_header[1]);
558 		return -EAGAIN;
559 	}
560 
561 	/* Check valid protocol or not. */
562 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
563 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
564 	if (sph != s->sph || fmt != s->fmt) {
565 		dev_info_ratelimited(&s->unit->device,
566 				     "Detect unexpected protocol: %08x %08x\n",
567 				     cip_header[0], cip_header[1]);
568 		return -EAGAIN;
569 	}
570 
571 	/* Calculate data blocks */
572 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
573 	if (payload_length < sizeof(__be32) * 2 ||
574 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
575 		*data_blocks = 0;
576 	} else {
577 		unsigned int data_block_quadlets =
578 				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
579 		/* avoid division by zero */
580 		if (data_block_quadlets == 0) {
581 			dev_err(&s->unit->device,
582 				"Detect invalid value in dbs field: %08X\n",
583 				cip_header[0]);
584 			return -EPROTO;
585 		}
586 		if (s->flags & CIP_WRONG_DBS)
587 			data_block_quadlets = s->data_block_quadlets;
588 
589 		*data_blocks = (payload_length / sizeof(__be32) - 2) /
590 							data_block_quadlets;
591 	}
592 
593 	/* Check data block counter continuity */
594 	dbc = cip_header[0] & CIP_DBC_MASK;
595 	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
596 	    *data_block_counter != UINT_MAX)
597 		dbc = *data_block_counter;
598 
599 	if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
600 	    *data_block_counter == UINT_MAX) {
601 		lost = false;
602 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
603 		lost = dbc != *data_block_counter;
604 	} else {
605 		unsigned int dbc_interval;
606 
607 		if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
608 			dbc_interval = s->ctx_data.tx.dbc_interval;
609 		else
610 			dbc_interval = *data_blocks;
611 
612 		lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
613 	}
614 
615 	if (lost) {
616 		dev_err(&s->unit->device,
617 			"Detect discontinuity of CIP: %02X %02X\n",
618 			*data_block_counter, dbc);
619 		return -EIO;
620 	}
621 
622 	*data_block_counter = dbc;
623 
624 	*syt = cip_header[1] & CIP_SYT_MASK;
625 
626 	return 0;
627 }
628 
629 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
630 			       const __be32 *ctx_header,
631 			       unsigned int *payload_length,
632 			       unsigned int *data_blocks,
633 			       unsigned int *data_block_counter,
634 			       unsigned int *syt, unsigned int index)
635 {
636 	const __be32 *cip_header;
637 	int err;
638 
639 	*payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
640 	if (*payload_length > s->ctx_data.tx.ctx_header_size +
641 					s->ctx_data.tx.max_ctx_payload_length) {
642 		dev_err(&s->unit->device,
643 			"Detect jumbo payload: %04x %04x\n",
644 			*payload_length, s->ctx_data.tx.max_ctx_payload_length);
645 		return -EIO;
646 	}
647 
648 	if (!(s->flags & CIP_NO_HEADER)) {
649 		cip_header = ctx_header + 2;
650 		err = check_cip_header(s, cip_header, *payload_length,
651 				       data_blocks, data_block_counter, syt);
652 		if (err < 0)
653 			return err;
654 	} else {
655 		cip_header = NULL;
656 		err = 0;
657 		*data_blocks = *payload_length / sizeof(__be32) /
658 			       s->data_block_quadlets;
659 		*syt = 0;
660 
661 		if (*data_block_counter == UINT_MAX)
662 			*data_block_counter = 0;
663 	}
664 
665 	trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
666 			   *data_block_counter, index);
667 
668 	return err;
669 }
670 
671 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
672 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
673 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
674 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
675 {
676 	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
677 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
678 }
679 
680 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
681 {
682 	cycle += addend;
683 	if (cycle >= 8 * CYCLES_PER_SECOND)
684 		cycle -= 8 * CYCLES_PER_SECOND;
685 	return cycle;
686 }
687 
688 // Align to actual cycle count for the packet which is going to be scheduled.
689 // This module queued the same number of isochronous cycle as the size of queue
690 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
691 // the size of queue for scheduled cycle.
692 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
693 				   unsigned int queue_size)
694 {
695 	u32 cycle = compute_cycle_count(ctx_header_tstamp);
696 	return increment_cycle_count(cycle, queue_size);
697 }
698 
699 static int generate_device_pkt_descs(struct amdtp_stream *s,
700 				     struct pkt_desc *descs,
701 				     const __be32 *ctx_header,
702 				     unsigned int packets)
703 {
704 	unsigned int dbc = s->data_block_counter;
705 	int i;
706 	int err;
707 
708 	for (i = 0; i < packets; ++i) {
709 		struct pkt_desc *desc = descs + i;
710 		unsigned int index = (s->packet_index + i) % s->queue_size;
711 		unsigned int cycle;
712 		unsigned int payload_length;
713 		unsigned int data_blocks;
714 		unsigned int syt;
715 
716 		cycle = compute_cycle_count(ctx_header[1]);
717 
718 		err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
719 					  &data_blocks, &dbc, &syt, i);
720 		if (err < 0)
721 			return err;
722 
723 		desc->cycle = cycle;
724 		desc->syt = syt;
725 		desc->data_blocks = data_blocks;
726 		desc->data_block_counter = dbc;
727 		desc->ctx_payload = s->buffer.packets[index].buffer;
728 
729 		if (!(s->flags & CIP_DBC_IS_END_EVENT))
730 			dbc = (dbc + desc->data_blocks) & 0xff;
731 
732 		ctx_header +=
733 			s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
734 	}
735 
736 	s->data_block_counter = dbc;
737 
738 	return 0;
739 }
740 
741 static void generate_ideal_pkt_descs(struct amdtp_stream *s,
742 				     struct pkt_desc *descs,
743 				     const __be32 *ctx_header,
744 				     unsigned int packets)
745 {
746 	unsigned int dbc = s->data_block_counter;
747 	int i;
748 
749 	for (i = 0; i < packets; ++i) {
750 		struct pkt_desc *desc = descs + i;
751 		unsigned int index = (s->packet_index + i) % s->queue_size;
752 
753 		desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
754 		desc->syt = calculate_syt(s, desc->cycle);
755 		desc->data_blocks = calculate_data_blocks(s, desc->syt);
756 
757 		if (s->flags & CIP_DBC_IS_END_EVENT)
758 			dbc = (dbc + desc->data_blocks) & 0xff;
759 
760 		desc->data_block_counter = dbc;
761 
762 		if (!(s->flags & CIP_DBC_IS_END_EVENT))
763 			dbc = (dbc + desc->data_blocks) & 0xff;
764 
765 		desc->ctx_payload = s->buffer.packets[index].buffer;
766 
767 		++ctx_header;
768 	}
769 
770 	s->data_block_counter = dbc;
771 }
772 
773 static inline void cancel_stream(struct amdtp_stream *s)
774 {
775 	s->packet_index = -1;
776 	if (in_interrupt())
777 		amdtp_stream_pcm_abort(s);
778 	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
779 }
780 
781 static void process_ctx_payloads(struct amdtp_stream *s,
782 				 const struct pkt_desc *descs,
783 				 unsigned int packets)
784 {
785 	struct snd_pcm_substream *pcm;
786 	unsigned int pcm_frames;
787 
788 	pcm = READ_ONCE(s->pcm);
789 	pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
790 	if (pcm)
791 		update_pcm_pointers(s, pcm, pcm_frames);
792 }
793 
794 static void amdtp_stream_master_callback(struct fw_iso_context *context,
795 					 u32 tstamp, size_t header_length,
796 					 void *header, void *private_data);
797 
798 static void amdtp_stream_master_first_callback(struct fw_iso_context *context,
799 					u32 tstamp, size_t header_length,
800 					void *header, void *private_data);
801 
802 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
803 				size_t header_length, void *header,
804 				void *private_data)
805 {
806 	struct amdtp_stream *s = private_data;
807 	const __be32 *ctx_header = header;
808 	unsigned int events_per_period = s->ctx_data.rx.events_per_period;
809 	unsigned int event_count = s->ctx_data.rx.event_count;
810 	unsigned int packets;
811 	bool is_irq_target;
812 	int i;
813 
814 	if (s->packet_index < 0)
815 		return;
816 
817 	// Calculate the number of packets in buffer and check XRUN.
818 	packets = header_length / sizeof(*ctx_header);
819 
820 	generate_ideal_pkt_descs(s, s->pkt_descs, ctx_header, packets);
821 
822 	process_ctx_payloads(s, s->pkt_descs, packets);
823 
824 	is_irq_target =
825 		!!(context->callback.sc == amdtp_stream_master_callback ||
826 		   context->callback.sc == amdtp_stream_master_first_callback);
827 
828 	for (i = 0; i < packets; ++i) {
829 		const struct pkt_desc *desc = s->pkt_descs + i;
830 		unsigned int syt;
831 		struct {
832 			struct fw_iso_packet params;
833 			__be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
834 		} template = { {0}, {0} };
835 		bool sched_irq = false;
836 
837 		if (s->ctx_data.rx.syt_override < 0)
838 			syt = desc->syt;
839 		else
840 			syt = s->ctx_data.rx.syt_override;
841 
842 		build_it_pkt_header(s, desc->cycle, &template.params,
843 				    desc->data_blocks, desc->data_block_counter,
844 				    syt, i);
845 
846 		if (is_irq_target) {
847 			event_count += desc->data_blocks;
848 			if (event_count >= events_per_period) {
849 				event_count -= events_per_period;
850 				sched_irq = true;
851 			}
852 		}
853 
854 		if (queue_out_packet(s, &template.params, sched_irq) < 0) {
855 			cancel_stream(s);
856 			return;
857 		}
858 	}
859 
860 	s->ctx_data.rx.event_count = event_count;
861 }
862 
863 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
864 			       size_t header_length, void *header,
865 			       void *private_data)
866 {
867 	struct amdtp_stream *s = private_data;
868 	__be32 *ctx_header = header;
869 	unsigned int packets;
870 	int i;
871 	int err;
872 
873 	if (s->packet_index < 0)
874 		return;
875 
876 	// Calculate the number of packets in buffer and check XRUN.
877 	packets = header_length / s->ctx_data.tx.ctx_header_size;
878 
879 	err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
880 	if (err < 0) {
881 		if (err != -EAGAIN) {
882 			cancel_stream(s);
883 			return;
884 		}
885 	} else {
886 		process_ctx_payloads(s, s->pkt_descs, packets);
887 	}
888 
889 	for (i = 0; i < packets; ++i) {
890 		struct fw_iso_packet params = {0};
891 
892 		if (queue_in_packet(s, &params) < 0) {
893 			cancel_stream(s);
894 			return;
895 		}
896 	}
897 }
898 
899 static void amdtp_stream_master_callback(struct fw_iso_context *context,
900 					 u32 tstamp, size_t header_length,
901 					 void *header, void *private_data)
902 {
903 	struct amdtp_domain *d = private_data;
904 	struct amdtp_stream *irq_target = d->irq_target;
905 	struct amdtp_stream *s;
906 
907 	out_stream_callback(context, tstamp, header_length, header, irq_target);
908 	if (amdtp_streaming_error(irq_target))
909 		goto error;
910 
911 	list_for_each_entry(s, &d->streams, list) {
912 		if (s != irq_target && amdtp_stream_running(s)) {
913 			fw_iso_context_flush_completions(s->context);
914 			if (amdtp_streaming_error(s))
915 				goto error;
916 		}
917 	}
918 
919 	return;
920 error:
921 	if (amdtp_stream_running(irq_target))
922 		cancel_stream(irq_target);
923 
924 	list_for_each_entry(s, &d->streams, list) {
925 		if (amdtp_stream_running(s))
926 			cancel_stream(s);
927 	}
928 }
929 
930 // this is executed one time.
931 static void amdtp_stream_first_callback(struct fw_iso_context *context,
932 					u32 tstamp, size_t header_length,
933 					void *header, void *private_data)
934 {
935 	struct amdtp_stream *s = private_data;
936 	const __be32 *ctx_header = header;
937 	u32 cycle;
938 
939 	/*
940 	 * For in-stream, first packet has come.
941 	 * For out-stream, prepared to transmit first packet
942 	 */
943 	s->callbacked = true;
944 	wake_up(&s->callback_wait);
945 
946 	if (s->direction == AMDTP_IN_STREAM) {
947 		cycle = compute_cycle_count(ctx_header[1]);
948 
949 		context->callback.sc = in_stream_callback;
950 	} else {
951 		cycle = compute_it_cycle(*ctx_header, s->queue_size);
952 
953 		context->callback.sc = out_stream_callback;
954 	}
955 
956 	s->start_cycle = cycle;
957 
958 	context->callback.sc(context, tstamp, header_length, header, s);
959 }
960 
961 static void amdtp_stream_master_first_callback(struct fw_iso_context *context,
962 					       u32 tstamp, size_t header_length,
963 					       void *header, void *private_data)
964 {
965 	struct amdtp_domain *d = private_data;
966 	struct amdtp_stream *s = d->irq_target;
967 	const __be32 *ctx_header = header;
968 
969 	s->callbacked = true;
970 	wake_up(&s->callback_wait);
971 
972 	s->start_cycle = compute_it_cycle(*ctx_header, s->queue_size);
973 
974 	context->callback.sc = amdtp_stream_master_callback;
975 
976 	context->callback.sc(context, tstamp, header_length, header, d);
977 }
978 
979 /**
980  * amdtp_stream_start - start transferring packets
981  * @s: the AMDTP stream to start
982  * @channel: the isochronous channel on the bus
983  * @speed: firewire speed code
984  * @d: the AMDTP domain to which the AMDTP stream belongs
985  * @is_irq_target: whether isoc context for the AMDTP stream is used to generate
986  *		   hardware IRQ.
987  * @start_cycle: the isochronous cycle to start the context. Start immediately
988  *		 if negative value is given.
989  *
990  * The stream cannot be started until it has been configured with
991  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
992  * device can be started.
993  */
994 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
995 			      struct amdtp_domain *d, bool is_irq_target,
996 			      int start_cycle)
997 {
998 	static const struct {
999 		unsigned int data_block;
1000 		unsigned int syt_offset;
1001 	} *entry, initial_state[] = {
1002 		[CIP_SFC_32000]  = {  4, 3072 },
1003 		[CIP_SFC_48000]  = {  6, 1024 },
1004 		[CIP_SFC_96000]  = { 12, 1024 },
1005 		[CIP_SFC_192000] = { 24, 1024 },
1006 		[CIP_SFC_44100]  = {  0,   67 },
1007 		[CIP_SFC_88200]  = {  0,   67 },
1008 		[CIP_SFC_176400] = {  0,   67 },
1009 	};
1010 	unsigned int events_per_buffer = d->events_per_buffer;
1011 	unsigned int events_per_period = d->events_per_period;
1012 	unsigned int idle_irq_interval;
1013 	unsigned int ctx_header_size;
1014 	unsigned int max_ctx_payload_size;
1015 	enum dma_data_direction dir;
1016 	int type, tag, err;
1017 	fw_iso_callback_t ctx_cb;
1018 	void *ctx_data;
1019 
1020 	mutex_lock(&s->mutex);
1021 
1022 	if (WARN_ON(amdtp_stream_running(s) ||
1023 		    (s->data_block_quadlets < 1))) {
1024 		err = -EBADFD;
1025 		goto err_unlock;
1026 	}
1027 
1028 	if (s->direction == AMDTP_IN_STREAM) {
1029 		// NOTE: IT context should be used for constant IRQ.
1030 		if (is_irq_target) {
1031 			err = -EINVAL;
1032 			goto err_unlock;
1033 		}
1034 
1035 		s->data_block_counter = UINT_MAX;
1036 	} else {
1037 		entry = &initial_state[s->sfc];
1038 
1039 		s->data_block_counter = 0;
1040 		s->ctx_data.rx.data_block_state = entry->data_block;
1041 		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1042 		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1043 	}
1044 
1045 	/* initialize packet buffer */
1046 	if (s->direction == AMDTP_IN_STREAM) {
1047 		dir = DMA_FROM_DEVICE;
1048 		type = FW_ISO_CONTEXT_RECEIVE;
1049 		if (!(s->flags & CIP_NO_HEADER))
1050 			ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1051 		else
1052 			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1053 
1054 		max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
1055 				       ctx_header_size;
1056 	} else {
1057 		dir = DMA_TO_DEVICE;
1058 		type = FW_ISO_CONTEXT_TRANSMIT;
1059 		ctx_header_size = 0;	// No effect for IT context.
1060 
1061 		max_ctx_payload_size = amdtp_stream_get_max_payload(s);
1062 		if (!(s->flags & CIP_NO_HEADER))
1063 			max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1064 	}
1065 
1066 	// This is a case that AMDTP streams in domain run just for MIDI
1067 	// substream. Use the number of events equivalent to 10 msec as
1068 	// interval of hardware IRQ.
1069 	if (events_per_period == 0)
1070 		events_per_period = amdtp_rate_table[s->sfc] / 100;
1071 	if (events_per_buffer == 0)
1072 		events_per_buffer = events_per_period * 3;
1073 
1074 	idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1075 					 amdtp_rate_table[s->sfc]);
1076 	s->queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1077 				     amdtp_rate_table[s->sfc]);
1078 
1079 	err = iso_packets_buffer_init(&s->buffer, s->unit, s->queue_size,
1080 				      max_ctx_payload_size, dir);
1081 	if (err < 0)
1082 		goto err_unlock;
1083 
1084 	if (is_irq_target) {
1085 		s->ctx_data.rx.events_per_period = events_per_period;
1086 		s->ctx_data.rx.event_count = 0;
1087 		ctx_cb = amdtp_stream_master_first_callback;
1088 		ctx_data = d;
1089 	} else {
1090 		ctx_cb = amdtp_stream_first_callback;
1091 		ctx_data = s;
1092 	}
1093 
1094 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1095 					  type, channel, speed, ctx_header_size,
1096 					  ctx_cb, ctx_data);
1097 	if (IS_ERR(s->context)) {
1098 		err = PTR_ERR(s->context);
1099 		if (err == -EBUSY)
1100 			dev_err(&s->unit->device,
1101 				"no free stream on this controller\n");
1102 		goto err_buffer;
1103 	}
1104 
1105 	amdtp_stream_update(s);
1106 
1107 	if (s->direction == AMDTP_IN_STREAM) {
1108 		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1109 		s->ctx_data.tx.ctx_header_size = ctx_header_size;
1110 	}
1111 
1112 	if (s->flags & CIP_NO_HEADER)
1113 		s->tag = TAG_NO_CIP_HEADER;
1114 	else
1115 		s->tag = TAG_CIP;
1116 
1117 	s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1118 			       GFP_KERNEL);
1119 	if (!s->pkt_descs) {
1120 		err = -ENOMEM;
1121 		goto err_context;
1122 	}
1123 
1124 	s->packet_index = 0;
1125 	do {
1126 		struct fw_iso_packet params;
1127 
1128 		if (s->direction == AMDTP_IN_STREAM) {
1129 			err = queue_in_packet(s, &params);
1130 		} else {
1131 			bool sched_irq = false;
1132 
1133 			params.header_length = 0;
1134 			params.payload_length = 0;
1135 
1136 			if (is_irq_target) {
1137 				sched_irq = !((s->packet_index + 1) %
1138 					      idle_irq_interval);
1139 			}
1140 
1141 			err = queue_out_packet(s, &params, sched_irq);
1142 		}
1143 		if (err < 0)
1144 			goto err_pkt_descs;
1145 	} while (s->packet_index > 0);
1146 
1147 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1148 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
1149 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1150 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1151 
1152 	s->callbacked = false;
1153 	err = fw_iso_context_start(s->context, start_cycle, 0, tag);
1154 	if (err < 0)
1155 		goto err_pkt_descs;
1156 
1157 	mutex_unlock(&s->mutex);
1158 
1159 	return 0;
1160 err_pkt_descs:
1161 	kfree(s->pkt_descs);
1162 err_context:
1163 	fw_iso_context_destroy(s->context);
1164 	s->context = ERR_PTR(-1);
1165 err_buffer:
1166 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1167 err_unlock:
1168 	mutex_unlock(&s->mutex);
1169 
1170 	return err;
1171 }
1172 
1173 /**
1174  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1175  * @d: the AMDTP domain.
1176  * @s: the AMDTP stream that transports the PCM data
1177  *
1178  * Returns the current buffer position, in frames.
1179  */
1180 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1181 					      struct amdtp_stream *s)
1182 {
1183 	struct amdtp_stream *irq_target = d->irq_target;
1184 
1185 	if (irq_target && amdtp_stream_running(irq_target)) {
1186 		// This function is called in software IRQ context of
1187 		// period_tasklet or process context.
1188 		//
1189 		// When the software IRQ context was scheduled by software IRQ
1190 		// context of IT contexts, queued packets were already handled.
1191 		// Therefore, no need to flush the queue in buffer furthermore.
1192 		//
1193 		// When the process context reach here, some packets will be
1194 		// already queued in the buffer. These packets should be handled
1195 		// immediately to keep better granularity of PCM pointer.
1196 		//
1197 		// Later, the process context will sometimes schedules software
1198 		// IRQ context of the period_tasklet. Then, no need to flush the
1199 		// queue by the same reason as described in the above
1200 		if (!in_interrupt()) {
1201 			// Queued packet should be processed without any kernel
1202 			// preemption to keep latency against bus cycle.
1203 			preempt_disable();
1204 			fw_iso_context_flush_completions(irq_target->context);
1205 			preempt_enable();
1206 		}
1207 	}
1208 
1209 	return READ_ONCE(s->pcm_buffer_pointer);
1210 }
1211 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1212 
1213 /**
1214  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1215  * @d: the AMDTP domain.
1216  * @s: the AMDTP stream that transfers the PCM frames
1217  *
1218  * Returns zero always.
1219  */
1220 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1221 {
1222 	struct amdtp_stream *irq_target = d->irq_target;
1223 
1224 	// Process isochronous packets for recent isochronous cycle to handle
1225 	// queued PCM frames.
1226 	if (irq_target && amdtp_stream_running(irq_target)) {
1227 		// Queued packet should be processed without any kernel
1228 		// preemption to keep latency against bus cycle.
1229 		preempt_disable();
1230 		fw_iso_context_flush_completions(irq_target->context);
1231 		preempt_enable();
1232 	}
1233 
1234 	return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1237 
1238 /**
1239  * amdtp_stream_update - update the stream after a bus reset
1240  * @s: the AMDTP stream
1241  */
1242 void amdtp_stream_update(struct amdtp_stream *s)
1243 {
1244 	/* Precomputing. */
1245 	WRITE_ONCE(s->source_node_id_field,
1246                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1247 }
1248 EXPORT_SYMBOL(amdtp_stream_update);
1249 
1250 /**
1251  * amdtp_stream_stop - stop sending packets
1252  * @s: the AMDTP stream to stop
1253  *
1254  * All PCM and MIDI devices of the stream must be stopped before the stream
1255  * itself can be stopped.
1256  */
1257 static void amdtp_stream_stop(struct amdtp_stream *s)
1258 {
1259 	mutex_lock(&s->mutex);
1260 
1261 	if (!amdtp_stream_running(s)) {
1262 		mutex_unlock(&s->mutex);
1263 		return;
1264 	}
1265 
1266 	tasklet_kill(&s->period_tasklet);
1267 	fw_iso_context_stop(s->context);
1268 	fw_iso_context_destroy(s->context);
1269 	s->context = ERR_PTR(-1);
1270 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1271 	kfree(s->pkt_descs);
1272 
1273 	s->callbacked = false;
1274 
1275 	mutex_unlock(&s->mutex);
1276 }
1277 
1278 /**
1279  * amdtp_stream_pcm_abort - abort the running PCM device
1280  * @s: the AMDTP stream about to be stopped
1281  *
1282  * If the isochronous stream needs to be stopped asynchronously, call this
1283  * function first to stop the PCM device.
1284  */
1285 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1286 {
1287 	struct snd_pcm_substream *pcm;
1288 
1289 	pcm = READ_ONCE(s->pcm);
1290 	if (pcm)
1291 		snd_pcm_stop_xrun(pcm);
1292 }
1293 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1294 
1295 /**
1296  * amdtp_domain_init - initialize an AMDTP domain structure
1297  * @d: the AMDTP domain to initialize.
1298  */
1299 int amdtp_domain_init(struct amdtp_domain *d)
1300 {
1301 	INIT_LIST_HEAD(&d->streams);
1302 
1303 	d->events_per_period = 0;
1304 
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1308 
1309 /**
1310  * amdtp_domain_destroy - destroy an AMDTP domain structure
1311  * @d: the AMDTP domain to destroy.
1312  */
1313 void amdtp_domain_destroy(struct amdtp_domain *d)
1314 {
1315 	// At present nothing to do.
1316 	return;
1317 }
1318 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1319 
1320 /**
1321  * amdtp_domain_add_stream - register isoc context into the domain.
1322  * @d: the AMDTP domain.
1323  * @s: the AMDTP stream.
1324  * @channel: the isochronous channel on the bus.
1325  * @speed: firewire speed code.
1326  */
1327 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1328 			    int channel, int speed)
1329 {
1330 	struct amdtp_stream *tmp;
1331 
1332 	list_for_each_entry(tmp, &d->streams, list) {
1333 		if (s == tmp)
1334 			return -EBUSY;
1335 	}
1336 
1337 	list_add(&s->list, &d->streams);
1338 
1339 	s->channel = channel;
1340 	s->speed = speed;
1341 
1342 	return 0;
1343 }
1344 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1345 
1346 static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1347 {
1348 	int generation;
1349 	int rcode;
1350 	__be32 reg;
1351 	u32 data;
1352 
1353 	// This is a request to local 1394 OHCI controller and expected to
1354 	// complete without any event waiting.
1355 	generation = fw_card->generation;
1356 	smp_rmb();	// node_id vs. generation.
1357 	rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1358 				   fw_card->node_id, generation, SCODE_100,
1359 				   CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1360 				   &reg, sizeof(reg));
1361 	if (rcode != RCODE_COMPLETE)
1362 		return -EIO;
1363 
1364 	data = be32_to_cpu(reg);
1365 	*cur_cycle = data >> 12;
1366 
1367 	return 0;
1368 }
1369 
1370 /**
1371  * amdtp_domain_start - start sending packets for isoc context in the domain.
1372  * @d: the AMDTP domain.
1373  * @ir_delay_cycle: the cycle delay to start all IR contexts.
1374  */
1375 int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
1376 {
1377 	struct amdtp_stream *s;
1378 	int cycle;
1379 	int err;
1380 
1381 	// Select an IT context as IRQ target.
1382 	list_for_each_entry(s, &d->streams, list) {
1383 		if (s->direction == AMDTP_OUT_STREAM)
1384 			break;
1385 	}
1386 	if (!s)
1387 		return -ENXIO;
1388 	d->irq_target = s;
1389 
1390 	if (ir_delay_cycle > 0) {
1391 		struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1392 
1393 		err = get_current_cycle_time(fw_card, &cycle);
1394 		if (err < 0)
1395 			return err;
1396 
1397 		// No need to care overflow in cycle field because of enough
1398 		// width.
1399 		cycle += ir_delay_cycle;
1400 
1401 		// Round up to sec field.
1402 		if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1403 			unsigned int sec;
1404 
1405 			// The sec field can overflow.
1406 			sec = (cycle & 0xffffe000) >> 13;
1407 			cycle = (++sec << 13) |
1408 				((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1409 		}
1410 
1411 		// In OHCI 1394 specification, lower 2 bits are available for
1412 		// sec field.
1413 		cycle &= 0x00007fff;
1414 	} else {
1415 		cycle = -1;
1416 	}
1417 
1418 	list_for_each_entry(s, &d->streams, list) {
1419 		int cycle_match;
1420 
1421 		if (s->direction == AMDTP_IN_STREAM) {
1422 			cycle_match = cycle;
1423 		} else {
1424 			// IT context starts immediately.
1425 			cycle_match = -1;
1426 		}
1427 
1428 		if (s != d->irq_target) {
1429 			err = amdtp_stream_start(s, s->channel, s->speed, d,
1430 						 false, cycle_match);
1431 			if (err < 0)
1432 				goto error;
1433 		}
1434 	}
1435 
1436 	s = d->irq_target;
1437 	err = amdtp_stream_start(s, s->channel, s->speed, d, true, -1);
1438 	if (err < 0)
1439 		goto error;
1440 
1441 	return 0;
1442 error:
1443 	list_for_each_entry(s, &d->streams, list)
1444 		amdtp_stream_stop(s);
1445 	return err;
1446 }
1447 EXPORT_SYMBOL_GPL(amdtp_domain_start);
1448 
1449 /**
1450  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1451  * @d: the AMDTP domain to which the isoc contexts belong.
1452  */
1453 void amdtp_domain_stop(struct amdtp_domain *d)
1454 {
1455 	struct amdtp_stream *s, *next;
1456 
1457 	if (d->irq_target)
1458 		amdtp_stream_stop(d->irq_target);
1459 
1460 	list_for_each_entry_safe(s, next, &d->streams, list) {
1461 		list_del(&s->list);
1462 
1463 		if (s != d->irq_target)
1464 			amdtp_stream_stop(s);
1465 	}
1466 
1467 	d->events_per_period = 0;
1468 	d->irq_target = NULL;
1469 }
1470 EXPORT_SYMBOL_GPL(amdtp_domain_stop);
1471