xref: /linux/sound/firewire/amdtp-stream.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18 
19 #define TICKS_PER_CYCLE		3072
20 #define CYCLES_PER_SECOND	8000
21 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22 
23 #define OHCI_SECOND_MODULUS		8
24 
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28 
29 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
30 
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT	16
33 #define TAG_NO_CIP_HEADER	0
34 #define TAG_CIP			1
35 
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS	2
38 #define CIP_EOH_SHIFT		31
39 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK		0x80000000
41 #define CIP_SID_SHIFT		24
42 #define CIP_SID_MASK		0x3f000000
43 #define CIP_DBS_MASK		0x00ff0000
44 #define CIP_DBS_SHIFT		16
45 #define CIP_SPH_MASK		0x00000400
46 #define CIP_SPH_SHIFT		10
47 #define CIP_DBC_MASK		0x000000ff
48 #define CIP_FMT_SHIFT		24
49 #define CIP_FMT_MASK		0x3f000000
50 #define CIP_FDF_MASK		0x00ff0000
51 #define CIP_FDF_SHIFT		16
52 #define CIP_FDF_NO_DATA		0xff
53 #define CIP_SYT_MASK		0x0000ffff
54 #define CIP_SYT_NO_INFO		0xffff
55 #define CIP_SYT_CYCLE_MODULUS	16
56 #define CIP_NO_DATA		((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57 
58 #define CIP_HEADER_SIZE		(sizeof(__be32) * CIP_HEADER_QUADLETS)
59 
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM		0x10
62 #define AMDTP_FDF_NO_DATA	0xff
63 
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS	2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP	(sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP		(IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK	0x0000ffff
71 
72 #define IT_PKT_HEADER_SIZE_CIP		CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing.
74 
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES	5
79 
80 /**
81  * amdtp_stream_init - initialize an AMDTP stream structure
82  * @s: the AMDTP stream to initialize
83  * @unit: the target of the stream
84  * @dir: the direction of stream
85  * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
86  * @fmt: the value of fmt field in CIP header
87  * @process_ctx_payloads: callback handler to process payloads of isoc context
88  * @protocol_size: the size to allocate newly for protocol
89  */
90 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
91 		      enum amdtp_stream_direction dir, unsigned int flags,
92 		      unsigned int fmt,
93 		      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
94 		      unsigned int protocol_size)
95 {
96 	if (process_ctx_payloads == NULL)
97 		return -EINVAL;
98 
99 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
100 	if (!s->protocol)
101 		return -ENOMEM;
102 
103 	s->unit = unit;
104 	s->direction = dir;
105 	s->flags = flags;
106 	s->context = ERR_PTR(-1);
107 	mutex_init(&s->mutex);
108 	s->packet_index = 0;
109 
110 	init_waitqueue_head(&s->ready_wait);
111 
112 	s->fmt = fmt;
113 	s->process_ctx_payloads = process_ctx_payloads;
114 
115 	return 0;
116 }
117 EXPORT_SYMBOL(amdtp_stream_init);
118 
119 /**
120  * amdtp_stream_destroy - free stream resources
121  * @s: the AMDTP stream to destroy
122  */
123 void amdtp_stream_destroy(struct amdtp_stream *s)
124 {
125 	/* Not initialized. */
126 	if (s->protocol == NULL)
127 		return;
128 
129 	WARN_ON(amdtp_stream_running(s));
130 	kfree(s->protocol);
131 	mutex_destroy(&s->mutex);
132 }
133 EXPORT_SYMBOL(amdtp_stream_destroy);
134 
135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
136 	[CIP_SFC_32000]  =  8,
137 	[CIP_SFC_44100]  =  8,
138 	[CIP_SFC_48000]  =  8,
139 	[CIP_SFC_88200]  = 16,
140 	[CIP_SFC_96000]  = 16,
141 	[CIP_SFC_176400] = 32,
142 	[CIP_SFC_192000] = 32,
143 };
144 EXPORT_SYMBOL(amdtp_syt_intervals);
145 
146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
147 	[CIP_SFC_32000]  =  32000,
148 	[CIP_SFC_44100]  =  44100,
149 	[CIP_SFC_48000]  =  48000,
150 	[CIP_SFC_88200]  =  88200,
151 	[CIP_SFC_96000]  =  96000,
152 	[CIP_SFC_176400] = 176400,
153 	[CIP_SFC_192000] = 192000,
154 };
155 EXPORT_SYMBOL(amdtp_rate_table);
156 
157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
158 				    struct snd_pcm_hw_rule *rule)
159 {
160 	struct snd_interval *s = hw_param_interval(params, rule->var);
161 	const struct snd_interval *r =
162 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
163 	struct snd_interval t = {0};
164 	unsigned int step = 0;
165 	int i;
166 
167 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
168 		if (snd_interval_test(r, amdtp_rate_table[i]))
169 			step = max(step, amdtp_syt_intervals[i]);
170 	}
171 
172 	t.min = roundup(s->min, step);
173 	t.max = rounddown(s->max, step);
174 	t.integer = 1;
175 
176 	return snd_interval_refine(s, &t);
177 }
178 
179 /**
180  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
181  * @s:		the AMDTP stream, which must be initialized.
182  * @runtime:	the PCM substream runtime
183  */
184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
185 					struct snd_pcm_runtime *runtime)
186 {
187 	struct snd_pcm_hardware *hw = &runtime->hw;
188 	unsigned int ctx_header_size;
189 	unsigned int maximum_usec_per_period;
190 	int err;
191 
192 	hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
193 		   SNDRV_PCM_INFO_INTERLEAVED |
194 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
195 		   SNDRV_PCM_INFO_MMAP |
196 		   SNDRV_PCM_INFO_MMAP_VALID |
197 		   SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
198 
199 	hw->periods_min = 2;
200 	hw->periods_max = UINT_MAX;
201 
202 	/* bytes for a frame */
203 	hw->period_bytes_min = 4 * hw->channels_max;
204 
205 	/* Just to prevent from allocating much pages. */
206 	hw->period_bytes_max = hw->period_bytes_min * 2048;
207 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
208 
209 	// Linux driver for 1394 OHCI controller voluntarily flushes isoc
210 	// context when total size of accumulated context header reaches
211 	// PAGE_SIZE. This kicks work for the isoc context and brings
212 	// callback in the middle of scheduled interrupts.
213 	// Although AMDTP streams in the same domain use the same events per
214 	// IRQ, use the largest size of context header between IT/IR contexts.
215 	// Here, use the value of context header in IR context is for both
216 	// contexts.
217 	if (!(s->flags & CIP_NO_HEADER))
218 		ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
219 	else
220 		ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
221 	maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
222 				  CYCLES_PER_SECOND / ctx_header_size;
223 
224 	// In IEC 61883-6, one isoc packet can transfer events up to the value
225 	// of syt interval. This comes from the interval of isoc cycle. As 1394
226 	// OHCI controller can generate hardware IRQ per isoc packet, the
227 	// interval is 125 usec.
228 	// However, there are two ways of transmission in IEC 61883-6; blocking
229 	// and non-blocking modes. In blocking mode, the sequence of isoc packet
230 	// includes 'empty' or 'NODATA' packets which include no event. In
231 	// non-blocking mode, the number of events per packet is variable up to
232 	// the syt interval.
233 	// Due to the above protocol design, the minimum PCM frames per
234 	// interrupt should be double of the value of syt interval, thus it is
235 	// 250 usec.
236 	err = snd_pcm_hw_constraint_minmax(runtime,
237 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
238 					   250, maximum_usec_per_period);
239 	if (err < 0)
240 		goto end;
241 
242 	/* Non-Blocking stream has no more constraints */
243 	if (!(s->flags & CIP_BLOCKING))
244 		goto end;
245 
246 	/*
247 	 * One AMDTP packet can include some frames. In blocking mode, the
248 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
249 	 * depending on its sampling rate. For accurate period interrupt, it's
250 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
251 	 */
252 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
253 				  apply_constraint_to_size, NULL,
254 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
255 				  SNDRV_PCM_HW_PARAM_RATE, -1);
256 	if (err < 0)
257 		goto end;
258 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
259 				  apply_constraint_to_size, NULL,
260 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
261 				  SNDRV_PCM_HW_PARAM_RATE, -1);
262 	if (err < 0)
263 		goto end;
264 end:
265 	return err;
266 }
267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
268 
269 /**
270  * amdtp_stream_set_parameters - set stream parameters
271  * @s: the AMDTP stream to configure
272  * @rate: the sample rate
273  * @data_block_quadlets: the size of a data block in quadlet unit
274  *
275  * The parameters must be set before the stream is started, and must not be
276  * changed while the stream is running.
277  */
278 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
279 				unsigned int data_block_quadlets)
280 {
281 	unsigned int sfc;
282 
283 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
284 		if (amdtp_rate_table[sfc] == rate)
285 			break;
286 	}
287 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
288 		return -EINVAL;
289 
290 	s->sfc = sfc;
291 	s->data_block_quadlets = data_block_quadlets;
292 	s->syt_interval = amdtp_syt_intervals[sfc];
293 
294 	// default buffering in the device.
295 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
296 
297 	// additional buffering needed to adjust for no-data packets.
298 	if (s->flags & CIP_BLOCKING)
299 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
300 
301 	return 0;
302 }
303 EXPORT_SYMBOL(amdtp_stream_set_parameters);
304 
305 // The CIP header is processed in context header apart from context payload.
306 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
307 {
308 	unsigned int multiplier;
309 
310 	if (s->flags & CIP_JUMBO_PAYLOAD)
311 		multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
312 	else
313 		multiplier = 1;
314 
315 	return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
316 }
317 
318 /**
319  * amdtp_stream_get_max_payload - get the stream's packet size
320  * @s: the AMDTP stream
321  *
322  * This function must not be called before the stream has been configured
323  * with amdtp_stream_set_parameters().
324  */
325 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
326 {
327 	unsigned int cip_header_size;
328 
329 	if (!(s->flags & CIP_NO_HEADER))
330 		cip_header_size = CIP_HEADER_SIZE;
331 	else
332 		cip_header_size = 0;
333 
334 	return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
335 }
336 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
337 
338 /**
339  * amdtp_stream_pcm_prepare - prepare PCM device for running
340  * @s: the AMDTP stream
341  *
342  * This function should be called from the PCM device's .prepare callback.
343  */
344 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
345 {
346 	s->pcm_buffer_pointer = 0;
347 	s->pcm_period_pointer = 0;
348 }
349 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
350 
351 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
352 				      const unsigned int seq_size, unsigned int seq_tail,
353 				      unsigned int count)
354 {
355 	const unsigned int syt_interval = s->syt_interval;
356 	int i;
357 
358 	for (i = 0; i < count; ++i) {
359 		struct seq_desc *desc = descs + seq_tail;
360 
361 		if (desc->syt_offset != CIP_SYT_NO_INFO)
362 			desc->data_blocks = syt_interval;
363 		else
364 			desc->data_blocks = 0;
365 
366 		seq_tail = (seq_tail + 1) % seq_size;
367 	}
368 }
369 
370 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
371 					       const unsigned int seq_size, unsigned int seq_tail,
372 					       unsigned int count)
373 {
374 	const enum cip_sfc sfc = s->sfc;
375 	unsigned int state = s->ctx_data.rx.data_block_state;
376 	int i;
377 
378 	for (i = 0; i < count; ++i) {
379 		struct seq_desc *desc = descs + seq_tail;
380 
381 		if (!cip_sfc_is_base_44100(sfc)) {
382 			// Sample_rate / 8000 is an integer, and precomputed.
383 			desc->data_blocks = state;
384 		} else {
385 			unsigned int phase = state;
386 
387 		/*
388 		 * This calculates the number of data blocks per packet so that
389 		 * 1) the overall rate is correct and exactly synchronized to
390 		 *    the bus clock, and
391 		 * 2) packets with a rounded-up number of blocks occur as early
392 		 *    as possible in the sequence (to prevent underruns of the
393 		 *    device's buffer).
394 		 */
395 			if (sfc == CIP_SFC_44100)
396 				/* 6 6 5 6 5 6 5 ... */
397 				desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
398 			else
399 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
400 				desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
401 			if (++phase >= (80 >> (sfc >> 1)))
402 				phase = 0;
403 			state = phase;
404 		}
405 
406 		seq_tail = (seq_tail + 1) % seq_size;
407 	}
408 
409 	s->ctx_data.rx.data_block_state = state;
410 }
411 
412 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
413 			unsigned int *syt_offset_state, enum cip_sfc sfc)
414 {
415 	unsigned int syt_offset;
416 
417 	if (*last_syt_offset < TICKS_PER_CYCLE) {
418 		if (!cip_sfc_is_base_44100(sfc))
419 			syt_offset = *last_syt_offset + *syt_offset_state;
420 		else {
421 		/*
422 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
423 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
424 		 * Modulo TICKS_PER_CYCLE, the difference between successive
425 		 * elements is about 1386.23.  Rounding the results of this
426 		 * formula to the SYT precision results in a sequence of
427 		 * differences that begins with:
428 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
429 		 * This code generates _exactly_ the same sequence.
430 		 */
431 			unsigned int phase = *syt_offset_state;
432 			unsigned int index = phase % 13;
433 
434 			syt_offset = *last_syt_offset;
435 			syt_offset += 1386 + ((index && !(index & 3)) ||
436 					      phase == 146);
437 			if (++phase >= 147)
438 				phase = 0;
439 			*syt_offset_state = phase;
440 		}
441 	} else
442 		syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
443 	*last_syt_offset = syt_offset;
444 
445 	if (syt_offset >= TICKS_PER_CYCLE)
446 		syt_offset = CIP_SYT_NO_INFO;
447 
448 	return syt_offset;
449 }
450 
451 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
452 				   const unsigned int seq_size, unsigned int seq_tail,
453 				   unsigned int count)
454 {
455 	const enum cip_sfc sfc = s->sfc;
456 	unsigned int last = s->ctx_data.rx.last_syt_offset;
457 	unsigned int state = s->ctx_data.rx.syt_offset_state;
458 	int i;
459 
460 	for (i = 0; i < count; ++i) {
461 		struct seq_desc *desc = descs + seq_tail;
462 
463 		desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
464 
465 		seq_tail = (seq_tail + 1) % seq_size;
466 	}
467 
468 	s->ctx_data.rx.last_syt_offset = last;
469 	s->ctx_data.rx.syt_offset_state = state;
470 }
471 
472 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
473 				       unsigned int transfer_delay)
474 {
475 	unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
476 	unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
477 	unsigned int syt_offset;
478 
479 	// Round up.
480 	if (syt_cycle_lo < cycle_lo)
481 		syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
482 	syt_cycle_lo -= cycle_lo;
483 
484 	// Subtract transfer delay so that the synchronization offset is not so large
485 	// at transmission.
486 	syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
487 	if (syt_offset < transfer_delay)
488 		syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
489 
490 	return syt_offset - transfer_delay;
491 }
492 
493 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
494 // Additionally, the sequence of tx packets is severely checked against any discontinuity
495 // before filling entries in the queue. The calculation is safe even if it looks fragile by
496 // overrun.
497 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
498 {
499 	const unsigned int cache_size = s->ctx_data.tx.cache.size;
500 	unsigned int cycles = s->ctx_data.tx.cache.tail;
501 
502 	if (cycles < head)
503 		cycles += cache_size;
504 	cycles -= head;
505 
506 	return cycles;
507 }
508 
509 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
510 {
511 	const unsigned int transfer_delay = s->transfer_delay;
512 	const unsigned int cache_size = s->ctx_data.tx.cache.size;
513 	struct seq_desc *cache = s->ctx_data.tx.cache.descs;
514 	unsigned int cache_tail = s->ctx_data.tx.cache.tail;
515 	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
516 	int i;
517 
518 	for (i = 0; i < desc_count; ++i) {
519 		struct seq_desc *dst = cache + cache_tail;
520 		const struct pkt_desc *src = descs + i;
521 
522 		if (aware_syt && src->syt != CIP_SYT_NO_INFO)
523 			dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
524 		else
525 			dst->syt_offset = CIP_SYT_NO_INFO;
526 		dst->data_blocks = src->data_blocks;
527 
528 		cache_tail = (cache_tail + 1) % cache_size;
529 	}
530 
531 	s->ctx_data.tx.cache.tail = cache_tail;
532 }
533 
534 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
535 {
536 	struct seq_desc *descs = s->ctx_data.rx.seq.descs;
537 	unsigned int seq_tail = s->ctx_data.rx.seq.tail;
538 	const unsigned int seq_size = s->ctx_data.rx.seq.size;
539 
540 	pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
541 
542 	if (s->flags & CIP_BLOCKING)
543 		pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
544 	else
545 		pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
546 
547 	s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
548 }
549 
550 static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
551 {
552 	struct amdtp_stream *target = s->ctx_data.rx.replay_target;
553 	const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
554 	const unsigned int cache_size = target->ctx_data.tx.cache.size;
555 	unsigned int cache_head = s->ctx_data.rx.cache_head;
556 	struct seq_desc *descs = s->ctx_data.rx.seq.descs;
557 	const unsigned int seq_size = s->ctx_data.rx.seq.size;
558 	unsigned int seq_tail = s->ctx_data.rx.seq.tail;
559 	int i;
560 
561 	for (i = 0; i < count; ++i) {
562 		descs[seq_tail] = cache[cache_head];
563 		seq_tail = (seq_tail + 1) % seq_size;
564 		cache_head = (cache_head + 1) % cache_size;
565 	}
566 
567 	s->ctx_data.rx.seq.tail = seq_tail;
568 	s->ctx_data.rx.cache_head = cache_head;
569 }
570 
571 static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
572 {
573 	struct amdtp_domain *d = s->domain;
574 
575 	if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
576 		pool_ideal_seq_descs(s, count);
577 	} else {
578 		if (!d->replay.on_the_fly) {
579 			pool_replayed_seq(s, count);
580 		} else {
581 			struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
582 			const unsigned int cache_size = tx->ctx_data.tx.cache.size;
583 			const unsigned int cache_head = s->ctx_data.rx.cache_head;
584 			unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
585 
586 			if (cached_cycles > count && cached_cycles > cache_size / 2)
587 				pool_replayed_seq(s, count);
588 			else
589 				pool_ideal_seq_descs(s, count);
590 		}
591 	}
592 }
593 
594 static void update_pcm_pointers(struct amdtp_stream *s,
595 				struct snd_pcm_substream *pcm,
596 				unsigned int frames)
597 {
598 	unsigned int ptr;
599 
600 	ptr = s->pcm_buffer_pointer + frames;
601 	if (ptr >= pcm->runtime->buffer_size)
602 		ptr -= pcm->runtime->buffer_size;
603 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
604 
605 	s->pcm_period_pointer += frames;
606 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
607 		s->pcm_period_pointer -= pcm->runtime->period_size;
608 
609 		// The program in user process should periodically check the status of intermediate
610 		// buffer associated to PCM substream to process PCM frames in the buffer, instead
611 		// of receiving notification of period elapsed by poll wait.
612 		if (!pcm->runtime->no_period_wakeup) {
613 			if (in_softirq()) {
614 				// In software IRQ context for 1394 OHCI.
615 				snd_pcm_period_elapsed(pcm);
616 			} else {
617 				// In process context of ALSA PCM application under acquired lock of
618 				// PCM substream.
619 				snd_pcm_period_elapsed_under_stream_lock(pcm);
620 			}
621 		}
622 	}
623 }
624 
625 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
626 			bool sched_irq)
627 {
628 	int err;
629 
630 	params->interrupt = sched_irq;
631 	params->tag = s->tag;
632 	params->sy = 0;
633 
634 	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
635 				   s->buffer.packets[s->packet_index].offset);
636 	if (err < 0) {
637 		dev_err(&s->unit->device, "queueing error: %d\n", err);
638 		goto end;
639 	}
640 
641 	if (++s->packet_index >= s->queue_size)
642 		s->packet_index = 0;
643 end:
644 	return err;
645 }
646 
647 static inline int queue_out_packet(struct amdtp_stream *s,
648 				   struct fw_iso_packet *params, bool sched_irq)
649 {
650 	params->skip =
651 		!!(params->header_length == 0 && params->payload_length == 0);
652 	return queue_packet(s, params, sched_irq);
653 }
654 
655 static inline int queue_in_packet(struct amdtp_stream *s,
656 				  struct fw_iso_packet *params)
657 {
658 	// Queue one packet for IR context.
659 	params->header_length = s->ctx_data.tx.ctx_header_size;
660 	params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
661 	params->skip = false;
662 	return queue_packet(s, params, false);
663 }
664 
665 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
666 			unsigned int data_block_counter, unsigned int syt)
667 {
668 	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
669 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
670 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
671 				data_block_counter);
672 	cip_header[1] = cpu_to_be32(CIP_EOH |
673 			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
674 			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
675 			(syt & CIP_SYT_MASK));
676 }
677 
678 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
679 				struct fw_iso_packet *params, unsigned int header_length,
680 				unsigned int data_blocks,
681 				unsigned int data_block_counter,
682 				unsigned int syt, unsigned int index)
683 {
684 	unsigned int payload_length;
685 	__be32 *cip_header;
686 
687 	payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
688 	params->payload_length = payload_length;
689 
690 	if (header_length > 0) {
691 		cip_header = (__be32 *)params->header;
692 		generate_cip_header(s, cip_header, data_block_counter, syt);
693 		params->header_length = header_length;
694 	} else {
695 		cip_header = NULL;
696 	}
697 
698 	trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
699 			   data_block_counter, s->packet_index, index);
700 }
701 
702 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
703 			    unsigned int payload_length,
704 			    unsigned int *data_blocks,
705 			    unsigned int *data_block_counter, unsigned int *syt)
706 {
707 	u32 cip_header[2];
708 	unsigned int sph;
709 	unsigned int fmt;
710 	unsigned int fdf;
711 	unsigned int dbc;
712 	bool lost;
713 
714 	cip_header[0] = be32_to_cpu(buf[0]);
715 	cip_header[1] = be32_to_cpu(buf[1]);
716 
717 	/*
718 	 * This module supports 'Two-quadlet CIP header with SYT field'.
719 	 * For convenience, also check FMT field is AM824 or not.
720 	 */
721 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
722 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
723 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
724 		dev_info_ratelimited(&s->unit->device,
725 				"Invalid CIP header for AMDTP: %08X:%08X\n",
726 				cip_header[0], cip_header[1]);
727 		return -EAGAIN;
728 	}
729 
730 	/* Check valid protocol or not. */
731 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
732 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
733 	if (sph != s->sph || fmt != s->fmt) {
734 		dev_info_ratelimited(&s->unit->device,
735 				     "Detect unexpected protocol: %08x %08x\n",
736 				     cip_header[0], cip_header[1]);
737 		return -EAGAIN;
738 	}
739 
740 	/* Calculate data blocks */
741 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
742 	if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
743 		*data_blocks = 0;
744 	} else {
745 		unsigned int data_block_quadlets =
746 				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
747 		/* avoid division by zero */
748 		if (data_block_quadlets == 0) {
749 			dev_err(&s->unit->device,
750 				"Detect invalid value in dbs field: %08X\n",
751 				cip_header[0]);
752 			return -EPROTO;
753 		}
754 		if (s->flags & CIP_WRONG_DBS)
755 			data_block_quadlets = s->data_block_quadlets;
756 
757 		*data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
758 	}
759 
760 	/* Check data block counter continuity */
761 	dbc = cip_header[0] & CIP_DBC_MASK;
762 	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
763 	    *data_block_counter != UINT_MAX)
764 		dbc = *data_block_counter;
765 
766 	if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
767 	    *data_block_counter == UINT_MAX) {
768 		lost = false;
769 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
770 		lost = dbc != *data_block_counter;
771 	} else {
772 		unsigned int dbc_interval;
773 
774 		if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
775 			dbc_interval = s->ctx_data.tx.dbc_interval;
776 		else
777 			dbc_interval = *data_blocks;
778 
779 		lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
780 	}
781 
782 	if (lost) {
783 		dev_err(&s->unit->device,
784 			"Detect discontinuity of CIP: %02X %02X\n",
785 			*data_block_counter, dbc);
786 		return -EIO;
787 	}
788 
789 	*data_block_counter = dbc;
790 
791 	if (!(s->flags & CIP_UNAWARE_SYT))
792 		*syt = cip_header[1] & CIP_SYT_MASK;
793 
794 	return 0;
795 }
796 
797 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
798 			       const __be32 *ctx_header,
799 			       unsigned int *data_blocks,
800 			       unsigned int *data_block_counter,
801 			       unsigned int *syt, unsigned int packet_index, unsigned int index)
802 {
803 	unsigned int payload_length;
804 	const __be32 *cip_header;
805 	unsigned int cip_header_size;
806 
807 	payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
808 
809 	if (!(s->flags & CIP_NO_HEADER))
810 		cip_header_size = CIP_HEADER_SIZE;
811 	else
812 		cip_header_size = 0;
813 
814 	if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
815 		dev_err(&s->unit->device,
816 			"Detect jumbo payload: %04x %04x\n",
817 			payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
818 		return -EIO;
819 	}
820 
821 	if (cip_header_size > 0) {
822 		if (payload_length >= cip_header_size) {
823 			int err;
824 
825 			cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
826 			err = check_cip_header(s, cip_header, payload_length - cip_header_size,
827 					       data_blocks, data_block_counter, syt);
828 			if (err < 0)
829 				return err;
830 		} else {
831 			// Handle the cycle so that empty packet arrives.
832 			cip_header = NULL;
833 			*data_blocks = 0;
834 			*syt = 0;
835 		}
836 	} else {
837 		cip_header = NULL;
838 		*data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
839 		*syt = 0;
840 
841 		if (*data_block_counter == UINT_MAX)
842 			*data_block_counter = 0;
843 	}
844 
845 	trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
846 			   *data_block_counter, packet_index, index);
847 
848 	return 0;
849 }
850 
851 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
852 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
853 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
854 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
855 {
856 	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
857 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
858 }
859 
860 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
861 {
862 	cycle += addend;
863 	if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
864 		cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
865 	return cycle;
866 }
867 
868 static int compare_ohci_cycle_count(u32 lval, u32 rval)
869 {
870 	if (lval == rval)
871 		return 0;
872 	else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
873 		return -1;
874 	else
875 		return 1;
876 }
877 
878 // Align to actual cycle count for the packet which is going to be scheduled.
879 // This module queued the same number of isochronous cycle as the size of queue
880 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
881 // the size of queue for scheduled cycle.
882 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
883 					unsigned int queue_size)
884 {
885 	u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
886 	return increment_ohci_cycle_count(cycle, queue_size);
887 }
888 
889 static int generate_device_pkt_descs(struct amdtp_stream *s,
890 				     struct pkt_desc *descs,
891 				     const __be32 *ctx_header,
892 				     unsigned int packets,
893 				     unsigned int *desc_count)
894 {
895 	unsigned int next_cycle = s->next_cycle;
896 	unsigned int dbc = s->data_block_counter;
897 	unsigned int packet_index = s->packet_index;
898 	unsigned int queue_size = s->queue_size;
899 	int i;
900 	int err;
901 
902 	*desc_count = 0;
903 	for (i = 0; i < packets; ++i) {
904 		struct pkt_desc *desc = descs + *desc_count;
905 		unsigned int cycle;
906 		bool lost;
907 		unsigned int data_blocks;
908 		unsigned int syt;
909 
910 		cycle = compute_ohci_cycle_count(ctx_header[1]);
911 		lost = (next_cycle != cycle);
912 		if (lost) {
913 			if (s->flags & CIP_NO_HEADER) {
914 				// Fireface skips transmission just for an isoc cycle corresponding
915 				// to empty packet.
916 				unsigned int prev_cycle = next_cycle;
917 
918 				next_cycle = increment_ohci_cycle_count(next_cycle, 1);
919 				lost = (next_cycle != cycle);
920 				if (!lost) {
921 					// Prepare a description for the skipped cycle for
922 					// sequence replay.
923 					desc->cycle = prev_cycle;
924 					desc->syt = 0;
925 					desc->data_blocks = 0;
926 					desc->data_block_counter = dbc;
927 					desc->ctx_payload = NULL;
928 					++desc;
929 					++(*desc_count);
930 				}
931 			} else if (s->flags & CIP_JUMBO_PAYLOAD) {
932 				// OXFW970 skips transmission for several isoc cycles during
933 				// asynchronous transaction. The sequence replay is impossible due
934 				// to the reason.
935 				unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
936 								IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
937 				lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
938 			}
939 			if (lost) {
940 				dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
941 					next_cycle, cycle);
942 				return -EIO;
943 			}
944 		}
945 
946 		err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
947 					  packet_index, i);
948 		if (err < 0)
949 			return err;
950 
951 		desc->cycle = cycle;
952 		desc->syt = syt;
953 		desc->data_blocks = data_blocks;
954 		desc->data_block_counter = dbc;
955 		desc->ctx_payload = s->buffer.packets[packet_index].buffer;
956 
957 		if (!(s->flags & CIP_DBC_IS_END_EVENT))
958 			dbc = (dbc + desc->data_blocks) & 0xff;
959 
960 		next_cycle = increment_ohci_cycle_count(next_cycle, 1);
961 		++(*desc_count);
962 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
963 		packet_index = (packet_index + 1) % queue_size;
964 	}
965 
966 	s->next_cycle = next_cycle;
967 	s->data_block_counter = dbc;
968 
969 	return 0;
970 }
971 
972 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
973 				unsigned int transfer_delay)
974 {
975 	unsigned int syt;
976 
977 	syt_offset += transfer_delay;
978 	syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
979 	      (syt_offset % TICKS_PER_CYCLE);
980 	return syt & CIP_SYT_MASK;
981 }
982 
983 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
984 {
985 	struct pkt_desc *descs = s->pkt_descs;
986 	const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
987 	const unsigned int seq_size = s->ctx_data.rx.seq.size;
988 	unsigned int dbc = s->data_block_counter;
989 	unsigned int seq_head = s->ctx_data.rx.seq.head;
990 	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
991 	int i;
992 
993 	for (i = 0; i < packets; ++i) {
994 		struct pkt_desc *desc = descs + i;
995 		unsigned int index = (s->packet_index + i) % s->queue_size;
996 		const struct seq_desc *seq = seq_descs + seq_head;
997 
998 		desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
999 
1000 		if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1001 			desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1002 		else
1003 			desc->syt = CIP_SYT_NO_INFO;
1004 
1005 		desc->data_blocks = seq->data_blocks;
1006 
1007 		if (s->flags & CIP_DBC_IS_END_EVENT)
1008 			dbc = (dbc + desc->data_blocks) & 0xff;
1009 
1010 		desc->data_block_counter = dbc;
1011 
1012 		if (!(s->flags & CIP_DBC_IS_END_EVENT))
1013 			dbc = (dbc + desc->data_blocks) & 0xff;
1014 
1015 		desc->ctx_payload = s->buffer.packets[index].buffer;
1016 
1017 		seq_head = (seq_head + 1) % seq_size;
1018 
1019 		++ctx_header;
1020 	}
1021 
1022 	s->data_block_counter = dbc;
1023 	s->ctx_data.rx.seq.head = seq_head;
1024 }
1025 
1026 static inline void cancel_stream(struct amdtp_stream *s)
1027 {
1028 	s->packet_index = -1;
1029 	if (in_softirq())
1030 		amdtp_stream_pcm_abort(s);
1031 	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1032 }
1033 
1034 static void process_ctx_payloads(struct amdtp_stream *s,
1035 				 const struct pkt_desc *descs,
1036 				 unsigned int packets)
1037 {
1038 	struct snd_pcm_substream *pcm;
1039 	unsigned int pcm_frames;
1040 
1041 	pcm = READ_ONCE(s->pcm);
1042 	pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
1043 	if (pcm)
1044 		update_pcm_pointers(s, pcm, pcm_frames);
1045 }
1046 
1047 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1048 			       void *header, void *private_data)
1049 {
1050 	struct amdtp_stream *s = private_data;
1051 	const struct amdtp_domain *d = s->domain;
1052 	const __be32 *ctx_header = header;
1053 	const unsigned int events_per_period = d->events_per_period;
1054 	unsigned int event_count = s->ctx_data.rx.event_count;
1055 	unsigned int pkt_header_length;
1056 	unsigned int packets;
1057 	bool need_hw_irq;
1058 	int i;
1059 
1060 	if (s->packet_index < 0)
1061 		return;
1062 
1063 	// Calculate the number of packets in buffer and check XRUN.
1064 	packets = header_length / sizeof(*ctx_header);
1065 
1066 	pool_seq_descs(s, packets);
1067 
1068 	generate_pkt_descs(s, ctx_header, packets);
1069 
1070 	process_ctx_payloads(s, s->pkt_descs, packets);
1071 
1072 	if (!(s->flags & CIP_NO_HEADER))
1073 		pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1074 	else
1075 		pkt_header_length = 0;
1076 
1077 	if (s == d->irq_target) {
1078 		// At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1079 		// the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1080 		// with some requests, instead of scheduled hardware IRQ of an IT context.
1081 		struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1082 		need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1083 	} else {
1084 		need_hw_irq = false;
1085 	}
1086 
1087 	for (i = 0; i < packets; ++i) {
1088 		const struct pkt_desc *desc = s->pkt_descs + i;
1089 		struct {
1090 			struct fw_iso_packet params;
1091 			__be32 header[CIP_HEADER_QUADLETS];
1092 		} template = { {0}, {0} };
1093 		bool sched_irq = false;
1094 
1095 		build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1096 				    desc->data_blocks, desc->data_block_counter,
1097 				    desc->syt, i);
1098 
1099 		if (s == s->domain->irq_target) {
1100 			event_count += desc->data_blocks;
1101 			if (event_count >= events_per_period) {
1102 				event_count -= events_per_period;
1103 				sched_irq = need_hw_irq;
1104 			}
1105 		}
1106 
1107 		if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1108 			cancel_stream(s);
1109 			return;
1110 		}
1111 	}
1112 
1113 	s->ctx_data.rx.event_count = event_count;
1114 }
1115 
1116 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1117 			    void *header, void *private_data)
1118 {
1119 	struct amdtp_stream *s = private_data;
1120 	struct amdtp_domain *d = s->domain;
1121 	const __be32 *ctx_header = header;
1122 	unsigned int packets;
1123 	unsigned int cycle;
1124 	int i;
1125 
1126 	if (s->packet_index < 0)
1127 		return;
1128 
1129 	packets = header_length / sizeof(*ctx_header);
1130 
1131 	cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1132 	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1133 
1134 	for (i = 0; i < packets; ++i) {
1135 		struct fw_iso_packet params = {
1136 			.header_length = 0,
1137 			.payload_length = 0,
1138 		};
1139 		bool sched_irq = (s == d->irq_target && i == packets - 1);
1140 
1141 		if (queue_out_packet(s, &params, sched_irq) < 0) {
1142 			cancel_stream(s);
1143 			return;
1144 		}
1145 	}
1146 }
1147 
1148 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1149 				void *header, void *private_data);
1150 
1151 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1152 					size_t header_length, void *header, void *private_data)
1153 {
1154 	struct amdtp_stream *s = private_data;
1155 	struct amdtp_domain *d = s->domain;
1156 	__be32 *ctx_header = header;
1157 	const unsigned int queue_size = s->queue_size;
1158 	unsigned int packets;
1159 	unsigned int offset;
1160 
1161 	if (s->packet_index < 0)
1162 		return;
1163 
1164 	packets = header_length / sizeof(*ctx_header);
1165 
1166 	offset = 0;
1167 	while (offset < packets) {
1168 		unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1169 
1170 		if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1171 			break;
1172 
1173 		++offset;
1174 	}
1175 
1176 	if (offset > 0) {
1177 		unsigned int length = sizeof(*ctx_header) * offset;
1178 
1179 		skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1180 		if (amdtp_streaming_error(s))
1181 			return;
1182 
1183 		ctx_header += offset;
1184 		header_length -= length;
1185 	}
1186 
1187 	if (offset < packets) {
1188 		s->ready_processing = true;
1189 		wake_up(&s->ready_wait);
1190 
1191 		process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1192 		if (amdtp_streaming_error(s))
1193 			return;
1194 
1195 		if (s == d->irq_target)
1196 			s->context->callback.sc = irq_target_callback;
1197 		else
1198 			s->context->callback.sc = process_rx_packets;
1199 	}
1200 }
1201 
1202 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1203 			       void *header, void *private_data)
1204 {
1205 	struct amdtp_stream *s = private_data;
1206 	__be32 *ctx_header = header;
1207 	unsigned int packets;
1208 	unsigned int desc_count;
1209 	int i;
1210 	int err;
1211 
1212 	if (s->packet_index < 0)
1213 		return;
1214 
1215 	// Calculate the number of packets in buffer and check XRUN.
1216 	packets = header_length / s->ctx_data.tx.ctx_header_size;
1217 
1218 	desc_count = 0;
1219 	err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
1220 	if (err < 0) {
1221 		if (err != -EAGAIN) {
1222 			cancel_stream(s);
1223 			return;
1224 		}
1225 	} else {
1226 		struct amdtp_domain *d = s->domain;
1227 
1228 		process_ctx_payloads(s, s->pkt_descs, desc_count);
1229 
1230 		if (d->replay.enable)
1231 			cache_seq(s, s->pkt_descs, desc_count);
1232 	}
1233 
1234 	for (i = 0; i < packets; ++i) {
1235 		struct fw_iso_packet params = {0};
1236 
1237 		if (queue_in_packet(s, &params) < 0) {
1238 			cancel_stream(s);
1239 			return;
1240 		}
1241 	}
1242 }
1243 
1244 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1245 			    void *header, void *private_data)
1246 {
1247 	struct amdtp_stream *s = private_data;
1248 	const __be32 *ctx_header = header;
1249 	unsigned int packets;
1250 	unsigned int cycle;
1251 	int i;
1252 
1253 	if (s->packet_index < 0)
1254 		return;
1255 
1256 	packets = header_length / s->ctx_data.tx.ctx_header_size;
1257 
1258 	ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1259 	cycle = compute_ohci_cycle_count(ctx_header[1]);
1260 	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1261 
1262 	for (i = 0; i < packets; ++i) {
1263 		struct fw_iso_packet params = {0};
1264 
1265 		if (queue_in_packet(s, &params) < 0) {
1266 			cancel_stream(s);
1267 			return;
1268 		}
1269 	}
1270 }
1271 
1272 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1273 					size_t header_length, void *header, void *private_data)
1274 {
1275 	struct amdtp_stream *s = private_data;
1276 	struct amdtp_domain *d = s->domain;
1277 	__be32 *ctx_header;
1278 	unsigned int packets;
1279 	unsigned int offset;
1280 
1281 	if (s->packet_index < 0)
1282 		return;
1283 
1284 	packets = header_length / s->ctx_data.tx.ctx_header_size;
1285 
1286 	offset = 0;
1287 	ctx_header = header;
1288 	while (offset < packets) {
1289 		unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1290 
1291 		if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1292 			break;
1293 
1294 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1295 		++offset;
1296 	}
1297 
1298 	ctx_header = header;
1299 
1300 	if (offset > 0) {
1301 		size_t length = s->ctx_data.tx.ctx_header_size * offset;
1302 
1303 		drop_tx_packets(context, tstamp, length, ctx_header, s);
1304 		if (amdtp_streaming_error(s))
1305 			return;
1306 
1307 		ctx_header += length / sizeof(*ctx_header);
1308 		header_length -= length;
1309 	}
1310 
1311 	if (offset < packets) {
1312 		s->ready_processing = true;
1313 		wake_up(&s->ready_wait);
1314 
1315 		process_tx_packets(context, tstamp, header_length, ctx_header, s);
1316 		if (amdtp_streaming_error(s))
1317 			return;
1318 
1319 		context->callback.sc = process_tx_packets;
1320 	}
1321 }
1322 
1323 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1324 				      size_t header_length, void *header, void *private_data)
1325 {
1326 	struct amdtp_stream *s = private_data;
1327 	struct amdtp_domain *d = s->domain;
1328 	__be32 *ctx_header;
1329 	unsigned int count;
1330 	unsigned int events;
1331 	int i;
1332 
1333 	if (s->packet_index < 0)
1334 		return;
1335 
1336 	count = header_length / s->ctx_data.tx.ctx_header_size;
1337 
1338 	// Attempt to detect any event in the batch of packets.
1339 	events = 0;
1340 	ctx_header = header;
1341 	for (i = 0; i < count; ++i) {
1342 		unsigned int payload_quads =
1343 			(be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1344 		unsigned int data_blocks;
1345 
1346 		if (s->flags & CIP_NO_HEADER) {
1347 			data_blocks = payload_quads / s->data_block_quadlets;
1348 		} else {
1349 			__be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1350 
1351 			if (payload_quads < CIP_HEADER_QUADLETS) {
1352 				data_blocks = 0;
1353 			} else {
1354 				payload_quads -= CIP_HEADER_QUADLETS;
1355 
1356 				if (s->flags & CIP_UNAWARE_SYT) {
1357 					data_blocks = payload_quads / s->data_block_quadlets;
1358 				} else {
1359 					u32 cip1 = be32_to_cpu(cip_headers[1]);
1360 
1361 					// NODATA packet can includes any data blocks but they are
1362 					// not available as event.
1363 					if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1364 						data_blocks = 0;
1365 					else
1366 						data_blocks = payload_quads / s->data_block_quadlets;
1367 				}
1368 			}
1369 		}
1370 
1371 		events += data_blocks;
1372 
1373 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1374 	}
1375 
1376 	drop_tx_packets(context, tstamp, header_length, header, s);
1377 
1378 	if (events > 0)
1379 		s->ctx_data.tx.event_starts = true;
1380 
1381 	// Decide the cycle count to begin processing content of packet in IR contexts.
1382 	{
1383 		unsigned int stream_count = 0;
1384 		unsigned int event_starts_count = 0;
1385 		unsigned int cycle = UINT_MAX;
1386 
1387 		list_for_each_entry(s, &d->streams, list) {
1388 			if (s->direction == AMDTP_IN_STREAM) {
1389 				++stream_count;
1390 				if (s->ctx_data.tx.event_starts)
1391 					++event_starts_count;
1392 			}
1393 		}
1394 
1395 		if (stream_count == event_starts_count) {
1396 			unsigned int next_cycle;
1397 
1398 			list_for_each_entry(s, &d->streams, list) {
1399 				if (s->direction != AMDTP_IN_STREAM)
1400 					continue;
1401 
1402 				next_cycle = increment_ohci_cycle_count(s->next_cycle,
1403 								d->processing_cycle.tx_init_skip);
1404 				if (cycle == UINT_MAX ||
1405 				    compare_ohci_cycle_count(next_cycle, cycle) > 0)
1406 					cycle = next_cycle;
1407 
1408 				s->context->callback.sc = process_tx_packets_intermediately;
1409 			}
1410 
1411 			d->processing_cycle.tx_start = cycle;
1412 		}
1413 	}
1414 }
1415 
1416 static void process_ctxs_in_domain(struct amdtp_domain *d)
1417 {
1418 	struct amdtp_stream *s;
1419 
1420 	list_for_each_entry(s, &d->streams, list) {
1421 		if (s != d->irq_target && amdtp_stream_running(s))
1422 			fw_iso_context_flush_completions(s->context);
1423 
1424 		if (amdtp_streaming_error(s))
1425 			goto error;
1426 	}
1427 
1428 	return;
1429 error:
1430 	if (amdtp_stream_running(d->irq_target))
1431 		cancel_stream(d->irq_target);
1432 
1433 	list_for_each_entry(s, &d->streams, list) {
1434 		if (amdtp_stream_running(s))
1435 			cancel_stream(s);
1436 	}
1437 }
1438 
1439 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1440 				void *header, void *private_data)
1441 {
1442 	struct amdtp_stream *s = private_data;
1443 	struct amdtp_domain *d = s->domain;
1444 
1445 	process_rx_packets(context, tstamp, header_length, header, private_data);
1446 	process_ctxs_in_domain(d);
1447 }
1448 
1449 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1450 					size_t header_length, void *header, void *private_data)
1451 {
1452 	struct amdtp_stream *s = private_data;
1453 	struct amdtp_domain *d = s->domain;
1454 
1455 	process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1456 	process_ctxs_in_domain(d);
1457 }
1458 
1459 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1460 				     size_t header_length, void *header, void *private_data)
1461 {
1462 	struct amdtp_stream *s = private_data;
1463 	struct amdtp_domain *d = s->domain;
1464 	bool ready_to_start;
1465 
1466 	skip_rx_packets(context, tstamp, header_length, header, private_data);
1467 	process_ctxs_in_domain(d);
1468 
1469 	if (d->replay.enable && !d->replay.on_the_fly) {
1470 		unsigned int rx_count = 0;
1471 		unsigned int rx_ready_count = 0;
1472 		struct amdtp_stream *rx;
1473 
1474 		list_for_each_entry(rx, &d->streams, list) {
1475 			struct amdtp_stream *tx;
1476 			unsigned int cached_cycles;
1477 
1478 			if (rx->direction != AMDTP_OUT_STREAM)
1479 				continue;
1480 			++rx_count;
1481 
1482 			tx = rx->ctx_data.rx.replay_target;
1483 			cached_cycles = calculate_cached_cycle_count(tx, 0);
1484 			if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1485 				++rx_ready_count;
1486 		}
1487 
1488 		ready_to_start = (rx_count == rx_ready_count);
1489 	} else {
1490 		ready_to_start = true;
1491 	}
1492 
1493 	// Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1494 	// contexts are expected to start and get callback when reaching here.
1495 	if (ready_to_start) {
1496 		unsigned int cycle = s->next_cycle;
1497 		list_for_each_entry(s, &d->streams, list) {
1498 			if (s->direction != AMDTP_OUT_STREAM)
1499 				continue;
1500 
1501 			if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1502 				cycle = s->next_cycle;
1503 
1504 			if (s == d->irq_target)
1505 				s->context->callback.sc = irq_target_callback_intermediately;
1506 			else
1507 				s->context->callback.sc = process_rx_packets_intermediately;
1508 		}
1509 
1510 		d->processing_cycle.rx_start = cycle;
1511 	}
1512 }
1513 
1514 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1515 // transmit first packet.
1516 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1517 					u32 tstamp, size_t header_length,
1518 					void *header, void *private_data)
1519 {
1520 	struct amdtp_stream *s = private_data;
1521 	struct amdtp_domain *d = s->domain;
1522 
1523 	if (s->direction == AMDTP_IN_STREAM) {
1524 		context->callback.sc = drop_tx_packets_initially;
1525 	} else {
1526 		if (s == d->irq_target)
1527 			context->callback.sc = irq_target_callback_skip;
1528 		else
1529 			context->callback.sc = skip_rx_packets;
1530 	}
1531 
1532 	context->callback.sc(context, tstamp, header_length, header, s);
1533 }
1534 
1535 /**
1536  * amdtp_stream_start - start transferring packets
1537  * @s: the AMDTP stream to start
1538  * @channel: the isochronous channel on the bus
1539  * @speed: firewire speed code
1540  * @queue_size: The number of packets in the queue.
1541  * @idle_irq_interval: the interval to queue packet during initial state.
1542  *
1543  * The stream cannot be started until it has been configured with
1544  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1545  * device can be started.
1546  */
1547 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1548 			      unsigned int queue_size, unsigned int idle_irq_interval)
1549 {
1550 	bool is_irq_target = (s == s->domain->irq_target);
1551 	unsigned int ctx_header_size;
1552 	unsigned int max_ctx_payload_size;
1553 	enum dma_data_direction dir;
1554 	int type, tag, err;
1555 
1556 	mutex_lock(&s->mutex);
1557 
1558 	if (WARN_ON(amdtp_stream_running(s) ||
1559 		    (s->data_block_quadlets < 1))) {
1560 		err = -EBADFD;
1561 		goto err_unlock;
1562 	}
1563 
1564 	if (s->direction == AMDTP_IN_STREAM) {
1565 		// NOTE: IT context should be used for constant IRQ.
1566 		if (is_irq_target) {
1567 			err = -EINVAL;
1568 			goto err_unlock;
1569 		}
1570 
1571 		s->data_block_counter = UINT_MAX;
1572 	} else {
1573 		s->data_block_counter = 0;
1574 	}
1575 
1576 	// initialize packet buffer.
1577 	if (s->direction == AMDTP_IN_STREAM) {
1578 		dir = DMA_FROM_DEVICE;
1579 		type = FW_ISO_CONTEXT_RECEIVE;
1580 		if (!(s->flags & CIP_NO_HEADER))
1581 			ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1582 		else
1583 			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1584 	} else {
1585 		dir = DMA_TO_DEVICE;
1586 		type = FW_ISO_CONTEXT_TRANSMIT;
1587 		ctx_header_size = 0;	// No effect for IT context.
1588 	}
1589 	max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1590 
1591 	err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1592 	if (err < 0)
1593 		goto err_unlock;
1594 	s->queue_size = queue_size;
1595 
1596 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1597 					  type, channel, speed, ctx_header_size,
1598 					  amdtp_stream_first_callback, s);
1599 	if (IS_ERR(s->context)) {
1600 		err = PTR_ERR(s->context);
1601 		if (err == -EBUSY)
1602 			dev_err(&s->unit->device,
1603 				"no free stream on this controller\n");
1604 		goto err_buffer;
1605 	}
1606 
1607 	amdtp_stream_update(s);
1608 
1609 	if (s->direction == AMDTP_IN_STREAM) {
1610 		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1611 		s->ctx_data.tx.ctx_header_size = ctx_header_size;
1612 		s->ctx_data.tx.event_starts = false;
1613 
1614 		if (s->domain->replay.enable) {
1615 			// struct fw_iso_context.drop_overflow_headers is false therefore it's
1616 			// possible to cache much unexpectedly.
1617 			s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1618 							  queue_size * 3 / 2);
1619 			s->ctx_data.tx.cache.tail = 0;
1620 			s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1621 						sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1622 			if (!s->ctx_data.tx.cache.descs) {
1623 				err = -ENOMEM;
1624 				goto err_context;
1625 			}
1626 		}
1627 	} else {
1628 		static const struct {
1629 			unsigned int data_block;
1630 			unsigned int syt_offset;
1631 		} *entry, initial_state[] = {
1632 			[CIP_SFC_32000]  = {  4, 3072 },
1633 			[CIP_SFC_48000]  = {  6, 1024 },
1634 			[CIP_SFC_96000]  = { 12, 1024 },
1635 			[CIP_SFC_192000] = { 24, 1024 },
1636 			[CIP_SFC_44100]  = {  0,   67 },
1637 			[CIP_SFC_88200]  = {  0,   67 },
1638 			[CIP_SFC_176400] = {  0,   67 },
1639 		};
1640 
1641 		s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1642 		if (!s->ctx_data.rx.seq.descs) {
1643 			err = -ENOMEM;
1644 			goto err_context;
1645 		}
1646 		s->ctx_data.rx.seq.size = queue_size;
1647 		s->ctx_data.rx.seq.tail = 0;
1648 		s->ctx_data.rx.seq.head = 0;
1649 
1650 		entry = &initial_state[s->sfc];
1651 		s->ctx_data.rx.data_block_state = entry->data_block;
1652 		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1653 		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1654 
1655 		s->ctx_data.rx.event_count = 0;
1656 	}
1657 
1658 	if (s->flags & CIP_NO_HEADER)
1659 		s->tag = TAG_NO_CIP_HEADER;
1660 	else
1661 		s->tag = TAG_CIP;
1662 
1663 	s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1664 			       GFP_KERNEL);
1665 	if (!s->pkt_descs) {
1666 		err = -ENOMEM;
1667 		goto err_context;
1668 	}
1669 
1670 	s->packet_index = 0;
1671 	do {
1672 		struct fw_iso_packet params;
1673 
1674 		if (s->direction == AMDTP_IN_STREAM) {
1675 			err = queue_in_packet(s, &params);
1676 		} else {
1677 			bool sched_irq = false;
1678 
1679 			params.header_length = 0;
1680 			params.payload_length = 0;
1681 
1682 			if (is_irq_target) {
1683 				sched_irq = !((s->packet_index + 1) %
1684 					      idle_irq_interval);
1685 			}
1686 
1687 			err = queue_out_packet(s, &params, sched_irq);
1688 		}
1689 		if (err < 0)
1690 			goto err_pkt_descs;
1691 	} while (s->packet_index > 0);
1692 
1693 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1694 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
1695 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1696 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1697 
1698 	s->ready_processing = false;
1699 	err = fw_iso_context_start(s->context, -1, 0, tag);
1700 	if (err < 0)
1701 		goto err_pkt_descs;
1702 
1703 	mutex_unlock(&s->mutex);
1704 
1705 	return 0;
1706 err_pkt_descs:
1707 	kfree(s->pkt_descs);
1708 err_context:
1709 	if (s->direction == AMDTP_OUT_STREAM) {
1710 		kfree(s->ctx_data.rx.seq.descs);
1711 	} else {
1712 		if (s->domain->replay.enable)
1713 			kfree(s->ctx_data.tx.cache.descs);
1714 	}
1715 	fw_iso_context_destroy(s->context);
1716 	s->context = ERR_PTR(-1);
1717 err_buffer:
1718 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1719 err_unlock:
1720 	mutex_unlock(&s->mutex);
1721 
1722 	return err;
1723 }
1724 
1725 /**
1726  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1727  * @d: the AMDTP domain.
1728  * @s: the AMDTP stream that transports the PCM data
1729  *
1730  * Returns the current buffer position, in frames.
1731  */
1732 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1733 					      struct amdtp_stream *s)
1734 {
1735 	struct amdtp_stream *irq_target = d->irq_target;
1736 
1737 	// Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
1738 	if (irq_target && amdtp_stream_running(irq_target)) {
1739 		// In software IRQ context, the call causes dead-lock to disable the tasklet
1740 		// synchronously.
1741 		if (!in_softirq())
1742 			fw_iso_context_flush_completions(irq_target->context);
1743 	}
1744 
1745 	return READ_ONCE(s->pcm_buffer_pointer);
1746 }
1747 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1748 
1749 /**
1750  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1751  * @d: the AMDTP domain.
1752  * @s: the AMDTP stream that transfers the PCM frames
1753  *
1754  * Returns zero always.
1755  */
1756 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1757 {
1758 	struct amdtp_stream *irq_target = d->irq_target;
1759 
1760 	// Process isochronous packets for recent isochronous cycle to handle
1761 	// queued PCM frames.
1762 	if (irq_target && amdtp_stream_running(irq_target))
1763 		fw_iso_context_flush_completions(irq_target->context);
1764 
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1768 
1769 /**
1770  * amdtp_stream_update - update the stream after a bus reset
1771  * @s: the AMDTP stream
1772  */
1773 void amdtp_stream_update(struct amdtp_stream *s)
1774 {
1775 	/* Precomputing. */
1776 	WRITE_ONCE(s->source_node_id_field,
1777                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1778 }
1779 EXPORT_SYMBOL(amdtp_stream_update);
1780 
1781 /**
1782  * amdtp_stream_stop - stop sending packets
1783  * @s: the AMDTP stream to stop
1784  *
1785  * All PCM and MIDI devices of the stream must be stopped before the stream
1786  * itself can be stopped.
1787  */
1788 static void amdtp_stream_stop(struct amdtp_stream *s)
1789 {
1790 	mutex_lock(&s->mutex);
1791 
1792 	if (!amdtp_stream_running(s)) {
1793 		mutex_unlock(&s->mutex);
1794 		return;
1795 	}
1796 
1797 	fw_iso_context_stop(s->context);
1798 	fw_iso_context_destroy(s->context);
1799 	s->context = ERR_PTR(-1);
1800 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1801 	kfree(s->pkt_descs);
1802 
1803 	if (s->direction == AMDTP_OUT_STREAM) {
1804 		kfree(s->ctx_data.rx.seq.descs);
1805 	} else {
1806 		if (s->domain->replay.enable)
1807 			kfree(s->ctx_data.tx.cache.descs);
1808 	}
1809 
1810 	mutex_unlock(&s->mutex);
1811 }
1812 
1813 /**
1814  * amdtp_stream_pcm_abort - abort the running PCM device
1815  * @s: the AMDTP stream about to be stopped
1816  *
1817  * If the isochronous stream needs to be stopped asynchronously, call this
1818  * function first to stop the PCM device.
1819  */
1820 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1821 {
1822 	struct snd_pcm_substream *pcm;
1823 
1824 	pcm = READ_ONCE(s->pcm);
1825 	if (pcm)
1826 		snd_pcm_stop_xrun(pcm);
1827 }
1828 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1829 
1830 /**
1831  * amdtp_domain_init - initialize an AMDTP domain structure
1832  * @d: the AMDTP domain to initialize.
1833  */
1834 int amdtp_domain_init(struct amdtp_domain *d)
1835 {
1836 	INIT_LIST_HEAD(&d->streams);
1837 
1838 	d->events_per_period = 0;
1839 
1840 	return 0;
1841 }
1842 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1843 
1844 /**
1845  * amdtp_domain_destroy - destroy an AMDTP domain structure
1846  * @d: the AMDTP domain to destroy.
1847  */
1848 void amdtp_domain_destroy(struct amdtp_domain *d)
1849 {
1850 	// At present nothing to do.
1851 	return;
1852 }
1853 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1854 
1855 /**
1856  * amdtp_domain_add_stream - register isoc context into the domain.
1857  * @d: the AMDTP domain.
1858  * @s: the AMDTP stream.
1859  * @channel: the isochronous channel on the bus.
1860  * @speed: firewire speed code.
1861  */
1862 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1863 			    int channel, int speed)
1864 {
1865 	struct amdtp_stream *tmp;
1866 
1867 	list_for_each_entry(tmp, &d->streams, list) {
1868 		if (s == tmp)
1869 			return -EBUSY;
1870 	}
1871 
1872 	list_add(&s->list, &d->streams);
1873 
1874 	s->channel = channel;
1875 	s->speed = speed;
1876 	s->domain = d;
1877 
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1881 
1882 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
1883 // is less than the number of rx streams, the first tx stream is selected.
1884 static int make_association(struct amdtp_domain *d)
1885 {
1886 	unsigned int dst_index = 0;
1887 	struct amdtp_stream *rx;
1888 
1889 	// Make association to replay target.
1890 	list_for_each_entry(rx, &d->streams, list) {
1891 		if (rx->direction == AMDTP_OUT_STREAM) {
1892 			unsigned int src_index = 0;
1893 			struct amdtp_stream *tx = NULL;
1894 			struct amdtp_stream *s;
1895 
1896 			list_for_each_entry(s, &d->streams, list) {
1897 				if (s->direction == AMDTP_IN_STREAM) {
1898 					if (dst_index == src_index) {
1899 						tx = s;
1900 						break;
1901 					}
1902 
1903 					++src_index;
1904 				}
1905 			}
1906 			if (!tx) {
1907 				// Select the first entry.
1908 				list_for_each_entry(s, &d->streams, list) {
1909 					if (s->direction == AMDTP_IN_STREAM) {
1910 						tx = s;
1911 						break;
1912 					}
1913 				}
1914 				// No target is available to replay sequence.
1915 				if (!tx)
1916 					return -EINVAL;
1917 			}
1918 
1919 			rx->ctx_data.rx.replay_target = tx;
1920 			rx->ctx_data.rx.cache_head = 0;
1921 
1922 			++dst_index;
1923 		}
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 /**
1930  * amdtp_domain_start - start sending packets for isoc context in the domain.
1931  * @d: the AMDTP domain.
1932  * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
1933  *			 contexts.
1934  * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
1935  *		IT context.
1936  * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
1937  *		       according to arrival of events in tx packets.
1938  */
1939 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
1940 		       bool replay_on_the_fly)
1941 {
1942 	unsigned int events_per_buffer = d->events_per_buffer;
1943 	unsigned int events_per_period = d->events_per_period;
1944 	unsigned int queue_size;
1945 	struct amdtp_stream *s;
1946 	bool found = false;
1947 	int err;
1948 
1949 	if (replay_seq) {
1950 		err = make_association(d);
1951 		if (err < 0)
1952 			return err;
1953 	}
1954 	d->replay.enable = replay_seq;
1955 	d->replay.on_the_fly = replay_on_the_fly;
1956 
1957 	// Select an IT context as IRQ target.
1958 	list_for_each_entry(s, &d->streams, list) {
1959 		if (s->direction == AMDTP_OUT_STREAM) {
1960 			found = true;
1961 			break;
1962 		}
1963 	}
1964 	if (!found)
1965 		return -ENXIO;
1966 	d->irq_target = s;
1967 
1968 	d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
1969 
1970 	// This is a case that AMDTP streams in domain run just for MIDI
1971 	// substream. Use the number of events equivalent to 10 msec as
1972 	// interval of hardware IRQ.
1973 	if (events_per_period == 0)
1974 		events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1975 	if (events_per_buffer == 0)
1976 		events_per_buffer = events_per_period * 3;
1977 
1978 	queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1979 				  amdtp_rate_table[d->irq_target->sfc]);
1980 
1981 	list_for_each_entry(s, &d->streams, list) {
1982 		unsigned int idle_irq_interval = 0;
1983 
1984 		if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
1985 			idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1986 							 amdtp_rate_table[d->irq_target->sfc]);
1987 		}
1988 
1989 		// Starts immediately but actually DMA context starts several hundred cycles later.
1990 		err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
1991 		if (err < 0)
1992 			goto error;
1993 	}
1994 
1995 	return 0;
1996 error:
1997 	list_for_each_entry(s, &d->streams, list)
1998 		amdtp_stream_stop(s);
1999 	return err;
2000 }
2001 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2002 
2003 /**
2004  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2005  * @d: the AMDTP domain to which the isoc contexts belong.
2006  */
2007 void amdtp_domain_stop(struct amdtp_domain *d)
2008 {
2009 	struct amdtp_stream *s, *next;
2010 
2011 	if (d->irq_target)
2012 		amdtp_stream_stop(d->irq_target);
2013 
2014 	list_for_each_entry_safe(s, next, &d->streams, list) {
2015 		list_del(&s->list);
2016 
2017 		if (s != d->irq_target)
2018 			amdtp_stream_stop(s);
2019 	}
2020 
2021 	d->events_per_period = 0;
2022 	d->irq_target = NULL;
2023 }
2024 EXPORT_SYMBOL_GPL(amdtp_domain_stop);
2025