1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 /** 81 * amdtp_stream_init - initialize an AMDTP stream structure 82 * @s: the AMDTP stream to initialize 83 * @unit: the target of the stream 84 * @dir: the direction of stream 85 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 86 * @fmt: the value of fmt field in CIP header 87 * @process_ctx_payloads: callback handler to process payloads of isoc context 88 * @protocol_size: the size to allocate newly for protocol 89 */ 90 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 91 enum amdtp_stream_direction dir, unsigned int flags, 92 unsigned int fmt, 93 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 94 unsigned int protocol_size) 95 { 96 if (process_ctx_payloads == NULL) 97 return -EINVAL; 98 99 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 100 if (!s->protocol) 101 return -ENOMEM; 102 103 s->unit = unit; 104 s->direction = dir; 105 s->flags = flags; 106 s->context = ERR_PTR(-1); 107 mutex_init(&s->mutex); 108 s->packet_index = 0; 109 110 init_waitqueue_head(&s->ready_wait); 111 112 s->fmt = fmt; 113 s->process_ctx_payloads = process_ctx_payloads; 114 115 return 0; 116 } 117 EXPORT_SYMBOL(amdtp_stream_init); 118 119 /** 120 * amdtp_stream_destroy - free stream resources 121 * @s: the AMDTP stream to destroy 122 */ 123 void amdtp_stream_destroy(struct amdtp_stream *s) 124 { 125 /* Not initialized. */ 126 if (s->protocol == NULL) 127 return; 128 129 WARN_ON(amdtp_stream_running(s)); 130 kfree(s->protocol); 131 mutex_destroy(&s->mutex); 132 } 133 EXPORT_SYMBOL(amdtp_stream_destroy); 134 135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 136 [CIP_SFC_32000] = 8, 137 [CIP_SFC_44100] = 8, 138 [CIP_SFC_48000] = 8, 139 [CIP_SFC_88200] = 16, 140 [CIP_SFC_96000] = 16, 141 [CIP_SFC_176400] = 32, 142 [CIP_SFC_192000] = 32, 143 }; 144 EXPORT_SYMBOL(amdtp_syt_intervals); 145 146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 147 [CIP_SFC_32000] = 32000, 148 [CIP_SFC_44100] = 44100, 149 [CIP_SFC_48000] = 48000, 150 [CIP_SFC_88200] = 88200, 151 [CIP_SFC_96000] = 96000, 152 [CIP_SFC_176400] = 176400, 153 [CIP_SFC_192000] = 192000, 154 }; 155 EXPORT_SYMBOL(amdtp_rate_table); 156 157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 158 struct snd_pcm_hw_rule *rule) 159 { 160 struct snd_interval *s = hw_param_interval(params, rule->var); 161 const struct snd_interval *r = 162 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 163 struct snd_interval t = {0}; 164 unsigned int step = 0; 165 int i; 166 167 for (i = 0; i < CIP_SFC_COUNT; ++i) { 168 if (snd_interval_test(r, amdtp_rate_table[i])) 169 step = max(step, amdtp_syt_intervals[i]); 170 } 171 172 t.min = roundup(s->min, step); 173 t.max = rounddown(s->max, step); 174 t.integer = 1; 175 176 return snd_interval_refine(s, &t); 177 } 178 179 /** 180 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 181 * @s: the AMDTP stream, which must be initialized. 182 * @runtime: the PCM substream runtime 183 */ 184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 185 struct snd_pcm_runtime *runtime) 186 { 187 struct snd_pcm_hardware *hw = &runtime->hw; 188 unsigned int ctx_header_size; 189 unsigned int maximum_usec_per_period; 190 int err; 191 192 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 193 SNDRV_PCM_INFO_INTERLEAVED | 194 SNDRV_PCM_INFO_JOINT_DUPLEX | 195 SNDRV_PCM_INFO_MMAP | 196 SNDRV_PCM_INFO_MMAP_VALID | 197 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 198 199 hw->periods_min = 2; 200 hw->periods_max = UINT_MAX; 201 202 /* bytes for a frame */ 203 hw->period_bytes_min = 4 * hw->channels_max; 204 205 /* Just to prevent from allocating much pages. */ 206 hw->period_bytes_max = hw->period_bytes_min * 2048; 207 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 208 209 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 210 // context when total size of accumulated context header reaches 211 // PAGE_SIZE. This kicks work for the isoc context and brings 212 // callback in the middle of scheduled interrupts. 213 // Although AMDTP streams in the same domain use the same events per 214 // IRQ, use the largest size of context header between IT/IR contexts. 215 // Here, use the value of context header in IR context is for both 216 // contexts. 217 if (!(s->flags & CIP_NO_HEADER)) 218 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 219 else 220 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 221 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 222 CYCLES_PER_SECOND / ctx_header_size; 223 224 // In IEC 61883-6, one isoc packet can transfer events up to the value 225 // of syt interval. This comes from the interval of isoc cycle. As 1394 226 // OHCI controller can generate hardware IRQ per isoc packet, the 227 // interval is 125 usec. 228 // However, there are two ways of transmission in IEC 61883-6; blocking 229 // and non-blocking modes. In blocking mode, the sequence of isoc packet 230 // includes 'empty' or 'NODATA' packets which include no event. In 231 // non-blocking mode, the number of events per packet is variable up to 232 // the syt interval. 233 // Due to the above protocol design, the minimum PCM frames per 234 // interrupt should be double of the value of syt interval, thus it is 235 // 250 usec. 236 err = snd_pcm_hw_constraint_minmax(runtime, 237 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 238 250, maximum_usec_per_period); 239 if (err < 0) 240 goto end; 241 242 /* Non-Blocking stream has no more constraints */ 243 if (!(s->flags & CIP_BLOCKING)) 244 goto end; 245 246 /* 247 * One AMDTP packet can include some frames. In blocking mode, the 248 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 249 * depending on its sampling rate. For accurate period interrupt, it's 250 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 251 */ 252 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 253 apply_constraint_to_size, NULL, 254 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 255 SNDRV_PCM_HW_PARAM_RATE, -1); 256 if (err < 0) 257 goto end; 258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 259 apply_constraint_to_size, NULL, 260 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 261 SNDRV_PCM_HW_PARAM_RATE, -1); 262 if (err < 0) 263 goto end; 264 end: 265 return err; 266 } 267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 268 269 /** 270 * amdtp_stream_set_parameters - set stream parameters 271 * @s: the AMDTP stream to configure 272 * @rate: the sample rate 273 * @data_block_quadlets: the size of a data block in quadlet unit 274 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP 275 * events. 276 * 277 * The parameters must be set before the stream is started, and must not be 278 * changed while the stream is running. 279 */ 280 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 281 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) 282 { 283 unsigned int sfc; 284 285 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 286 if (amdtp_rate_table[sfc] == rate) 287 break; 288 } 289 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 290 return -EINVAL; 291 292 s->sfc = sfc; 293 s->data_block_quadlets = data_block_quadlets; 294 s->syt_interval = amdtp_syt_intervals[sfc]; 295 296 // default buffering in the device. 297 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 298 299 // additional buffering needed to adjust for no-data packets. 300 if (s->flags & CIP_BLOCKING) 301 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 302 303 s->pcm_frame_multiplier = pcm_frame_multiplier; 304 305 return 0; 306 } 307 EXPORT_SYMBOL(amdtp_stream_set_parameters); 308 309 // The CIP header is processed in context header apart from context payload. 310 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 311 { 312 unsigned int multiplier; 313 314 if (s->flags & CIP_JUMBO_PAYLOAD) 315 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 316 else 317 multiplier = 1; 318 319 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 320 } 321 322 /** 323 * amdtp_stream_get_max_payload - get the stream's packet size 324 * @s: the AMDTP stream 325 * 326 * This function must not be called before the stream has been configured 327 * with amdtp_stream_set_parameters(). 328 */ 329 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 330 { 331 unsigned int cip_header_size; 332 333 if (!(s->flags & CIP_NO_HEADER)) 334 cip_header_size = CIP_HEADER_SIZE; 335 else 336 cip_header_size = 0; 337 338 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 339 } 340 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 341 342 /** 343 * amdtp_stream_pcm_prepare - prepare PCM device for running 344 * @s: the AMDTP stream 345 * 346 * This function should be called from the PCM device's .prepare callback. 347 */ 348 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 349 { 350 s->pcm_buffer_pointer = 0; 351 s->pcm_period_pointer = 0; 352 } 353 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 354 355 #define prev_packet_desc(s, desc) \ 356 list_prev_entry_circular(desc, &s->packet_descs_list, link) 357 358 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 359 unsigned int size, unsigned int pos, unsigned int count) 360 { 361 const unsigned int syt_interval = s->syt_interval; 362 int i; 363 364 for (i = 0; i < count; ++i) { 365 struct seq_desc *desc = descs + pos; 366 367 if (desc->syt_offset != CIP_SYT_NO_INFO) 368 desc->data_blocks = syt_interval; 369 else 370 desc->data_blocks = 0; 371 372 pos = (pos + 1) % size; 373 } 374 } 375 376 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 377 unsigned int size, unsigned int pos, 378 unsigned int count) 379 { 380 const enum cip_sfc sfc = s->sfc; 381 unsigned int state = s->ctx_data.rx.data_block_state; 382 int i; 383 384 for (i = 0; i < count; ++i) { 385 struct seq_desc *desc = descs + pos; 386 387 if (!cip_sfc_is_base_44100(sfc)) { 388 // Sample_rate / 8000 is an integer, and precomputed. 389 desc->data_blocks = state; 390 } else { 391 unsigned int phase = state; 392 393 /* 394 * This calculates the number of data blocks per packet so that 395 * 1) the overall rate is correct and exactly synchronized to 396 * the bus clock, and 397 * 2) packets with a rounded-up number of blocks occur as early 398 * as possible in the sequence (to prevent underruns of the 399 * device's buffer). 400 */ 401 if (sfc == CIP_SFC_44100) 402 /* 6 6 5 6 5 6 5 ... */ 403 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 404 else 405 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 406 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 407 if (++phase >= (80 >> (sfc >> 1))) 408 phase = 0; 409 state = phase; 410 } 411 412 pos = (pos + 1) % size; 413 } 414 415 s->ctx_data.rx.data_block_state = state; 416 } 417 418 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 419 unsigned int *syt_offset_state, enum cip_sfc sfc) 420 { 421 unsigned int syt_offset; 422 423 if (*last_syt_offset < TICKS_PER_CYCLE) { 424 if (!cip_sfc_is_base_44100(sfc)) 425 syt_offset = *last_syt_offset + *syt_offset_state; 426 else { 427 /* 428 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 429 * n * SYT_INTERVAL * 24576000 / sample_rate 430 * Modulo TICKS_PER_CYCLE, the difference between successive 431 * elements is about 1386.23. Rounding the results of this 432 * formula to the SYT precision results in a sequence of 433 * differences that begins with: 434 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 435 * This code generates _exactly_ the same sequence. 436 */ 437 unsigned int phase = *syt_offset_state; 438 unsigned int index = phase % 13; 439 440 syt_offset = *last_syt_offset; 441 syt_offset += 1386 + ((index && !(index & 3)) || 442 phase == 146); 443 if (++phase >= 147) 444 phase = 0; 445 *syt_offset_state = phase; 446 } 447 } else 448 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 449 *last_syt_offset = syt_offset; 450 451 if (syt_offset >= TICKS_PER_CYCLE) 452 syt_offset = CIP_SYT_NO_INFO; 453 454 return syt_offset; 455 } 456 457 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 458 unsigned int size, unsigned int pos, unsigned int count) 459 { 460 const enum cip_sfc sfc = s->sfc; 461 unsigned int last = s->ctx_data.rx.last_syt_offset; 462 unsigned int state = s->ctx_data.rx.syt_offset_state; 463 int i; 464 465 for (i = 0; i < count; ++i) { 466 struct seq_desc *desc = descs + pos; 467 468 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 469 470 pos = (pos + 1) % size; 471 } 472 473 s->ctx_data.rx.last_syt_offset = last; 474 s->ctx_data.rx.syt_offset_state = state; 475 } 476 477 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 478 unsigned int transfer_delay) 479 { 480 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 481 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 482 unsigned int syt_offset; 483 484 // Round up. 485 if (syt_cycle_lo < cycle_lo) 486 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 487 syt_cycle_lo -= cycle_lo; 488 489 // Subtract transfer delay so that the synchronization offset is not so large 490 // at transmission. 491 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 492 if (syt_offset < transfer_delay) 493 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 494 495 return syt_offset - transfer_delay; 496 } 497 498 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 499 // Additionally, the sequence of tx packets is severely checked against any discontinuity 500 // before filling entries in the queue. The calculation is safe even if it looks fragile by 501 // overrun. 502 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 503 { 504 const unsigned int cache_size = s->ctx_data.tx.cache.size; 505 unsigned int cycles = s->ctx_data.tx.cache.pos; 506 507 if (cycles < head) 508 cycles += cache_size; 509 cycles -= head; 510 511 return cycles; 512 } 513 514 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) 515 { 516 const unsigned int transfer_delay = s->transfer_delay; 517 const unsigned int cache_size = s->ctx_data.tx.cache.size; 518 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 519 unsigned int cache_pos = s->ctx_data.tx.cache.pos; 520 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 521 int i; 522 523 for (i = 0; i < desc_count; ++i) { 524 struct seq_desc *dst = cache + cache_pos; 525 526 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 527 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 528 else 529 dst->syt_offset = CIP_SYT_NO_INFO; 530 dst->data_blocks = src->data_blocks; 531 532 cache_pos = (cache_pos + 1) % cache_size; 533 src = amdtp_stream_next_packet_desc(s, src); 534 } 535 536 s->ctx_data.tx.cache.pos = cache_pos; 537 } 538 539 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 540 unsigned int pos, unsigned int count) 541 { 542 pool_ideal_syt_offsets(s, descs, size, pos, count); 543 544 if (s->flags & CIP_BLOCKING) 545 pool_blocking_data_blocks(s, descs, size, pos, count); 546 else 547 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); 548 } 549 550 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 551 unsigned int pos, unsigned int count) 552 { 553 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 554 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 555 const unsigned int cache_size = target->ctx_data.tx.cache.size; 556 unsigned int cache_pos = s->ctx_data.rx.cache_pos; 557 int i; 558 559 for (i = 0; i < count; ++i) { 560 descs[pos] = cache[cache_pos]; 561 cache_pos = (cache_pos + 1) % cache_size; 562 pos = (pos + 1) % size; 563 } 564 565 s->ctx_data.rx.cache_pos = cache_pos; 566 } 567 568 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 569 unsigned int pos, unsigned int count) 570 { 571 struct amdtp_domain *d = s->domain; 572 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 573 unsigned int pos, unsigned int count); 574 575 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 576 pool_seq_descs = pool_ideal_seq_descs; 577 } else { 578 if (!d->replay.on_the_fly) { 579 pool_seq_descs = pool_replayed_seq; 580 } else { 581 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 582 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 583 const unsigned int cache_pos = s->ctx_data.rx.cache_pos; 584 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); 585 586 if (cached_cycles > count && cached_cycles > cache_size / 2) 587 pool_seq_descs = pool_replayed_seq; 588 else 589 pool_seq_descs = pool_ideal_seq_descs; 590 } 591 } 592 593 pool_seq_descs(s, descs, size, pos, count); 594 } 595 596 static void update_pcm_pointers(struct amdtp_stream *s, 597 struct snd_pcm_substream *pcm, 598 unsigned int frames) 599 { 600 unsigned int ptr; 601 602 ptr = s->pcm_buffer_pointer + frames; 603 if (ptr >= pcm->runtime->buffer_size) 604 ptr -= pcm->runtime->buffer_size; 605 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 606 607 s->pcm_period_pointer += frames; 608 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 609 s->pcm_period_pointer -= pcm->runtime->period_size; 610 611 // The program in user process should periodically check the status of intermediate 612 // buffer associated to PCM substream to process PCM frames in the buffer, instead 613 // of receiving notification of period elapsed by poll wait. 614 if (!pcm->runtime->no_period_wakeup) { 615 if (in_softirq()) { 616 // In software IRQ context for 1394 OHCI. 617 snd_pcm_period_elapsed(pcm); 618 } else { 619 // In process context of ALSA PCM application under acquired lock of 620 // PCM substream. 621 snd_pcm_period_elapsed_under_stream_lock(pcm); 622 } 623 } 624 } 625 } 626 627 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 628 bool sched_irq) 629 { 630 int err; 631 632 params->interrupt = sched_irq; 633 params->tag = s->tag; 634 params->sy = 0; 635 636 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 637 s->buffer.packets[s->packet_index].offset); 638 if (err < 0) { 639 dev_err(&s->unit->device, "queueing error: %d\n", err); 640 goto end; 641 } 642 643 if (++s->packet_index >= s->queue_size) 644 s->packet_index = 0; 645 end: 646 return err; 647 } 648 649 static inline int queue_out_packet(struct amdtp_stream *s, 650 struct fw_iso_packet *params, bool sched_irq) 651 { 652 params->skip = 653 !!(params->header_length == 0 && params->payload_length == 0); 654 return queue_packet(s, params, sched_irq); 655 } 656 657 static inline int queue_in_packet(struct amdtp_stream *s, 658 struct fw_iso_packet *params) 659 { 660 // Queue one packet for IR context. 661 params->header_length = s->ctx_data.tx.ctx_header_size; 662 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 663 params->skip = false; 664 return queue_packet(s, params, false); 665 } 666 667 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 668 unsigned int data_block_counter, unsigned int syt) 669 { 670 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 671 (s->data_block_quadlets << CIP_DBS_SHIFT) | 672 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 673 data_block_counter); 674 cip_header[1] = cpu_to_be32(CIP_EOH | 675 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 676 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 677 (syt & CIP_SYT_MASK)); 678 } 679 680 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 681 struct fw_iso_packet *params, unsigned int header_length, 682 unsigned int data_blocks, 683 unsigned int data_block_counter, 684 unsigned int syt, unsigned int index, u32 curr_cycle_time) 685 { 686 unsigned int payload_length; 687 __be32 *cip_header; 688 689 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 690 params->payload_length = payload_length; 691 692 if (header_length > 0) { 693 cip_header = (__be32 *)params->header; 694 generate_cip_header(s, cip_header, data_block_counter, syt); 695 params->header_length = header_length; 696 } else { 697 cip_header = NULL; 698 } 699 700 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 701 data_block_counter, s->packet_index, index, curr_cycle_time); 702 } 703 704 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 705 unsigned int payload_length, 706 unsigned int *data_blocks, 707 unsigned int *data_block_counter, unsigned int *syt) 708 { 709 u32 cip_header[2]; 710 unsigned int sph; 711 unsigned int fmt; 712 unsigned int fdf; 713 unsigned int dbc; 714 bool lost; 715 716 cip_header[0] = be32_to_cpu(buf[0]); 717 cip_header[1] = be32_to_cpu(buf[1]); 718 719 /* 720 * This module supports 'Two-quadlet CIP header with SYT field'. 721 * For convenience, also check FMT field is AM824 or not. 722 */ 723 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 724 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 725 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 726 dev_info_ratelimited(&s->unit->device, 727 "Invalid CIP header for AMDTP: %08X:%08X\n", 728 cip_header[0], cip_header[1]); 729 return -EAGAIN; 730 } 731 732 /* Check valid protocol or not. */ 733 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 734 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 735 if (sph != s->sph || fmt != s->fmt) { 736 dev_info_ratelimited(&s->unit->device, 737 "Detect unexpected protocol: %08x %08x\n", 738 cip_header[0], cip_header[1]); 739 return -EAGAIN; 740 } 741 742 /* Calculate data blocks */ 743 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 744 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 745 *data_blocks = 0; 746 } else { 747 unsigned int data_block_quadlets = 748 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 749 /* avoid division by zero */ 750 if (data_block_quadlets == 0) { 751 dev_err(&s->unit->device, 752 "Detect invalid value in dbs field: %08X\n", 753 cip_header[0]); 754 return -EPROTO; 755 } 756 if (s->flags & CIP_WRONG_DBS) 757 data_block_quadlets = s->data_block_quadlets; 758 759 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 760 } 761 762 /* Check data block counter continuity */ 763 dbc = cip_header[0] & CIP_DBC_MASK; 764 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 765 *data_block_counter != UINT_MAX) 766 dbc = *data_block_counter; 767 768 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 769 *data_block_counter == UINT_MAX) { 770 lost = false; 771 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 772 lost = dbc != *data_block_counter; 773 } else { 774 unsigned int dbc_interval; 775 776 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { 777 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 778 dbc_interval = s->ctx_data.tx.dbc_interval; 779 else 780 dbc_interval = *data_blocks; 781 } else { 782 dbc_interval = payload_length / sizeof(__be32); 783 } 784 785 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 786 } 787 788 if (lost) { 789 dev_err(&s->unit->device, 790 "Detect discontinuity of CIP: %02X %02X\n", 791 *data_block_counter, dbc); 792 return -EIO; 793 } 794 795 *data_block_counter = dbc; 796 797 if (!(s->flags & CIP_UNAWARE_SYT)) 798 *syt = cip_header[1] & CIP_SYT_MASK; 799 800 return 0; 801 } 802 803 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 804 const __be32 *ctx_header, 805 unsigned int *data_blocks, 806 unsigned int *data_block_counter, 807 unsigned int *syt, unsigned int packet_index, unsigned int index, 808 u32 curr_cycle_time) 809 { 810 unsigned int payload_length; 811 const __be32 *cip_header; 812 unsigned int cip_header_size; 813 814 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 815 816 if (!(s->flags & CIP_NO_HEADER)) 817 cip_header_size = CIP_HEADER_SIZE; 818 else 819 cip_header_size = 0; 820 821 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 822 dev_err(&s->unit->device, 823 "Detect jumbo payload: %04x %04x\n", 824 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 825 return -EIO; 826 } 827 828 if (cip_header_size > 0) { 829 if (payload_length >= cip_header_size) { 830 int err; 831 832 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 833 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 834 data_blocks, data_block_counter, syt); 835 if (err < 0) 836 return err; 837 } else { 838 // Handle the cycle so that empty packet arrives. 839 cip_header = NULL; 840 *data_blocks = 0; 841 *syt = 0; 842 } 843 } else { 844 cip_header = NULL; 845 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 846 *syt = 0; 847 848 if (*data_block_counter == UINT_MAX) 849 *data_block_counter = 0; 850 } 851 852 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 853 *data_block_counter, packet_index, index, curr_cycle_time); 854 855 return 0; 856 } 857 858 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 859 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 860 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 861 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) 862 { 863 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); 864 } 865 866 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 867 { 868 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 869 return compute_ohci_iso_ctx_cycle_count(tstamp); 870 } 871 872 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 873 { 874 cycle += addend; 875 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 876 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 877 return cycle; 878 } 879 880 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) 881 { 882 if (minuend < subtrahend) 883 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 884 885 return minuend - subtrahend; 886 } 887 888 static int compare_ohci_cycle_count(u32 lval, u32 rval) 889 { 890 if (lval == rval) 891 return 0; 892 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 893 return -1; 894 else 895 return 1; 896 } 897 898 // Align to actual cycle count for the packet which is going to be scheduled. 899 // This module queued the same number of isochronous cycle as the size of queue 900 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 901 // the size of queue for scheduled cycle. 902 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 903 unsigned int queue_size) 904 { 905 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 906 return increment_ohci_cycle_count(cycle, queue_size); 907 } 908 909 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 910 const __be32 *ctx_header, unsigned int packet_count, 911 unsigned int *desc_count) 912 { 913 unsigned int next_cycle = s->next_cycle; 914 unsigned int dbc = s->data_block_counter; 915 unsigned int packet_index = s->packet_index; 916 unsigned int queue_size = s->queue_size; 917 u32 curr_cycle_time = 0; 918 int i; 919 int err; 920 921 if (trace_amdtp_packet_enabled()) 922 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 923 924 *desc_count = 0; 925 for (i = 0; i < packet_count; ++i) { 926 unsigned int cycle; 927 bool lost; 928 unsigned int data_blocks; 929 unsigned int syt; 930 931 cycle = compute_ohci_cycle_count(ctx_header[1]); 932 lost = (next_cycle != cycle); 933 if (lost) { 934 if (s->flags & CIP_NO_HEADER) { 935 // Fireface skips transmission just for an isoc cycle corresponding 936 // to empty packet. 937 unsigned int prev_cycle = next_cycle; 938 939 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 940 lost = (next_cycle != cycle); 941 if (!lost) { 942 // Prepare a description for the skipped cycle for 943 // sequence replay. 944 desc->cycle = prev_cycle; 945 desc->syt = 0; 946 desc->data_blocks = 0; 947 desc->data_block_counter = dbc; 948 desc->ctx_payload = NULL; 949 desc = amdtp_stream_next_packet_desc(s, desc); 950 ++(*desc_count); 951 } 952 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 953 // OXFW970 skips transmission for several isoc cycles during 954 // asynchronous transaction. The sequence replay is impossible due 955 // to the reason. 956 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 957 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 958 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); 959 } 960 if (lost) { 961 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 962 next_cycle, cycle); 963 return -EIO; 964 } 965 } 966 967 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 968 packet_index, i, curr_cycle_time); 969 if (err < 0) 970 return err; 971 972 desc->cycle = cycle; 973 desc->syt = syt; 974 desc->data_blocks = data_blocks; 975 desc->data_block_counter = dbc; 976 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 977 978 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 979 dbc = (dbc + desc->data_blocks) & 0xff; 980 981 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 982 desc = amdtp_stream_next_packet_desc(s, desc); 983 ++(*desc_count); 984 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 985 packet_index = (packet_index + 1) % queue_size; 986 } 987 988 s->next_cycle = next_cycle; 989 s->data_block_counter = dbc; 990 991 return 0; 992 } 993 994 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 995 unsigned int transfer_delay) 996 { 997 unsigned int syt; 998 999 syt_offset += transfer_delay; 1000 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 1001 (syt_offset % TICKS_PER_CYCLE); 1002 return syt & CIP_SYT_MASK; 1003 } 1004 1005 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 1006 const __be32 *ctx_header, unsigned int packet_count) 1007 { 1008 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 1009 unsigned int seq_size = s->ctx_data.rx.seq.size; 1010 unsigned int seq_pos = s->ctx_data.rx.seq.pos; 1011 unsigned int dbc = s->data_block_counter; 1012 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 1013 int i; 1014 1015 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); 1016 1017 for (i = 0; i < packet_count; ++i) { 1018 unsigned int index = (s->packet_index + i) % s->queue_size; 1019 const struct seq_desc *seq = seq_descs + seq_pos; 1020 1021 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1022 1023 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1024 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1025 else 1026 desc->syt = CIP_SYT_NO_INFO; 1027 1028 desc->data_blocks = seq->data_blocks; 1029 1030 if (s->flags & CIP_DBC_IS_END_EVENT) 1031 dbc = (dbc + desc->data_blocks) & 0xff; 1032 1033 desc->data_block_counter = dbc; 1034 1035 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1036 dbc = (dbc + desc->data_blocks) & 0xff; 1037 1038 desc->ctx_payload = s->buffer.packets[index].buffer; 1039 1040 seq_pos = (seq_pos + 1) % seq_size; 1041 desc = amdtp_stream_next_packet_desc(s, desc); 1042 1043 ++ctx_header; 1044 } 1045 1046 s->data_block_counter = dbc; 1047 s->ctx_data.rx.seq.pos = seq_pos; 1048 } 1049 1050 static inline void cancel_stream(struct amdtp_stream *s) 1051 { 1052 s->packet_index = -1; 1053 if (in_softirq()) 1054 amdtp_stream_pcm_abort(s); 1055 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1056 } 1057 1058 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, 1059 const struct pkt_desc *desc, unsigned int count) 1060 { 1061 unsigned int data_block_count = 0; 1062 u32 latest_cycle; 1063 u32 cycle_time; 1064 u32 curr_cycle; 1065 u32 cycle_gap; 1066 int i, err; 1067 1068 if (count == 0) 1069 goto end; 1070 1071 // Forward to the latest record. 1072 for (i = 0; i < count - 1; ++i) 1073 desc = amdtp_stream_next_packet_desc(s, desc); 1074 latest_cycle = desc->cycle; 1075 1076 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); 1077 if (err < 0) 1078 goto end; 1079 1080 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp 1081 // format of 1394 OHCI isochronous context. 1082 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); 1083 1084 if (s->direction == AMDTP_IN_STREAM) { 1085 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since 1086 // it corresponds to arrived isochronous packet. 1087 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) 1088 goto end; 1089 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); 1090 1091 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated 1092 // value expectedly corresponds to a few packets (0-2) since the packet arrived at 1093 // the most recent isochronous cycle has been already processed. 1094 for (i = 0; i < cycle_gap; ++i) { 1095 desc = amdtp_stream_next_packet_desc(s, desc); 1096 data_block_count += desc->data_blocks; 1097 } 1098 } else { 1099 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle 1100 // since it was already scheduled. 1101 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) 1102 goto end; 1103 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); 1104 1105 // NOTE: use history of scheduled packets. 1106 for (i = 0; i < cycle_gap; ++i) { 1107 data_block_count += desc->data_blocks; 1108 desc = prev_packet_desc(s, desc); 1109 } 1110 } 1111 end: 1112 return data_block_count * s->pcm_frame_multiplier; 1113 } 1114 1115 static void process_ctx_payloads(struct amdtp_stream *s, 1116 const struct pkt_desc *desc, 1117 unsigned int count) 1118 { 1119 struct snd_pcm_substream *pcm; 1120 int i; 1121 1122 pcm = READ_ONCE(s->pcm); 1123 s->process_ctx_payloads(s, desc, count, pcm); 1124 1125 if (pcm) { 1126 unsigned int data_block_count = 0; 1127 1128 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); 1129 1130 for (i = 0; i < count; ++i) { 1131 data_block_count += desc->data_blocks; 1132 desc = amdtp_stream_next_packet_desc(s, desc); 1133 } 1134 1135 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); 1136 } 1137 } 1138 1139 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1140 void *header, void *private_data) 1141 { 1142 struct amdtp_stream *s = private_data; 1143 const struct amdtp_domain *d = s->domain; 1144 const __be32 *ctx_header = header; 1145 const unsigned int events_per_period = d->events_per_period; 1146 unsigned int event_count = s->ctx_data.rx.event_count; 1147 struct pkt_desc *desc = s->packet_descs_cursor; 1148 unsigned int pkt_header_length; 1149 unsigned int packets; 1150 u32 curr_cycle_time; 1151 bool need_hw_irq; 1152 int i; 1153 1154 if (s->packet_index < 0) 1155 return; 1156 1157 // Calculate the number of packets in buffer and check XRUN. 1158 packets = header_length / sizeof(*ctx_header); 1159 1160 generate_rx_packet_descs(s, desc, ctx_header, packets); 1161 1162 process_ctx_payloads(s, desc, packets); 1163 1164 if (!(s->flags & CIP_NO_HEADER)) 1165 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1166 else 1167 pkt_header_length = 0; 1168 1169 if (s == d->irq_target) { 1170 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1171 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1172 // with some requests, instead of scheduled hardware IRQ of an IT context. 1173 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1174 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1175 } else { 1176 need_hw_irq = false; 1177 } 1178 1179 if (trace_amdtp_packet_enabled()) 1180 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 1181 1182 for (i = 0; i < packets; ++i) { 1183 DEFINE_FLEX(struct fw_iso_packet, template, header, 1184 header_length, CIP_HEADER_QUADLETS); 1185 bool sched_irq = false; 1186 1187 build_it_pkt_header(s, desc->cycle, template, pkt_header_length, 1188 desc->data_blocks, desc->data_block_counter, 1189 desc->syt, i, curr_cycle_time); 1190 1191 if (s == s->domain->irq_target) { 1192 event_count += desc->data_blocks; 1193 if (event_count >= events_per_period) { 1194 event_count -= events_per_period; 1195 sched_irq = need_hw_irq; 1196 } 1197 } 1198 1199 if (queue_out_packet(s, template, sched_irq) < 0) { 1200 cancel_stream(s); 1201 return; 1202 } 1203 1204 desc = amdtp_stream_next_packet_desc(s, desc); 1205 } 1206 1207 s->ctx_data.rx.event_count = event_count; 1208 s->packet_descs_cursor = desc; 1209 } 1210 1211 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1212 void *header, void *private_data) 1213 { 1214 struct amdtp_stream *s = private_data; 1215 struct amdtp_domain *d = s->domain; 1216 const __be32 *ctx_header = header; 1217 unsigned int packets; 1218 unsigned int cycle; 1219 int i; 1220 1221 if (s->packet_index < 0) 1222 return; 1223 1224 packets = header_length / sizeof(*ctx_header); 1225 1226 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1227 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1228 1229 for (i = 0; i < packets; ++i) { 1230 struct fw_iso_packet params = { 1231 .header_length = 0, 1232 .payload_length = 0, 1233 }; 1234 bool sched_irq = (s == d->irq_target && i == packets - 1); 1235 1236 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1237 cancel_stream(s); 1238 return; 1239 } 1240 } 1241 } 1242 1243 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1244 void *header, void *private_data); 1245 1246 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1247 size_t header_length, void *header, void *private_data) 1248 { 1249 struct amdtp_stream *s = private_data; 1250 struct amdtp_domain *d = s->domain; 1251 __be32 *ctx_header = header; 1252 const unsigned int queue_size = s->queue_size; 1253 unsigned int packets; 1254 unsigned int offset; 1255 1256 if (s->packet_index < 0) 1257 return; 1258 1259 packets = header_length / sizeof(*ctx_header); 1260 1261 offset = 0; 1262 while (offset < packets) { 1263 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1264 1265 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1266 break; 1267 1268 ++offset; 1269 } 1270 1271 if (offset > 0) { 1272 unsigned int length = sizeof(*ctx_header) * offset; 1273 1274 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1275 if (amdtp_streaming_error(s)) 1276 return; 1277 1278 ctx_header += offset; 1279 header_length -= length; 1280 } 1281 1282 if (offset < packets) { 1283 s->ready_processing = true; 1284 wake_up(&s->ready_wait); 1285 1286 if (d->replay.enable) 1287 s->ctx_data.rx.cache_pos = 0; 1288 1289 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1290 if (amdtp_streaming_error(s)) 1291 return; 1292 1293 if (s == d->irq_target) 1294 s->context->callback.sc = irq_target_callback; 1295 else 1296 s->context->callback.sc = process_rx_packets; 1297 } 1298 } 1299 1300 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1301 void *header, void *private_data) 1302 { 1303 struct amdtp_stream *s = private_data; 1304 __be32 *ctx_header = header; 1305 struct pkt_desc *desc = s->packet_descs_cursor; 1306 unsigned int packet_count; 1307 unsigned int desc_count; 1308 int i; 1309 int err; 1310 1311 if (s->packet_index < 0) 1312 return; 1313 1314 // Calculate the number of packets in buffer and check XRUN. 1315 packet_count = header_length / s->ctx_data.tx.ctx_header_size; 1316 1317 desc_count = 0; 1318 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); 1319 if (err < 0) { 1320 if (err != -EAGAIN) { 1321 cancel_stream(s); 1322 return; 1323 } 1324 } else { 1325 struct amdtp_domain *d = s->domain; 1326 1327 process_ctx_payloads(s, desc, desc_count); 1328 1329 if (d->replay.enable) 1330 cache_seq(s, desc, desc_count); 1331 1332 for (i = 0; i < desc_count; ++i) 1333 desc = amdtp_stream_next_packet_desc(s, desc); 1334 s->packet_descs_cursor = desc; 1335 } 1336 1337 for (i = 0; i < packet_count; ++i) { 1338 struct fw_iso_packet params = {0}; 1339 1340 if (queue_in_packet(s, ¶ms) < 0) { 1341 cancel_stream(s); 1342 return; 1343 } 1344 } 1345 } 1346 1347 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1348 void *header, void *private_data) 1349 { 1350 struct amdtp_stream *s = private_data; 1351 const __be32 *ctx_header = header; 1352 unsigned int packets; 1353 unsigned int cycle; 1354 int i; 1355 1356 if (s->packet_index < 0) 1357 return; 1358 1359 packets = header_length / s->ctx_data.tx.ctx_header_size; 1360 1361 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1362 cycle = compute_ohci_cycle_count(ctx_header[1]); 1363 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1364 1365 for (i = 0; i < packets; ++i) { 1366 struct fw_iso_packet params = {0}; 1367 1368 if (queue_in_packet(s, ¶ms) < 0) { 1369 cancel_stream(s); 1370 return; 1371 } 1372 } 1373 } 1374 1375 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1376 size_t header_length, void *header, void *private_data) 1377 { 1378 struct amdtp_stream *s = private_data; 1379 struct amdtp_domain *d = s->domain; 1380 __be32 *ctx_header; 1381 unsigned int packets; 1382 unsigned int offset; 1383 1384 if (s->packet_index < 0) 1385 return; 1386 1387 packets = header_length / s->ctx_data.tx.ctx_header_size; 1388 1389 offset = 0; 1390 ctx_header = header; 1391 while (offset < packets) { 1392 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1393 1394 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1395 break; 1396 1397 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1398 ++offset; 1399 } 1400 1401 ctx_header = header; 1402 1403 if (offset > 0) { 1404 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1405 1406 drop_tx_packets(context, tstamp, length, ctx_header, s); 1407 if (amdtp_streaming_error(s)) 1408 return; 1409 1410 ctx_header += length / sizeof(*ctx_header); 1411 header_length -= length; 1412 } 1413 1414 if (offset < packets) { 1415 s->ready_processing = true; 1416 wake_up(&s->ready_wait); 1417 1418 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1419 if (amdtp_streaming_error(s)) 1420 return; 1421 1422 context->callback.sc = process_tx_packets; 1423 } 1424 } 1425 1426 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1427 size_t header_length, void *header, void *private_data) 1428 { 1429 struct amdtp_stream *s = private_data; 1430 struct amdtp_domain *d = s->domain; 1431 __be32 *ctx_header; 1432 unsigned int count; 1433 unsigned int events; 1434 int i; 1435 1436 if (s->packet_index < 0) 1437 return; 1438 1439 count = header_length / s->ctx_data.tx.ctx_header_size; 1440 1441 // Attempt to detect any event in the batch of packets. 1442 events = 0; 1443 ctx_header = header; 1444 for (i = 0; i < count; ++i) { 1445 unsigned int payload_quads = 1446 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1447 unsigned int data_blocks; 1448 1449 if (s->flags & CIP_NO_HEADER) { 1450 data_blocks = payload_quads / s->data_block_quadlets; 1451 } else { 1452 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1453 1454 if (payload_quads < CIP_HEADER_QUADLETS) { 1455 data_blocks = 0; 1456 } else { 1457 payload_quads -= CIP_HEADER_QUADLETS; 1458 1459 if (s->flags & CIP_UNAWARE_SYT) { 1460 data_blocks = payload_quads / s->data_block_quadlets; 1461 } else { 1462 u32 cip1 = be32_to_cpu(cip_headers[1]); 1463 1464 // NODATA packet can includes any data blocks but they are 1465 // not available as event. 1466 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1467 data_blocks = 0; 1468 else 1469 data_blocks = payload_quads / s->data_block_quadlets; 1470 } 1471 } 1472 } 1473 1474 events += data_blocks; 1475 1476 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1477 } 1478 1479 drop_tx_packets(context, tstamp, header_length, header, s); 1480 1481 if (events > 0) 1482 s->ctx_data.tx.event_starts = true; 1483 1484 // Decide the cycle count to begin processing content of packet in IR contexts. 1485 { 1486 unsigned int stream_count = 0; 1487 unsigned int event_starts_count = 0; 1488 unsigned int cycle = UINT_MAX; 1489 1490 list_for_each_entry(s, &d->streams, list) { 1491 if (s->direction == AMDTP_IN_STREAM) { 1492 ++stream_count; 1493 if (s->ctx_data.tx.event_starts) 1494 ++event_starts_count; 1495 } 1496 } 1497 1498 if (stream_count == event_starts_count) { 1499 unsigned int next_cycle; 1500 1501 list_for_each_entry(s, &d->streams, list) { 1502 if (s->direction != AMDTP_IN_STREAM) 1503 continue; 1504 1505 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1506 d->processing_cycle.tx_init_skip); 1507 if (cycle == UINT_MAX || 1508 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1509 cycle = next_cycle; 1510 1511 s->context->callback.sc = process_tx_packets_intermediately; 1512 } 1513 1514 d->processing_cycle.tx_start = cycle; 1515 } 1516 } 1517 } 1518 1519 static void process_ctxs_in_domain(struct amdtp_domain *d) 1520 { 1521 struct amdtp_stream *s; 1522 1523 list_for_each_entry(s, &d->streams, list) { 1524 if (s != d->irq_target && amdtp_stream_running(s)) 1525 fw_iso_context_flush_completions(s->context); 1526 1527 if (amdtp_streaming_error(s)) 1528 goto error; 1529 } 1530 1531 return; 1532 error: 1533 if (amdtp_stream_running(d->irq_target)) 1534 cancel_stream(d->irq_target); 1535 1536 list_for_each_entry(s, &d->streams, list) { 1537 if (amdtp_stream_running(s)) 1538 cancel_stream(s); 1539 } 1540 } 1541 1542 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1543 void *header, void *private_data) 1544 { 1545 struct amdtp_stream *s = private_data; 1546 struct amdtp_domain *d = s->domain; 1547 1548 process_rx_packets(context, tstamp, header_length, header, private_data); 1549 process_ctxs_in_domain(d); 1550 } 1551 1552 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1553 size_t header_length, void *header, void *private_data) 1554 { 1555 struct amdtp_stream *s = private_data; 1556 struct amdtp_domain *d = s->domain; 1557 1558 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1559 process_ctxs_in_domain(d); 1560 } 1561 1562 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1563 size_t header_length, void *header, void *private_data) 1564 { 1565 struct amdtp_stream *s = private_data; 1566 struct amdtp_domain *d = s->domain; 1567 bool ready_to_start; 1568 1569 skip_rx_packets(context, tstamp, header_length, header, private_data); 1570 process_ctxs_in_domain(d); 1571 1572 if (d->replay.enable && !d->replay.on_the_fly) { 1573 unsigned int rx_count = 0; 1574 unsigned int rx_ready_count = 0; 1575 struct amdtp_stream *rx; 1576 1577 list_for_each_entry(rx, &d->streams, list) { 1578 struct amdtp_stream *tx; 1579 unsigned int cached_cycles; 1580 1581 if (rx->direction != AMDTP_OUT_STREAM) 1582 continue; 1583 ++rx_count; 1584 1585 tx = rx->ctx_data.rx.replay_target; 1586 cached_cycles = calculate_cached_cycle_count(tx, 0); 1587 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1588 ++rx_ready_count; 1589 } 1590 1591 ready_to_start = (rx_count == rx_ready_count); 1592 } else { 1593 ready_to_start = true; 1594 } 1595 1596 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1597 // contexts are expected to start and get callback when reaching here. 1598 if (ready_to_start) { 1599 unsigned int cycle = s->next_cycle; 1600 list_for_each_entry(s, &d->streams, list) { 1601 if (s->direction != AMDTP_OUT_STREAM) 1602 continue; 1603 1604 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1605 cycle = s->next_cycle; 1606 1607 if (s == d->irq_target) 1608 s->context->callback.sc = irq_target_callback_intermediately; 1609 else 1610 s->context->callback.sc = process_rx_packets_intermediately; 1611 } 1612 1613 d->processing_cycle.rx_start = cycle; 1614 } 1615 } 1616 1617 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1618 // transmit first packet. 1619 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1620 u32 tstamp, size_t header_length, 1621 void *header, void *private_data) 1622 { 1623 struct amdtp_stream *s = private_data; 1624 struct amdtp_domain *d = s->domain; 1625 1626 if (s->direction == AMDTP_IN_STREAM) { 1627 context->callback.sc = drop_tx_packets_initially; 1628 } else { 1629 if (s == d->irq_target) 1630 context->callback.sc = irq_target_callback_skip; 1631 else 1632 context->callback.sc = skip_rx_packets; 1633 } 1634 1635 context->callback.sc(context, tstamp, header_length, header, s); 1636 } 1637 1638 /** 1639 * amdtp_stream_start - start transferring packets 1640 * @s: the AMDTP stream to start 1641 * @channel: the isochronous channel on the bus 1642 * @speed: firewire speed code 1643 * @queue_size: The number of packets in the queue. 1644 * @idle_irq_interval: the interval to queue packet during initial state. 1645 * 1646 * The stream cannot be started until it has been configured with 1647 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1648 * device can be started. 1649 */ 1650 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1651 unsigned int queue_size, unsigned int idle_irq_interval) 1652 { 1653 bool is_irq_target = (s == s->domain->irq_target); 1654 unsigned int ctx_header_size; 1655 unsigned int max_ctx_payload_size; 1656 enum dma_data_direction dir; 1657 struct pkt_desc *descs; 1658 int i, type, tag, err; 1659 1660 mutex_lock(&s->mutex); 1661 1662 if (WARN_ON(amdtp_stream_running(s) || 1663 (s->data_block_quadlets < 1))) { 1664 err = -EBADFD; 1665 goto err_unlock; 1666 } 1667 1668 if (s->direction == AMDTP_IN_STREAM) { 1669 // NOTE: IT context should be used for constant IRQ. 1670 if (is_irq_target) { 1671 err = -EINVAL; 1672 goto err_unlock; 1673 } 1674 1675 s->data_block_counter = UINT_MAX; 1676 } else { 1677 s->data_block_counter = 0; 1678 } 1679 1680 // initialize packet buffer. 1681 if (s->direction == AMDTP_IN_STREAM) { 1682 dir = DMA_FROM_DEVICE; 1683 type = FW_ISO_CONTEXT_RECEIVE; 1684 if (!(s->flags & CIP_NO_HEADER)) 1685 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1686 else 1687 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1688 } else { 1689 dir = DMA_TO_DEVICE; 1690 type = FW_ISO_CONTEXT_TRANSMIT; 1691 ctx_header_size = 0; // No effect for IT context. 1692 } 1693 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1694 1695 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1696 if (err < 0) 1697 goto err_unlock; 1698 s->queue_size = queue_size; 1699 1700 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1701 type, channel, speed, ctx_header_size, 1702 amdtp_stream_first_callback, s); 1703 if (IS_ERR(s->context)) { 1704 err = PTR_ERR(s->context); 1705 if (err == -EBUSY) 1706 dev_err(&s->unit->device, 1707 "no free stream on this controller\n"); 1708 goto err_buffer; 1709 } 1710 1711 amdtp_stream_update(s); 1712 1713 if (s->direction == AMDTP_IN_STREAM) { 1714 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1715 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1716 s->ctx_data.tx.event_starts = false; 1717 1718 if (s->domain->replay.enable) { 1719 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1720 // possible to cache much unexpectedly. 1721 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1722 queue_size * 3 / 2); 1723 s->ctx_data.tx.cache.pos = 0; 1724 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1725 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1726 if (!s->ctx_data.tx.cache.descs) { 1727 err = -ENOMEM; 1728 goto err_context; 1729 } 1730 } 1731 } else { 1732 static const struct { 1733 unsigned int data_block; 1734 unsigned int syt_offset; 1735 } *entry, initial_state[] = { 1736 [CIP_SFC_32000] = { 4, 3072 }, 1737 [CIP_SFC_48000] = { 6, 1024 }, 1738 [CIP_SFC_96000] = { 12, 1024 }, 1739 [CIP_SFC_192000] = { 24, 1024 }, 1740 [CIP_SFC_44100] = { 0, 67 }, 1741 [CIP_SFC_88200] = { 0, 67 }, 1742 [CIP_SFC_176400] = { 0, 67 }, 1743 }; 1744 1745 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1746 if (!s->ctx_data.rx.seq.descs) { 1747 err = -ENOMEM; 1748 goto err_context; 1749 } 1750 s->ctx_data.rx.seq.size = queue_size; 1751 s->ctx_data.rx.seq.pos = 0; 1752 1753 entry = &initial_state[s->sfc]; 1754 s->ctx_data.rx.data_block_state = entry->data_block; 1755 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1756 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1757 1758 s->ctx_data.rx.event_count = 0; 1759 } 1760 1761 if (s->flags & CIP_NO_HEADER) 1762 s->tag = TAG_NO_CIP_HEADER; 1763 else 1764 s->tag = TAG_CIP; 1765 1766 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request 1767 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It 1768 // could take a round over queue of AMDTP packet descriptors and small loss of history. For 1769 // safe, keep more 8 elements for the queue, equivalent to 1 ms. 1770 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); 1771 if (!descs) { 1772 err = -ENOMEM; 1773 goto err_context; 1774 } 1775 s->packet_descs = descs; 1776 1777 INIT_LIST_HEAD(&s->packet_descs_list); 1778 for (i = 0; i < s->queue_size; ++i) { 1779 INIT_LIST_HEAD(&descs->link); 1780 list_add_tail(&descs->link, &s->packet_descs_list); 1781 ++descs; 1782 } 1783 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); 1784 1785 s->packet_index = 0; 1786 do { 1787 struct fw_iso_packet params; 1788 1789 if (s->direction == AMDTP_IN_STREAM) { 1790 err = queue_in_packet(s, ¶ms); 1791 } else { 1792 bool sched_irq = false; 1793 1794 params.header_length = 0; 1795 params.payload_length = 0; 1796 1797 if (is_irq_target) { 1798 sched_irq = !((s->packet_index + 1) % 1799 idle_irq_interval); 1800 } 1801 1802 err = queue_out_packet(s, ¶ms, sched_irq); 1803 } 1804 if (err < 0) 1805 goto err_pkt_descs; 1806 } while (s->packet_index > 0); 1807 1808 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1809 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1810 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1811 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1812 1813 s->ready_processing = false; 1814 err = fw_iso_context_start(s->context, -1, 0, tag); 1815 if (err < 0) 1816 goto err_pkt_descs; 1817 1818 mutex_unlock(&s->mutex); 1819 1820 return 0; 1821 err_pkt_descs: 1822 kfree(s->packet_descs); 1823 s->packet_descs = NULL; 1824 err_context: 1825 if (s->direction == AMDTP_OUT_STREAM) { 1826 kfree(s->ctx_data.rx.seq.descs); 1827 } else { 1828 if (s->domain->replay.enable) 1829 kfree(s->ctx_data.tx.cache.descs); 1830 } 1831 fw_iso_context_destroy(s->context); 1832 s->context = ERR_PTR(-1); 1833 err_buffer: 1834 iso_packets_buffer_destroy(&s->buffer, s->unit); 1835 err_unlock: 1836 mutex_unlock(&s->mutex); 1837 1838 return err; 1839 } 1840 1841 /** 1842 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1843 * @d: the AMDTP domain. 1844 * @s: the AMDTP stream that transports the PCM data 1845 * 1846 * Returns the current buffer position, in frames. 1847 */ 1848 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1849 struct amdtp_stream *s) 1850 { 1851 struct amdtp_stream *irq_target = d->irq_target; 1852 1853 // Process isochronous packets queued till recent isochronous cycle to handle PCM frames. 1854 if (irq_target && amdtp_stream_running(irq_target)) { 1855 // In software IRQ context, the call causes dead-lock to disable the tasklet 1856 // synchronously. 1857 if (!in_softirq()) 1858 fw_iso_context_flush_completions(irq_target->context); 1859 } 1860 1861 return READ_ONCE(s->pcm_buffer_pointer); 1862 } 1863 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1864 1865 /** 1866 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1867 * @d: the AMDTP domain. 1868 * @s: the AMDTP stream that transfers the PCM frames 1869 * 1870 * Returns zero always. 1871 */ 1872 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1873 { 1874 struct amdtp_stream *irq_target = d->irq_target; 1875 1876 // Process isochronous packets for recent isochronous cycle to handle 1877 // queued PCM frames. 1878 if (irq_target && amdtp_stream_running(irq_target)) 1879 fw_iso_context_flush_completions(irq_target->context); 1880 1881 return 0; 1882 } 1883 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1884 1885 /** 1886 * amdtp_stream_update - update the stream after a bus reset 1887 * @s: the AMDTP stream 1888 */ 1889 void amdtp_stream_update(struct amdtp_stream *s) 1890 { 1891 /* Precomputing. */ 1892 WRITE_ONCE(s->source_node_id_field, 1893 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1894 } 1895 EXPORT_SYMBOL(amdtp_stream_update); 1896 1897 /** 1898 * amdtp_stream_stop - stop sending packets 1899 * @s: the AMDTP stream to stop 1900 * 1901 * All PCM and MIDI devices of the stream must be stopped before the stream 1902 * itself can be stopped. 1903 */ 1904 static void amdtp_stream_stop(struct amdtp_stream *s) 1905 { 1906 mutex_lock(&s->mutex); 1907 1908 if (!amdtp_stream_running(s)) { 1909 mutex_unlock(&s->mutex); 1910 return; 1911 } 1912 1913 fw_iso_context_stop(s->context); 1914 fw_iso_context_destroy(s->context); 1915 s->context = ERR_PTR(-1); 1916 iso_packets_buffer_destroy(&s->buffer, s->unit); 1917 kfree(s->packet_descs); 1918 s->packet_descs = NULL; 1919 1920 if (s->direction == AMDTP_OUT_STREAM) { 1921 kfree(s->ctx_data.rx.seq.descs); 1922 } else { 1923 if (s->domain->replay.enable) 1924 kfree(s->ctx_data.tx.cache.descs); 1925 } 1926 1927 mutex_unlock(&s->mutex); 1928 } 1929 1930 /** 1931 * amdtp_stream_pcm_abort - abort the running PCM device 1932 * @s: the AMDTP stream about to be stopped 1933 * 1934 * If the isochronous stream needs to be stopped asynchronously, call this 1935 * function first to stop the PCM device. 1936 */ 1937 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1938 { 1939 struct snd_pcm_substream *pcm; 1940 1941 pcm = READ_ONCE(s->pcm); 1942 if (pcm) 1943 snd_pcm_stop_xrun(pcm); 1944 } 1945 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1946 1947 /** 1948 * amdtp_domain_init - initialize an AMDTP domain structure 1949 * @d: the AMDTP domain to initialize. 1950 */ 1951 int amdtp_domain_init(struct amdtp_domain *d) 1952 { 1953 INIT_LIST_HEAD(&d->streams); 1954 1955 d->events_per_period = 0; 1956 1957 return 0; 1958 } 1959 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1960 1961 /** 1962 * amdtp_domain_destroy - destroy an AMDTP domain structure 1963 * @d: the AMDTP domain to destroy. 1964 */ 1965 void amdtp_domain_destroy(struct amdtp_domain *d) 1966 { 1967 // At present nothing to do. 1968 return; 1969 } 1970 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1971 1972 /** 1973 * amdtp_domain_add_stream - register isoc context into the domain. 1974 * @d: the AMDTP domain. 1975 * @s: the AMDTP stream. 1976 * @channel: the isochronous channel on the bus. 1977 * @speed: firewire speed code. 1978 */ 1979 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1980 int channel, int speed) 1981 { 1982 struct amdtp_stream *tmp; 1983 1984 list_for_each_entry(tmp, &d->streams, list) { 1985 if (s == tmp) 1986 return -EBUSY; 1987 } 1988 1989 list_add(&s->list, &d->streams); 1990 1991 s->channel = channel; 1992 s->speed = speed; 1993 s->domain = d; 1994 1995 return 0; 1996 } 1997 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1998 1999 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 2000 // is less than the number of rx streams, the first tx stream is selected. 2001 static int make_association(struct amdtp_domain *d) 2002 { 2003 unsigned int dst_index = 0; 2004 struct amdtp_stream *rx; 2005 2006 // Make association to replay target. 2007 list_for_each_entry(rx, &d->streams, list) { 2008 if (rx->direction == AMDTP_OUT_STREAM) { 2009 unsigned int src_index = 0; 2010 struct amdtp_stream *tx = NULL; 2011 struct amdtp_stream *s; 2012 2013 list_for_each_entry(s, &d->streams, list) { 2014 if (s->direction == AMDTP_IN_STREAM) { 2015 if (dst_index == src_index) { 2016 tx = s; 2017 break; 2018 } 2019 2020 ++src_index; 2021 } 2022 } 2023 if (!tx) { 2024 // Select the first entry. 2025 list_for_each_entry(s, &d->streams, list) { 2026 if (s->direction == AMDTP_IN_STREAM) { 2027 tx = s; 2028 break; 2029 } 2030 } 2031 // No target is available to replay sequence. 2032 if (!tx) 2033 return -EINVAL; 2034 } 2035 2036 rx->ctx_data.rx.replay_target = tx; 2037 2038 ++dst_index; 2039 } 2040 } 2041 2042 return 0; 2043 } 2044 2045 /** 2046 * amdtp_domain_start - start sending packets for isoc context in the domain. 2047 * @d: the AMDTP domain. 2048 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 2049 * contexts. 2050 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 2051 * IT context. 2052 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 2053 * according to arrival of events in tx packets. 2054 */ 2055 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 2056 bool replay_on_the_fly) 2057 { 2058 unsigned int events_per_buffer = d->events_per_buffer; 2059 unsigned int events_per_period = d->events_per_period; 2060 unsigned int queue_size; 2061 struct amdtp_stream *s; 2062 bool found = false; 2063 int err; 2064 2065 if (replay_seq) { 2066 err = make_association(d); 2067 if (err < 0) 2068 return err; 2069 } 2070 d->replay.enable = replay_seq; 2071 d->replay.on_the_fly = replay_on_the_fly; 2072 2073 // Select an IT context as IRQ target. 2074 list_for_each_entry(s, &d->streams, list) { 2075 if (s->direction == AMDTP_OUT_STREAM) { 2076 found = true; 2077 break; 2078 } 2079 } 2080 if (!found) 2081 return -ENXIO; 2082 d->irq_target = s; 2083 2084 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 2085 2086 // This is a case that AMDTP streams in domain run just for MIDI 2087 // substream. Use the number of events equivalent to 10 msec as 2088 // interval of hardware IRQ. 2089 if (events_per_period == 0) 2090 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 2091 if (events_per_buffer == 0) 2092 events_per_buffer = events_per_period * 3; 2093 2094 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 2095 amdtp_rate_table[d->irq_target->sfc]); 2096 2097 list_for_each_entry(s, &d->streams, list) { 2098 unsigned int idle_irq_interval = 0; 2099 2100 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2101 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2102 amdtp_rate_table[d->irq_target->sfc]); 2103 } 2104 2105 // Starts immediately but actually DMA context starts several hundred cycles later. 2106 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2107 if (err < 0) 2108 goto error; 2109 } 2110 2111 return 0; 2112 error: 2113 list_for_each_entry(s, &d->streams, list) 2114 amdtp_stream_stop(s); 2115 return err; 2116 } 2117 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2118 2119 /** 2120 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2121 * @d: the AMDTP domain to which the isoc contexts belong. 2122 */ 2123 void amdtp_domain_stop(struct amdtp_domain *d) 2124 { 2125 struct amdtp_stream *s, *next; 2126 2127 if (d->irq_target) 2128 amdtp_stream_stop(d->irq_target); 2129 2130 list_for_each_entry_safe(s, next, &d->streams, list) { 2131 list_del(&s->list); 2132 2133 if (s != d->irq_target) 2134 amdtp_stream_stop(s); 2135 } 2136 2137 d->events_per_period = 0; 2138 d->irq_target = NULL; 2139 } 2140 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2141