1 /* 2 * Driver for Digigram VX soundcards 3 * 4 * Common mixer part 5 * 6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 21 */ 22 23 #include <sound/driver.h> 24 #include <sound/core.h> 25 #include <sound/control.h> 26 #include <sound/tlv.h> 27 #include <sound/vx_core.h> 28 #include "vx_cmd.h" 29 30 31 /* 32 * write a codec data (24bit) 33 */ 34 static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data) 35 { 36 unsigned long flags; 37 38 snd_assert(chip->ops->write_codec, return); 39 40 if (chip->chip_status & VX_STAT_IS_STALE) 41 return; 42 43 spin_lock_irqsave(&chip->lock, flags); 44 chip->ops->write_codec(chip, codec, data); 45 spin_unlock_irqrestore(&chip->lock, flags); 46 } 47 48 /* 49 * Data type used to access the Codec 50 */ 51 union vx_codec_data { 52 u32 l; 53 #ifdef SNDRV_BIG_ENDIAN 54 struct w { 55 u16 h; 56 u16 l; 57 } w; 58 struct b { 59 u8 hh; 60 u8 mh; 61 u8 ml; 62 u8 ll; 63 } b; 64 #else /* LITTLE_ENDIAN */ 65 struct w { 66 u16 l; 67 u16 h; 68 } w; 69 struct b { 70 u8 ll; 71 u8 ml; 72 u8 mh; 73 u8 hh; 74 } b; 75 #endif 76 }; 77 78 #define SET_CDC_DATA_SEL(di,s) ((di).b.mh = (u8) (s)) 79 #define SET_CDC_DATA_REG(di,r) ((di).b.ml = (u8) (r)) 80 #define SET_CDC_DATA_VAL(di,d) ((di).b.ll = (u8) (d)) 81 #define SET_CDC_DATA_INIT(di) ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR)) 82 83 /* 84 * set up codec register and write the value 85 * @codec: the codec id, 0 or 1 86 * @reg: register index 87 * @val: data value 88 */ 89 static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val) 90 { 91 union vx_codec_data data; 92 /* DAC control register */ 93 SET_CDC_DATA_INIT(data); 94 SET_CDC_DATA_REG(data, reg); 95 SET_CDC_DATA_VAL(data, val); 96 vx_write_codec_reg(chip, codec, data.l); 97 } 98 99 100 /* 101 * vx_set_analog_output_level - set the output attenuation level 102 * @codec: the output codec, 0 or 1. (1 for VXP440 only) 103 * @left: left output level, 0 = mute 104 * @right: right output level 105 */ 106 static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right) 107 { 108 left = chip->hw->output_level_max - left; 109 right = chip->hw->output_level_max - right; 110 111 if (chip->ops->akm_write) { 112 chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left); 113 chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right); 114 } else { 115 /* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */ 116 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left); 117 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right); 118 } 119 } 120 121 122 /* 123 * vx_toggle_dac_mute - mute/unmute DAC 124 * @mute: 0 = unmute, 1 = mute 125 */ 126 127 #define DAC_ATTEN_MIN 0x08 128 #define DAC_ATTEN_MAX 0x38 129 130 void vx_toggle_dac_mute(struct vx_core *chip, int mute) 131 { 132 unsigned int i; 133 for (i = 0; i < chip->hw->num_codecs; i++) { 134 if (chip->ops->akm_write) 135 chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */ 136 else 137 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, 138 mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN); 139 } 140 } 141 142 /* 143 * vx_reset_codec - reset and initialize the codecs 144 */ 145 void vx_reset_codec(struct vx_core *chip, int cold_reset) 146 { 147 unsigned int i; 148 int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65; 149 150 chip->ops->reset_codec(chip); 151 152 /* AKM codecs should be initialized in reset_codec callback */ 153 if (! chip->ops->akm_write) { 154 /* initialize old codecs */ 155 for (i = 0; i < chip->hw->num_codecs; i++) { 156 /* DAC control register (change level when zero crossing + mute) */ 157 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX); 158 /* ADC control register */ 159 vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00); 160 /* Port mode register */ 161 vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port); 162 /* Clock control register */ 163 vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00); 164 } 165 } 166 167 /* mute analog output */ 168 for (i = 0; i < chip->hw->num_codecs; i++) { 169 chip->output_level[i][0] = 0; 170 chip->output_level[i][1] = 0; 171 vx_set_analog_output_level(chip, i, 0, 0); 172 } 173 } 174 175 /* 176 * change the audio input source 177 * @src: the target source (VX_AUDIO_SRC_XXX) 178 */ 179 static void vx_change_audio_source(struct vx_core *chip, int src) 180 { 181 unsigned long flags; 182 183 if (chip->chip_status & VX_STAT_IS_STALE) 184 return; 185 186 spin_lock_irqsave(&chip->lock, flags); 187 chip->ops->change_audio_source(chip, src); 188 spin_unlock_irqrestore(&chip->lock, flags); 189 } 190 191 192 /* 193 * change the audio source if necessary and possible 194 * returns 1 if the source is actually changed. 195 */ 196 int vx_sync_audio_source(struct vx_core *chip) 197 { 198 if (chip->audio_source_target == chip->audio_source || 199 chip->pcm_running) 200 return 0; 201 vx_change_audio_source(chip, chip->audio_source_target); 202 chip->audio_source = chip->audio_source_target; 203 return 1; 204 } 205 206 207 /* 208 * audio level, mute, monitoring 209 */ 210 struct vx_audio_level { 211 unsigned int has_level: 1; 212 unsigned int has_monitor_level: 1; 213 unsigned int has_mute: 1; 214 unsigned int has_monitor_mute: 1; 215 unsigned int mute; 216 unsigned int monitor_mute; 217 short level; 218 short monitor_level; 219 }; 220 221 static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture, 222 struct vx_audio_level *info) 223 { 224 struct vx_rmh rmh; 225 226 if (chip->chip_status & VX_STAT_IS_STALE) 227 return -EBUSY; 228 229 vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST); 230 if (capture) 231 rmh.Cmd[0] |= COMMAND_RECORD_MASK; 232 /* Add Audio IO mask */ 233 rmh.Cmd[1] = 1 << audio; 234 rmh.Cmd[2] = 0; 235 if (info->has_level) { 236 rmh.Cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL; 237 rmh.Cmd[2] |= info->level; 238 } 239 if (info->has_monitor_level) { 240 rmh.Cmd[0] |= VALID_AUDIO_IO_MONITORING_LEVEL; 241 rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10); 242 } 243 if (info->has_mute) { 244 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL; 245 if (info->mute) 246 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL; 247 } 248 if (info->has_monitor_mute) { 249 /* validate flag for M2 at least to unmute it */ 250 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2; 251 if (info->monitor_mute) 252 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1; 253 } 254 255 return vx_send_msg(chip, &rmh); 256 } 257 258 259 #if 0 // not used 260 static int vx_read_audio_level(struct vx_core *chip, int audio, int capture, 261 struct vx_audio_level *info) 262 { 263 int err; 264 struct vx_rmh rmh; 265 266 memset(info, 0, sizeof(*info)); 267 vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS); 268 if (capture) 269 rmh.Cmd[0] |= COMMAND_RECORD_MASK; 270 /* Add Audio IO mask */ 271 rmh.Cmd[1] = 1 << audio; 272 err = vx_send_msg(chip, &rmh); 273 if (err < 0) 274 return err; 275 info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL; 276 info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL; 277 info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0; 278 info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0; 279 return 0; 280 } 281 #endif // not used 282 283 /* 284 * set the monitoring level and mute state of the given audio 285 * no more static, because must be called from vx_pcm to demute monitoring 286 */ 287 int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active) 288 { 289 struct vx_audio_level info; 290 291 memset(&info, 0, sizeof(info)); 292 info.has_monitor_level = 1; 293 info.monitor_level = level; 294 info.has_monitor_mute = 1; 295 info.monitor_mute = !active; 296 chip->audio_monitor[audio] = level; 297 chip->audio_monitor_active[audio] = active; 298 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */ 299 } 300 301 302 /* 303 * set the mute status of the given audio 304 */ 305 static int vx_set_audio_switch(struct vx_core *chip, int audio, int active) 306 { 307 struct vx_audio_level info; 308 309 memset(&info, 0, sizeof(info)); 310 info.has_mute = 1; 311 info.mute = !active; 312 chip->audio_active[audio] = active; 313 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */ 314 } 315 316 /* 317 * set the mute status of the given audio 318 */ 319 static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level) 320 { 321 struct vx_audio_level info; 322 323 memset(&info, 0, sizeof(info)); 324 info.has_level = 1; 325 info.level = level; 326 chip->audio_gain[capture][audio] = level; 327 return vx_adjust_audio_level(chip, audio, capture, &info); 328 } 329 330 /* 331 * reset all audio levels 332 */ 333 static void vx_reset_audio_levels(struct vx_core *chip) 334 { 335 unsigned int i, c; 336 struct vx_audio_level info; 337 338 memset(chip->audio_gain, 0, sizeof(chip->audio_gain)); 339 memset(chip->audio_active, 0, sizeof(chip->audio_active)); 340 memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor)); 341 memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active)); 342 343 for (c = 0; c < 2; c++) { 344 for (i = 0; i < chip->hw->num_ins * 2; i++) { 345 memset(&info, 0, sizeof(info)); 346 if (c == 0) { 347 info.has_monitor_level = 1; 348 info.has_mute = 1; 349 info.has_monitor_mute = 1; 350 } 351 info.has_level = 1; 352 info.level = CVAL_0DB; /* default: 0dB */ 353 vx_adjust_audio_level(chip, i, c, &info); 354 chip->audio_gain[c][i] = CVAL_0DB; 355 chip->audio_monitor[i] = CVAL_0DB; 356 } 357 } 358 } 359 360 361 /* 362 * VU, peak meter record 363 */ 364 365 #define VU_METER_CHANNELS 2 366 367 struct vx_vu_meter { 368 int saturated; 369 int vu_level; 370 int peak_level; 371 }; 372 373 /* 374 * get the VU and peak meter values 375 * @audio: the audio index 376 * @capture: 0 = playback, 1 = capture operation 377 * @info: the array of vx_vu_meter records (size = 2). 378 */ 379 static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info) 380 { 381 struct vx_rmh rmh; 382 int i, err; 383 384 if (chip->chip_status & VX_STAT_IS_STALE) 385 return -EBUSY; 386 387 vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER); 388 rmh.LgStat += 2 * VU_METER_CHANNELS; 389 if (capture) 390 rmh.Cmd[0] |= COMMAND_RECORD_MASK; 391 392 /* Add Audio IO mask */ 393 rmh.Cmd[1] = 0; 394 for (i = 0; i < VU_METER_CHANNELS; i++) 395 rmh.Cmd[1] |= 1 << (audio + i); 396 err = vx_send_msg(chip, &rmh); 397 if (err < 0) 398 return err; 399 /* Read response */ 400 for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) { 401 info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0; 402 info->vu_level = rmh.Stat[i + 1]; 403 info->peak_level = rmh.Stat[i + 2]; 404 info++; 405 } 406 return 0; 407 } 408 409 410 /* 411 * control API entries 412 */ 413 414 /* 415 * output level control 416 */ 417 static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 418 { 419 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 420 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 421 uinfo->count = 2; 422 uinfo->value.integer.min = 0; 423 uinfo->value.integer.max = chip->hw->output_level_max; 424 return 0; 425 } 426 427 static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 428 { 429 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 430 int codec = kcontrol->id.index; 431 mutex_lock(&chip->mixer_mutex); 432 ucontrol->value.integer.value[0] = chip->output_level[codec][0]; 433 ucontrol->value.integer.value[1] = chip->output_level[codec][1]; 434 mutex_unlock(&chip->mixer_mutex); 435 return 0; 436 } 437 438 static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 439 { 440 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 441 int codec = kcontrol->id.index; 442 mutex_lock(&chip->mixer_mutex); 443 if (ucontrol->value.integer.value[0] != chip->output_level[codec][0] || 444 ucontrol->value.integer.value[1] != chip->output_level[codec][1]) { 445 vx_set_analog_output_level(chip, codec, 446 ucontrol->value.integer.value[0], 447 ucontrol->value.integer.value[1]); 448 chip->output_level[codec][0] = ucontrol->value.integer.value[0]; 449 chip->output_level[codec][1] = ucontrol->value.integer.value[1]; 450 mutex_unlock(&chip->mixer_mutex); 451 return 1; 452 } 453 mutex_unlock(&chip->mixer_mutex); 454 return 0; 455 } 456 457 static struct snd_kcontrol_new vx_control_output_level = { 458 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 459 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 460 SNDRV_CTL_ELEM_ACCESS_TLV_READ), 461 .name = "Master Playback Volume", 462 .info = vx_output_level_info, 463 .get = vx_output_level_get, 464 .put = vx_output_level_put, 465 /* tlv will be filled later */ 466 }; 467 468 /* 469 * audio source select 470 */ 471 static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 472 { 473 static char *texts_mic[3] = { 474 "Digital", "Line", "Mic" 475 }; 476 static char *texts_vx2[2] = { 477 "Digital", "Analog" 478 }; 479 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 480 481 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 482 uinfo->count = 1; 483 if (chip->type >= VX_TYPE_VXPOCKET) { 484 uinfo->value.enumerated.items = 3; 485 if (uinfo->value.enumerated.item > 2) 486 uinfo->value.enumerated.item = 2; 487 strcpy(uinfo->value.enumerated.name, 488 texts_mic[uinfo->value.enumerated.item]); 489 } else { 490 uinfo->value.enumerated.items = 2; 491 if (uinfo->value.enumerated.item > 1) 492 uinfo->value.enumerated.item = 1; 493 strcpy(uinfo->value.enumerated.name, 494 texts_vx2[uinfo->value.enumerated.item]); 495 } 496 return 0; 497 } 498 499 static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 500 { 501 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 502 ucontrol->value.enumerated.item[0] = chip->audio_source_target; 503 return 0; 504 } 505 506 static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 507 { 508 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 509 mutex_lock(&chip->mixer_mutex); 510 if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) { 511 chip->audio_source_target = ucontrol->value.enumerated.item[0]; 512 vx_sync_audio_source(chip); 513 mutex_unlock(&chip->mixer_mutex); 514 return 1; 515 } 516 mutex_unlock(&chip->mixer_mutex); 517 return 0; 518 } 519 520 static struct snd_kcontrol_new vx_control_audio_src = { 521 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 522 .name = "Capture Source", 523 .info = vx_audio_src_info, 524 .get = vx_audio_src_get, 525 .put = vx_audio_src_put, 526 }; 527 528 /* 529 * clock mode selection 530 */ 531 static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 532 { 533 static char *texts[3] = { 534 "Auto", "Internal", "External" 535 }; 536 537 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 538 uinfo->count = 1; 539 uinfo->value.enumerated.items = 3; 540 if (uinfo->value.enumerated.item > 2) 541 uinfo->value.enumerated.item = 2; 542 strcpy(uinfo->value.enumerated.name, 543 texts[uinfo->value.enumerated.item]); 544 return 0; 545 } 546 547 static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 548 { 549 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 550 ucontrol->value.enumerated.item[0] = chip->clock_mode; 551 return 0; 552 } 553 554 static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 555 { 556 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 557 mutex_lock(&chip->mixer_mutex); 558 if (chip->clock_mode != ucontrol->value.enumerated.item[0]) { 559 chip->clock_mode = ucontrol->value.enumerated.item[0]; 560 vx_set_clock(chip, chip->freq); 561 mutex_unlock(&chip->mixer_mutex); 562 return 1; 563 } 564 mutex_unlock(&chip->mixer_mutex); 565 return 0; 566 } 567 568 static struct snd_kcontrol_new vx_control_clock_mode = { 569 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 570 .name = "Clock Mode", 571 .info = vx_clock_mode_info, 572 .get = vx_clock_mode_get, 573 .put = vx_clock_mode_put, 574 }; 575 576 /* 577 * Audio Gain 578 */ 579 static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 580 { 581 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 582 uinfo->count = 2; 583 uinfo->value.integer.min = 0; 584 uinfo->value.integer.max = CVAL_MAX; 585 return 0; 586 } 587 588 static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 589 { 590 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 591 int audio = kcontrol->private_value & 0xff; 592 int capture = (kcontrol->private_value >> 8) & 1; 593 594 mutex_lock(&chip->mixer_mutex); 595 ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio]; 596 ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1]; 597 mutex_unlock(&chip->mixer_mutex); 598 return 0; 599 } 600 601 static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 602 { 603 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 604 int audio = kcontrol->private_value & 0xff; 605 int capture = (kcontrol->private_value >> 8) & 1; 606 607 mutex_lock(&chip->mixer_mutex); 608 if (ucontrol->value.integer.value[0] != chip->audio_gain[capture][audio] || 609 ucontrol->value.integer.value[1] != chip->audio_gain[capture][audio+1]) { 610 vx_set_audio_gain(chip, audio, capture, ucontrol->value.integer.value[0]); 611 vx_set_audio_gain(chip, audio+1, capture, ucontrol->value.integer.value[1]); 612 mutex_unlock(&chip->mixer_mutex); 613 return 1; 614 } 615 mutex_unlock(&chip->mixer_mutex); 616 return 0; 617 } 618 619 static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 620 { 621 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 622 int audio = kcontrol->private_value & 0xff; 623 624 mutex_lock(&chip->mixer_mutex); 625 ucontrol->value.integer.value[0] = chip->audio_monitor[audio]; 626 ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1]; 627 mutex_unlock(&chip->mixer_mutex); 628 return 0; 629 } 630 631 static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 632 { 633 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 634 int audio = kcontrol->private_value & 0xff; 635 636 mutex_lock(&chip->mixer_mutex); 637 if (ucontrol->value.integer.value[0] != chip->audio_monitor[audio] || 638 ucontrol->value.integer.value[1] != chip->audio_monitor[audio+1]) { 639 vx_set_monitor_level(chip, audio, ucontrol->value.integer.value[0], 640 chip->audio_monitor_active[audio]); 641 vx_set_monitor_level(chip, audio+1, ucontrol->value.integer.value[1], 642 chip->audio_monitor_active[audio+1]); 643 mutex_unlock(&chip->mixer_mutex); 644 return 1; 645 } 646 mutex_unlock(&chip->mixer_mutex); 647 return 0; 648 } 649 650 static int vx_audio_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 651 { 652 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 653 uinfo->count = 2; 654 uinfo->value.integer.min = 0; 655 uinfo->value.integer.max = 1; 656 return 0; 657 } 658 659 static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 660 { 661 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 662 int audio = kcontrol->private_value & 0xff; 663 664 mutex_lock(&chip->mixer_mutex); 665 ucontrol->value.integer.value[0] = chip->audio_active[audio]; 666 ucontrol->value.integer.value[1] = chip->audio_active[audio+1]; 667 mutex_unlock(&chip->mixer_mutex); 668 return 0; 669 } 670 671 static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 672 { 673 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 674 int audio = kcontrol->private_value & 0xff; 675 676 mutex_lock(&chip->mixer_mutex); 677 if (ucontrol->value.integer.value[0] != chip->audio_active[audio] || 678 ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) { 679 vx_set_audio_switch(chip, audio, ucontrol->value.integer.value[0]); 680 vx_set_audio_switch(chip, audio+1, ucontrol->value.integer.value[1]); 681 mutex_unlock(&chip->mixer_mutex); 682 return 1; 683 } 684 mutex_unlock(&chip->mixer_mutex); 685 return 0; 686 } 687 688 static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 689 { 690 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 691 int audio = kcontrol->private_value & 0xff; 692 693 mutex_lock(&chip->mixer_mutex); 694 ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio]; 695 ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1]; 696 mutex_unlock(&chip->mixer_mutex); 697 return 0; 698 } 699 700 static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 701 { 702 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 703 int audio = kcontrol->private_value & 0xff; 704 705 mutex_lock(&chip->mixer_mutex); 706 if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] || 707 ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) { 708 vx_set_monitor_level(chip, audio, chip->audio_monitor[audio], 709 ucontrol->value.integer.value[0]); 710 vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1], 711 ucontrol->value.integer.value[1]); 712 mutex_unlock(&chip->mixer_mutex); 713 return 1; 714 } 715 mutex_unlock(&chip->mixer_mutex); 716 return 0; 717 } 718 719 static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0); 720 721 static struct snd_kcontrol_new vx_control_audio_gain = { 722 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 723 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 724 SNDRV_CTL_ELEM_ACCESS_TLV_READ), 725 /* name will be filled later */ 726 .info = vx_audio_gain_info, 727 .get = vx_audio_gain_get, 728 .put = vx_audio_gain_put, 729 .tlv = { .p = db_scale_audio_gain }, 730 }; 731 static struct snd_kcontrol_new vx_control_output_switch = { 732 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 733 .name = "PCM Playback Switch", 734 .info = vx_audio_sw_info, 735 .get = vx_audio_sw_get, 736 .put = vx_audio_sw_put 737 }; 738 static struct snd_kcontrol_new vx_control_monitor_gain = { 739 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 740 .name = "Monitoring Volume", 741 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE | 742 SNDRV_CTL_ELEM_ACCESS_TLV_READ), 743 .info = vx_audio_gain_info, /* shared */ 744 .get = vx_audio_monitor_get, 745 .put = vx_audio_monitor_put, 746 .tlv = { .p = db_scale_audio_gain }, 747 }; 748 static struct snd_kcontrol_new vx_control_monitor_switch = { 749 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 750 .name = "Monitoring Switch", 751 .info = vx_audio_sw_info, /* shared */ 752 .get = vx_monitor_sw_get, 753 .put = vx_monitor_sw_put 754 }; 755 756 757 /* 758 * IEC958 status bits 759 */ 760 static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 761 { 762 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 763 uinfo->count = 1; 764 return 0; 765 } 766 767 static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 768 { 769 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 770 771 mutex_lock(&chip->mixer_mutex); 772 ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff; 773 ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff; 774 ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff; 775 ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff; 776 mutex_unlock(&chip->mixer_mutex); 777 return 0; 778 } 779 780 static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 781 { 782 ucontrol->value.iec958.status[0] = 0xff; 783 ucontrol->value.iec958.status[1] = 0xff; 784 ucontrol->value.iec958.status[2] = 0xff; 785 ucontrol->value.iec958.status[3] = 0xff; 786 return 0; 787 } 788 789 static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 790 { 791 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 792 unsigned int val; 793 794 val = (ucontrol->value.iec958.status[0] << 0) | 795 (ucontrol->value.iec958.status[1] << 8) | 796 (ucontrol->value.iec958.status[2] << 16) | 797 (ucontrol->value.iec958.status[3] << 24); 798 mutex_lock(&chip->mixer_mutex); 799 if (chip->uer_bits != val) { 800 chip->uer_bits = val; 801 vx_set_iec958_status(chip, val); 802 mutex_unlock(&chip->mixer_mutex); 803 return 1; 804 } 805 mutex_unlock(&chip->mixer_mutex); 806 return 0; 807 } 808 809 static struct snd_kcontrol_new vx_control_iec958_mask = { 810 .access = SNDRV_CTL_ELEM_ACCESS_READ, 811 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 812 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK), 813 .info = vx_iec958_info, /* shared */ 814 .get = vx_iec958_mask_get, 815 }; 816 817 static struct snd_kcontrol_new vx_control_iec958 = { 818 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 819 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 820 .info = vx_iec958_info, 821 .get = vx_iec958_get, 822 .put = vx_iec958_put 823 }; 824 825 826 /* 827 * VU meter 828 */ 829 830 #define METER_MAX 0xff 831 #define METER_SHIFT 16 832 833 static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 834 { 835 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 836 uinfo->count = 2; 837 uinfo->value.integer.min = 0; 838 uinfo->value.integer.max = METER_MAX; 839 return 0; 840 } 841 842 static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 843 { 844 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 845 struct vx_vu_meter meter[2]; 846 int audio = kcontrol->private_value & 0xff; 847 int capture = (kcontrol->private_value >> 8) & 1; 848 849 vx_get_audio_vu_meter(chip, audio, capture, meter); 850 ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT; 851 ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT; 852 return 0; 853 } 854 855 static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 856 { 857 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 858 struct vx_vu_meter meter[2]; 859 int audio = kcontrol->private_value & 0xff; 860 int capture = (kcontrol->private_value >> 8) & 1; 861 862 vx_get_audio_vu_meter(chip, audio, capture, meter); 863 ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT; 864 ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT; 865 return 0; 866 } 867 868 static int vx_saturation_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 869 { 870 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 871 uinfo->count = 2; 872 uinfo->value.integer.min = 0; 873 uinfo->value.integer.max = 1; 874 return 0; 875 } 876 877 static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 878 { 879 struct vx_core *chip = snd_kcontrol_chip(kcontrol); 880 struct vx_vu_meter meter[2]; 881 int audio = kcontrol->private_value & 0xff; 882 883 vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */ 884 ucontrol->value.integer.value[0] = meter[0].saturated; 885 ucontrol->value.integer.value[1] = meter[1].saturated; 886 return 0; 887 } 888 889 static struct snd_kcontrol_new vx_control_vu_meter = { 890 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 891 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 892 /* name will be filled later */ 893 .info = vx_vu_meter_info, 894 .get = vx_vu_meter_get, 895 }; 896 897 static struct snd_kcontrol_new vx_control_peak_meter = { 898 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 899 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 900 /* name will be filled later */ 901 .info = vx_vu_meter_info, /* shared */ 902 .get = vx_peak_meter_get, 903 }; 904 905 static struct snd_kcontrol_new vx_control_saturation = { 906 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 907 .name = "Input Saturation", 908 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, 909 .info = vx_saturation_info, 910 .get = vx_saturation_get, 911 }; 912 913 914 915 /* 916 * 917 */ 918 919 int snd_vx_mixer_new(struct vx_core *chip) 920 { 921 unsigned int i, c; 922 int err; 923 struct snd_kcontrol_new temp; 924 struct snd_card *card = chip->card; 925 char name[32]; 926 927 strcpy(card->mixername, card->driver); 928 929 /* output level controls */ 930 for (i = 0; i < chip->hw->num_outs; i++) { 931 temp = vx_control_output_level; 932 temp.index = i; 933 temp.tlv.p = chip->hw->output_level_db_scale; 934 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 935 return err; 936 } 937 938 /* PCM volumes, switches, monitoring */ 939 for (i = 0; i < chip->hw->num_outs; i++) { 940 int val = i * 2; 941 temp = vx_control_audio_gain; 942 temp.index = i; 943 temp.name = "PCM Playback Volume"; 944 temp.private_value = val; 945 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 946 return err; 947 temp = vx_control_output_switch; 948 temp.index = i; 949 temp.private_value = val; 950 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 951 return err; 952 temp = vx_control_monitor_gain; 953 temp.index = i; 954 temp.private_value = val; 955 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 956 return err; 957 temp = vx_control_monitor_switch; 958 temp.index = i; 959 temp.private_value = val; 960 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 961 return err; 962 } 963 for (i = 0; i < chip->hw->num_outs; i++) { 964 temp = vx_control_audio_gain; 965 temp.index = i; 966 temp.name = "PCM Capture Volume"; 967 temp.private_value = (i * 2) | (1 << 8); 968 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 969 return err; 970 } 971 972 /* Audio source */ 973 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0) 974 return err; 975 /* clock mode */ 976 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0) 977 return err; 978 /* IEC958 controls */ 979 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0) 980 return err; 981 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0) 982 return err; 983 /* VU, peak, saturation meters */ 984 for (c = 0; c < 2; c++) { 985 static char *dir[2] = { "Output", "Input" }; 986 for (i = 0; i < chip->hw->num_ins; i++) { 987 int val = (i * 2) | (c << 8); 988 if (c == 1) { 989 temp = vx_control_saturation; 990 temp.index = i; 991 temp.private_value = val; 992 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 993 return err; 994 } 995 sprintf(name, "%s VU Meter", dir[c]); 996 temp = vx_control_vu_meter; 997 temp.index = i; 998 temp.name = name; 999 temp.private_value = val; 1000 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 1001 return err; 1002 sprintf(name, "%s Peak Meter", dir[c]); 1003 temp = vx_control_peak_meter; 1004 temp.index = i; 1005 temp.name = name; 1006 temp.private_value = val; 1007 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0) 1008 return err; 1009 } 1010 } 1011 vx_reset_audio_levels(chip); 1012 return 0; 1013 } 1014