xref: /linux/sound/drivers/pcmtest.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual ALSA driver for PCM testing/fuzzing
4  *
5  * Copyright 2023 Ivan Orlov <ivan.orlov0322@gmail.com>
6  *
7  * This is a simple virtual ALSA driver, which can be used for audio applications/PCM middle layer
8  * testing or fuzzing.
9  * It can:
10  *	- Simulate 'playback' and 'capture' actions
11  *	- Generate random or pattern-based capture data
12  *	- Check playback buffer for containing looped template, and notify about the results
13  *	through the debugfs entry
14  *	- Inject delays into the playback and capturing processes. See 'inject_delay' parameter.
15  *	- Inject errors during the PCM callbacks.
16  *	- Register custom RESET ioctl and notify when it is called through the debugfs entry
17  *	- Work in interleaved and non-interleaved modes
18  *	- Support up to 8 substreams
19  *	- Support up to 4 channels
20  *	- Support framerates from 8 kHz to 48 kHz
21  *
22  * When driver works in the capture mode with multiple channels, it duplicates the looped
23  * pattern to each separate channel. For example, if we have 2 channels, format = U8, interleaved
24  * access mode and pattern 'abacaba', the DMA buffer will look like aabbccaabbaaaa..., so buffer for
25  * each channel will contain abacabaabacaba... Same for the non-interleaved mode.
26  *
27  * However, it may break the capturing on the higher framerates with small period size, so it is
28  * better to choose larger period sizes.
29  *
30  * You can find the corresponding selftest in the 'alsa' selftests folder.
31  */
32 
33 #include <linux/module.h>
34 #include <linux/init.h>
35 #include <sound/pcm.h>
36 #include <sound/core.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/platform_device.h>
39 #include <linux/timer.h>
40 #include <linux/random.h>
41 #include <linux/debugfs.h>
42 #include <linux/delay.h>
43 
44 #define DEVNAME "pcmtestd"
45 #define CARD_NAME "pcm-test-card"
46 #define TIMER_PER_SEC 5
47 #define TIMER_INTERVAL (HZ / TIMER_PER_SEC)
48 #define DELAY_JIFFIES HZ
49 #define PLAYBACK_SUBSTREAM_CNT	8
50 #define CAPTURE_SUBSTREAM_CNT	8
51 #define MAX_CHANNELS_NUM	4
52 
53 #define DEFAULT_PATTERN		"abacaba"
54 #define DEFAULT_PATTERN_LEN	7
55 
56 #define FILL_MODE_RAND	0
57 #define FILL_MODE_PAT	1
58 
59 #define MAX_PATTERN_LEN 4096
60 
61 static int index = -1;
62 static char *id = "pcmtest";
63 static bool enable = true;
64 static int inject_delay;
65 static bool inject_hwpars_err;
66 static bool inject_prepare_err;
67 static bool inject_trigger_err;
68 
69 static short fill_mode = FILL_MODE_PAT;
70 
71 static u8 playback_capture_test;
72 static u8 ioctl_reset_test;
73 static struct dentry *driver_debug_dir;
74 
75 module_param(index, int, 0444);
76 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard");
77 module_param(id, charp, 0444);
78 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard");
79 module_param(enable, bool, 0444);
80 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
81 module_param(fill_mode, short, 0600);
82 MODULE_PARM_DESC(fill_mode, "Buffer fill mode: rand(0) or pattern(1)");
83 module_param(inject_delay, int, 0600);
84 MODULE_PARM_DESC(inject_delay, "Inject delays during playback/capture (in jiffies)");
85 module_param(inject_hwpars_err, bool, 0600);
86 MODULE_PARM_DESC(inject_hwpars_err, "Inject EBUSY error in the 'hw_params' callback");
87 module_param(inject_prepare_err, bool, 0600);
88 MODULE_PARM_DESC(inject_prepare_err, "Inject EINVAL error in the 'prepare' callback");
89 module_param(inject_trigger_err, bool, 0600);
90 MODULE_PARM_DESC(inject_trigger_err, "Inject EINVAL error in the 'trigger' callback");
91 
92 struct pcmtst {
93 	struct snd_pcm *pcm;
94 	struct snd_card *card;
95 	struct platform_device *pdev;
96 };
97 
98 struct pcmtst_buf_iter {
99 	size_t buf_pos;				// position in the DMA buffer
100 	size_t period_pos;			// period-relative position
101 	size_t b_rw;				// Bytes to write on every timer tick
102 	size_t s_rw_ch;				// Samples to write to one channel on every tick
103 	unsigned int sample_bytes;		// sample_bits / 8
104 	bool is_buf_corrupted;			// playback test result indicator
105 	size_t period_bytes;			// bytes in a one period
106 	bool interleaved;			// Interleaved/Non-interleaved mode
107 	size_t total_bytes;			// Total bytes read/written
108 	size_t chan_block;			// Bytes in one channel buffer when non-interleaved
109 	struct snd_pcm_substream *substream;
110 	struct timer_list timer_instance;
111 };
112 
113 static struct snd_pcm_hardware snd_pcmtst_hw = {
114 	.info = (SNDRV_PCM_INFO_INTERLEAVED |
115 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
116 		 SNDRV_PCM_INFO_NONINTERLEAVED |
117 		 SNDRV_PCM_INFO_MMAP_VALID),
118 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
119 	.rates =		SNDRV_PCM_RATE_8000_48000,
120 	.rate_min =		8000,
121 	.rate_max =		48000,
122 	.channels_min =		1,
123 	.channels_max =		MAX_CHANNELS_NUM,
124 	.buffer_bytes_max =	128 * 1024,
125 	.period_bytes_min =	4096,
126 	.period_bytes_max =	32768,
127 	.periods_min =		1,
128 	.periods_max =		1024,
129 };
130 
131 struct pattern_buf {
132 	char *buf;
133 	u32 len;
134 };
135 
136 static int buf_allocated;
137 static struct pattern_buf patt_bufs[MAX_CHANNELS_NUM];
138 
139 static inline void inc_buf_pos(struct pcmtst_buf_iter *v_iter, size_t by, size_t bytes)
140 {
141 	v_iter->total_bytes += by;
142 	v_iter->buf_pos += by;
143 	v_iter->buf_pos %= bytes;
144 }
145 
146 /*
147  * Position in the DMA buffer when we are in the non-interleaved mode. We increment buf_pos
148  * every time we write a byte to any channel, so the position in the current channel buffer is
149  * (position in the DMA buffer) / count_of_channels + size_of_channel_buf * current_channel
150  */
151 static inline size_t buf_pos_n(struct pcmtst_buf_iter *v_iter, unsigned int channels,
152 			       unsigned int chan_num)
153 {
154 	return v_iter->buf_pos / channels + v_iter->chan_block * chan_num;
155 }
156 
157 /*
158  * Get the count of bytes written for the current channel in the interleaved mode.
159  * This is (count of samples written for the current channel) * bytes_in_sample +
160  * (relative position in the current sample)
161  */
162 static inline size_t ch_pos_i(size_t b_total, unsigned int channels, unsigned int b_sample)
163 {
164 	return b_total / channels / b_sample * b_sample + (b_total % b_sample);
165 }
166 
167 static void check_buf_block_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
168 {
169 	size_t i;
170 	short ch_num;
171 	u8 current_byte;
172 
173 	for (i = 0; i < v_iter->b_rw; i++) {
174 		current_byte = runtime->dma_area[v_iter->buf_pos];
175 		if (!current_byte)
176 			break;
177 		ch_num = (v_iter->total_bytes / v_iter->sample_bytes) % runtime->channels;
178 		if (current_byte != patt_bufs[ch_num].buf[ch_pos_i(v_iter->total_bytes,
179 								   runtime->channels,
180 								   v_iter->sample_bytes)
181 							  % patt_bufs[ch_num].len]) {
182 			v_iter->is_buf_corrupted = true;
183 			break;
184 		}
185 		inc_buf_pos(v_iter, 1, runtime->dma_bytes);
186 	}
187 	// If we broke during the loop, add remaining bytes to the buffer position.
188 	inc_buf_pos(v_iter, v_iter->b_rw - i, runtime->dma_bytes);
189 }
190 
191 static void check_buf_block_ni(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
192 {
193 	unsigned int channels = runtime->channels;
194 	size_t i;
195 	short ch_num;
196 	u8 current_byte;
197 
198 	for (i = 0; i < v_iter->b_rw; i++) {
199 		current_byte = runtime->dma_area[buf_pos_n(v_iter, channels, i % channels)];
200 		if (!current_byte)
201 			break;
202 		ch_num = i % channels;
203 		if (current_byte != patt_bufs[ch_num].buf[(v_iter->total_bytes / channels)
204 							  % patt_bufs[ch_num].len]) {
205 			v_iter->is_buf_corrupted = true;
206 			break;
207 		}
208 		inc_buf_pos(v_iter, 1, runtime->dma_bytes);
209 	}
210 	inc_buf_pos(v_iter, v_iter->b_rw - i, runtime->dma_bytes);
211 }
212 
213 /*
214  * Check one block of the buffer. Here we iterate the buffer until we find '0'. This condition is
215  * necessary because we need to detect when the reading/writing ends, so we assume that the pattern
216  * doesn't contain zeros.
217  */
218 static void check_buf_block(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
219 {
220 	if (v_iter->interleaved)
221 		check_buf_block_i(v_iter, runtime);
222 	else
223 		check_buf_block_ni(v_iter, runtime);
224 }
225 
226 /*
227  * Fill buffer in the non-interleaved mode. The order of samples is C0, ..., C0, C1, ..., C1, C2...
228  * The channel buffers lay in the DMA buffer continuously (see default copy_user and copy_kernel
229  * handlers in the pcm_lib.c file).
230  *
231  * Here we increment the DMA buffer position every time we write a byte to any channel 'buffer'.
232  * We need this to simulate the correct hardware pointer moving.
233  */
234 static void fill_block_pattern_n(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
235 {
236 	size_t i;
237 	unsigned int channels = runtime->channels;
238 	short ch_num;
239 
240 	for (i = 0; i < v_iter->b_rw; i++) {
241 		ch_num = i % channels;
242 		runtime->dma_area[buf_pos_n(v_iter, channels, i % channels)] =
243 			patt_bufs[ch_num].buf[(v_iter->total_bytes / channels)
244 					      % patt_bufs[ch_num].len];
245 		inc_buf_pos(v_iter, 1, runtime->dma_bytes);
246 	}
247 }
248 
249 // Fill buffer in the interleaved mode. The order of samples is C0, C1, C2, C0, C1, C2, ...
250 static void fill_block_pattern_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
251 {
252 	size_t sample;
253 	size_t pos_in_ch, pos_pattern;
254 	short ch, pos_sample;
255 
256 	pos_in_ch = ch_pos_i(v_iter->total_bytes, runtime->channels, v_iter->sample_bytes);
257 
258 	for (sample = 0; sample < v_iter->s_rw_ch; sample++) {
259 		for (ch = 0; ch < runtime->channels; ch++) {
260 			for (pos_sample = 0; pos_sample < v_iter->sample_bytes; pos_sample++) {
261 				pos_pattern = (pos_in_ch + sample * v_iter->sample_bytes
262 					      + pos_sample) % patt_bufs[ch].len;
263 				runtime->dma_area[v_iter->buf_pos] = patt_bufs[ch].buf[pos_pattern];
264 				inc_buf_pos(v_iter, 1, runtime->dma_bytes);
265 			}
266 		}
267 	}
268 }
269 
270 static void fill_block_pattern(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
271 {
272 	if (v_iter->interleaved)
273 		fill_block_pattern_i(v_iter, runtime);
274 	else
275 		fill_block_pattern_n(v_iter, runtime);
276 }
277 
278 static void fill_block_rand_n(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
279 {
280 	unsigned int channels = runtime->channels;
281 	// Remaining space in all channel buffers
282 	size_t bytes_remain = runtime->dma_bytes - v_iter->buf_pos;
283 	unsigned int i;
284 
285 	for (i = 0; i < channels; i++) {
286 		if (v_iter->b_rw <= bytes_remain) {
287 			//b_rw - count of bytes must be written for all channels at each timer tick
288 			get_random_bytes(runtime->dma_area + buf_pos_n(v_iter, channels, i),
289 					 v_iter->b_rw / channels);
290 		} else {
291 			// Write to the end of buffer and start from the beginning of it
292 			get_random_bytes(runtime->dma_area + buf_pos_n(v_iter, channels, i),
293 					 bytes_remain / channels);
294 			get_random_bytes(runtime->dma_area + v_iter->chan_block * i,
295 					 (v_iter->b_rw - bytes_remain) / channels);
296 		}
297 	}
298 	inc_buf_pos(v_iter, v_iter->b_rw, runtime->dma_bytes);
299 }
300 
301 static void fill_block_rand_i(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
302 {
303 	size_t in_cur_block = runtime->dma_bytes - v_iter->buf_pos;
304 
305 	if (v_iter->b_rw <= in_cur_block) {
306 		get_random_bytes(&runtime->dma_area[v_iter->buf_pos], v_iter->b_rw);
307 	} else {
308 		get_random_bytes(&runtime->dma_area[v_iter->buf_pos], in_cur_block);
309 		get_random_bytes(runtime->dma_area, v_iter->b_rw - in_cur_block);
310 	}
311 	inc_buf_pos(v_iter, v_iter->b_rw, runtime->dma_bytes);
312 }
313 
314 static void fill_block_random(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
315 {
316 	if (v_iter->interleaved)
317 		fill_block_rand_i(v_iter, runtime);
318 	else
319 		fill_block_rand_n(v_iter, runtime);
320 }
321 
322 static void fill_block(struct pcmtst_buf_iter *v_iter, struct snd_pcm_runtime *runtime)
323 {
324 	switch (fill_mode) {
325 	case FILL_MODE_RAND:
326 		fill_block_random(v_iter, runtime);
327 		break;
328 	case FILL_MODE_PAT:
329 		fill_block_pattern(v_iter, runtime);
330 		break;
331 	}
332 }
333 
334 /*
335  * Here we iterate through the buffer by (buffer_size / iterates_per_second) bytes.
336  * The driver uses timer to simulate the hardware pointer moving, and notify the PCM middle layer
337  * about period elapsed.
338  */
339 static void timer_timeout(struct timer_list *data)
340 {
341 	struct pcmtst_buf_iter *v_iter;
342 	struct snd_pcm_substream *substream;
343 
344 	v_iter = from_timer(v_iter, data, timer_instance);
345 	substream = v_iter->substream;
346 
347 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !v_iter->is_buf_corrupted)
348 		check_buf_block(v_iter, substream->runtime);
349 	else if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
350 		fill_block(v_iter, substream->runtime);
351 	else
352 		inc_buf_pos(v_iter, v_iter->b_rw, substream->runtime->dma_bytes);
353 
354 	v_iter->period_pos += v_iter->b_rw;
355 	if (v_iter->period_pos >= v_iter->period_bytes) {
356 		v_iter->period_pos %= v_iter->period_bytes;
357 		snd_pcm_period_elapsed(substream);
358 	}
359 	mod_timer(&v_iter->timer_instance, jiffies + TIMER_INTERVAL + inject_delay);
360 }
361 
362 static int snd_pcmtst_pcm_open(struct snd_pcm_substream *substream)
363 {
364 	struct snd_pcm_runtime *runtime = substream->runtime;
365 	struct pcmtst_buf_iter *v_iter;
366 
367 	v_iter = kzalloc(sizeof(*v_iter), GFP_KERNEL);
368 	if (!v_iter)
369 		return -ENOMEM;
370 
371 	runtime->hw = snd_pcmtst_hw;
372 	runtime->private_data = v_iter;
373 	v_iter->substream = substream;
374 	v_iter->buf_pos = 0;
375 	v_iter->is_buf_corrupted = false;
376 	v_iter->period_pos = 0;
377 	v_iter->total_bytes = 0;
378 
379 	playback_capture_test = 0;
380 	ioctl_reset_test = 0;
381 
382 	timer_setup(&v_iter->timer_instance, timer_timeout, 0);
383 	mod_timer(&v_iter->timer_instance, jiffies + TIMER_INTERVAL);
384 	return 0;
385 }
386 
387 static int snd_pcmtst_pcm_close(struct snd_pcm_substream *substream)
388 {
389 	struct pcmtst_buf_iter *v_iter = substream->runtime->private_data;
390 
391 	timer_shutdown_sync(&v_iter->timer_instance);
392 	v_iter->substream = NULL;
393 	playback_capture_test = !v_iter->is_buf_corrupted;
394 	kfree(v_iter);
395 	return 0;
396 }
397 
398 static int snd_pcmtst_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
399 {
400 	struct snd_pcm_runtime *runtime = substream->runtime;
401 	struct pcmtst_buf_iter *v_iter = runtime->private_data;
402 
403 	if (inject_trigger_err)
404 		return -EINVAL;
405 
406 	v_iter->sample_bytes = runtime->sample_bits / 8;
407 	v_iter->period_bytes = frames_to_bytes(runtime, runtime->period_size);
408 	if (runtime->access == SNDRV_PCM_ACCESS_RW_NONINTERLEAVED ||
409 	    runtime->access == SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED) {
410 		v_iter->chan_block = runtime->dma_bytes / runtime->channels;
411 		v_iter->interleaved = false;
412 	} else {
413 		v_iter->interleaved = true;
414 	}
415 	// We want to record RATE * ch_cnt samples per sec, it is rate * sample_bytes * ch_cnt bytes
416 	v_iter->s_rw_ch = runtime->rate / TIMER_PER_SEC;
417 	v_iter->b_rw = v_iter->s_rw_ch * v_iter->sample_bytes * runtime->channels;
418 
419 	return 0;
420 }
421 
422 static snd_pcm_uframes_t snd_pcmtst_pcm_pointer(struct snd_pcm_substream *substream)
423 {
424 	struct pcmtst_buf_iter *v_iter = substream->runtime->private_data;
425 
426 	return bytes_to_frames(substream->runtime, v_iter->buf_pos);
427 }
428 
429 static int snd_pcmtst_free(struct pcmtst *pcmtst)
430 {
431 	if (!pcmtst)
432 		return 0;
433 	kfree(pcmtst);
434 	return 0;
435 }
436 
437 // These callbacks are required, but empty - all freeing occurs in pdev_remove
438 static int snd_pcmtst_dev_free(struct snd_device *device)
439 {
440 	return 0;
441 }
442 
443 static void pcmtst_pdev_release(struct device *dev)
444 {
445 }
446 
447 static int snd_pcmtst_pcm_prepare(struct snd_pcm_substream *substream)
448 {
449 	if (inject_prepare_err)
450 		return -EINVAL;
451 	return 0;
452 }
453 
454 static int snd_pcmtst_pcm_hw_params(struct snd_pcm_substream *substream,
455 				    struct snd_pcm_hw_params *params)
456 {
457 	if (inject_hwpars_err)
458 		return -EBUSY;
459 	return 0;
460 }
461 
462 static int snd_pcmtst_pcm_hw_free(struct snd_pcm_substream *substream)
463 {
464 	return 0;
465 }
466 
467 static int snd_pcmtst_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg)
468 {
469 	switch (cmd) {
470 	case SNDRV_PCM_IOCTL1_RESET:
471 		ioctl_reset_test = 1;
472 		break;
473 	}
474 	return snd_pcm_lib_ioctl(substream, cmd, arg);
475 }
476 
477 static const struct snd_pcm_ops snd_pcmtst_playback_ops = {
478 	.open =		snd_pcmtst_pcm_open,
479 	.close =	snd_pcmtst_pcm_close,
480 	.trigger =	snd_pcmtst_pcm_trigger,
481 	.hw_params =	snd_pcmtst_pcm_hw_params,
482 	.ioctl =	snd_pcmtst_ioctl,
483 	.hw_free =	snd_pcmtst_pcm_hw_free,
484 	.prepare =	snd_pcmtst_pcm_prepare,
485 	.pointer =	snd_pcmtst_pcm_pointer,
486 };
487 
488 static const struct snd_pcm_ops snd_pcmtst_capture_ops = {
489 	.open =		snd_pcmtst_pcm_open,
490 	.close =	snd_pcmtst_pcm_close,
491 	.trigger =	snd_pcmtst_pcm_trigger,
492 	.hw_params =	snd_pcmtst_pcm_hw_params,
493 	.hw_free =	snd_pcmtst_pcm_hw_free,
494 	.ioctl =	snd_pcmtst_ioctl,
495 	.prepare =	snd_pcmtst_pcm_prepare,
496 	.pointer =	snd_pcmtst_pcm_pointer,
497 };
498 
499 static int snd_pcmtst_new_pcm(struct pcmtst *pcmtst)
500 {
501 	struct snd_pcm *pcm;
502 	int err;
503 
504 	err = snd_pcm_new(pcmtst->card, "PCMTest", 0, PLAYBACK_SUBSTREAM_CNT,
505 			  CAPTURE_SUBSTREAM_CNT, &pcm);
506 	if (err < 0)
507 		return err;
508 	pcm->private_data = pcmtst;
509 	strcpy(pcm->name, "PCMTest");
510 	pcmtst->pcm = pcm;
511 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pcmtst_playback_ops);
512 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pcmtst_capture_ops);
513 
514 	err = snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, &pcmtst->pdev->dev,
515 					     0, 128 * 1024);
516 	return err;
517 }
518 
519 static int snd_pcmtst_create(struct snd_card *card, struct platform_device *pdev,
520 			     struct pcmtst **r_pcmtst)
521 {
522 	struct pcmtst *pcmtst;
523 	int err;
524 	static const struct snd_device_ops ops = {
525 		.dev_free = snd_pcmtst_dev_free,
526 	};
527 
528 	pcmtst = kzalloc(sizeof(*pcmtst), GFP_KERNEL);
529 	if (!pcmtst)
530 		return -ENOMEM;
531 	pcmtst->card = card;
532 	pcmtst->pdev = pdev;
533 
534 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, pcmtst, &ops);
535 	if (err < 0)
536 		goto _err_free_chip;
537 
538 	err = snd_pcmtst_new_pcm(pcmtst);
539 	if (err < 0)
540 		goto _err_free_chip;
541 
542 	*r_pcmtst = pcmtst;
543 	return 0;
544 
545 _err_free_chip:
546 	snd_pcmtst_free(pcmtst);
547 	return err;
548 }
549 
550 static int pcmtst_probe(struct platform_device *pdev)
551 {
552 	struct snd_card *card;
553 	struct pcmtst *pcmtst;
554 	int err;
555 
556 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
557 	if (err)
558 		return err;
559 
560 	err = snd_devm_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
561 	if (err < 0)
562 		return err;
563 	err = snd_pcmtst_create(card, pdev, &pcmtst);
564 	if (err < 0)
565 		return err;
566 
567 	strcpy(card->driver, "PCM-TEST Driver");
568 	strcpy(card->shortname, "PCM-Test");
569 	strcpy(card->longname, "PCM-Test virtual driver");
570 
571 	err = snd_card_register(card);
572 	if (err < 0)
573 		return err;
574 
575 	platform_set_drvdata(pdev, pcmtst);
576 
577 	return 0;
578 }
579 
580 static void pdev_remove(struct platform_device *pdev)
581 {
582 	struct pcmtst *pcmtst = platform_get_drvdata(pdev);
583 
584 	snd_pcmtst_free(pcmtst);
585 }
586 
587 static struct platform_device pcmtst_pdev = {
588 	.name =		"pcmtest",
589 	.dev.release =	pcmtst_pdev_release,
590 };
591 
592 static struct platform_driver pcmtst_pdrv = {
593 	.probe =	pcmtst_probe,
594 	.remove_new =	pdev_remove,
595 	.driver =	{
596 		.name = "pcmtest",
597 	},
598 };
599 
600 static ssize_t pattern_write(struct file *file, const char __user *u_buff, size_t len, loff_t *off)
601 {
602 	struct pattern_buf *patt_buf = file->f_inode->i_private;
603 	ssize_t to_write = len;
604 
605 	if (*off + to_write > MAX_PATTERN_LEN)
606 		to_write = MAX_PATTERN_LEN - *off;
607 
608 	// Crop silently everything over the buffer
609 	if (to_write <= 0)
610 		return len;
611 
612 	if (copy_from_user(patt_buf->buf + *off, u_buff, to_write))
613 		return -EFAULT;
614 
615 	patt_buf->len = *off + to_write;
616 	*off += to_write;
617 
618 	return to_write;
619 }
620 
621 static ssize_t pattern_read(struct file *file, char __user *u_buff, size_t len, loff_t *off)
622 {
623 	struct pattern_buf *patt_buf = file->f_inode->i_private;
624 	ssize_t to_read = len;
625 
626 	if (*off + to_read >= MAX_PATTERN_LEN)
627 		to_read = MAX_PATTERN_LEN - *off;
628 	if (to_read <= 0)
629 		return 0;
630 
631 	if (copy_to_user(u_buff, patt_buf->buf + *off, to_read))
632 		to_read = 0;
633 	else
634 		*off += to_read;
635 
636 	return to_read;
637 }
638 
639 static const struct file_operations fill_pattern_fops = {
640 	.read = pattern_read,
641 	.write = pattern_write,
642 };
643 
644 static int setup_patt_bufs(void)
645 {
646 	size_t i;
647 
648 	for (i = 0; i < ARRAY_SIZE(patt_bufs); i++) {
649 		patt_bufs[i].buf = kzalloc(MAX_PATTERN_LEN, GFP_KERNEL);
650 		if (!patt_bufs[i].buf)
651 			break;
652 		strcpy(patt_bufs[i].buf, DEFAULT_PATTERN);
653 		patt_bufs[i].len = DEFAULT_PATTERN_LEN;
654 	}
655 
656 	return i;
657 }
658 
659 static const char * const pattern_files[] = { "fill_pattern0", "fill_pattern1",
660 					      "fill_pattern2", "fill_pattern3"};
661 static int init_debug_files(int buf_count)
662 {
663 	size_t i;
664 	char len_file_name[32];
665 
666 	driver_debug_dir = debugfs_create_dir("pcmtest", NULL);
667 	if (IS_ERR(driver_debug_dir))
668 		return PTR_ERR(driver_debug_dir);
669 	debugfs_create_u8("pc_test", 0444, driver_debug_dir, &playback_capture_test);
670 	debugfs_create_u8("ioctl_test", 0444, driver_debug_dir, &ioctl_reset_test);
671 
672 	for (i = 0; i < buf_count; i++) {
673 		debugfs_create_file(pattern_files[i], 0600, driver_debug_dir,
674 				    &patt_bufs[i], &fill_pattern_fops);
675 		snprintf(len_file_name, sizeof(len_file_name), "%s_len", pattern_files[i]);
676 		debugfs_create_u32(len_file_name, 0444, driver_debug_dir, &patt_bufs[i].len);
677 	}
678 
679 	return 0;
680 }
681 
682 static void free_pattern_buffers(void)
683 {
684 	int i;
685 
686 	for (i = 0; i < buf_allocated; i++)
687 		kfree(patt_bufs[i].buf);
688 }
689 
690 static void clear_debug_files(void)
691 {
692 	debugfs_remove_recursive(driver_debug_dir);
693 }
694 
695 static int __init mod_init(void)
696 {
697 	int err = 0;
698 
699 	buf_allocated = setup_patt_bufs();
700 	if (!buf_allocated)
701 		return -ENOMEM;
702 
703 	snd_pcmtst_hw.channels_max = buf_allocated;
704 
705 	err = init_debug_files(buf_allocated);
706 	if (err)
707 		return err;
708 	err = platform_device_register(&pcmtst_pdev);
709 	if (err)
710 		return err;
711 	err = platform_driver_register(&pcmtst_pdrv);
712 	if (err)
713 		platform_device_unregister(&pcmtst_pdev);
714 	return err;
715 }
716 
717 static void __exit mod_exit(void)
718 {
719 	clear_debug_files();
720 	free_pattern_buffers();
721 
722 	platform_driver_unregister(&pcmtst_pdrv);
723 	platform_device_unregister(&pcmtst_pdev);
724 }
725 
726 MODULE_LICENSE("GPL");
727 MODULE_AUTHOR("Ivan Orlov");
728 module_init(mod_init);
729 module_exit(mod_exit);
730