1 /* 2 * Dummy soundcard 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/init.h> 22 #include <linux/err.h> 23 #include <linux/platform_device.h> 24 #include <linux/jiffies.h> 25 #include <linux/slab.h> 26 #include <linux/time.h> 27 #include <linux/wait.h> 28 #include <linux/hrtimer.h> 29 #include <linux/math64.h> 30 #include <linux/module.h> 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/tlv.h> 34 #include <sound/pcm.h> 35 #include <sound/rawmidi.h> 36 #include <sound/info.h> 37 #include <sound/initval.h> 38 39 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 40 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 41 MODULE_LICENSE("GPL"); 42 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}"); 43 44 #define MAX_PCM_DEVICES 4 45 #define MAX_PCM_SUBSTREAMS 128 46 #define MAX_MIDI_DEVICES 2 47 48 /* defaults */ 49 #define MAX_BUFFER_SIZE (64*1024) 50 #define MIN_PERIOD_SIZE 64 51 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 52 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 53 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 54 #define USE_RATE_MIN 5500 55 #define USE_RATE_MAX 48000 56 #define USE_CHANNELS_MIN 1 57 #define USE_CHANNELS_MAX 2 58 #define USE_PERIODS_MIN 1 59 #define USE_PERIODS_MAX 1024 60 61 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 62 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 63 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 64 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 65 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 66 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 67 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 68 #ifdef CONFIG_HIGH_RES_TIMERS 69 static bool hrtimer = 1; 70 #endif 71 static bool fake_buffer = 1; 72 73 module_param_array(index, int, NULL, 0444); 74 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 75 module_param_array(id, charp, NULL, 0444); 76 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 77 module_param_array(enable, bool, NULL, 0444); 78 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 79 module_param_array(model, charp, NULL, 0444); 80 MODULE_PARM_DESC(model, "Soundcard model."); 81 module_param_array(pcm_devs, int, NULL, 0444); 82 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 83 module_param_array(pcm_substreams, int, NULL, 0444); 84 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 85 //module_param_array(midi_devs, int, NULL, 0444); 86 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 87 module_param(fake_buffer, bool, 0444); 88 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 89 #ifdef CONFIG_HIGH_RES_TIMERS 90 module_param(hrtimer, bool, 0644); 91 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 92 #endif 93 94 static struct platform_device *devices[SNDRV_CARDS]; 95 96 #define MIXER_ADDR_MASTER 0 97 #define MIXER_ADDR_LINE 1 98 #define MIXER_ADDR_MIC 2 99 #define MIXER_ADDR_SYNTH 3 100 #define MIXER_ADDR_CD 4 101 #define MIXER_ADDR_LAST 4 102 103 struct dummy_timer_ops { 104 int (*create)(struct snd_pcm_substream *); 105 void (*free)(struct snd_pcm_substream *); 106 int (*prepare)(struct snd_pcm_substream *); 107 int (*start)(struct snd_pcm_substream *); 108 int (*stop)(struct snd_pcm_substream *); 109 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 110 }; 111 112 #define get_dummy_ops(substream) \ 113 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data) 114 115 struct dummy_model { 116 const char *name; 117 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 118 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 119 u64 formats; 120 size_t buffer_bytes_max; 121 size_t period_bytes_min; 122 size_t period_bytes_max; 123 unsigned int periods_min; 124 unsigned int periods_max; 125 unsigned int rates; 126 unsigned int rate_min; 127 unsigned int rate_max; 128 unsigned int channels_min; 129 unsigned int channels_max; 130 }; 131 132 struct snd_dummy { 133 struct snd_card *card; 134 struct dummy_model *model; 135 struct snd_pcm *pcm; 136 struct snd_pcm_hardware pcm_hw; 137 spinlock_t mixer_lock; 138 int mixer_volume[MIXER_ADDR_LAST+1][2]; 139 int capture_source[MIXER_ADDR_LAST+1][2]; 140 int iobox; 141 struct snd_kcontrol *cd_volume_ctl; 142 struct snd_kcontrol *cd_switch_ctl; 143 }; 144 145 /* 146 * card models 147 */ 148 149 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 150 { 151 int err; 152 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 153 if (err < 0) 154 return err; 155 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 156 if (err < 0) 157 return err; 158 return 0; 159 } 160 161 static struct dummy_model model_emu10k1 = { 162 .name = "emu10k1", 163 .playback_constraints = emu10k1_playback_constraints, 164 .buffer_bytes_max = 128 * 1024, 165 }; 166 167 static struct dummy_model model_rme9652 = { 168 .name = "rme9652", 169 .buffer_bytes_max = 26 * 64 * 1024, 170 .formats = SNDRV_PCM_FMTBIT_S32_LE, 171 .channels_min = 26, 172 .channels_max = 26, 173 .periods_min = 2, 174 .periods_max = 2, 175 }; 176 177 static struct dummy_model model_ice1712 = { 178 .name = "ice1712", 179 .buffer_bytes_max = 256 * 1024, 180 .formats = SNDRV_PCM_FMTBIT_S32_LE, 181 .channels_min = 10, 182 .channels_max = 10, 183 .periods_min = 1, 184 .periods_max = 1024, 185 }; 186 187 static struct dummy_model model_uda1341 = { 188 .name = "uda1341", 189 .buffer_bytes_max = 16380, 190 .formats = SNDRV_PCM_FMTBIT_S16_LE, 191 .channels_min = 2, 192 .channels_max = 2, 193 .periods_min = 2, 194 .periods_max = 255, 195 }; 196 197 static struct dummy_model model_ac97 = { 198 .name = "ac97", 199 .formats = SNDRV_PCM_FMTBIT_S16_LE, 200 .channels_min = 2, 201 .channels_max = 2, 202 .rates = SNDRV_PCM_RATE_48000, 203 .rate_min = 48000, 204 .rate_max = 48000, 205 }; 206 207 static struct dummy_model model_ca0106 = { 208 .name = "ca0106", 209 .formats = SNDRV_PCM_FMTBIT_S16_LE, 210 .buffer_bytes_max = ((65536-64)*8), 211 .period_bytes_max = (65536-64), 212 .periods_min = 2, 213 .periods_max = 8, 214 .channels_min = 2, 215 .channels_max = 2, 216 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 217 .rate_min = 48000, 218 .rate_max = 192000, 219 }; 220 221 static struct dummy_model *dummy_models[] = { 222 &model_emu10k1, 223 &model_rme9652, 224 &model_ice1712, 225 &model_uda1341, 226 &model_ac97, 227 &model_ca0106, 228 NULL 229 }; 230 231 /* 232 * system timer interface 233 */ 234 235 struct dummy_systimer_pcm { 236 /* ops must be the first item */ 237 const struct dummy_timer_ops *timer_ops; 238 spinlock_t lock; 239 struct timer_list timer; 240 unsigned long base_time; 241 unsigned int frac_pos; /* fractional sample position (based HZ) */ 242 unsigned int frac_period_rest; 243 unsigned int frac_buffer_size; /* buffer_size * HZ */ 244 unsigned int frac_period_size; /* period_size * HZ */ 245 unsigned int rate; 246 int elapsed; 247 struct snd_pcm_substream *substream; 248 }; 249 250 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 251 { 252 mod_timer(&dpcm->timer, jiffies + 253 (dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate); 254 } 255 256 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 257 { 258 unsigned long delta; 259 260 delta = jiffies - dpcm->base_time; 261 if (!delta) 262 return; 263 dpcm->base_time += delta; 264 delta *= dpcm->rate; 265 dpcm->frac_pos += delta; 266 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 267 dpcm->frac_pos -= dpcm->frac_buffer_size; 268 while (dpcm->frac_period_rest <= delta) { 269 dpcm->elapsed++; 270 dpcm->frac_period_rest += dpcm->frac_period_size; 271 } 272 dpcm->frac_period_rest -= delta; 273 } 274 275 static int dummy_systimer_start(struct snd_pcm_substream *substream) 276 { 277 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 278 spin_lock(&dpcm->lock); 279 dpcm->base_time = jiffies; 280 dummy_systimer_rearm(dpcm); 281 spin_unlock(&dpcm->lock); 282 return 0; 283 } 284 285 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 286 { 287 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 288 spin_lock(&dpcm->lock); 289 del_timer(&dpcm->timer); 290 spin_unlock(&dpcm->lock); 291 return 0; 292 } 293 294 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 295 { 296 struct snd_pcm_runtime *runtime = substream->runtime; 297 struct dummy_systimer_pcm *dpcm = runtime->private_data; 298 299 dpcm->frac_pos = 0; 300 dpcm->rate = runtime->rate; 301 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 302 dpcm->frac_period_size = runtime->period_size * HZ; 303 dpcm->frac_period_rest = dpcm->frac_period_size; 304 dpcm->elapsed = 0; 305 306 return 0; 307 } 308 309 static void dummy_systimer_callback(unsigned long data) 310 { 311 struct dummy_systimer_pcm *dpcm = (struct dummy_systimer_pcm *)data; 312 unsigned long flags; 313 int elapsed = 0; 314 315 spin_lock_irqsave(&dpcm->lock, flags); 316 dummy_systimer_update(dpcm); 317 dummy_systimer_rearm(dpcm); 318 elapsed = dpcm->elapsed; 319 dpcm->elapsed = 0; 320 spin_unlock_irqrestore(&dpcm->lock, flags); 321 if (elapsed) 322 snd_pcm_period_elapsed(dpcm->substream); 323 } 324 325 static snd_pcm_uframes_t 326 dummy_systimer_pointer(struct snd_pcm_substream *substream) 327 { 328 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 329 snd_pcm_uframes_t pos; 330 331 spin_lock(&dpcm->lock); 332 dummy_systimer_update(dpcm); 333 pos = dpcm->frac_pos / HZ; 334 spin_unlock(&dpcm->lock); 335 return pos; 336 } 337 338 static int dummy_systimer_create(struct snd_pcm_substream *substream) 339 { 340 struct dummy_systimer_pcm *dpcm; 341 342 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 343 if (!dpcm) 344 return -ENOMEM; 345 substream->runtime->private_data = dpcm; 346 setup_timer(&dpcm->timer, dummy_systimer_callback, 347 (unsigned long) dpcm); 348 spin_lock_init(&dpcm->lock); 349 dpcm->substream = substream; 350 return 0; 351 } 352 353 static void dummy_systimer_free(struct snd_pcm_substream *substream) 354 { 355 kfree(substream->runtime->private_data); 356 } 357 358 static const struct dummy_timer_ops dummy_systimer_ops = { 359 .create = dummy_systimer_create, 360 .free = dummy_systimer_free, 361 .prepare = dummy_systimer_prepare, 362 .start = dummy_systimer_start, 363 .stop = dummy_systimer_stop, 364 .pointer = dummy_systimer_pointer, 365 }; 366 367 #ifdef CONFIG_HIGH_RES_TIMERS 368 /* 369 * hrtimer interface 370 */ 371 372 struct dummy_hrtimer_pcm { 373 /* ops must be the first item */ 374 const struct dummy_timer_ops *timer_ops; 375 ktime_t base_time; 376 ktime_t period_time; 377 atomic_t running; 378 struct hrtimer timer; 379 struct tasklet_struct tasklet; 380 struct snd_pcm_substream *substream; 381 }; 382 383 static void dummy_hrtimer_pcm_elapsed(unsigned long priv) 384 { 385 struct dummy_hrtimer_pcm *dpcm = (struct dummy_hrtimer_pcm *)priv; 386 if (atomic_read(&dpcm->running)) 387 snd_pcm_period_elapsed(dpcm->substream); 388 } 389 390 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 391 { 392 struct dummy_hrtimer_pcm *dpcm; 393 394 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 395 if (!atomic_read(&dpcm->running)) 396 return HRTIMER_NORESTART; 397 tasklet_schedule(&dpcm->tasklet); 398 hrtimer_forward_now(timer, dpcm->period_time); 399 return HRTIMER_RESTART; 400 } 401 402 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 403 { 404 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 405 406 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 407 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL); 408 atomic_set(&dpcm->running, 1); 409 return 0; 410 } 411 412 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 413 { 414 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 415 416 atomic_set(&dpcm->running, 0); 417 hrtimer_cancel(&dpcm->timer); 418 return 0; 419 } 420 421 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 422 { 423 hrtimer_cancel(&dpcm->timer); 424 tasklet_kill(&dpcm->tasklet); 425 } 426 427 static snd_pcm_uframes_t 428 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 429 { 430 struct snd_pcm_runtime *runtime = substream->runtime; 431 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 432 u64 delta; 433 u32 pos; 434 435 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 436 dpcm->base_time); 437 delta = div_u64(delta * runtime->rate + 999999, 1000000); 438 div_u64_rem(delta, runtime->buffer_size, &pos); 439 return pos; 440 } 441 442 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 443 { 444 struct snd_pcm_runtime *runtime = substream->runtime; 445 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 446 unsigned int period, rate; 447 long sec; 448 unsigned long nsecs; 449 450 dummy_hrtimer_sync(dpcm); 451 period = runtime->period_size; 452 rate = runtime->rate; 453 sec = period / rate; 454 period %= rate; 455 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 456 dpcm->period_time = ktime_set(sec, nsecs); 457 458 return 0; 459 } 460 461 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 462 { 463 struct dummy_hrtimer_pcm *dpcm; 464 465 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 466 if (!dpcm) 467 return -ENOMEM; 468 substream->runtime->private_data = dpcm; 469 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 470 dpcm->timer.function = dummy_hrtimer_callback; 471 dpcm->substream = substream; 472 atomic_set(&dpcm->running, 0); 473 tasklet_init(&dpcm->tasklet, dummy_hrtimer_pcm_elapsed, 474 (unsigned long)dpcm); 475 return 0; 476 } 477 478 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 479 { 480 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 481 dummy_hrtimer_sync(dpcm); 482 kfree(dpcm); 483 } 484 485 static const struct dummy_timer_ops dummy_hrtimer_ops = { 486 .create = dummy_hrtimer_create, 487 .free = dummy_hrtimer_free, 488 .prepare = dummy_hrtimer_prepare, 489 .start = dummy_hrtimer_start, 490 .stop = dummy_hrtimer_stop, 491 .pointer = dummy_hrtimer_pointer, 492 }; 493 494 #endif /* CONFIG_HIGH_RES_TIMERS */ 495 496 /* 497 * PCM interface 498 */ 499 500 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 501 { 502 switch (cmd) { 503 case SNDRV_PCM_TRIGGER_START: 504 case SNDRV_PCM_TRIGGER_RESUME: 505 return get_dummy_ops(substream)->start(substream); 506 case SNDRV_PCM_TRIGGER_STOP: 507 case SNDRV_PCM_TRIGGER_SUSPEND: 508 return get_dummy_ops(substream)->stop(substream); 509 } 510 return -EINVAL; 511 } 512 513 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 514 { 515 return get_dummy_ops(substream)->prepare(substream); 516 } 517 518 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 519 { 520 return get_dummy_ops(substream)->pointer(substream); 521 } 522 523 static struct snd_pcm_hardware dummy_pcm_hardware = { 524 .info = (SNDRV_PCM_INFO_MMAP | 525 SNDRV_PCM_INFO_INTERLEAVED | 526 SNDRV_PCM_INFO_RESUME | 527 SNDRV_PCM_INFO_MMAP_VALID), 528 .formats = USE_FORMATS, 529 .rates = USE_RATE, 530 .rate_min = USE_RATE_MIN, 531 .rate_max = USE_RATE_MAX, 532 .channels_min = USE_CHANNELS_MIN, 533 .channels_max = USE_CHANNELS_MAX, 534 .buffer_bytes_max = MAX_BUFFER_SIZE, 535 .period_bytes_min = MIN_PERIOD_SIZE, 536 .period_bytes_max = MAX_PERIOD_SIZE, 537 .periods_min = USE_PERIODS_MIN, 538 .periods_max = USE_PERIODS_MAX, 539 .fifo_size = 0, 540 }; 541 542 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 543 struct snd_pcm_hw_params *hw_params) 544 { 545 if (fake_buffer) { 546 /* runtime->dma_bytes has to be set manually to allow mmap */ 547 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 548 return 0; 549 } 550 return snd_pcm_lib_malloc_pages(substream, 551 params_buffer_bytes(hw_params)); 552 } 553 554 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream) 555 { 556 if (fake_buffer) 557 return 0; 558 return snd_pcm_lib_free_pages(substream); 559 } 560 561 static int dummy_pcm_open(struct snd_pcm_substream *substream) 562 { 563 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 564 struct dummy_model *model = dummy->model; 565 struct snd_pcm_runtime *runtime = substream->runtime; 566 const struct dummy_timer_ops *ops; 567 int err; 568 569 ops = &dummy_systimer_ops; 570 #ifdef CONFIG_HIGH_RES_TIMERS 571 if (hrtimer) 572 ops = &dummy_hrtimer_ops; 573 #endif 574 575 err = ops->create(substream); 576 if (err < 0) 577 return err; 578 get_dummy_ops(substream) = ops; 579 580 runtime->hw = dummy->pcm_hw; 581 if (substream->pcm->device & 1) { 582 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 583 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 584 } 585 if (substream->pcm->device & 2) 586 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 587 SNDRV_PCM_INFO_MMAP_VALID); 588 589 if (model == NULL) 590 return 0; 591 592 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 593 if (model->playback_constraints) 594 err = model->playback_constraints(substream->runtime); 595 } else { 596 if (model->capture_constraints) 597 err = model->capture_constraints(substream->runtime); 598 } 599 if (err < 0) { 600 get_dummy_ops(substream)->free(substream); 601 return err; 602 } 603 return 0; 604 } 605 606 static int dummy_pcm_close(struct snd_pcm_substream *substream) 607 { 608 get_dummy_ops(substream)->free(substream); 609 return 0; 610 } 611 612 /* 613 * dummy buffer handling 614 */ 615 616 static void *dummy_page[2]; 617 618 static void free_fake_buffer(void) 619 { 620 if (fake_buffer) { 621 int i; 622 for (i = 0; i < 2; i++) 623 if (dummy_page[i]) { 624 free_page((unsigned long)dummy_page[i]); 625 dummy_page[i] = NULL; 626 } 627 } 628 } 629 630 static int alloc_fake_buffer(void) 631 { 632 int i; 633 634 if (!fake_buffer) 635 return 0; 636 for (i = 0; i < 2; i++) { 637 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 638 if (!dummy_page[i]) { 639 free_fake_buffer(); 640 return -ENOMEM; 641 } 642 } 643 return 0; 644 } 645 646 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 647 int channel, unsigned long pos, 648 void __user *dst, unsigned long bytes) 649 { 650 return 0; /* do nothing */ 651 } 652 653 static int dummy_pcm_copy_kernel(struct snd_pcm_substream *substream, 654 int channel, unsigned long pos, 655 void *dst, unsigned long bytes) 656 { 657 return 0; /* do nothing */ 658 } 659 660 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 661 int channel, unsigned long pos, 662 unsigned long bytes) 663 { 664 return 0; /* do nothing */ 665 } 666 667 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 668 unsigned long offset) 669 { 670 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 671 } 672 673 static struct snd_pcm_ops dummy_pcm_ops = { 674 .open = dummy_pcm_open, 675 .close = dummy_pcm_close, 676 .ioctl = snd_pcm_lib_ioctl, 677 .hw_params = dummy_pcm_hw_params, 678 .hw_free = dummy_pcm_hw_free, 679 .prepare = dummy_pcm_prepare, 680 .trigger = dummy_pcm_trigger, 681 .pointer = dummy_pcm_pointer, 682 }; 683 684 static struct snd_pcm_ops dummy_pcm_ops_no_buf = { 685 .open = dummy_pcm_open, 686 .close = dummy_pcm_close, 687 .ioctl = snd_pcm_lib_ioctl, 688 .hw_params = dummy_pcm_hw_params, 689 .hw_free = dummy_pcm_hw_free, 690 .prepare = dummy_pcm_prepare, 691 .trigger = dummy_pcm_trigger, 692 .pointer = dummy_pcm_pointer, 693 .copy_user = dummy_pcm_copy, 694 .copy_kernel = dummy_pcm_copy_kernel, 695 .fill_silence = dummy_pcm_silence, 696 .page = dummy_pcm_page, 697 }; 698 699 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 700 int substreams) 701 { 702 struct snd_pcm *pcm; 703 struct snd_pcm_ops *ops; 704 int err; 705 706 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 707 substreams, substreams, &pcm); 708 if (err < 0) 709 return err; 710 dummy->pcm = pcm; 711 if (fake_buffer) 712 ops = &dummy_pcm_ops_no_buf; 713 else 714 ops = &dummy_pcm_ops; 715 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 716 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 717 pcm->private_data = dummy; 718 pcm->info_flags = 0; 719 strcpy(pcm->name, "Dummy PCM"); 720 if (!fake_buffer) { 721 snd_pcm_lib_preallocate_pages_for_all(pcm, 722 SNDRV_DMA_TYPE_CONTINUOUS, 723 snd_dma_continuous_data(GFP_KERNEL), 724 0, 64*1024); 725 } 726 return 0; 727 } 728 729 /* 730 * mixer interface 731 */ 732 733 #define DUMMY_VOLUME(xname, xindex, addr) \ 734 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 735 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 736 .name = xname, .index = xindex, \ 737 .info = snd_dummy_volume_info, \ 738 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 739 .private_value = addr, \ 740 .tlv = { .p = db_scale_dummy } } 741 742 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 743 struct snd_ctl_elem_info *uinfo) 744 { 745 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 746 uinfo->count = 2; 747 uinfo->value.integer.min = -50; 748 uinfo->value.integer.max = 100; 749 return 0; 750 } 751 752 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 753 struct snd_ctl_elem_value *ucontrol) 754 { 755 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 756 int addr = kcontrol->private_value; 757 758 spin_lock_irq(&dummy->mixer_lock); 759 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 760 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 761 spin_unlock_irq(&dummy->mixer_lock); 762 return 0; 763 } 764 765 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 766 struct snd_ctl_elem_value *ucontrol) 767 { 768 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 769 int change, addr = kcontrol->private_value; 770 int left, right; 771 772 left = ucontrol->value.integer.value[0]; 773 if (left < -50) 774 left = -50; 775 if (left > 100) 776 left = 100; 777 right = ucontrol->value.integer.value[1]; 778 if (right < -50) 779 right = -50; 780 if (right > 100) 781 right = 100; 782 spin_lock_irq(&dummy->mixer_lock); 783 change = dummy->mixer_volume[addr][0] != left || 784 dummy->mixer_volume[addr][1] != right; 785 dummy->mixer_volume[addr][0] = left; 786 dummy->mixer_volume[addr][1] = right; 787 spin_unlock_irq(&dummy->mixer_lock); 788 return change; 789 } 790 791 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 792 793 #define DUMMY_CAPSRC(xname, xindex, addr) \ 794 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 795 .info = snd_dummy_capsrc_info, \ 796 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 797 .private_value = addr } 798 799 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 800 801 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 802 struct snd_ctl_elem_value *ucontrol) 803 { 804 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 805 int addr = kcontrol->private_value; 806 807 spin_lock_irq(&dummy->mixer_lock); 808 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 809 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 810 spin_unlock_irq(&dummy->mixer_lock); 811 return 0; 812 } 813 814 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 815 { 816 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 817 int change, addr = kcontrol->private_value; 818 int left, right; 819 820 left = ucontrol->value.integer.value[0] & 1; 821 right = ucontrol->value.integer.value[1] & 1; 822 spin_lock_irq(&dummy->mixer_lock); 823 change = dummy->capture_source[addr][0] != left && 824 dummy->capture_source[addr][1] != right; 825 dummy->capture_source[addr][0] = left; 826 dummy->capture_source[addr][1] = right; 827 spin_unlock_irq(&dummy->mixer_lock); 828 return change; 829 } 830 831 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 832 struct snd_ctl_elem_info *info) 833 { 834 const char *const names[] = { "None", "CD Player" }; 835 836 return snd_ctl_enum_info(info, 1, 2, names); 837 } 838 839 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 840 struct snd_ctl_elem_value *value) 841 { 842 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 843 844 value->value.enumerated.item[0] = dummy->iobox; 845 return 0; 846 } 847 848 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 849 struct snd_ctl_elem_value *value) 850 { 851 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 852 int changed; 853 854 if (value->value.enumerated.item[0] > 1) 855 return -EINVAL; 856 857 changed = value->value.enumerated.item[0] != dummy->iobox; 858 if (changed) { 859 dummy->iobox = value->value.enumerated.item[0]; 860 861 if (dummy->iobox) { 862 dummy->cd_volume_ctl->vd[0].access &= 863 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 864 dummy->cd_switch_ctl->vd[0].access &= 865 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 866 } else { 867 dummy->cd_volume_ctl->vd[0].access |= 868 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 869 dummy->cd_switch_ctl->vd[0].access |= 870 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 871 } 872 873 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 874 &dummy->cd_volume_ctl->id); 875 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 876 &dummy->cd_switch_ctl->id); 877 } 878 879 return changed; 880 } 881 882 static struct snd_kcontrol_new snd_dummy_controls[] = { 883 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 884 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 885 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 886 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 887 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 888 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 889 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 890 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 891 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 892 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 893 { 894 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 895 .name = "External I/O Box", 896 .info = snd_dummy_iobox_info, 897 .get = snd_dummy_iobox_get, 898 .put = snd_dummy_iobox_put, 899 }, 900 }; 901 902 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 903 { 904 struct snd_card *card = dummy->card; 905 struct snd_kcontrol *kcontrol; 906 unsigned int idx; 907 int err; 908 909 spin_lock_init(&dummy->mixer_lock); 910 strcpy(card->mixername, "Dummy Mixer"); 911 dummy->iobox = 1; 912 913 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 914 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 915 err = snd_ctl_add(card, kcontrol); 916 if (err < 0) 917 return err; 918 if (!strcmp(kcontrol->id.name, "CD Volume")) 919 dummy->cd_volume_ctl = kcontrol; 920 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 921 dummy->cd_switch_ctl = kcontrol; 922 923 } 924 return 0; 925 } 926 927 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS) 928 /* 929 * proc interface 930 */ 931 static void print_formats(struct snd_dummy *dummy, 932 struct snd_info_buffer *buffer) 933 { 934 int i; 935 936 for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { 937 if (dummy->pcm_hw.formats & (1ULL << i)) 938 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 939 } 940 } 941 942 static void print_rates(struct snd_dummy *dummy, 943 struct snd_info_buffer *buffer) 944 { 945 static int rates[] = { 946 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 947 64000, 88200, 96000, 176400, 192000, 948 }; 949 int i; 950 951 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 952 snd_iprintf(buffer, " continuous"); 953 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 954 snd_iprintf(buffer, " knot"); 955 for (i = 0; i < ARRAY_SIZE(rates); i++) 956 if (dummy->pcm_hw.rates & (1 << i)) 957 snd_iprintf(buffer, " %d", rates[i]); 958 } 959 960 #define get_dummy_int_ptr(dummy, ofs) \ 961 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 962 #define get_dummy_ll_ptr(dummy, ofs) \ 963 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 964 965 struct dummy_hw_field { 966 const char *name; 967 const char *format; 968 unsigned int offset; 969 unsigned int size; 970 }; 971 #define FIELD_ENTRY(item, fmt) { \ 972 .name = #item, \ 973 .format = fmt, \ 974 .offset = offsetof(struct snd_pcm_hardware, item), \ 975 .size = sizeof(dummy_pcm_hardware.item) } 976 977 static struct dummy_hw_field fields[] = { 978 FIELD_ENTRY(formats, "%#llx"), 979 FIELD_ENTRY(rates, "%#x"), 980 FIELD_ENTRY(rate_min, "%d"), 981 FIELD_ENTRY(rate_max, "%d"), 982 FIELD_ENTRY(channels_min, "%d"), 983 FIELD_ENTRY(channels_max, "%d"), 984 FIELD_ENTRY(buffer_bytes_max, "%ld"), 985 FIELD_ENTRY(period_bytes_min, "%ld"), 986 FIELD_ENTRY(period_bytes_max, "%ld"), 987 FIELD_ENTRY(periods_min, "%d"), 988 FIELD_ENTRY(periods_max, "%d"), 989 }; 990 991 static void dummy_proc_read(struct snd_info_entry *entry, 992 struct snd_info_buffer *buffer) 993 { 994 struct snd_dummy *dummy = entry->private_data; 995 int i; 996 997 for (i = 0; i < ARRAY_SIZE(fields); i++) { 998 snd_iprintf(buffer, "%s ", fields[i].name); 999 if (fields[i].size == sizeof(int)) 1000 snd_iprintf(buffer, fields[i].format, 1001 *get_dummy_int_ptr(dummy, fields[i].offset)); 1002 else 1003 snd_iprintf(buffer, fields[i].format, 1004 *get_dummy_ll_ptr(dummy, fields[i].offset)); 1005 if (!strcmp(fields[i].name, "formats")) 1006 print_formats(dummy, buffer); 1007 else if (!strcmp(fields[i].name, "rates")) 1008 print_rates(dummy, buffer); 1009 snd_iprintf(buffer, "\n"); 1010 } 1011 } 1012 1013 static void dummy_proc_write(struct snd_info_entry *entry, 1014 struct snd_info_buffer *buffer) 1015 { 1016 struct snd_dummy *dummy = entry->private_data; 1017 char line[64]; 1018 1019 while (!snd_info_get_line(buffer, line, sizeof(line))) { 1020 char item[20]; 1021 const char *ptr; 1022 unsigned long long val; 1023 int i; 1024 1025 ptr = snd_info_get_str(item, line, sizeof(item)); 1026 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1027 if (!strcmp(item, fields[i].name)) 1028 break; 1029 } 1030 if (i >= ARRAY_SIZE(fields)) 1031 continue; 1032 snd_info_get_str(item, ptr, sizeof(item)); 1033 if (kstrtoull(item, 0, &val)) 1034 continue; 1035 if (fields[i].size == sizeof(int)) 1036 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1037 else 1038 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1039 } 1040 } 1041 1042 static void dummy_proc_init(struct snd_dummy *chip) 1043 { 1044 struct snd_info_entry *entry; 1045 1046 if (!snd_card_proc_new(chip->card, "dummy_pcm", &entry)) { 1047 snd_info_set_text_ops(entry, chip, dummy_proc_read); 1048 entry->c.text.write = dummy_proc_write; 1049 entry->mode |= S_IWUSR; 1050 entry->private_data = chip; 1051 } 1052 } 1053 #else 1054 #define dummy_proc_init(x) 1055 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */ 1056 1057 static int snd_dummy_probe(struct platform_device *devptr) 1058 { 1059 struct snd_card *card; 1060 struct snd_dummy *dummy; 1061 struct dummy_model *m = NULL, **mdl; 1062 int idx, err; 1063 int dev = devptr->id; 1064 1065 err = snd_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE, 1066 sizeof(struct snd_dummy), &card); 1067 if (err < 0) 1068 return err; 1069 dummy = card->private_data; 1070 dummy->card = card; 1071 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1072 if (strcmp(model[dev], (*mdl)->name) == 0) { 1073 printk(KERN_INFO 1074 "snd-dummy: Using model '%s' for card %i\n", 1075 (*mdl)->name, card->number); 1076 m = dummy->model = *mdl; 1077 break; 1078 } 1079 } 1080 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1081 if (pcm_substreams[dev] < 1) 1082 pcm_substreams[dev] = 1; 1083 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1084 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1085 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1086 if (err < 0) 1087 goto __nodev; 1088 } 1089 1090 dummy->pcm_hw = dummy_pcm_hardware; 1091 if (m) { 1092 if (m->formats) 1093 dummy->pcm_hw.formats = m->formats; 1094 if (m->buffer_bytes_max) 1095 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1096 if (m->period_bytes_min) 1097 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1098 if (m->period_bytes_max) 1099 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1100 if (m->periods_min) 1101 dummy->pcm_hw.periods_min = m->periods_min; 1102 if (m->periods_max) 1103 dummy->pcm_hw.periods_max = m->periods_max; 1104 if (m->rates) 1105 dummy->pcm_hw.rates = m->rates; 1106 if (m->rate_min) 1107 dummy->pcm_hw.rate_min = m->rate_min; 1108 if (m->rate_max) 1109 dummy->pcm_hw.rate_max = m->rate_max; 1110 if (m->channels_min) 1111 dummy->pcm_hw.channels_min = m->channels_min; 1112 if (m->channels_max) 1113 dummy->pcm_hw.channels_max = m->channels_max; 1114 } 1115 1116 err = snd_card_dummy_new_mixer(dummy); 1117 if (err < 0) 1118 goto __nodev; 1119 strcpy(card->driver, "Dummy"); 1120 strcpy(card->shortname, "Dummy"); 1121 sprintf(card->longname, "Dummy %i", dev + 1); 1122 1123 dummy_proc_init(dummy); 1124 1125 err = snd_card_register(card); 1126 if (err == 0) { 1127 platform_set_drvdata(devptr, card); 1128 return 0; 1129 } 1130 __nodev: 1131 snd_card_free(card); 1132 return err; 1133 } 1134 1135 static int snd_dummy_remove(struct platform_device *devptr) 1136 { 1137 snd_card_free(platform_get_drvdata(devptr)); 1138 return 0; 1139 } 1140 1141 #ifdef CONFIG_PM_SLEEP 1142 static int snd_dummy_suspend(struct device *pdev) 1143 { 1144 struct snd_card *card = dev_get_drvdata(pdev); 1145 struct snd_dummy *dummy = card->private_data; 1146 1147 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1148 snd_pcm_suspend_all(dummy->pcm); 1149 return 0; 1150 } 1151 1152 static int snd_dummy_resume(struct device *pdev) 1153 { 1154 struct snd_card *card = dev_get_drvdata(pdev); 1155 1156 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1157 return 0; 1158 } 1159 1160 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1161 #define SND_DUMMY_PM_OPS &snd_dummy_pm 1162 #else 1163 #define SND_DUMMY_PM_OPS NULL 1164 #endif 1165 1166 #define SND_DUMMY_DRIVER "snd_dummy" 1167 1168 static struct platform_driver snd_dummy_driver = { 1169 .probe = snd_dummy_probe, 1170 .remove = snd_dummy_remove, 1171 .driver = { 1172 .name = SND_DUMMY_DRIVER, 1173 .pm = SND_DUMMY_PM_OPS, 1174 }, 1175 }; 1176 1177 static void snd_dummy_unregister_all(void) 1178 { 1179 int i; 1180 1181 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1182 platform_device_unregister(devices[i]); 1183 platform_driver_unregister(&snd_dummy_driver); 1184 free_fake_buffer(); 1185 } 1186 1187 static int __init alsa_card_dummy_init(void) 1188 { 1189 int i, cards, err; 1190 1191 err = platform_driver_register(&snd_dummy_driver); 1192 if (err < 0) 1193 return err; 1194 1195 err = alloc_fake_buffer(); 1196 if (err < 0) { 1197 platform_driver_unregister(&snd_dummy_driver); 1198 return err; 1199 } 1200 1201 cards = 0; 1202 for (i = 0; i < SNDRV_CARDS; i++) { 1203 struct platform_device *device; 1204 if (! enable[i]) 1205 continue; 1206 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1207 i, NULL, 0); 1208 if (IS_ERR(device)) 1209 continue; 1210 if (!platform_get_drvdata(device)) { 1211 platform_device_unregister(device); 1212 continue; 1213 } 1214 devices[i] = device; 1215 cards++; 1216 } 1217 if (!cards) { 1218 #ifdef MODULE 1219 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1220 #endif 1221 snd_dummy_unregister_all(); 1222 return -ENODEV; 1223 } 1224 return 0; 1225 } 1226 1227 static void __exit alsa_card_dummy_exit(void) 1228 { 1229 snd_dummy_unregister_all(); 1230 } 1231 1232 module_init(alsa_card_dummy_init) 1233 module_exit(alsa_card_dummy_exit) 1234