1 /* 2 * Dummy soundcard 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 */ 20 21 #include <linux/init.h> 22 #include <linux/err.h> 23 #include <linux/platform_device.h> 24 #include <linux/jiffies.h> 25 #include <linux/slab.h> 26 #include <linux/time.h> 27 #include <linux/wait.h> 28 #include <linux/hrtimer.h> 29 #include <linux/math64.h> 30 #include <linux/module.h> 31 #include <sound/core.h> 32 #include <sound/control.h> 33 #include <sound/tlv.h> 34 #include <sound/pcm.h> 35 #include <sound/rawmidi.h> 36 #include <sound/info.h> 37 #include <sound/initval.h> 38 39 MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>"); 40 MODULE_DESCRIPTION("Dummy soundcard (/dev/null)"); 41 MODULE_LICENSE("GPL"); 42 MODULE_SUPPORTED_DEVICE("{{ALSA,Dummy soundcard}}"); 43 44 #define MAX_PCM_DEVICES 4 45 #define MAX_PCM_SUBSTREAMS 128 46 #define MAX_MIDI_DEVICES 2 47 48 /* defaults */ 49 #define MAX_BUFFER_SIZE (64*1024) 50 #define MIN_PERIOD_SIZE 64 51 #define MAX_PERIOD_SIZE MAX_BUFFER_SIZE 52 #define USE_FORMATS (SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE) 53 #define USE_RATE SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000 54 #define USE_RATE_MIN 5500 55 #define USE_RATE_MAX 48000 56 #define USE_CHANNELS_MIN 1 57 #define USE_CHANNELS_MAX 2 58 #define USE_PERIODS_MIN 1 59 #define USE_PERIODS_MAX 1024 60 61 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 62 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 63 static bool enable[SNDRV_CARDS] = {1, [1 ... (SNDRV_CARDS - 1)] = 0}; 64 static char *model[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = NULL}; 65 static int pcm_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1}; 66 static int pcm_substreams[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 8}; 67 //static int midi_devs[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2}; 68 #ifdef CONFIG_HIGH_RES_TIMERS 69 static bool hrtimer = 1; 70 #endif 71 static bool fake_buffer = 1; 72 73 module_param_array(index, int, NULL, 0444); 74 MODULE_PARM_DESC(index, "Index value for dummy soundcard."); 75 module_param_array(id, charp, NULL, 0444); 76 MODULE_PARM_DESC(id, "ID string for dummy soundcard."); 77 module_param_array(enable, bool, NULL, 0444); 78 MODULE_PARM_DESC(enable, "Enable this dummy soundcard."); 79 module_param_array(model, charp, NULL, 0444); 80 MODULE_PARM_DESC(model, "Soundcard model."); 81 module_param_array(pcm_devs, int, NULL, 0444); 82 MODULE_PARM_DESC(pcm_devs, "PCM devices # (0-4) for dummy driver."); 83 module_param_array(pcm_substreams, int, NULL, 0444); 84 MODULE_PARM_DESC(pcm_substreams, "PCM substreams # (1-128) for dummy driver."); 85 //module_param_array(midi_devs, int, NULL, 0444); 86 //MODULE_PARM_DESC(midi_devs, "MIDI devices # (0-2) for dummy driver."); 87 module_param(fake_buffer, bool, 0444); 88 MODULE_PARM_DESC(fake_buffer, "Fake buffer allocations."); 89 #ifdef CONFIG_HIGH_RES_TIMERS 90 module_param(hrtimer, bool, 0644); 91 MODULE_PARM_DESC(hrtimer, "Use hrtimer as the timer source."); 92 #endif 93 94 static struct platform_device *devices[SNDRV_CARDS]; 95 96 #define MIXER_ADDR_MASTER 0 97 #define MIXER_ADDR_LINE 1 98 #define MIXER_ADDR_MIC 2 99 #define MIXER_ADDR_SYNTH 3 100 #define MIXER_ADDR_CD 4 101 #define MIXER_ADDR_LAST 4 102 103 struct dummy_timer_ops { 104 int (*create)(struct snd_pcm_substream *); 105 void (*free)(struct snd_pcm_substream *); 106 int (*prepare)(struct snd_pcm_substream *); 107 int (*start)(struct snd_pcm_substream *); 108 int (*stop)(struct snd_pcm_substream *); 109 snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *); 110 }; 111 112 #define get_dummy_ops(substream) \ 113 (*(const struct dummy_timer_ops **)(substream)->runtime->private_data) 114 115 struct dummy_model { 116 const char *name; 117 int (*playback_constraints)(struct snd_pcm_runtime *runtime); 118 int (*capture_constraints)(struct snd_pcm_runtime *runtime); 119 u64 formats; 120 size_t buffer_bytes_max; 121 size_t period_bytes_min; 122 size_t period_bytes_max; 123 unsigned int periods_min; 124 unsigned int periods_max; 125 unsigned int rates; 126 unsigned int rate_min; 127 unsigned int rate_max; 128 unsigned int channels_min; 129 unsigned int channels_max; 130 }; 131 132 struct snd_dummy { 133 struct snd_card *card; 134 struct dummy_model *model; 135 struct snd_pcm *pcm; 136 struct snd_pcm_hardware pcm_hw; 137 spinlock_t mixer_lock; 138 int mixer_volume[MIXER_ADDR_LAST+1][2]; 139 int capture_source[MIXER_ADDR_LAST+1][2]; 140 int iobox; 141 struct snd_kcontrol *cd_volume_ctl; 142 struct snd_kcontrol *cd_switch_ctl; 143 }; 144 145 /* 146 * card models 147 */ 148 149 static int emu10k1_playback_constraints(struct snd_pcm_runtime *runtime) 150 { 151 int err; 152 err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); 153 if (err < 0) 154 return err; 155 err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 256, UINT_MAX); 156 if (err < 0) 157 return err; 158 return 0; 159 } 160 161 static struct dummy_model model_emu10k1 = { 162 .name = "emu10k1", 163 .playback_constraints = emu10k1_playback_constraints, 164 .buffer_bytes_max = 128 * 1024, 165 }; 166 167 static struct dummy_model model_rme9652 = { 168 .name = "rme9652", 169 .buffer_bytes_max = 26 * 64 * 1024, 170 .formats = SNDRV_PCM_FMTBIT_S32_LE, 171 .channels_min = 26, 172 .channels_max = 26, 173 .periods_min = 2, 174 .periods_max = 2, 175 }; 176 177 static struct dummy_model model_ice1712 = { 178 .name = "ice1712", 179 .buffer_bytes_max = 256 * 1024, 180 .formats = SNDRV_PCM_FMTBIT_S32_LE, 181 .channels_min = 10, 182 .channels_max = 10, 183 .periods_min = 1, 184 .periods_max = 1024, 185 }; 186 187 static struct dummy_model model_uda1341 = { 188 .name = "uda1341", 189 .buffer_bytes_max = 16380, 190 .formats = SNDRV_PCM_FMTBIT_S16_LE, 191 .channels_min = 2, 192 .channels_max = 2, 193 .periods_min = 2, 194 .periods_max = 255, 195 }; 196 197 static struct dummy_model model_ac97 = { 198 .name = "ac97", 199 .formats = SNDRV_PCM_FMTBIT_S16_LE, 200 .channels_min = 2, 201 .channels_max = 2, 202 .rates = SNDRV_PCM_RATE_48000, 203 .rate_min = 48000, 204 .rate_max = 48000, 205 }; 206 207 static struct dummy_model model_ca0106 = { 208 .name = "ca0106", 209 .formats = SNDRV_PCM_FMTBIT_S16_LE, 210 .buffer_bytes_max = ((65536-64)*8), 211 .period_bytes_max = (65536-64), 212 .periods_min = 2, 213 .periods_max = 8, 214 .channels_min = 2, 215 .channels_max = 2, 216 .rates = SNDRV_PCM_RATE_48000|SNDRV_PCM_RATE_96000|SNDRV_PCM_RATE_192000, 217 .rate_min = 48000, 218 .rate_max = 192000, 219 }; 220 221 static struct dummy_model *dummy_models[] = { 222 &model_emu10k1, 223 &model_rme9652, 224 &model_ice1712, 225 &model_uda1341, 226 &model_ac97, 227 &model_ca0106, 228 NULL 229 }; 230 231 /* 232 * system timer interface 233 */ 234 235 struct dummy_systimer_pcm { 236 /* ops must be the first item */ 237 const struct dummy_timer_ops *timer_ops; 238 spinlock_t lock; 239 struct timer_list timer; 240 unsigned long base_time; 241 unsigned int frac_pos; /* fractional sample position (based HZ) */ 242 unsigned int frac_period_rest; 243 unsigned int frac_buffer_size; /* buffer_size * HZ */ 244 unsigned int frac_period_size; /* period_size * HZ */ 245 unsigned int rate; 246 int elapsed; 247 struct snd_pcm_substream *substream; 248 }; 249 250 static void dummy_systimer_rearm(struct dummy_systimer_pcm *dpcm) 251 { 252 mod_timer(&dpcm->timer, jiffies + 253 (dpcm->frac_period_rest + dpcm->rate - 1) / dpcm->rate); 254 } 255 256 static void dummy_systimer_update(struct dummy_systimer_pcm *dpcm) 257 { 258 unsigned long delta; 259 260 delta = jiffies - dpcm->base_time; 261 if (!delta) 262 return; 263 dpcm->base_time += delta; 264 delta *= dpcm->rate; 265 dpcm->frac_pos += delta; 266 while (dpcm->frac_pos >= dpcm->frac_buffer_size) 267 dpcm->frac_pos -= dpcm->frac_buffer_size; 268 while (dpcm->frac_period_rest <= delta) { 269 dpcm->elapsed++; 270 dpcm->frac_period_rest += dpcm->frac_period_size; 271 } 272 dpcm->frac_period_rest -= delta; 273 } 274 275 static int dummy_systimer_start(struct snd_pcm_substream *substream) 276 { 277 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 278 spin_lock(&dpcm->lock); 279 dpcm->base_time = jiffies; 280 dummy_systimer_rearm(dpcm); 281 spin_unlock(&dpcm->lock); 282 return 0; 283 } 284 285 static int dummy_systimer_stop(struct snd_pcm_substream *substream) 286 { 287 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 288 spin_lock(&dpcm->lock); 289 del_timer(&dpcm->timer); 290 spin_unlock(&dpcm->lock); 291 return 0; 292 } 293 294 static int dummy_systimer_prepare(struct snd_pcm_substream *substream) 295 { 296 struct snd_pcm_runtime *runtime = substream->runtime; 297 struct dummy_systimer_pcm *dpcm = runtime->private_data; 298 299 dpcm->frac_pos = 0; 300 dpcm->rate = runtime->rate; 301 dpcm->frac_buffer_size = runtime->buffer_size * HZ; 302 dpcm->frac_period_size = runtime->period_size * HZ; 303 dpcm->frac_period_rest = dpcm->frac_period_size; 304 dpcm->elapsed = 0; 305 306 return 0; 307 } 308 309 static void dummy_systimer_callback(struct timer_list *t) 310 { 311 struct dummy_systimer_pcm *dpcm = from_timer(dpcm, t, timer); 312 unsigned long flags; 313 int elapsed = 0; 314 315 spin_lock_irqsave(&dpcm->lock, flags); 316 dummy_systimer_update(dpcm); 317 dummy_systimer_rearm(dpcm); 318 elapsed = dpcm->elapsed; 319 dpcm->elapsed = 0; 320 spin_unlock_irqrestore(&dpcm->lock, flags); 321 if (elapsed) 322 snd_pcm_period_elapsed(dpcm->substream); 323 } 324 325 static snd_pcm_uframes_t 326 dummy_systimer_pointer(struct snd_pcm_substream *substream) 327 { 328 struct dummy_systimer_pcm *dpcm = substream->runtime->private_data; 329 snd_pcm_uframes_t pos; 330 331 spin_lock(&dpcm->lock); 332 dummy_systimer_update(dpcm); 333 pos = dpcm->frac_pos / HZ; 334 spin_unlock(&dpcm->lock); 335 return pos; 336 } 337 338 static int dummy_systimer_create(struct snd_pcm_substream *substream) 339 { 340 struct dummy_systimer_pcm *dpcm; 341 342 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 343 if (!dpcm) 344 return -ENOMEM; 345 substream->runtime->private_data = dpcm; 346 timer_setup(&dpcm->timer, dummy_systimer_callback, 0); 347 spin_lock_init(&dpcm->lock); 348 dpcm->substream = substream; 349 return 0; 350 } 351 352 static void dummy_systimer_free(struct snd_pcm_substream *substream) 353 { 354 kfree(substream->runtime->private_data); 355 } 356 357 static const struct dummy_timer_ops dummy_systimer_ops = { 358 .create = dummy_systimer_create, 359 .free = dummy_systimer_free, 360 .prepare = dummy_systimer_prepare, 361 .start = dummy_systimer_start, 362 .stop = dummy_systimer_stop, 363 .pointer = dummy_systimer_pointer, 364 }; 365 366 #ifdef CONFIG_HIGH_RES_TIMERS 367 /* 368 * hrtimer interface 369 */ 370 371 struct dummy_hrtimer_pcm { 372 /* ops must be the first item */ 373 const struct dummy_timer_ops *timer_ops; 374 ktime_t base_time; 375 ktime_t period_time; 376 atomic_t running; 377 struct hrtimer timer; 378 struct tasklet_struct tasklet; 379 struct snd_pcm_substream *substream; 380 }; 381 382 static void dummy_hrtimer_pcm_elapsed(unsigned long priv) 383 { 384 struct dummy_hrtimer_pcm *dpcm = (struct dummy_hrtimer_pcm *)priv; 385 if (atomic_read(&dpcm->running)) 386 snd_pcm_period_elapsed(dpcm->substream); 387 } 388 389 static enum hrtimer_restart dummy_hrtimer_callback(struct hrtimer *timer) 390 { 391 struct dummy_hrtimer_pcm *dpcm; 392 393 dpcm = container_of(timer, struct dummy_hrtimer_pcm, timer); 394 if (!atomic_read(&dpcm->running)) 395 return HRTIMER_NORESTART; 396 tasklet_schedule(&dpcm->tasklet); 397 hrtimer_forward_now(timer, dpcm->period_time); 398 return HRTIMER_RESTART; 399 } 400 401 static int dummy_hrtimer_start(struct snd_pcm_substream *substream) 402 { 403 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 404 405 dpcm->base_time = hrtimer_cb_get_time(&dpcm->timer); 406 hrtimer_start(&dpcm->timer, dpcm->period_time, HRTIMER_MODE_REL); 407 atomic_set(&dpcm->running, 1); 408 return 0; 409 } 410 411 static int dummy_hrtimer_stop(struct snd_pcm_substream *substream) 412 { 413 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 414 415 atomic_set(&dpcm->running, 0); 416 hrtimer_cancel(&dpcm->timer); 417 return 0; 418 } 419 420 static inline void dummy_hrtimer_sync(struct dummy_hrtimer_pcm *dpcm) 421 { 422 hrtimer_cancel(&dpcm->timer); 423 tasklet_kill(&dpcm->tasklet); 424 } 425 426 static snd_pcm_uframes_t 427 dummy_hrtimer_pointer(struct snd_pcm_substream *substream) 428 { 429 struct snd_pcm_runtime *runtime = substream->runtime; 430 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 431 u64 delta; 432 u32 pos; 433 434 delta = ktime_us_delta(hrtimer_cb_get_time(&dpcm->timer), 435 dpcm->base_time); 436 delta = div_u64(delta * runtime->rate + 999999, 1000000); 437 div_u64_rem(delta, runtime->buffer_size, &pos); 438 return pos; 439 } 440 441 static int dummy_hrtimer_prepare(struct snd_pcm_substream *substream) 442 { 443 struct snd_pcm_runtime *runtime = substream->runtime; 444 struct dummy_hrtimer_pcm *dpcm = runtime->private_data; 445 unsigned int period, rate; 446 long sec; 447 unsigned long nsecs; 448 449 dummy_hrtimer_sync(dpcm); 450 period = runtime->period_size; 451 rate = runtime->rate; 452 sec = period / rate; 453 period %= rate; 454 nsecs = div_u64((u64)period * 1000000000UL + rate - 1, rate); 455 dpcm->period_time = ktime_set(sec, nsecs); 456 457 return 0; 458 } 459 460 static int dummy_hrtimer_create(struct snd_pcm_substream *substream) 461 { 462 struct dummy_hrtimer_pcm *dpcm; 463 464 dpcm = kzalloc(sizeof(*dpcm), GFP_KERNEL); 465 if (!dpcm) 466 return -ENOMEM; 467 substream->runtime->private_data = dpcm; 468 hrtimer_init(&dpcm->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 469 dpcm->timer.function = dummy_hrtimer_callback; 470 dpcm->substream = substream; 471 atomic_set(&dpcm->running, 0); 472 tasklet_init(&dpcm->tasklet, dummy_hrtimer_pcm_elapsed, 473 (unsigned long)dpcm); 474 return 0; 475 } 476 477 static void dummy_hrtimer_free(struct snd_pcm_substream *substream) 478 { 479 struct dummy_hrtimer_pcm *dpcm = substream->runtime->private_data; 480 dummy_hrtimer_sync(dpcm); 481 kfree(dpcm); 482 } 483 484 static const struct dummy_timer_ops dummy_hrtimer_ops = { 485 .create = dummy_hrtimer_create, 486 .free = dummy_hrtimer_free, 487 .prepare = dummy_hrtimer_prepare, 488 .start = dummy_hrtimer_start, 489 .stop = dummy_hrtimer_stop, 490 .pointer = dummy_hrtimer_pointer, 491 }; 492 493 #endif /* CONFIG_HIGH_RES_TIMERS */ 494 495 /* 496 * PCM interface 497 */ 498 499 static int dummy_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 500 { 501 switch (cmd) { 502 case SNDRV_PCM_TRIGGER_START: 503 case SNDRV_PCM_TRIGGER_RESUME: 504 return get_dummy_ops(substream)->start(substream); 505 case SNDRV_PCM_TRIGGER_STOP: 506 case SNDRV_PCM_TRIGGER_SUSPEND: 507 return get_dummy_ops(substream)->stop(substream); 508 } 509 return -EINVAL; 510 } 511 512 static int dummy_pcm_prepare(struct snd_pcm_substream *substream) 513 { 514 return get_dummy_ops(substream)->prepare(substream); 515 } 516 517 static snd_pcm_uframes_t dummy_pcm_pointer(struct snd_pcm_substream *substream) 518 { 519 return get_dummy_ops(substream)->pointer(substream); 520 } 521 522 static const struct snd_pcm_hardware dummy_pcm_hardware = { 523 .info = (SNDRV_PCM_INFO_MMAP | 524 SNDRV_PCM_INFO_INTERLEAVED | 525 SNDRV_PCM_INFO_RESUME | 526 SNDRV_PCM_INFO_MMAP_VALID), 527 .formats = USE_FORMATS, 528 .rates = USE_RATE, 529 .rate_min = USE_RATE_MIN, 530 .rate_max = USE_RATE_MAX, 531 .channels_min = USE_CHANNELS_MIN, 532 .channels_max = USE_CHANNELS_MAX, 533 .buffer_bytes_max = MAX_BUFFER_SIZE, 534 .period_bytes_min = MIN_PERIOD_SIZE, 535 .period_bytes_max = MAX_PERIOD_SIZE, 536 .periods_min = USE_PERIODS_MIN, 537 .periods_max = USE_PERIODS_MAX, 538 .fifo_size = 0, 539 }; 540 541 static int dummy_pcm_hw_params(struct snd_pcm_substream *substream, 542 struct snd_pcm_hw_params *hw_params) 543 { 544 if (fake_buffer) { 545 /* runtime->dma_bytes has to be set manually to allow mmap */ 546 substream->runtime->dma_bytes = params_buffer_bytes(hw_params); 547 return 0; 548 } 549 return snd_pcm_lib_malloc_pages(substream, 550 params_buffer_bytes(hw_params)); 551 } 552 553 static int dummy_pcm_hw_free(struct snd_pcm_substream *substream) 554 { 555 if (fake_buffer) 556 return 0; 557 return snd_pcm_lib_free_pages(substream); 558 } 559 560 static int dummy_pcm_open(struct snd_pcm_substream *substream) 561 { 562 struct snd_dummy *dummy = snd_pcm_substream_chip(substream); 563 struct dummy_model *model = dummy->model; 564 struct snd_pcm_runtime *runtime = substream->runtime; 565 const struct dummy_timer_ops *ops; 566 int err; 567 568 ops = &dummy_systimer_ops; 569 #ifdef CONFIG_HIGH_RES_TIMERS 570 if (hrtimer) 571 ops = &dummy_hrtimer_ops; 572 #endif 573 574 err = ops->create(substream); 575 if (err < 0) 576 return err; 577 get_dummy_ops(substream) = ops; 578 579 runtime->hw = dummy->pcm_hw; 580 if (substream->pcm->device & 1) { 581 runtime->hw.info &= ~SNDRV_PCM_INFO_INTERLEAVED; 582 runtime->hw.info |= SNDRV_PCM_INFO_NONINTERLEAVED; 583 } 584 if (substream->pcm->device & 2) 585 runtime->hw.info &= ~(SNDRV_PCM_INFO_MMAP | 586 SNDRV_PCM_INFO_MMAP_VALID); 587 588 if (model == NULL) 589 return 0; 590 591 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 592 if (model->playback_constraints) 593 err = model->playback_constraints(substream->runtime); 594 } else { 595 if (model->capture_constraints) 596 err = model->capture_constraints(substream->runtime); 597 } 598 if (err < 0) { 599 get_dummy_ops(substream)->free(substream); 600 return err; 601 } 602 return 0; 603 } 604 605 static int dummy_pcm_close(struct snd_pcm_substream *substream) 606 { 607 get_dummy_ops(substream)->free(substream); 608 return 0; 609 } 610 611 /* 612 * dummy buffer handling 613 */ 614 615 static void *dummy_page[2]; 616 617 static void free_fake_buffer(void) 618 { 619 if (fake_buffer) { 620 int i; 621 for (i = 0; i < 2; i++) 622 if (dummy_page[i]) { 623 free_page((unsigned long)dummy_page[i]); 624 dummy_page[i] = NULL; 625 } 626 } 627 } 628 629 static int alloc_fake_buffer(void) 630 { 631 int i; 632 633 if (!fake_buffer) 634 return 0; 635 for (i = 0; i < 2; i++) { 636 dummy_page[i] = (void *)get_zeroed_page(GFP_KERNEL); 637 if (!dummy_page[i]) { 638 free_fake_buffer(); 639 return -ENOMEM; 640 } 641 } 642 return 0; 643 } 644 645 static int dummy_pcm_copy(struct snd_pcm_substream *substream, 646 int channel, unsigned long pos, 647 void __user *dst, unsigned long bytes) 648 { 649 return 0; /* do nothing */ 650 } 651 652 static int dummy_pcm_copy_kernel(struct snd_pcm_substream *substream, 653 int channel, unsigned long pos, 654 void *dst, unsigned long bytes) 655 { 656 return 0; /* do nothing */ 657 } 658 659 static int dummy_pcm_silence(struct snd_pcm_substream *substream, 660 int channel, unsigned long pos, 661 unsigned long bytes) 662 { 663 return 0; /* do nothing */ 664 } 665 666 static struct page *dummy_pcm_page(struct snd_pcm_substream *substream, 667 unsigned long offset) 668 { 669 return virt_to_page(dummy_page[substream->stream]); /* the same page */ 670 } 671 672 static struct snd_pcm_ops dummy_pcm_ops = { 673 .open = dummy_pcm_open, 674 .close = dummy_pcm_close, 675 .ioctl = snd_pcm_lib_ioctl, 676 .hw_params = dummy_pcm_hw_params, 677 .hw_free = dummy_pcm_hw_free, 678 .prepare = dummy_pcm_prepare, 679 .trigger = dummy_pcm_trigger, 680 .pointer = dummy_pcm_pointer, 681 }; 682 683 static struct snd_pcm_ops dummy_pcm_ops_no_buf = { 684 .open = dummy_pcm_open, 685 .close = dummy_pcm_close, 686 .ioctl = snd_pcm_lib_ioctl, 687 .hw_params = dummy_pcm_hw_params, 688 .hw_free = dummy_pcm_hw_free, 689 .prepare = dummy_pcm_prepare, 690 .trigger = dummy_pcm_trigger, 691 .pointer = dummy_pcm_pointer, 692 .copy_user = dummy_pcm_copy, 693 .copy_kernel = dummy_pcm_copy_kernel, 694 .fill_silence = dummy_pcm_silence, 695 .page = dummy_pcm_page, 696 }; 697 698 static int snd_card_dummy_pcm(struct snd_dummy *dummy, int device, 699 int substreams) 700 { 701 struct snd_pcm *pcm; 702 struct snd_pcm_ops *ops; 703 int err; 704 705 err = snd_pcm_new(dummy->card, "Dummy PCM", device, 706 substreams, substreams, &pcm); 707 if (err < 0) 708 return err; 709 dummy->pcm = pcm; 710 if (fake_buffer) 711 ops = &dummy_pcm_ops_no_buf; 712 else 713 ops = &dummy_pcm_ops; 714 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, ops); 715 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, ops); 716 pcm->private_data = dummy; 717 pcm->info_flags = 0; 718 strcpy(pcm->name, "Dummy PCM"); 719 if (!fake_buffer) { 720 snd_pcm_lib_preallocate_pages_for_all(pcm, 721 SNDRV_DMA_TYPE_CONTINUOUS, 722 snd_dma_continuous_data(GFP_KERNEL), 723 0, 64*1024); 724 } 725 return 0; 726 } 727 728 /* 729 * mixer interface 730 */ 731 732 #define DUMMY_VOLUME(xname, xindex, addr) \ 733 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ 734 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \ 735 .name = xname, .index = xindex, \ 736 .info = snd_dummy_volume_info, \ 737 .get = snd_dummy_volume_get, .put = snd_dummy_volume_put, \ 738 .private_value = addr, \ 739 .tlv = { .p = db_scale_dummy } } 740 741 static int snd_dummy_volume_info(struct snd_kcontrol *kcontrol, 742 struct snd_ctl_elem_info *uinfo) 743 { 744 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 745 uinfo->count = 2; 746 uinfo->value.integer.min = -50; 747 uinfo->value.integer.max = 100; 748 return 0; 749 } 750 751 static int snd_dummy_volume_get(struct snd_kcontrol *kcontrol, 752 struct snd_ctl_elem_value *ucontrol) 753 { 754 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 755 int addr = kcontrol->private_value; 756 757 spin_lock_irq(&dummy->mixer_lock); 758 ucontrol->value.integer.value[0] = dummy->mixer_volume[addr][0]; 759 ucontrol->value.integer.value[1] = dummy->mixer_volume[addr][1]; 760 spin_unlock_irq(&dummy->mixer_lock); 761 return 0; 762 } 763 764 static int snd_dummy_volume_put(struct snd_kcontrol *kcontrol, 765 struct snd_ctl_elem_value *ucontrol) 766 { 767 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 768 int change, addr = kcontrol->private_value; 769 int left, right; 770 771 left = ucontrol->value.integer.value[0]; 772 if (left < -50) 773 left = -50; 774 if (left > 100) 775 left = 100; 776 right = ucontrol->value.integer.value[1]; 777 if (right < -50) 778 right = -50; 779 if (right > 100) 780 right = 100; 781 spin_lock_irq(&dummy->mixer_lock); 782 change = dummy->mixer_volume[addr][0] != left || 783 dummy->mixer_volume[addr][1] != right; 784 dummy->mixer_volume[addr][0] = left; 785 dummy->mixer_volume[addr][1] = right; 786 spin_unlock_irq(&dummy->mixer_lock); 787 return change; 788 } 789 790 static const DECLARE_TLV_DB_SCALE(db_scale_dummy, -4500, 30, 0); 791 792 #define DUMMY_CAPSRC(xname, xindex, addr) \ 793 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \ 794 .info = snd_dummy_capsrc_info, \ 795 .get = snd_dummy_capsrc_get, .put = snd_dummy_capsrc_put, \ 796 .private_value = addr } 797 798 #define snd_dummy_capsrc_info snd_ctl_boolean_stereo_info 799 800 static int snd_dummy_capsrc_get(struct snd_kcontrol *kcontrol, 801 struct snd_ctl_elem_value *ucontrol) 802 { 803 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 804 int addr = kcontrol->private_value; 805 806 spin_lock_irq(&dummy->mixer_lock); 807 ucontrol->value.integer.value[0] = dummy->capture_source[addr][0]; 808 ucontrol->value.integer.value[1] = dummy->capture_source[addr][1]; 809 spin_unlock_irq(&dummy->mixer_lock); 810 return 0; 811 } 812 813 static int snd_dummy_capsrc_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 814 { 815 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 816 int change, addr = kcontrol->private_value; 817 int left, right; 818 819 left = ucontrol->value.integer.value[0] & 1; 820 right = ucontrol->value.integer.value[1] & 1; 821 spin_lock_irq(&dummy->mixer_lock); 822 change = dummy->capture_source[addr][0] != left && 823 dummy->capture_source[addr][1] != right; 824 dummy->capture_source[addr][0] = left; 825 dummy->capture_source[addr][1] = right; 826 spin_unlock_irq(&dummy->mixer_lock); 827 return change; 828 } 829 830 static int snd_dummy_iobox_info(struct snd_kcontrol *kcontrol, 831 struct snd_ctl_elem_info *info) 832 { 833 const char *const names[] = { "None", "CD Player" }; 834 835 return snd_ctl_enum_info(info, 1, 2, names); 836 } 837 838 static int snd_dummy_iobox_get(struct snd_kcontrol *kcontrol, 839 struct snd_ctl_elem_value *value) 840 { 841 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 842 843 value->value.enumerated.item[0] = dummy->iobox; 844 return 0; 845 } 846 847 static int snd_dummy_iobox_put(struct snd_kcontrol *kcontrol, 848 struct snd_ctl_elem_value *value) 849 { 850 struct snd_dummy *dummy = snd_kcontrol_chip(kcontrol); 851 int changed; 852 853 if (value->value.enumerated.item[0] > 1) 854 return -EINVAL; 855 856 changed = value->value.enumerated.item[0] != dummy->iobox; 857 if (changed) { 858 dummy->iobox = value->value.enumerated.item[0]; 859 860 if (dummy->iobox) { 861 dummy->cd_volume_ctl->vd[0].access &= 862 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 863 dummy->cd_switch_ctl->vd[0].access &= 864 ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 865 } else { 866 dummy->cd_volume_ctl->vd[0].access |= 867 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 868 dummy->cd_switch_ctl->vd[0].access |= 869 SNDRV_CTL_ELEM_ACCESS_INACTIVE; 870 } 871 872 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 873 &dummy->cd_volume_ctl->id); 874 snd_ctl_notify(dummy->card, SNDRV_CTL_EVENT_MASK_INFO, 875 &dummy->cd_switch_ctl->id); 876 } 877 878 return changed; 879 } 880 881 static struct snd_kcontrol_new snd_dummy_controls[] = { 882 DUMMY_VOLUME("Master Volume", 0, MIXER_ADDR_MASTER), 883 DUMMY_CAPSRC("Master Capture Switch", 0, MIXER_ADDR_MASTER), 884 DUMMY_VOLUME("Synth Volume", 0, MIXER_ADDR_SYNTH), 885 DUMMY_CAPSRC("Synth Capture Switch", 0, MIXER_ADDR_SYNTH), 886 DUMMY_VOLUME("Line Volume", 0, MIXER_ADDR_LINE), 887 DUMMY_CAPSRC("Line Capture Switch", 0, MIXER_ADDR_LINE), 888 DUMMY_VOLUME("Mic Volume", 0, MIXER_ADDR_MIC), 889 DUMMY_CAPSRC("Mic Capture Switch", 0, MIXER_ADDR_MIC), 890 DUMMY_VOLUME("CD Volume", 0, MIXER_ADDR_CD), 891 DUMMY_CAPSRC("CD Capture Switch", 0, MIXER_ADDR_CD), 892 { 893 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 894 .name = "External I/O Box", 895 .info = snd_dummy_iobox_info, 896 .get = snd_dummy_iobox_get, 897 .put = snd_dummy_iobox_put, 898 }, 899 }; 900 901 static int snd_card_dummy_new_mixer(struct snd_dummy *dummy) 902 { 903 struct snd_card *card = dummy->card; 904 struct snd_kcontrol *kcontrol; 905 unsigned int idx; 906 int err; 907 908 spin_lock_init(&dummy->mixer_lock); 909 strcpy(card->mixername, "Dummy Mixer"); 910 dummy->iobox = 1; 911 912 for (idx = 0; idx < ARRAY_SIZE(snd_dummy_controls); idx++) { 913 kcontrol = snd_ctl_new1(&snd_dummy_controls[idx], dummy); 914 err = snd_ctl_add(card, kcontrol); 915 if (err < 0) 916 return err; 917 if (!strcmp(kcontrol->id.name, "CD Volume")) 918 dummy->cd_volume_ctl = kcontrol; 919 else if (!strcmp(kcontrol->id.name, "CD Capture Switch")) 920 dummy->cd_switch_ctl = kcontrol; 921 922 } 923 return 0; 924 } 925 926 #if defined(CONFIG_SND_DEBUG) && defined(CONFIG_SND_PROC_FS) 927 /* 928 * proc interface 929 */ 930 static void print_formats(struct snd_dummy *dummy, 931 struct snd_info_buffer *buffer) 932 { 933 int i; 934 935 for (i = 0; i < SNDRV_PCM_FORMAT_LAST; i++) { 936 if (dummy->pcm_hw.formats & (1ULL << i)) 937 snd_iprintf(buffer, " %s", snd_pcm_format_name(i)); 938 } 939 } 940 941 static void print_rates(struct snd_dummy *dummy, 942 struct snd_info_buffer *buffer) 943 { 944 static int rates[] = { 945 5512, 8000, 11025, 16000, 22050, 32000, 44100, 48000, 946 64000, 88200, 96000, 176400, 192000, 947 }; 948 int i; 949 950 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_CONTINUOUS) 951 snd_iprintf(buffer, " continuous"); 952 if (dummy->pcm_hw.rates & SNDRV_PCM_RATE_KNOT) 953 snd_iprintf(buffer, " knot"); 954 for (i = 0; i < ARRAY_SIZE(rates); i++) 955 if (dummy->pcm_hw.rates & (1 << i)) 956 snd_iprintf(buffer, " %d", rates[i]); 957 } 958 959 #define get_dummy_int_ptr(dummy, ofs) \ 960 (unsigned int *)((char *)&((dummy)->pcm_hw) + (ofs)) 961 #define get_dummy_ll_ptr(dummy, ofs) \ 962 (unsigned long long *)((char *)&((dummy)->pcm_hw) + (ofs)) 963 964 struct dummy_hw_field { 965 const char *name; 966 const char *format; 967 unsigned int offset; 968 unsigned int size; 969 }; 970 #define FIELD_ENTRY(item, fmt) { \ 971 .name = #item, \ 972 .format = fmt, \ 973 .offset = offsetof(struct snd_pcm_hardware, item), \ 974 .size = sizeof(dummy_pcm_hardware.item) } 975 976 static struct dummy_hw_field fields[] = { 977 FIELD_ENTRY(formats, "%#llx"), 978 FIELD_ENTRY(rates, "%#x"), 979 FIELD_ENTRY(rate_min, "%d"), 980 FIELD_ENTRY(rate_max, "%d"), 981 FIELD_ENTRY(channels_min, "%d"), 982 FIELD_ENTRY(channels_max, "%d"), 983 FIELD_ENTRY(buffer_bytes_max, "%ld"), 984 FIELD_ENTRY(period_bytes_min, "%ld"), 985 FIELD_ENTRY(period_bytes_max, "%ld"), 986 FIELD_ENTRY(periods_min, "%d"), 987 FIELD_ENTRY(periods_max, "%d"), 988 }; 989 990 static void dummy_proc_read(struct snd_info_entry *entry, 991 struct snd_info_buffer *buffer) 992 { 993 struct snd_dummy *dummy = entry->private_data; 994 int i; 995 996 for (i = 0; i < ARRAY_SIZE(fields); i++) { 997 snd_iprintf(buffer, "%s ", fields[i].name); 998 if (fields[i].size == sizeof(int)) 999 snd_iprintf(buffer, fields[i].format, 1000 *get_dummy_int_ptr(dummy, fields[i].offset)); 1001 else 1002 snd_iprintf(buffer, fields[i].format, 1003 *get_dummy_ll_ptr(dummy, fields[i].offset)); 1004 if (!strcmp(fields[i].name, "formats")) 1005 print_formats(dummy, buffer); 1006 else if (!strcmp(fields[i].name, "rates")) 1007 print_rates(dummy, buffer); 1008 snd_iprintf(buffer, "\n"); 1009 } 1010 } 1011 1012 static void dummy_proc_write(struct snd_info_entry *entry, 1013 struct snd_info_buffer *buffer) 1014 { 1015 struct snd_dummy *dummy = entry->private_data; 1016 char line[64]; 1017 1018 while (!snd_info_get_line(buffer, line, sizeof(line))) { 1019 char item[20]; 1020 const char *ptr; 1021 unsigned long long val; 1022 int i; 1023 1024 ptr = snd_info_get_str(item, line, sizeof(item)); 1025 for (i = 0; i < ARRAY_SIZE(fields); i++) { 1026 if (!strcmp(item, fields[i].name)) 1027 break; 1028 } 1029 if (i >= ARRAY_SIZE(fields)) 1030 continue; 1031 snd_info_get_str(item, ptr, sizeof(item)); 1032 if (kstrtoull(item, 0, &val)) 1033 continue; 1034 if (fields[i].size == sizeof(int)) 1035 *get_dummy_int_ptr(dummy, fields[i].offset) = val; 1036 else 1037 *get_dummy_ll_ptr(dummy, fields[i].offset) = val; 1038 } 1039 } 1040 1041 static void dummy_proc_init(struct snd_dummy *chip) 1042 { 1043 struct snd_info_entry *entry; 1044 1045 if (!snd_card_proc_new(chip->card, "dummy_pcm", &entry)) { 1046 snd_info_set_text_ops(entry, chip, dummy_proc_read); 1047 entry->c.text.write = dummy_proc_write; 1048 entry->mode |= S_IWUSR; 1049 entry->private_data = chip; 1050 } 1051 } 1052 #else 1053 #define dummy_proc_init(x) 1054 #endif /* CONFIG_SND_DEBUG && CONFIG_SND_PROC_FS */ 1055 1056 static int snd_dummy_probe(struct platform_device *devptr) 1057 { 1058 struct snd_card *card; 1059 struct snd_dummy *dummy; 1060 struct dummy_model *m = NULL, **mdl; 1061 int idx, err; 1062 int dev = devptr->id; 1063 1064 err = snd_card_new(&devptr->dev, index[dev], id[dev], THIS_MODULE, 1065 sizeof(struct snd_dummy), &card); 1066 if (err < 0) 1067 return err; 1068 dummy = card->private_data; 1069 dummy->card = card; 1070 for (mdl = dummy_models; *mdl && model[dev]; mdl++) { 1071 if (strcmp(model[dev], (*mdl)->name) == 0) { 1072 printk(KERN_INFO 1073 "snd-dummy: Using model '%s' for card %i\n", 1074 (*mdl)->name, card->number); 1075 m = dummy->model = *mdl; 1076 break; 1077 } 1078 } 1079 for (idx = 0; idx < MAX_PCM_DEVICES && idx < pcm_devs[dev]; idx++) { 1080 if (pcm_substreams[dev] < 1) 1081 pcm_substreams[dev] = 1; 1082 if (pcm_substreams[dev] > MAX_PCM_SUBSTREAMS) 1083 pcm_substreams[dev] = MAX_PCM_SUBSTREAMS; 1084 err = snd_card_dummy_pcm(dummy, idx, pcm_substreams[dev]); 1085 if (err < 0) 1086 goto __nodev; 1087 } 1088 1089 dummy->pcm_hw = dummy_pcm_hardware; 1090 if (m) { 1091 if (m->formats) 1092 dummy->pcm_hw.formats = m->formats; 1093 if (m->buffer_bytes_max) 1094 dummy->pcm_hw.buffer_bytes_max = m->buffer_bytes_max; 1095 if (m->period_bytes_min) 1096 dummy->pcm_hw.period_bytes_min = m->period_bytes_min; 1097 if (m->period_bytes_max) 1098 dummy->pcm_hw.period_bytes_max = m->period_bytes_max; 1099 if (m->periods_min) 1100 dummy->pcm_hw.periods_min = m->periods_min; 1101 if (m->periods_max) 1102 dummy->pcm_hw.periods_max = m->periods_max; 1103 if (m->rates) 1104 dummy->pcm_hw.rates = m->rates; 1105 if (m->rate_min) 1106 dummy->pcm_hw.rate_min = m->rate_min; 1107 if (m->rate_max) 1108 dummy->pcm_hw.rate_max = m->rate_max; 1109 if (m->channels_min) 1110 dummy->pcm_hw.channels_min = m->channels_min; 1111 if (m->channels_max) 1112 dummy->pcm_hw.channels_max = m->channels_max; 1113 } 1114 1115 err = snd_card_dummy_new_mixer(dummy); 1116 if (err < 0) 1117 goto __nodev; 1118 strcpy(card->driver, "Dummy"); 1119 strcpy(card->shortname, "Dummy"); 1120 sprintf(card->longname, "Dummy %i", dev + 1); 1121 1122 dummy_proc_init(dummy); 1123 1124 err = snd_card_register(card); 1125 if (err == 0) { 1126 platform_set_drvdata(devptr, card); 1127 return 0; 1128 } 1129 __nodev: 1130 snd_card_free(card); 1131 return err; 1132 } 1133 1134 static int snd_dummy_remove(struct platform_device *devptr) 1135 { 1136 snd_card_free(platform_get_drvdata(devptr)); 1137 return 0; 1138 } 1139 1140 #ifdef CONFIG_PM_SLEEP 1141 static int snd_dummy_suspend(struct device *pdev) 1142 { 1143 struct snd_card *card = dev_get_drvdata(pdev); 1144 struct snd_dummy *dummy = card->private_data; 1145 1146 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 1147 snd_pcm_suspend_all(dummy->pcm); 1148 return 0; 1149 } 1150 1151 static int snd_dummy_resume(struct device *pdev) 1152 { 1153 struct snd_card *card = dev_get_drvdata(pdev); 1154 1155 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 1156 return 0; 1157 } 1158 1159 static SIMPLE_DEV_PM_OPS(snd_dummy_pm, snd_dummy_suspend, snd_dummy_resume); 1160 #define SND_DUMMY_PM_OPS &snd_dummy_pm 1161 #else 1162 #define SND_DUMMY_PM_OPS NULL 1163 #endif 1164 1165 #define SND_DUMMY_DRIVER "snd_dummy" 1166 1167 static struct platform_driver snd_dummy_driver = { 1168 .probe = snd_dummy_probe, 1169 .remove = snd_dummy_remove, 1170 .driver = { 1171 .name = SND_DUMMY_DRIVER, 1172 .pm = SND_DUMMY_PM_OPS, 1173 }, 1174 }; 1175 1176 static void snd_dummy_unregister_all(void) 1177 { 1178 int i; 1179 1180 for (i = 0; i < ARRAY_SIZE(devices); ++i) 1181 platform_device_unregister(devices[i]); 1182 platform_driver_unregister(&snd_dummy_driver); 1183 free_fake_buffer(); 1184 } 1185 1186 static int __init alsa_card_dummy_init(void) 1187 { 1188 int i, cards, err; 1189 1190 err = platform_driver_register(&snd_dummy_driver); 1191 if (err < 0) 1192 return err; 1193 1194 err = alloc_fake_buffer(); 1195 if (err < 0) { 1196 platform_driver_unregister(&snd_dummy_driver); 1197 return err; 1198 } 1199 1200 cards = 0; 1201 for (i = 0; i < SNDRV_CARDS; i++) { 1202 struct platform_device *device; 1203 if (! enable[i]) 1204 continue; 1205 device = platform_device_register_simple(SND_DUMMY_DRIVER, 1206 i, NULL, 0); 1207 if (IS_ERR(device)) 1208 continue; 1209 if (!platform_get_drvdata(device)) { 1210 platform_device_unregister(device); 1211 continue; 1212 } 1213 devices[i] = device; 1214 cards++; 1215 } 1216 if (!cards) { 1217 #ifdef MODULE 1218 printk(KERN_ERR "Dummy soundcard not found or device busy\n"); 1219 #endif 1220 snd_dummy_unregister_all(); 1221 return -ENODEV; 1222 } 1223 return 0; 1224 } 1225 1226 static void __exit alsa_card_dummy_exit(void) 1227 { 1228 snd_dummy_unregister_all(); 1229 } 1230 1231 module_init(alsa_card_dummy_init) 1232 module_exit(alsa_card_dummy_exit) 1233