xref: /linux/sound/core/pcm_lib.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
25 #include <linux/time.h>
26 #include <linux/math64.h>
27 #include <linux/export.h>
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <sound/info.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/timer.h>
35 
36 #include "pcm_local.h"
37 
38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
39 #define CREATE_TRACE_POINTS
40 #include "pcm_trace.h"
41 #else
42 #define trace_hwptr(substream, pos, in_interrupt)
43 #define trace_xrun(substream)
44 #define trace_hw_ptr_error(substream, reason)
45 #define trace_applptr(substream, prev, curr)
46 #endif
47 
48 static int fill_silence_frames(struct snd_pcm_substream *substream,
49 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
50 
51 /*
52  * fill ring buffer with silence
53  * runtime->silence_start: starting pointer to silence area
54  * runtime->silence_filled: size filled with silence
55  * runtime->silence_threshold: threshold from application
56  * runtime->silence_size: maximal size from application
57  *
58  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
59  */
60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
61 {
62 	struct snd_pcm_runtime *runtime = substream->runtime;
63 	snd_pcm_uframes_t frames, ofs, transfer;
64 	int err;
65 
66 	if (runtime->silence_size < runtime->boundary) {
67 		snd_pcm_sframes_t noise_dist, n;
68 		snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
69 		if (runtime->silence_start != appl_ptr) {
70 			n = appl_ptr - runtime->silence_start;
71 			if (n < 0)
72 				n += runtime->boundary;
73 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
74 				runtime->silence_filled -= n;
75 			else
76 				runtime->silence_filled = 0;
77 			runtime->silence_start = appl_ptr;
78 		}
79 		if (runtime->silence_filled >= runtime->buffer_size)
80 			return;
81 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
82 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
83 			return;
84 		frames = runtime->silence_threshold - noise_dist;
85 		if (frames > runtime->silence_size)
86 			frames = runtime->silence_size;
87 	} else {
88 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
89 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
90 			if (avail > runtime->buffer_size)
91 				avail = runtime->buffer_size;
92 			runtime->silence_filled = avail > 0 ? avail : 0;
93 			runtime->silence_start = (runtime->status->hw_ptr +
94 						  runtime->silence_filled) %
95 						 runtime->boundary;
96 		} else {
97 			ofs = runtime->status->hw_ptr;
98 			frames = new_hw_ptr - ofs;
99 			if ((snd_pcm_sframes_t)frames < 0)
100 				frames += runtime->boundary;
101 			runtime->silence_filled -= frames;
102 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
103 				runtime->silence_filled = 0;
104 				runtime->silence_start = new_hw_ptr;
105 			} else {
106 				runtime->silence_start = ofs;
107 			}
108 		}
109 		frames = runtime->buffer_size - runtime->silence_filled;
110 	}
111 	if (snd_BUG_ON(frames > runtime->buffer_size))
112 		return;
113 	if (frames == 0)
114 		return;
115 	ofs = runtime->silence_start % runtime->buffer_size;
116 	while (frames > 0) {
117 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
118 		err = fill_silence_frames(substream, ofs, transfer);
119 		snd_BUG_ON(err < 0);
120 		runtime->silence_filled += transfer;
121 		frames -= transfer;
122 		ofs = 0;
123 	}
124 }
125 
126 #ifdef CONFIG_SND_DEBUG
127 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
128 			   char *name, size_t len)
129 {
130 	snprintf(name, len, "pcmC%dD%d%c:%d",
131 		 substream->pcm->card->number,
132 		 substream->pcm->device,
133 		 substream->stream ? 'c' : 'p',
134 		 substream->number);
135 }
136 EXPORT_SYMBOL(snd_pcm_debug_name);
137 #endif
138 
139 #define XRUN_DEBUG_BASIC	(1<<0)
140 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
141 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
142 
143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
144 
145 #define xrun_debug(substream, mask) \
146 			((substream)->pstr->xrun_debug & (mask))
147 #else
148 #define xrun_debug(substream, mask)	0
149 #endif
150 
151 #define dump_stack_on_xrun(substream) do {			\
152 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
153 			dump_stack();				\
154 	} while (0)
155 
156 static void xrun(struct snd_pcm_substream *substream)
157 {
158 	struct snd_pcm_runtime *runtime = substream->runtime;
159 
160 	trace_xrun(substream);
161 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
162 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
163 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
164 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
165 		char name[16];
166 		snd_pcm_debug_name(substream, name, sizeof(name));
167 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
168 		dump_stack_on_xrun(substream);
169 	}
170 }
171 
172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)	\
174 	do {								\
175 		trace_hw_ptr_error(substream, reason);	\
176 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
177 			pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
178 					   (in_interrupt) ? 'Q' : 'P', ##args);	\
179 			dump_stack_on_xrun(substream);			\
180 		}							\
181 	} while (0)
182 
183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
184 
185 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
186 
187 #endif
188 
189 int snd_pcm_update_state(struct snd_pcm_substream *substream,
190 			 struct snd_pcm_runtime *runtime)
191 {
192 	snd_pcm_uframes_t avail;
193 
194 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
195 		avail = snd_pcm_playback_avail(runtime);
196 	else
197 		avail = snd_pcm_capture_avail(runtime);
198 	if (avail > runtime->avail_max)
199 		runtime->avail_max = avail;
200 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
201 		if (avail >= runtime->buffer_size) {
202 			snd_pcm_drain_done(substream);
203 			return -EPIPE;
204 		}
205 	} else {
206 		if (avail >= runtime->stop_threshold) {
207 			xrun(substream);
208 			return -EPIPE;
209 		}
210 	}
211 	if (runtime->twake) {
212 		if (avail >= runtime->twake)
213 			wake_up(&runtime->tsleep);
214 	} else if (avail >= runtime->control->avail_min)
215 		wake_up(&runtime->sleep);
216 	return 0;
217 }
218 
219 static void update_audio_tstamp(struct snd_pcm_substream *substream,
220 				struct timespec *curr_tstamp,
221 				struct timespec *audio_tstamp)
222 {
223 	struct snd_pcm_runtime *runtime = substream->runtime;
224 	u64 audio_frames, audio_nsecs;
225 	struct timespec driver_tstamp;
226 
227 	if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
228 		return;
229 
230 	if (!(substream->ops->get_time_info) ||
231 		(runtime->audio_tstamp_report.actual_type ==
232 			SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
233 
234 		/*
235 		 * provide audio timestamp derived from pointer position
236 		 * add delay only if requested
237 		 */
238 
239 		audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
240 
241 		if (runtime->audio_tstamp_config.report_delay) {
242 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
243 				audio_frames -=  runtime->delay;
244 			else
245 				audio_frames +=  runtime->delay;
246 		}
247 		audio_nsecs = div_u64(audio_frames * 1000000000LL,
248 				runtime->rate);
249 		*audio_tstamp = ns_to_timespec(audio_nsecs);
250 	}
251 	if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) {
252 		runtime->status->audio_tstamp = *audio_tstamp;
253 		runtime->status->tstamp = *curr_tstamp;
254 	}
255 
256 	/*
257 	 * re-take a driver timestamp to let apps detect if the reference tstamp
258 	 * read by low-level hardware was provided with a delay
259 	 */
260 	snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp);
261 	runtime->driver_tstamp = driver_tstamp;
262 }
263 
264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
265 				  unsigned int in_interrupt)
266 {
267 	struct snd_pcm_runtime *runtime = substream->runtime;
268 	snd_pcm_uframes_t pos;
269 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
270 	snd_pcm_sframes_t hdelta, delta;
271 	unsigned long jdelta;
272 	unsigned long curr_jiffies;
273 	struct timespec curr_tstamp;
274 	struct timespec audio_tstamp;
275 	int crossed_boundary = 0;
276 
277 	old_hw_ptr = runtime->status->hw_ptr;
278 
279 	/*
280 	 * group pointer, time and jiffies reads to allow for more
281 	 * accurate correlations/corrections.
282 	 * The values are stored at the end of this routine after
283 	 * corrections for hw_ptr position
284 	 */
285 	pos = substream->ops->pointer(substream);
286 	curr_jiffies = jiffies;
287 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
288 		if ((substream->ops->get_time_info) &&
289 			(runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
290 			substream->ops->get_time_info(substream, &curr_tstamp,
291 						&audio_tstamp,
292 						&runtime->audio_tstamp_config,
293 						&runtime->audio_tstamp_report);
294 
295 			/* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
296 			if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
297 				snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
298 		} else
299 			snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
300 	}
301 
302 	if (pos == SNDRV_PCM_POS_XRUN) {
303 		xrun(substream);
304 		return -EPIPE;
305 	}
306 	if (pos >= runtime->buffer_size) {
307 		if (printk_ratelimit()) {
308 			char name[16];
309 			snd_pcm_debug_name(substream, name, sizeof(name));
310 			pcm_err(substream->pcm,
311 				"invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
312 				name, pos, runtime->buffer_size,
313 				runtime->period_size);
314 		}
315 		pos = 0;
316 	}
317 	pos -= pos % runtime->min_align;
318 	trace_hwptr(substream, pos, in_interrupt);
319 	hw_base = runtime->hw_ptr_base;
320 	new_hw_ptr = hw_base + pos;
321 	if (in_interrupt) {
322 		/* we know that one period was processed */
323 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
324 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
325 		if (delta > new_hw_ptr) {
326 			/* check for double acknowledged interrupts */
327 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
328 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
329 				hw_base += runtime->buffer_size;
330 				if (hw_base >= runtime->boundary) {
331 					hw_base = 0;
332 					crossed_boundary++;
333 				}
334 				new_hw_ptr = hw_base + pos;
335 				goto __delta;
336 			}
337 		}
338 	}
339 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
340 	/* pointer crosses the end of the ring buffer */
341 	if (new_hw_ptr < old_hw_ptr) {
342 		hw_base += runtime->buffer_size;
343 		if (hw_base >= runtime->boundary) {
344 			hw_base = 0;
345 			crossed_boundary++;
346 		}
347 		new_hw_ptr = hw_base + pos;
348 	}
349       __delta:
350 	delta = new_hw_ptr - old_hw_ptr;
351 	if (delta < 0)
352 		delta += runtime->boundary;
353 
354 	if (runtime->no_period_wakeup) {
355 		snd_pcm_sframes_t xrun_threshold;
356 		/*
357 		 * Without regular period interrupts, we have to check
358 		 * the elapsed time to detect xruns.
359 		 */
360 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
361 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
362 			goto no_delta_check;
363 		hdelta = jdelta - delta * HZ / runtime->rate;
364 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
365 		while (hdelta > xrun_threshold) {
366 			delta += runtime->buffer_size;
367 			hw_base += runtime->buffer_size;
368 			if (hw_base >= runtime->boundary) {
369 				hw_base = 0;
370 				crossed_boundary++;
371 			}
372 			new_hw_ptr = hw_base + pos;
373 			hdelta -= runtime->hw_ptr_buffer_jiffies;
374 		}
375 		goto no_delta_check;
376 	}
377 
378 	/* something must be really wrong */
379 	if (delta >= runtime->buffer_size + runtime->period_size) {
380 		hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
381 			     "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
382 			     substream->stream, (long)pos,
383 			     (long)new_hw_ptr, (long)old_hw_ptr);
384 		return 0;
385 	}
386 
387 	/* Do jiffies check only in xrun_debug mode */
388 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
389 		goto no_jiffies_check;
390 
391 	/* Skip the jiffies check for hardwares with BATCH flag.
392 	 * Such hardware usually just increases the position at each IRQ,
393 	 * thus it can't give any strange position.
394 	 */
395 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
396 		goto no_jiffies_check;
397 	hdelta = delta;
398 	if (hdelta < runtime->delay)
399 		goto no_jiffies_check;
400 	hdelta -= runtime->delay;
401 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
402 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
403 		delta = jdelta /
404 			(((runtime->period_size * HZ) / runtime->rate)
405 								+ HZ/100);
406 		/* move new_hw_ptr according jiffies not pos variable */
407 		new_hw_ptr = old_hw_ptr;
408 		hw_base = delta;
409 		/* use loop to avoid checks for delta overflows */
410 		/* the delta value is small or zero in most cases */
411 		while (delta > 0) {
412 			new_hw_ptr += runtime->period_size;
413 			if (new_hw_ptr >= runtime->boundary) {
414 				new_hw_ptr -= runtime->boundary;
415 				crossed_boundary--;
416 			}
417 			delta--;
418 		}
419 		/* align hw_base to buffer_size */
420 		hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
421 			     "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
422 			     (long)pos, (long)hdelta,
423 			     (long)runtime->period_size, jdelta,
424 			     ((hdelta * HZ) / runtime->rate), hw_base,
425 			     (unsigned long)old_hw_ptr,
426 			     (unsigned long)new_hw_ptr);
427 		/* reset values to proper state */
428 		delta = 0;
429 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
430 	}
431  no_jiffies_check:
432 	if (delta > runtime->period_size + runtime->period_size / 2) {
433 		hw_ptr_error(substream, in_interrupt,
434 			     "Lost interrupts?",
435 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
436 			     substream->stream, (long)delta,
437 			     (long)new_hw_ptr,
438 			     (long)old_hw_ptr);
439 	}
440 
441  no_delta_check:
442 	if (runtime->status->hw_ptr == new_hw_ptr) {
443 		update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
444 		return 0;
445 	}
446 
447 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
448 	    runtime->silence_size > 0)
449 		snd_pcm_playback_silence(substream, new_hw_ptr);
450 
451 	if (in_interrupt) {
452 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
453 		if (delta < 0)
454 			delta += runtime->boundary;
455 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
456 		runtime->hw_ptr_interrupt += delta;
457 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
458 			runtime->hw_ptr_interrupt -= runtime->boundary;
459 	}
460 	runtime->hw_ptr_base = hw_base;
461 	runtime->status->hw_ptr = new_hw_ptr;
462 	runtime->hw_ptr_jiffies = curr_jiffies;
463 	if (crossed_boundary) {
464 		snd_BUG_ON(crossed_boundary != 1);
465 		runtime->hw_ptr_wrap += runtime->boundary;
466 	}
467 
468 	update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
469 
470 	return snd_pcm_update_state(substream, runtime);
471 }
472 
473 /* CAUTION: call it with irq disabled */
474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
475 {
476 	return snd_pcm_update_hw_ptr0(substream, 0);
477 }
478 
479 /**
480  * snd_pcm_set_ops - set the PCM operators
481  * @pcm: the pcm instance
482  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
483  * @ops: the operator table
484  *
485  * Sets the given PCM operators to the pcm instance.
486  */
487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
488 		     const struct snd_pcm_ops *ops)
489 {
490 	struct snd_pcm_str *stream = &pcm->streams[direction];
491 	struct snd_pcm_substream *substream;
492 
493 	for (substream = stream->substream; substream != NULL; substream = substream->next)
494 		substream->ops = ops;
495 }
496 EXPORT_SYMBOL(snd_pcm_set_ops);
497 
498 /**
499  * snd_pcm_sync - set the PCM sync id
500  * @substream: the pcm substream
501  *
502  * Sets the PCM sync identifier for the card.
503  */
504 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
505 {
506 	struct snd_pcm_runtime *runtime = substream->runtime;
507 
508 	runtime->sync.id32[0] = substream->pcm->card->number;
509 	runtime->sync.id32[1] = -1;
510 	runtime->sync.id32[2] = -1;
511 	runtime->sync.id32[3] = -1;
512 }
513 EXPORT_SYMBOL(snd_pcm_set_sync);
514 
515 /*
516  *  Standard ioctl routine
517  */
518 
519 static inline unsigned int div32(unsigned int a, unsigned int b,
520 				 unsigned int *r)
521 {
522 	if (b == 0) {
523 		*r = 0;
524 		return UINT_MAX;
525 	}
526 	*r = a % b;
527 	return a / b;
528 }
529 
530 static inline unsigned int div_down(unsigned int a, unsigned int b)
531 {
532 	if (b == 0)
533 		return UINT_MAX;
534 	return a / b;
535 }
536 
537 static inline unsigned int div_up(unsigned int a, unsigned int b)
538 {
539 	unsigned int r;
540 	unsigned int q;
541 	if (b == 0)
542 		return UINT_MAX;
543 	q = div32(a, b, &r);
544 	if (r)
545 		++q;
546 	return q;
547 }
548 
549 static inline unsigned int mul(unsigned int a, unsigned int b)
550 {
551 	if (a == 0)
552 		return 0;
553 	if (div_down(UINT_MAX, a) < b)
554 		return UINT_MAX;
555 	return a * b;
556 }
557 
558 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
559 				    unsigned int c, unsigned int *r)
560 {
561 	u_int64_t n = (u_int64_t) a * b;
562 	if (c == 0) {
563 		snd_BUG_ON(!n);
564 		*r = 0;
565 		return UINT_MAX;
566 	}
567 	n = div_u64_rem(n, c, r);
568 	if (n >= UINT_MAX) {
569 		*r = 0;
570 		return UINT_MAX;
571 	}
572 	return n;
573 }
574 
575 /**
576  * snd_interval_refine - refine the interval value of configurator
577  * @i: the interval value to refine
578  * @v: the interval value to refer to
579  *
580  * Refines the interval value with the reference value.
581  * The interval is changed to the range satisfying both intervals.
582  * The interval status (min, max, integer, etc.) are evaluated.
583  *
584  * Return: Positive if the value is changed, zero if it's not changed, or a
585  * negative error code.
586  */
587 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
588 {
589 	int changed = 0;
590 	if (snd_BUG_ON(snd_interval_empty(i)))
591 		return -EINVAL;
592 	if (i->min < v->min) {
593 		i->min = v->min;
594 		i->openmin = v->openmin;
595 		changed = 1;
596 	} else if (i->min == v->min && !i->openmin && v->openmin) {
597 		i->openmin = 1;
598 		changed = 1;
599 	}
600 	if (i->max > v->max) {
601 		i->max = v->max;
602 		i->openmax = v->openmax;
603 		changed = 1;
604 	} else if (i->max == v->max && !i->openmax && v->openmax) {
605 		i->openmax = 1;
606 		changed = 1;
607 	}
608 	if (!i->integer && v->integer) {
609 		i->integer = 1;
610 		changed = 1;
611 	}
612 	if (i->integer) {
613 		if (i->openmin) {
614 			i->min++;
615 			i->openmin = 0;
616 		}
617 		if (i->openmax) {
618 			i->max--;
619 			i->openmax = 0;
620 		}
621 	} else if (!i->openmin && !i->openmax && i->min == i->max)
622 		i->integer = 1;
623 	if (snd_interval_checkempty(i)) {
624 		snd_interval_none(i);
625 		return -EINVAL;
626 	}
627 	return changed;
628 }
629 EXPORT_SYMBOL(snd_interval_refine);
630 
631 static int snd_interval_refine_first(struct snd_interval *i)
632 {
633 	if (snd_BUG_ON(snd_interval_empty(i)))
634 		return -EINVAL;
635 	if (snd_interval_single(i))
636 		return 0;
637 	i->max = i->min;
638 	i->openmax = i->openmin;
639 	if (i->openmax)
640 		i->max++;
641 	return 1;
642 }
643 
644 static int snd_interval_refine_last(struct snd_interval *i)
645 {
646 	if (snd_BUG_ON(snd_interval_empty(i)))
647 		return -EINVAL;
648 	if (snd_interval_single(i))
649 		return 0;
650 	i->min = i->max;
651 	i->openmin = i->openmax;
652 	if (i->openmin)
653 		i->min--;
654 	return 1;
655 }
656 
657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
658 {
659 	if (a->empty || b->empty) {
660 		snd_interval_none(c);
661 		return;
662 	}
663 	c->empty = 0;
664 	c->min = mul(a->min, b->min);
665 	c->openmin = (a->openmin || b->openmin);
666 	c->max = mul(a->max,  b->max);
667 	c->openmax = (a->openmax || b->openmax);
668 	c->integer = (a->integer && b->integer);
669 }
670 
671 /**
672  * snd_interval_div - refine the interval value with division
673  * @a: dividend
674  * @b: divisor
675  * @c: quotient
676  *
677  * c = a / b
678  *
679  * Returns non-zero if the value is changed, zero if not changed.
680  */
681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
682 {
683 	unsigned int r;
684 	if (a->empty || b->empty) {
685 		snd_interval_none(c);
686 		return;
687 	}
688 	c->empty = 0;
689 	c->min = div32(a->min, b->max, &r);
690 	c->openmin = (r || a->openmin || b->openmax);
691 	if (b->min > 0) {
692 		c->max = div32(a->max, b->min, &r);
693 		if (r) {
694 			c->max++;
695 			c->openmax = 1;
696 		} else
697 			c->openmax = (a->openmax || b->openmin);
698 	} else {
699 		c->max = UINT_MAX;
700 		c->openmax = 0;
701 	}
702 	c->integer = 0;
703 }
704 
705 /**
706  * snd_interval_muldivk - refine the interval value
707  * @a: dividend 1
708  * @b: dividend 2
709  * @k: divisor (as integer)
710  * @c: result
711   *
712  * c = a * b / k
713  *
714  * Returns non-zero if the value is changed, zero if not changed.
715  */
716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
717 		      unsigned int k, struct snd_interval *c)
718 {
719 	unsigned int r;
720 	if (a->empty || b->empty) {
721 		snd_interval_none(c);
722 		return;
723 	}
724 	c->empty = 0;
725 	c->min = muldiv32(a->min, b->min, k, &r);
726 	c->openmin = (r || a->openmin || b->openmin);
727 	c->max = muldiv32(a->max, b->max, k, &r);
728 	if (r) {
729 		c->max++;
730 		c->openmax = 1;
731 	} else
732 		c->openmax = (a->openmax || b->openmax);
733 	c->integer = 0;
734 }
735 
736 /**
737  * snd_interval_mulkdiv - refine the interval value
738  * @a: dividend 1
739  * @k: dividend 2 (as integer)
740  * @b: divisor
741  * @c: result
742  *
743  * c = a * k / b
744  *
745  * Returns non-zero if the value is changed, zero if not changed.
746  */
747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
748 		      const struct snd_interval *b, struct snd_interval *c)
749 {
750 	unsigned int r;
751 	if (a->empty || b->empty) {
752 		snd_interval_none(c);
753 		return;
754 	}
755 	c->empty = 0;
756 	c->min = muldiv32(a->min, k, b->max, &r);
757 	c->openmin = (r || a->openmin || b->openmax);
758 	if (b->min > 0) {
759 		c->max = muldiv32(a->max, k, b->min, &r);
760 		if (r) {
761 			c->max++;
762 			c->openmax = 1;
763 		} else
764 			c->openmax = (a->openmax || b->openmin);
765 	} else {
766 		c->max = UINT_MAX;
767 		c->openmax = 0;
768 	}
769 	c->integer = 0;
770 }
771 
772 /* ---- */
773 
774 
775 /**
776  * snd_interval_ratnum - refine the interval value
777  * @i: interval to refine
778  * @rats_count: number of ratnum_t
779  * @rats: ratnum_t array
780  * @nump: pointer to store the resultant numerator
781  * @denp: pointer to store the resultant denominator
782  *
783  * Return: Positive if the value is changed, zero if it's not changed, or a
784  * negative error code.
785  */
786 int snd_interval_ratnum(struct snd_interval *i,
787 			unsigned int rats_count, const struct snd_ratnum *rats,
788 			unsigned int *nump, unsigned int *denp)
789 {
790 	unsigned int best_num, best_den;
791 	int best_diff;
792 	unsigned int k;
793 	struct snd_interval t;
794 	int err;
795 	unsigned int result_num, result_den;
796 	int result_diff;
797 
798 	best_num = best_den = best_diff = 0;
799 	for (k = 0; k < rats_count; ++k) {
800 		unsigned int num = rats[k].num;
801 		unsigned int den;
802 		unsigned int q = i->min;
803 		int diff;
804 		if (q == 0)
805 			q = 1;
806 		den = div_up(num, q);
807 		if (den < rats[k].den_min)
808 			continue;
809 		if (den > rats[k].den_max)
810 			den = rats[k].den_max;
811 		else {
812 			unsigned int r;
813 			r = (den - rats[k].den_min) % rats[k].den_step;
814 			if (r != 0)
815 				den -= r;
816 		}
817 		diff = num - q * den;
818 		if (diff < 0)
819 			diff = -diff;
820 		if (best_num == 0 ||
821 		    diff * best_den < best_diff * den) {
822 			best_diff = diff;
823 			best_den = den;
824 			best_num = num;
825 		}
826 	}
827 	if (best_den == 0) {
828 		i->empty = 1;
829 		return -EINVAL;
830 	}
831 	t.min = div_down(best_num, best_den);
832 	t.openmin = !!(best_num % best_den);
833 
834 	result_num = best_num;
835 	result_diff = best_diff;
836 	result_den = best_den;
837 	best_num = best_den = best_diff = 0;
838 	for (k = 0; k < rats_count; ++k) {
839 		unsigned int num = rats[k].num;
840 		unsigned int den;
841 		unsigned int q = i->max;
842 		int diff;
843 		if (q == 0) {
844 			i->empty = 1;
845 			return -EINVAL;
846 		}
847 		den = div_down(num, q);
848 		if (den > rats[k].den_max)
849 			continue;
850 		if (den < rats[k].den_min)
851 			den = rats[k].den_min;
852 		else {
853 			unsigned int r;
854 			r = (den - rats[k].den_min) % rats[k].den_step;
855 			if (r != 0)
856 				den += rats[k].den_step - r;
857 		}
858 		diff = q * den - num;
859 		if (diff < 0)
860 			diff = -diff;
861 		if (best_num == 0 ||
862 		    diff * best_den < best_diff * den) {
863 			best_diff = diff;
864 			best_den = den;
865 			best_num = num;
866 		}
867 	}
868 	if (best_den == 0) {
869 		i->empty = 1;
870 		return -EINVAL;
871 	}
872 	t.max = div_up(best_num, best_den);
873 	t.openmax = !!(best_num % best_den);
874 	t.integer = 0;
875 	err = snd_interval_refine(i, &t);
876 	if (err < 0)
877 		return err;
878 
879 	if (snd_interval_single(i)) {
880 		if (best_diff * result_den < result_diff * best_den) {
881 			result_num = best_num;
882 			result_den = best_den;
883 		}
884 		if (nump)
885 			*nump = result_num;
886 		if (denp)
887 			*denp = result_den;
888 	}
889 	return err;
890 }
891 EXPORT_SYMBOL(snd_interval_ratnum);
892 
893 /**
894  * snd_interval_ratden - refine the interval value
895  * @i: interval to refine
896  * @rats_count: number of struct ratden
897  * @rats: struct ratden array
898  * @nump: pointer to store the resultant numerator
899  * @denp: pointer to store the resultant denominator
900  *
901  * Return: Positive if the value is changed, zero if it's not changed, or a
902  * negative error code.
903  */
904 static int snd_interval_ratden(struct snd_interval *i,
905 			       unsigned int rats_count,
906 			       const struct snd_ratden *rats,
907 			       unsigned int *nump, unsigned int *denp)
908 {
909 	unsigned int best_num, best_diff, best_den;
910 	unsigned int k;
911 	struct snd_interval t;
912 	int err;
913 
914 	best_num = best_den = best_diff = 0;
915 	for (k = 0; k < rats_count; ++k) {
916 		unsigned int num;
917 		unsigned int den = rats[k].den;
918 		unsigned int q = i->min;
919 		int diff;
920 		num = mul(q, den);
921 		if (num > rats[k].num_max)
922 			continue;
923 		if (num < rats[k].num_min)
924 			num = rats[k].num_max;
925 		else {
926 			unsigned int r;
927 			r = (num - rats[k].num_min) % rats[k].num_step;
928 			if (r != 0)
929 				num += rats[k].num_step - r;
930 		}
931 		diff = num - q * den;
932 		if (best_num == 0 ||
933 		    diff * best_den < best_diff * den) {
934 			best_diff = diff;
935 			best_den = den;
936 			best_num = num;
937 		}
938 	}
939 	if (best_den == 0) {
940 		i->empty = 1;
941 		return -EINVAL;
942 	}
943 	t.min = div_down(best_num, best_den);
944 	t.openmin = !!(best_num % best_den);
945 
946 	best_num = best_den = best_diff = 0;
947 	for (k = 0; k < rats_count; ++k) {
948 		unsigned int num;
949 		unsigned int den = rats[k].den;
950 		unsigned int q = i->max;
951 		int diff;
952 		num = mul(q, den);
953 		if (num < rats[k].num_min)
954 			continue;
955 		if (num > rats[k].num_max)
956 			num = rats[k].num_max;
957 		else {
958 			unsigned int r;
959 			r = (num - rats[k].num_min) % rats[k].num_step;
960 			if (r != 0)
961 				num -= r;
962 		}
963 		diff = q * den - num;
964 		if (best_num == 0 ||
965 		    diff * best_den < best_diff * den) {
966 			best_diff = diff;
967 			best_den = den;
968 			best_num = num;
969 		}
970 	}
971 	if (best_den == 0) {
972 		i->empty = 1;
973 		return -EINVAL;
974 	}
975 	t.max = div_up(best_num, best_den);
976 	t.openmax = !!(best_num % best_den);
977 	t.integer = 0;
978 	err = snd_interval_refine(i, &t);
979 	if (err < 0)
980 		return err;
981 
982 	if (snd_interval_single(i)) {
983 		if (nump)
984 			*nump = best_num;
985 		if (denp)
986 			*denp = best_den;
987 	}
988 	return err;
989 }
990 
991 /**
992  * snd_interval_list - refine the interval value from the list
993  * @i: the interval value to refine
994  * @count: the number of elements in the list
995  * @list: the value list
996  * @mask: the bit-mask to evaluate
997  *
998  * Refines the interval value from the list.
999  * When mask is non-zero, only the elements corresponding to bit 1 are
1000  * evaluated.
1001  *
1002  * Return: Positive if the value is changed, zero if it's not changed, or a
1003  * negative error code.
1004  */
1005 int snd_interval_list(struct snd_interval *i, unsigned int count,
1006 		      const unsigned int *list, unsigned int mask)
1007 {
1008         unsigned int k;
1009 	struct snd_interval list_range;
1010 
1011 	if (!count) {
1012 		i->empty = 1;
1013 		return -EINVAL;
1014 	}
1015 	snd_interval_any(&list_range);
1016 	list_range.min = UINT_MAX;
1017 	list_range.max = 0;
1018         for (k = 0; k < count; k++) {
1019 		if (mask && !(mask & (1 << k)))
1020 			continue;
1021 		if (!snd_interval_test(i, list[k]))
1022 			continue;
1023 		list_range.min = min(list_range.min, list[k]);
1024 		list_range.max = max(list_range.max, list[k]);
1025         }
1026 	return snd_interval_refine(i, &list_range);
1027 }
1028 EXPORT_SYMBOL(snd_interval_list);
1029 
1030 /**
1031  * snd_interval_ranges - refine the interval value from the list of ranges
1032  * @i: the interval value to refine
1033  * @count: the number of elements in the list of ranges
1034  * @ranges: the ranges list
1035  * @mask: the bit-mask to evaluate
1036  *
1037  * Refines the interval value from the list of ranges.
1038  * When mask is non-zero, only the elements corresponding to bit 1 are
1039  * evaluated.
1040  *
1041  * Return: Positive if the value is changed, zero if it's not changed, or a
1042  * negative error code.
1043  */
1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1045 			const struct snd_interval *ranges, unsigned int mask)
1046 {
1047 	unsigned int k;
1048 	struct snd_interval range_union;
1049 	struct snd_interval range;
1050 
1051 	if (!count) {
1052 		snd_interval_none(i);
1053 		return -EINVAL;
1054 	}
1055 	snd_interval_any(&range_union);
1056 	range_union.min = UINT_MAX;
1057 	range_union.max = 0;
1058 	for (k = 0; k < count; k++) {
1059 		if (mask && !(mask & (1 << k)))
1060 			continue;
1061 		snd_interval_copy(&range, &ranges[k]);
1062 		if (snd_interval_refine(&range, i) < 0)
1063 			continue;
1064 		if (snd_interval_empty(&range))
1065 			continue;
1066 
1067 		if (range.min < range_union.min) {
1068 			range_union.min = range.min;
1069 			range_union.openmin = 1;
1070 		}
1071 		if (range.min == range_union.min && !range.openmin)
1072 			range_union.openmin = 0;
1073 		if (range.max > range_union.max) {
1074 			range_union.max = range.max;
1075 			range_union.openmax = 1;
1076 		}
1077 		if (range.max == range_union.max && !range.openmax)
1078 			range_union.openmax = 0;
1079 	}
1080 	return snd_interval_refine(i, &range_union);
1081 }
1082 EXPORT_SYMBOL(snd_interval_ranges);
1083 
1084 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1085 {
1086 	unsigned int n;
1087 	int changed = 0;
1088 	n = i->min % step;
1089 	if (n != 0 || i->openmin) {
1090 		i->min += step - n;
1091 		i->openmin = 0;
1092 		changed = 1;
1093 	}
1094 	n = i->max % step;
1095 	if (n != 0 || i->openmax) {
1096 		i->max -= n;
1097 		i->openmax = 0;
1098 		changed = 1;
1099 	}
1100 	if (snd_interval_checkempty(i)) {
1101 		i->empty = 1;
1102 		return -EINVAL;
1103 	}
1104 	return changed;
1105 }
1106 
1107 /* Info constraints helpers */
1108 
1109 /**
1110  * snd_pcm_hw_rule_add - add the hw-constraint rule
1111  * @runtime: the pcm runtime instance
1112  * @cond: condition bits
1113  * @var: the variable to evaluate
1114  * @func: the evaluation function
1115  * @private: the private data pointer passed to function
1116  * @dep: the dependent variables
1117  *
1118  * Return: Zero if successful, or a negative error code on failure.
1119  */
1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1121 			int var,
1122 			snd_pcm_hw_rule_func_t func, void *private,
1123 			int dep, ...)
1124 {
1125 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1126 	struct snd_pcm_hw_rule *c;
1127 	unsigned int k;
1128 	va_list args;
1129 	va_start(args, dep);
1130 	if (constrs->rules_num >= constrs->rules_all) {
1131 		struct snd_pcm_hw_rule *new;
1132 		unsigned int new_rules = constrs->rules_all + 16;
1133 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1134 		if (!new) {
1135 			va_end(args);
1136 			return -ENOMEM;
1137 		}
1138 		if (constrs->rules) {
1139 			memcpy(new, constrs->rules,
1140 			       constrs->rules_num * sizeof(*c));
1141 			kfree(constrs->rules);
1142 		}
1143 		constrs->rules = new;
1144 		constrs->rules_all = new_rules;
1145 	}
1146 	c = &constrs->rules[constrs->rules_num];
1147 	c->cond = cond;
1148 	c->func = func;
1149 	c->var = var;
1150 	c->private = private;
1151 	k = 0;
1152 	while (1) {
1153 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1154 			va_end(args);
1155 			return -EINVAL;
1156 		}
1157 		c->deps[k++] = dep;
1158 		if (dep < 0)
1159 			break;
1160 		dep = va_arg(args, int);
1161 	}
1162 	constrs->rules_num++;
1163 	va_end(args);
1164 	return 0;
1165 }
1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1167 
1168 /**
1169  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1170  * @runtime: PCM runtime instance
1171  * @var: hw_params variable to apply the mask
1172  * @mask: the bitmap mask
1173  *
1174  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1175  *
1176  * Return: Zero if successful, or a negative error code on failure.
1177  */
1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1179 			       u_int32_t mask)
1180 {
1181 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1182 	struct snd_mask *maskp = constrs_mask(constrs, var);
1183 	*maskp->bits &= mask;
1184 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1185 	if (*maskp->bits == 0)
1186 		return -EINVAL;
1187 	return 0;
1188 }
1189 
1190 /**
1191  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1192  * @runtime: PCM runtime instance
1193  * @var: hw_params variable to apply the mask
1194  * @mask: the 64bit bitmap mask
1195  *
1196  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1197  *
1198  * Return: Zero if successful, or a negative error code on failure.
1199  */
1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1201 				 u_int64_t mask)
1202 {
1203 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1204 	struct snd_mask *maskp = constrs_mask(constrs, var);
1205 	maskp->bits[0] &= (u_int32_t)mask;
1206 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1207 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1208 	if (! maskp->bits[0] && ! maskp->bits[1])
1209 		return -EINVAL;
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1213 
1214 /**
1215  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1216  * @runtime: PCM runtime instance
1217  * @var: hw_params variable to apply the integer constraint
1218  *
1219  * Apply the constraint of integer to an interval parameter.
1220  *
1221  * Return: Positive if the value is changed, zero if it's not changed, or a
1222  * negative error code.
1223  */
1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1225 {
1226 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1227 	return snd_interval_setinteger(constrs_interval(constrs, var));
1228 }
1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1230 
1231 /**
1232  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1233  * @runtime: PCM runtime instance
1234  * @var: hw_params variable to apply the range
1235  * @min: the minimal value
1236  * @max: the maximal value
1237  *
1238  * Apply the min/max range constraint to an interval parameter.
1239  *
1240  * Return: Positive if the value is changed, zero if it's not changed, or a
1241  * negative error code.
1242  */
1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1244 				 unsigned int min, unsigned int max)
1245 {
1246 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1247 	struct snd_interval t;
1248 	t.min = min;
1249 	t.max = max;
1250 	t.openmin = t.openmax = 0;
1251 	t.integer = 0;
1252 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1253 }
1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1255 
1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1257 				struct snd_pcm_hw_rule *rule)
1258 {
1259 	struct snd_pcm_hw_constraint_list *list = rule->private;
1260 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1261 }
1262 
1263 
1264 /**
1265  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the list constraint
1269  * @l: list
1270  *
1271  * Apply the list of constraints to an interval parameter.
1272  *
1273  * Return: Zero if successful, or a negative error code on failure.
1274  */
1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1276 			       unsigned int cond,
1277 			       snd_pcm_hw_param_t var,
1278 			       const struct snd_pcm_hw_constraint_list *l)
1279 {
1280 	return snd_pcm_hw_rule_add(runtime, cond, var,
1281 				   snd_pcm_hw_rule_list, (void *)l,
1282 				   var, -1);
1283 }
1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1285 
1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1287 				  struct snd_pcm_hw_rule *rule)
1288 {
1289 	struct snd_pcm_hw_constraint_ranges *r = rule->private;
1290 	return snd_interval_ranges(hw_param_interval(params, rule->var),
1291 				   r->count, r->ranges, r->mask);
1292 }
1293 
1294 
1295 /**
1296  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1297  * @runtime: PCM runtime instance
1298  * @cond: condition bits
1299  * @var: hw_params variable to apply the list of range constraints
1300  * @r: ranges
1301  *
1302  * Apply the list of range constraints to an interval parameter.
1303  *
1304  * Return: Zero if successful, or a negative error code on failure.
1305  */
1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1307 				 unsigned int cond,
1308 				 snd_pcm_hw_param_t var,
1309 				 const struct snd_pcm_hw_constraint_ranges *r)
1310 {
1311 	return snd_pcm_hw_rule_add(runtime, cond, var,
1312 				   snd_pcm_hw_rule_ranges, (void *)r,
1313 				   var, -1);
1314 }
1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1316 
1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1318 				   struct snd_pcm_hw_rule *rule)
1319 {
1320 	const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1321 	unsigned int num = 0, den = 0;
1322 	int err;
1323 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1324 				  r->nrats, r->rats, &num, &den);
1325 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1326 		params->rate_num = num;
1327 		params->rate_den = den;
1328 	}
1329 	return err;
1330 }
1331 
1332 /**
1333  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1334  * @runtime: PCM runtime instance
1335  * @cond: condition bits
1336  * @var: hw_params variable to apply the ratnums constraint
1337  * @r: struct snd_ratnums constriants
1338  *
1339  * Return: Zero if successful, or a negative error code on failure.
1340  */
1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1342 				  unsigned int cond,
1343 				  snd_pcm_hw_param_t var,
1344 				  const struct snd_pcm_hw_constraint_ratnums *r)
1345 {
1346 	return snd_pcm_hw_rule_add(runtime, cond, var,
1347 				   snd_pcm_hw_rule_ratnums, (void *)r,
1348 				   var, -1);
1349 }
1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1351 
1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1353 				   struct snd_pcm_hw_rule *rule)
1354 {
1355 	const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1356 	unsigned int num = 0, den = 0;
1357 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1358 				  r->nrats, r->rats, &num, &den);
1359 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1360 		params->rate_num = num;
1361 		params->rate_den = den;
1362 	}
1363 	return err;
1364 }
1365 
1366 /**
1367  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1368  * @runtime: PCM runtime instance
1369  * @cond: condition bits
1370  * @var: hw_params variable to apply the ratdens constraint
1371  * @r: struct snd_ratdens constriants
1372  *
1373  * Return: Zero if successful, or a negative error code on failure.
1374  */
1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1376 				  unsigned int cond,
1377 				  snd_pcm_hw_param_t var,
1378 				  const struct snd_pcm_hw_constraint_ratdens *r)
1379 {
1380 	return snd_pcm_hw_rule_add(runtime, cond, var,
1381 				   snd_pcm_hw_rule_ratdens, (void *)r,
1382 				   var, -1);
1383 }
1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1385 
1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1387 				  struct snd_pcm_hw_rule *rule)
1388 {
1389 	unsigned int l = (unsigned long) rule->private;
1390 	int width = l & 0xffff;
1391 	unsigned int msbits = l >> 16;
1392 	const struct snd_interval *i =
1393 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1394 
1395 	if (!snd_interval_single(i))
1396 		return 0;
1397 
1398 	if ((snd_interval_value(i) == width) ||
1399 	    (width == 0 && snd_interval_value(i) > msbits))
1400 		params->msbits = min_not_zero(params->msbits, msbits);
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1407  * @runtime: PCM runtime instance
1408  * @cond: condition bits
1409  * @width: sample bits width
1410  * @msbits: msbits width
1411  *
1412  * This constraint will set the number of most significant bits (msbits) if a
1413  * sample format with the specified width has been select. If width is set to 0
1414  * the msbits will be set for any sample format with a width larger than the
1415  * specified msbits.
1416  *
1417  * Return: Zero if successful, or a negative error code on failure.
1418  */
1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1420 				 unsigned int cond,
1421 				 unsigned int width,
1422 				 unsigned int msbits)
1423 {
1424 	unsigned long l = (msbits << 16) | width;
1425 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1426 				    snd_pcm_hw_rule_msbits,
1427 				    (void*) l,
1428 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1429 }
1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1431 
1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1433 				struct snd_pcm_hw_rule *rule)
1434 {
1435 	unsigned long step = (unsigned long) rule->private;
1436 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1437 }
1438 
1439 /**
1440  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1441  * @runtime: PCM runtime instance
1442  * @cond: condition bits
1443  * @var: hw_params variable to apply the step constraint
1444  * @step: step size
1445  *
1446  * Return: Zero if successful, or a negative error code on failure.
1447  */
1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1449 			       unsigned int cond,
1450 			       snd_pcm_hw_param_t var,
1451 			       unsigned long step)
1452 {
1453 	return snd_pcm_hw_rule_add(runtime, cond, var,
1454 				   snd_pcm_hw_rule_step, (void *) step,
1455 				   var, -1);
1456 }
1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1458 
1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1460 {
1461 	static unsigned int pow2_sizes[] = {
1462 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1463 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1464 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1465 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1466 	};
1467 	return snd_interval_list(hw_param_interval(params, rule->var),
1468 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1469 }
1470 
1471 /**
1472  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1473  * @runtime: PCM runtime instance
1474  * @cond: condition bits
1475  * @var: hw_params variable to apply the power-of-2 constraint
1476  *
1477  * Return: Zero if successful, or a negative error code on failure.
1478  */
1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1480 			       unsigned int cond,
1481 			       snd_pcm_hw_param_t var)
1482 {
1483 	return snd_pcm_hw_rule_add(runtime, cond, var,
1484 				   snd_pcm_hw_rule_pow2, NULL,
1485 				   var, -1);
1486 }
1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1488 
1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1490 					   struct snd_pcm_hw_rule *rule)
1491 {
1492 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1493 	struct snd_interval *rate;
1494 
1495 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1496 	return snd_interval_list(rate, 1, &base_rate, 0);
1497 }
1498 
1499 /**
1500  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1501  * @runtime: PCM runtime instance
1502  * @base_rate: the rate at which the hardware does not resample
1503  *
1504  * Return: Zero if successful, or a negative error code on failure.
1505  */
1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1507 			       unsigned int base_rate)
1508 {
1509 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1510 				   SNDRV_PCM_HW_PARAM_RATE,
1511 				   snd_pcm_hw_rule_noresample_func,
1512 				   (void *)(uintptr_t)base_rate,
1513 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1514 }
1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1516 
1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1518 				  snd_pcm_hw_param_t var)
1519 {
1520 	if (hw_is_mask(var)) {
1521 		snd_mask_any(hw_param_mask(params, var));
1522 		params->cmask |= 1 << var;
1523 		params->rmask |= 1 << var;
1524 		return;
1525 	}
1526 	if (hw_is_interval(var)) {
1527 		snd_interval_any(hw_param_interval(params, var));
1528 		params->cmask |= 1 << var;
1529 		params->rmask |= 1 << var;
1530 		return;
1531 	}
1532 	snd_BUG();
1533 }
1534 
1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1536 {
1537 	unsigned int k;
1538 	memset(params, 0, sizeof(*params));
1539 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1540 		_snd_pcm_hw_param_any(params, k);
1541 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1542 		_snd_pcm_hw_param_any(params, k);
1543 	params->info = ~0U;
1544 }
1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1546 
1547 /**
1548  * snd_pcm_hw_param_value - return @params field @var value
1549  * @params: the hw_params instance
1550  * @var: parameter to retrieve
1551  * @dir: pointer to the direction (-1,0,1) or %NULL
1552  *
1553  * Return: The value for field @var if it's fixed in configuration space
1554  * defined by @params. -%EINVAL otherwise.
1555  */
1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1557 			   snd_pcm_hw_param_t var, int *dir)
1558 {
1559 	if (hw_is_mask(var)) {
1560 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1561 		if (!snd_mask_single(mask))
1562 			return -EINVAL;
1563 		if (dir)
1564 			*dir = 0;
1565 		return snd_mask_value(mask);
1566 	}
1567 	if (hw_is_interval(var)) {
1568 		const struct snd_interval *i = hw_param_interval_c(params, var);
1569 		if (!snd_interval_single(i))
1570 			return -EINVAL;
1571 		if (dir)
1572 			*dir = i->openmin;
1573 		return snd_interval_value(i);
1574 	}
1575 	return -EINVAL;
1576 }
1577 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1578 
1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1580 				snd_pcm_hw_param_t var)
1581 {
1582 	if (hw_is_mask(var)) {
1583 		snd_mask_none(hw_param_mask(params, var));
1584 		params->cmask |= 1 << var;
1585 		params->rmask |= 1 << var;
1586 	} else if (hw_is_interval(var)) {
1587 		snd_interval_none(hw_param_interval(params, var));
1588 		params->cmask |= 1 << var;
1589 		params->rmask |= 1 << var;
1590 	} else {
1591 		snd_BUG();
1592 	}
1593 }
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595 
1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597 				   snd_pcm_hw_param_t var)
1598 {
1599 	int changed;
1600 	if (hw_is_mask(var))
1601 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1602 	else if (hw_is_interval(var))
1603 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1604 	else
1605 		return -EINVAL;
1606 	if (changed) {
1607 		params->cmask |= 1 << var;
1608 		params->rmask |= 1 << var;
1609 	}
1610 	return changed;
1611 }
1612 
1613 
1614 /**
1615  * snd_pcm_hw_param_first - refine config space and return minimum value
1616  * @pcm: PCM instance
1617  * @params: the hw_params instance
1618  * @var: parameter to retrieve
1619  * @dir: pointer to the direction (-1,0,1) or %NULL
1620  *
1621  * Inside configuration space defined by @params remove from @var all
1622  * values > minimum. Reduce configuration space accordingly.
1623  *
1624  * Return: The minimum, or a negative error code on failure.
1625  */
1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1627 			   struct snd_pcm_hw_params *params,
1628 			   snd_pcm_hw_param_t var, int *dir)
1629 {
1630 	int changed = _snd_pcm_hw_param_first(params, var);
1631 	if (changed < 0)
1632 		return changed;
1633 	if (params->rmask) {
1634 		int err = snd_pcm_hw_refine(pcm, params);
1635 		if (snd_BUG_ON(err < 0))
1636 			return err;
1637 	}
1638 	return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641 
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643 				  snd_pcm_hw_param_t var)
1644 {
1645 	int changed;
1646 	if (hw_is_mask(var))
1647 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1648 	else if (hw_is_interval(var))
1649 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1650 	else
1651 		return -EINVAL;
1652 	if (changed) {
1653 		params->cmask |= 1 << var;
1654 		params->rmask |= 1 << var;
1655 	}
1656 	return changed;
1657 }
1658 
1659 
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1673 			  struct snd_pcm_hw_params *params,
1674 			  snd_pcm_hw_param_t var, int *dir)
1675 {
1676 	int changed = _snd_pcm_hw_param_last(params, var);
1677 	if (changed < 0)
1678 		return changed;
1679 	if (params->rmask) {
1680 		int err = snd_pcm_hw_refine(pcm, params);
1681 		if (snd_BUG_ON(err < 0))
1682 			return err;
1683 	}
1684 	return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1687 
1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1689 				   void *arg)
1690 {
1691 	struct snd_pcm_runtime *runtime = substream->runtime;
1692 	unsigned long flags;
1693 	snd_pcm_stream_lock_irqsave(substream, flags);
1694 	if (snd_pcm_running(substream) &&
1695 	    snd_pcm_update_hw_ptr(substream) >= 0)
1696 		runtime->status->hw_ptr %= runtime->buffer_size;
1697 	else {
1698 		runtime->status->hw_ptr = 0;
1699 		runtime->hw_ptr_wrap = 0;
1700 	}
1701 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1702 	return 0;
1703 }
1704 
1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1706 					  void *arg)
1707 {
1708 	struct snd_pcm_channel_info *info = arg;
1709 	struct snd_pcm_runtime *runtime = substream->runtime;
1710 	int width;
1711 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1712 		info->offset = -1;
1713 		return 0;
1714 	}
1715 	width = snd_pcm_format_physical_width(runtime->format);
1716 	if (width < 0)
1717 		return width;
1718 	info->offset = 0;
1719 	switch (runtime->access) {
1720 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1721 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1722 		info->first = info->channel * width;
1723 		info->step = runtime->channels * width;
1724 		break;
1725 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1726 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1727 	{
1728 		size_t size = runtime->dma_bytes / runtime->channels;
1729 		info->first = info->channel * size * 8;
1730 		info->step = width;
1731 		break;
1732 	}
1733 	default:
1734 		snd_BUG();
1735 		break;
1736 	}
1737 	return 0;
1738 }
1739 
1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1741 				       void *arg)
1742 {
1743 	struct snd_pcm_hw_params *params = arg;
1744 	snd_pcm_format_t format;
1745 	int channels;
1746 	ssize_t frame_size;
1747 
1748 	params->fifo_size = substream->runtime->hw.fifo_size;
1749 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1750 		format = params_format(params);
1751 		channels = params_channels(params);
1752 		frame_size = snd_pcm_format_size(format, channels);
1753 		if (frame_size > 0)
1754 			params->fifo_size /= (unsigned)frame_size;
1755 	}
1756 	return 0;
1757 }
1758 
1759 /**
1760  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1761  * @substream: the pcm substream instance
1762  * @cmd: ioctl command
1763  * @arg: ioctl argument
1764  *
1765  * Processes the generic ioctl commands for PCM.
1766  * Can be passed as the ioctl callback for PCM ops.
1767  *
1768  * Return: Zero if successful, or a negative error code on failure.
1769  */
1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1771 		      unsigned int cmd, void *arg)
1772 {
1773 	switch (cmd) {
1774 	case SNDRV_PCM_IOCTL1_RESET:
1775 		return snd_pcm_lib_ioctl_reset(substream, arg);
1776 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1777 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1778 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1779 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1780 	}
1781 	return -ENXIO;
1782 }
1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1784 
1785 /**
1786  * snd_pcm_period_elapsed - update the pcm status for the next period
1787  * @substream: the pcm substream instance
1788  *
1789  * This function is called from the interrupt handler when the
1790  * PCM has processed the period size.  It will update the current
1791  * pointer, wake up sleepers, etc.
1792  *
1793  * Even if more than one periods have elapsed since the last call, you
1794  * have to call this only once.
1795  */
1796 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1797 {
1798 	struct snd_pcm_runtime *runtime;
1799 	unsigned long flags;
1800 
1801 	if (PCM_RUNTIME_CHECK(substream))
1802 		return;
1803 	runtime = substream->runtime;
1804 
1805 	snd_pcm_stream_lock_irqsave(substream, flags);
1806 	if (!snd_pcm_running(substream) ||
1807 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1808 		goto _end;
1809 
1810 #ifdef CONFIG_SND_PCM_TIMER
1811 	if (substream->timer_running)
1812 		snd_timer_interrupt(substream->timer, 1);
1813 #endif
1814  _end:
1815 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1816 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1817 }
1818 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1819 
1820 /*
1821  * Wait until avail_min data becomes available
1822  * Returns a negative error code if any error occurs during operation.
1823  * The available space is stored on availp.  When err = 0 and avail = 0
1824  * on the capture stream, it indicates the stream is in DRAINING state.
1825  */
1826 static int wait_for_avail(struct snd_pcm_substream *substream,
1827 			      snd_pcm_uframes_t *availp)
1828 {
1829 	struct snd_pcm_runtime *runtime = substream->runtime;
1830 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1831 	wait_queue_entry_t wait;
1832 	int err = 0;
1833 	snd_pcm_uframes_t avail = 0;
1834 	long wait_time, tout;
1835 
1836 	init_waitqueue_entry(&wait, current);
1837 	set_current_state(TASK_INTERRUPTIBLE);
1838 	add_wait_queue(&runtime->tsleep, &wait);
1839 
1840 	if (runtime->no_period_wakeup)
1841 		wait_time = MAX_SCHEDULE_TIMEOUT;
1842 	else {
1843 		wait_time = 10;
1844 		if (runtime->rate) {
1845 			long t = runtime->period_size * 2 / runtime->rate;
1846 			wait_time = max(t, wait_time);
1847 		}
1848 		wait_time = msecs_to_jiffies(wait_time * 1000);
1849 	}
1850 
1851 	for (;;) {
1852 		if (signal_pending(current)) {
1853 			err = -ERESTARTSYS;
1854 			break;
1855 		}
1856 
1857 		/*
1858 		 * We need to check if space became available already
1859 		 * (and thus the wakeup happened already) first to close
1860 		 * the race of space already having become available.
1861 		 * This check must happen after been added to the waitqueue
1862 		 * and having current state be INTERRUPTIBLE.
1863 		 */
1864 		if (is_playback)
1865 			avail = snd_pcm_playback_avail(runtime);
1866 		else
1867 			avail = snd_pcm_capture_avail(runtime);
1868 		if (avail >= runtime->twake)
1869 			break;
1870 		snd_pcm_stream_unlock_irq(substream);
1871 
1872 		tout = schedule_timeout(wait_time);
1873 
1874 		snd_pcm_stream_lock_irq(substream);
1875 		set_current_state(TASK_INTERRUPTIBLE);
1876 		switch (runtime->status->state) {
1877 		case SNDRV_PCM_STATE_SUSPENDED:
1878 			err = -ESTRPIPE;
1879 			goto _endloop;
1880 		case SNDRV_PCM_STATE_XRUN:
1881 			err = -EPIPE;
1882 			goto _endloop;
1883 		case SNDRV_PCM_STATE_DRAINING:
1884 			if (is_playback)
1885 				err = -EPIPE;
1886 			else
1887 				avail = 0; /* indicate draining */
1888 			goto _endloop;
1889 		case SNDRV_PCM_STATE_OPEN:
1890 		case SNDRV_PCM_STATE_SETUP:
1891 		case SNDRV_PCM_STATE_DISCONNECTED:
1892 			err = -EBADFD;
1893 			goto _endloop;
1894 		case SNDRV_PCM_STATE_PAUSED:
1895 			continue;
1896 		}
1897 		if (!tout) {
1898 			pcm_dbg(substream->pcm,
1899 				"%s write error (DMA or IRQ trouble?)\n",
1900 				is_playback ? "playback" : "capture");
1901 			err = -EIO;
1902 			break;
1903 		}
1904 	}
1905  _endloop:
1906 	set_current_state(TASK_RUNNING);
1907 	remove_wait_queue(&runtime->tsleep, &wait);
1908 	*availp = avail;
1909 	return err;
1910 }
1911 
1912 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
1913 			      int channel, unsigned long hwoff,
1914 			      void *buf, unsigned long bytes);
1915 
1916 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
1917 			  snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f);
1918 
1919 /* calculate the target DMA-buffer position to be written/read */
1920 static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
1921 			   int channel, unsigned long hwoff)
1922 {
1923 	return runtime->dma_area + hwoff +
1924 		channel * (runtime->dma_bytes / runtime->channels);
1925 }
1926 
1927 /* default copy_user ops for write; used for both interleaved and non- modes */
1928 static int default_write_copy(struct snd_pcm_substream *substream,
1929 			      int channel, unsigned long hwoff,
1930 			      void *buf, unsigned long bytes)
1931 {
1932 	if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff),
1933 			   (void __user *)buf, bytes))
1934 		return -EFAULT;
1935 	return 0;
1936 }
1937 
1938 /* default copy_kernel ops for write */
1939 static int default_write_copy_kernel(struct snd_pcm_substream *substream,
1940 				     int channel, unsigned long hwoff,
1941 				     void *buf, unsigned long bytes)
1942 {
1943 	memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes);
1944 	return 0;
1945 }
1946 
1947 /* fill silence instead of copy data; called as a transfer helper
1948  * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
1949  * a NULL buffer is passed
1950  */
1951 static int fill_silence(struct snd_pcm_substream *substream, int channel,
1952 			unsigned long hwoff, void *buf, unsigned long bytes)
1953 {
1954 	struct snd_pcm_runtime *runtime = substream->runtime;
1955 
1956 	if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
1957 		return 0;
1958 	if (substream->ops->fill_silence)
1959 		return substream->ops->fill_silence(substream, channel,
1960 						    hwoff, bytes);
1961 
1962 	snd_pcm_format_set_silence(runtime->format,
1963 				   get_dma_ptr(runtime, channel, hwoff),
1964 				   bytes_to_samples(runtime, bytes));
1965 	return 0;
1966 }
1967 
1968 /* default copy_user ops for read; used for both interleaved and non- modes */
1969 static int default_read_copy(struct snd_pcm_substream *substream,
1970 			     int channel, unsigned long hwoff,
1971 			     void *buf, unsigned long bytes)
1972 {
1973 	if (copy_to_user((void __user *)buf,
1974 			 get_dma_ptr(substream->runtime, channel, hwoff),
1975 			 bytes))
1976 		return -EFAULT;
1977 	return 0;
1978 }
1979 
1980 /* default copy_kernel ops for read */
1981 static int default_read_copy_kernel(struct snd_pcm_substream *substream,
1982 				    int channel, unsigned long hwoff,
1983 				    void *buf, unsigned long bytes)
1984 {
1985 	memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes);
1986 	return 0;
1987 }
1988 
1989 /* call transfer function with the converted pointers and sizes;
1990  * for interleaved mode, it's one shot for all samples
1991  */
1992 static int interleaved_copy(struct snd_pcm_substream *substream,
1993 			    snd_pcm_uframes_t hwoff, void *data,
1994 			    snd_pcm_uframes_t off,
1995 			    snd_pcm_uframes_t frames,
1996 			    pcm_transfer_f transfer)
1997 {
1998 	struct snd_pcm_runtime *runtime = substream->runtime;
1999 
2000 	/* convert to bytes */
2001 	hwoff = frames_to_bytes(runtime, hwoff);
2002 	off = frames_to_bytes(runtime, off);
2003 	frames = frames_to_bytes(runtime, frames);
2004 	return transfer(substream, 0, hwoff, data + off, frames);
2005 }
2006 
2007 /* call transfer function with the converted pointers and sizes for each
2008  * non-interleaved channel; when buffer is NULL, silencing instead of copying
2009  */
2010 static int noninterleaved_copy(struct snd_pcm_substream *substream,
2011 			       snd_pcm_uframes_t hwoff, void *data,
2012 			       snd_pcm_uframes_t off,
2013 			       snd_pcm_uframes_t frames,
2014 			       pcm_transfer_f transfer)
2015 {
2016 	struct snd_pcm_runtime *runtime = substream->runtime;
2017 	int channels = runtime->channels;
2018 	void **bufs = data;
2019 	int c, err;
2020 
2021 	/* convert to bytes; note that it's not frames_to_bytes() here.
2022 	 * in non-interleaved mode, we copy for each channel, thus
2023 	 * each copy is n_samples bytes x channels = whole frames.
2024 	 */
2025 	off = samples_to_bytes(runtime, off);
2026 	frames = samples_to_bytes(runtime, frames);
2027 	hwoff = samples_to_bytes(runtime, hwoff);
2028 	for (c = 0; c < channels; ++c, ++bufs) {
2029 		if (!data || !*bufs)
2030 			err = fill_silence(substream, c, hwoff, NULL, frames);
2031 		else
2032 			err = transfer(substream, c, hwoff, *bufs + off,
2033 				       frames);
2034 		if (err < 0)
2035 			return err;
2036 	}
2037 	return 0;
2038 }
2039 
2040 /* fill silence on the given buffer position;
2041  * called from snd_pcm_playback_silence()
2042  */
2043 static int fill_silence_frames(struct snd_pcm_substream *substream,
2044 			       snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2045 {
2046 	if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2047 	    substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2048 		return interleaved_copy(substream, off, NULL, 0, frames,
2049 					fill_silence);
2050 	else
2051 		return noninterleaved_copy(substream, off, NULL, 0, frames,
2052 					   fill_silence);
2053 }
2054 
2055 /* sanity-check for read/write methods */
2056 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2057 {
2058 	struct snd_pcm_runtime *runtime;
2059 	if (PCM_RUNTIME_CHECK(substream))
2060 		return -ENXIO;
2061 	runtime = substream->runtime;
2062 	if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area))
2063 		return -EINVAL;
2064 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2065 		return -EBADFD;
2066 	return 0;
2067 }
2068 
2069 static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2070 {
2071 	switch (runtime->status->state) {
2072 	case SNDRV_PCM_STATE_PREPARED:
2073 	case SNDRV_PCM_STATE_RUNNING:
2074 	case SNDRV_PCM_STATE_PAUSED:
2075 		return 0;
2076 	case SNDRV_PCM_STATE_XRUN:
2077 		return -EPIPE;
2078 	case SNDRV_PCM_STATE_SUSPENDED:
2079 		return -ESTRPIPE;
2080 	default:
2081 		return -EBADFD;
2082 	}
2083 }
2084 
2085 /* update to the given appl_ptr and call ack callback if needed;
2086  * when an error is returned, take back to the original value
2087  */
2088 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2089 			   snd_pcm_uframes_t appl_ptr)
2090 {
2091 	struct snd_pcm_runtime *runtime = substream->runtime;
2092 	snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2093 	int ret;
2094 
2095 	if (old_appl_ptr == appl_ptr)
2096 		return 0;
2097 
2098 	runtime->control->appl_ptr = appl_ptr;
2099 	if (substream->ops->ack) {
2100 		ret = substream->ops->ack(substream);
2101 		if (ret < 0) {
2102 			runtime->control->appl_ptr = old_appl_ptr;
2103 			return ret;
2104 		}
2105 	}
2106 
2107 	trace_applptr(substream, old_appl_ptr, appl_ptr);
2108 
2109 	return 0;
2110 }
2111 
2112 /* the common loop for read/write data */
2113 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2114 				     void *data, bool interleaved,
2115 				     snd_pcm_uframes_t size, bool in_kernel)
2116 {
2117 	struct snd_pcm_runtime *runtime = substream->runtime;
2118 	snd_pcm_uframes_t xfer = 0;
2119 	snd_pcm_uframes_t offset = 0;
2120 	snd_pcm_uframes_t avail;
2121 	pcm_copy_f writer;
2122 	pcm_transfer_f transfer;
2123 	bool nonblock;
2124 	bool is_playback;
2125 	int err;
2126 
2127 	err = pcm_sanity_check(substream);
2128 	if (err < 0)
2129 		return err;
2130 
2131 	is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2132 	if (interleaved) {
2133 		if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2134 		    runtime->channels > 1)
2135 			return -EINVAL;
2136 		writer = interleaved_copy;
2137 	} else {
2138 		if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2139 			return -EINVAL;
2140 		writer = noninterleaved_copy;
2141 	}
2142 
2143 	if (!data) {
2144 		if (is_playback)
2145 			transfer = fill_silence;
2146 		else
2147 			return -EINVAL;
2148 	} else if (in_kernel) {
2149 		if (substream->ops->copy_kernel)
2150 			transfer = substream->ops->copy_kernel;
2151 		else
2152 			transfer = is_playback ?
2153 				default_write_copy_kernel : default_read_copy_kernel;
2154 	} else {
2155 		if (substream->ops->copy_user)
2156 			transfer = (pcm_transfer_f)substream->ops->copy_user;
2157 		else
2158 			transfer = is_playback ?
2159 				default_write_copy : default_read_copy;
2160 	}
2161 
2162 	if (size == 0)
2163 		return 0;
2164 
2165 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2166 
2167 	snd_pcm_stream_lock_irq(substream);
2168 	err = pcm_accessible_state(runtime);
2169 	if (err < 0)
2170 		goto _end_unlock;
2171 
2172 	if (!is_playback &&
2173 	    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2174 	    size >= runtime->start_threshold) {
2175 		err = snd_pcm_start(substream);
2176 		if (err < 0)
2177 			goto _end_unlock;
2178 	}
2179 
2180 	runtime->twake = runtime->control->avail_min ? : 1;
2181 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2182 		snd_pcm_update_hw_ptr(substream);
2183 	if (is_playback)
2184 		avail = snd_pcm_playback_avail(runtime);
2185 	else
2186 		avail = snd_pcm_capture_avail(runtime);
2187 	while (size > 0) {
2188 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2189 		snd_pcm_uframes_t cont;
2190 		if (!avail) {
2191 			if (!is_playback &&
2192 			    runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2193 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2194 				goto _end_unlock;
2195 			}
2196 			if (nonblock) {
2197 				err = -EAGAIN;
2198 				goto _end_unlock;
2199 			}
2200 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2201 					runtime->control->avail_min ? : 1);
2202 			err = wait_for_avail(substream, &avail);
2203 			if (err < 0)
2204 				goto _end_unlock;
2205 			if (!avail)
2206 				continue; /* draining */
2207 		}
2208 		frames = size > avail ? avail : size;
2209 		appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2210 		appl_ofs = appl_ptr % runtime->buffer_size;
2211 		cont = runtime->buffer_size - appl_ofs;
2212 		if (frames > cont)
2213 			frames = cont;
2214 		if (snd_BUG_ON(!frames)) {
2215 			runtime->twake = 0;
2216 			snd_pcm_stream_unlock_irq(substream);
2217 			return -EINVAL;
2218 		}
2219 		snd_pcm_stream_unlock_irq(substream);
2220 		err = writer(substream, appl_ofs, data, offset, frames,
2221 			     transfer);
2222 		snd_pcm_stream_lock_irq(substream);
2223 		if (err < 0)
2224 			goto _end_unlock;
2225 		err = pcm_accessible_state(runtime);
2226 		if (err < 0)
2227 			goto _end_unlock;
2228 		appl_ptr += frames;
2229 		if (appl_ptr >= runtime->boundary)
2230 			appl_ptr -= runtime->boundary;
2231 		err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2232 		if (err < 0)
2233 			goto _end_unlock;
2234 
2235 		offset += frames;
2236 		size -= frames;
2237 		xfer += frames;
2238 		avail -= frames;
2239 		if (is_playback &&
2240 		    runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2241 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2242 			err = snd_pcm_start(substream);
2243 			if (err < 0)
2244 				goto _end_unlock;
2245 		}
2246 	}
2247  _end_unlock:
2248 	runtime->twake = 0;
2249 	if (xfer > 0 && err >= 0)
2250 		snd_pcm_update_state(substream, runtime);
2251 	snd_pcm_stream_unlock_irq(substream);
2252 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2253 }
2254 EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2255 
2256 /*
2257  * standard channel mapping helpers
2258  */
2259 
2260 /* default channel maps for multi-channel playbacks, up to 8 channels */
2261 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2262 	{ .channels = 1,
2263 	  .map = { SNDRV_CHMAP_MONO } },
2264 	{ .channels = 2,
2265 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2266 	{ .channels = 4,
2267 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2268 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2269 	{ .channels = 6,
2270 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2271 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2272 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2273 	{ .channels = 8,
2274 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2275 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2276 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2277 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2278 	{ }
2279 };
2280 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2281 
2282 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2283 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2284 	{ .channels = 1,
2285 	  .map = { SNDRV_CHMAP_MONO } },
2286 	{ .channels = 2,
2287 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2288 	{ .channels = 4,
2289 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2290 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2291 	{ .channels = 6,
2292 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2293 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2294 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2295 	{ .channels = 8,
2296 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2297 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2298 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2299 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2300 	{ }
2301 };
2302 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2303 
2304 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2305 {
2306 	if (ch > info->max_channels)
2307 		return false;
2308 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2309 }
2310 
2311 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2312 			      struct snd_ctl_elem_info *uinfo)
2313 {
2314 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2315 
2316 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2317 	uinfo->count = 0;
2318 	uinfo->count = info->max_channels;
2319 	uinfo->value.integer.min = 0;
2320 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2321 	return 0;
2322 }
2323 
2324 /* get callback for channel map ctl element
2325  * stores the channel position firstly matching with the current channels
2326  */
2327 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2328 			     struct snd_ctl_elem_value *ucontrol)
2329 {
2330 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2331 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2332 	struct snd_pcm_substream *substream;
2333 	const struct snd_pcm_chmap_elem *map;
2334 
2335 	if (!info->chmap)
2336 		return -EINVAL;
2337 	substream = snd_pcm_chmap_substream(info, idx);
2338 	if (!substream)
2339 		return -ENODEV;
2340 	memset(ucontrol->value.integer.value, 0,
2341 	       sizeof(ucontrol->value.integer.value));
2342 	if (!substream->runtime)
2343 		return 0; /* no channels set */
2344 	for (map = info->chmap; map->channels; map++) {
2345 		int i;
2346 		if (map->channels == substream->runtime->channels &&
2347 		    valid_chmap_channels(info, map->channels)) {
2348 			for (i = 0; i < map->channels; i++)
2349 				ucontrol->value.integer.value[i] = map->map[i];
2350 			return 0;
2351 		}
2352 	}
2353 	return -EINVAL;
2354 }
2355 
2356 /* tlv callback for channel map ctl element
2357  * expands the pre-defined channel maps in a form of TLV
2358  */
2359 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2360 			     unsigned int size, unsigned int __user *tlv)
2361 {
2362 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2363 	const struct snd_pcm_chmap_elem *map;
2364 	unsigned int __user *dst;
2365 	int c, count = 0;
2366 
2367 	if (!info->chmap)
2368 		return -EINVAL;
2369 	if (size < 8)
2370 		return -ENOMEM;
2371 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2372 		return -EFAULT;
2373 	size -= 8;
2374 	dst = tlv + 2;
2375 	for (map = info->chmap; map->channels; map++) {
2376 		int chs_bytes = map->channels * 4;
2377 		if (!valid_chmap_channels(info, map->channels))
2378 			continue;
2379 		if (size < 8)
2380 			return -ENOMEM;
2381 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2382 		    put_user(chs_bytes, dst + 1))
2383 			return -EFAULT;
2384 		dst += 2;
2385 		size -= 8;
2386 		count += 8;
2387 		if (size < chs_bytes)
2388 			return -ENOMEM;
2389 		size -= chs_bytes;
2390 		count += chs_bytes;
2391 		for (c = 0; c < map->channels; c++) {
2392 			if (put_user(map->map[c], dst))
2393 				return -EFAULT;
2394 			dst++;
2395 		}
2396 	}
2397 	if (put_user(count, tlv + 1))
2398 		return -EFAULT;
2399 	return 0;
2400 }
2401 
2402 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2403 {
2404 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2405 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2406 	kfree(info);
2407 }
2408 
2409 /**
2410  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2411  * @pcm: the assigned PCM instance
2412  * @stream: stream direction
2413  * @chmap: channel map elements (for query)
2414  * @max_channels: the max number of channels for the stream
2415  * @private_value: the value passed to each kcontrol's private_value field
2416  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2417  *
2418  * Create channel-mapping control elements assigned to the given PCM stream(s).
2419  * Return: Zero if successful, or a negative error value.
2420  */
2421 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2422 			   const struct snd_pcm_chmap_elem *chmap,
2423 			   int max_channels,
2424 			   unsigned long private_value,
2425 			   struct snd_pcm_chmap **info_ret)
2426 {
2427 	struct snd_pcm_chmap *info;
2428 	struct snd_kcontrol_new knew = {
2429 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2430 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2431 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2432 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2433 		.info = pcm_chmap_ctl_info,
2434 		.get = pcm_chmap_ctl_get,
2435 		.tlv.c = pcm_chmap_ctl_tlv,
2436 	};
2437 	int err;
2438 
2439 	if (WARN_ON(pcm->streams[stream].chmap_kctl))
2440 		return -EBUSY;
2441 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2442 	if (!info)
2443 		return -ENOMEM;
2444 	info->pcm = pcm;
2445 	info->stream = stream;
2446 	info->chmap = chmap;
2447 	info->max_channels = max_channels;
2448 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2449 		knew.name = "Playback Channel Map";
2450 	else
2451 		knew.name = "Capture Channel Map";
2452 	knew.device = pcm->device;
2453 	knew.count = pcm->streams[stream].substream_count;
2454 	knew.private_value = private_value;
2455 	info->kctl = snd_ctl_new1(&knew, info);
2456 	if (!info->kctl) {
2457 		kfree(info);
2458 		return -ENOMEM;
2459 	}
2460 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2461 	err = snd_ctl_add(pcm->card, info->kctl);
2462 	if (err < 0)
2463 		return err;
2464 	pcm->streams[stream].chmap_kctl = info->kctl;
2465 	if (info_ret)
2466 		*info_ret = info;
2467 	return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2470