1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <linux/slab.h> 24 #include <linux/sched/signal.h> 25 #include <linux/time.h> 26 #include <linux/math64.h> 27 #include <linux/export.h> 28 #include <sound/core.h> 29 #include <sound/control.h> 30 #include <sound/tlv.h> 31 #include <sound/info.h> 32 #include <sound/pcm.h> 33 #include <sound/pcm_params.h> 34 #include <sound/timer.h> 35 36 #include "pcm_local.h" 37 38 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 39 #define CREATE_TRACE_POINTS 40 #include "pcm_trace.h" 41 #else 42 #define trace_hwptr(substream, pos, in_interrupt) 43 #define trace_xrun(substream) 44 #define trace_hw_ptr_error(substream, reason) 45 #define trace_applptr(substream, prev, curr) 46 #endif 47 48 static int fill_silence_frames(struct snd_pcm_substream *substream, 49 snd_pcm_uframes_t off, snd_pcm_uframes_t frames); 50 51 /* 52 * fill ring buffer with silence 53 * runtime->silence_start: starting pointer to silence area 54 * runtime->silence_filled: size filled with silence 55 * runtime->silence_threshold: threshold from application 56 * runtime->silence_size: maximal size from application 57 * 58 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 59 */ 60 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 61 { 62 struct snd_pcm_runtime *runtime = substream->runtime; 63 snd_pcm_uframes_t frames, ofs, transfer; 64 int err; 65 66 if (runtime->silence_size < runtime->boundary) { 67 snd_pcm_sframes_t noise_dist, n; 68 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr); 69 if (runtime->silence_start != appl_ptr) { 70 n = appl_ptr - runtime->silence_start; 71 if (n < 0) 72 n += runtime->boundary; 73 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 74 runtime->silence_filled -= n; 75 else 76 runtime->silence_filled = 0; 77 runtime->silence_start = appl_ptr; 78 } 79 if (runtime->silence_filled >= runtime->buffer_size) 80 return; 81 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 82 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 83 return; 84 frames = runtime->silence_threshold - noise_dist; 85 if (frames > runtime->silence_size) 86 frames = runtime->silence_size; 87 } else { 88 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 89 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 90 if (avail > runtime->buffer_size) 91 avail = runtime->buffer_size; 92 runtime->silence_filled = avail > 0 ? avail : 0; 93 runtime->silence_start = (runtime->status->hw_ptr + 94 runtime->silence_filled) % 95 runtime->boundary; 96 } else { 97 ofs = runtime->status->hw_ptr; 98 frames = new_hw_ptr - ofs; 99 if ((snd_pcm_sframes_t)frames < 0) 100 frames += runtime->boundary; 101 runtime->silence_filled -= frames; 102 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 103 runtime->silence_filled = 0; 104 runtime->silence_start = new_hw_ptr; 105 } else { 106 runtime->silence_start = ofs; 107 } 108 } 109 frames = runtime->buffer_size - runtime->silence_filled; 110 } 111 if (snd_BUG_ON(frames > runtime->buffer_size)) 112 return; 113 if (frames == 0) 114 return; 115 ofs = runtime->silence_start % runtime->buffer_size; 116 while (frames > 0) { 117 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 118 err = fill_silence_frames(substream, ofs, transfer); 119 snd_BUG_ON(err < 0); 120 runtime->silence_filled += transfer; 121 frames -= transfer; 122 ofs = 0; 123 } 124 } 125 126 #ifdef CONFIG_SND_DEBUG 127 void snd_pcm_debug_name(struct snd_pcm_substream *substream, 128 char *name, size_t len) 129 { 130 snprintf(name, len, "pcmC%dD%d%c:%d", 131 substream->pcm->card->number, 132 substream->pcm->device, 133 substream->stream ? 'c' : 'p', 134 substream->number); 135 } 136 EXPORT_SYMBOL(snd_pcm_debug_name); 137 #endif 138 139 #define XRUN_DEBUG_BASIC (1<<0) 140 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */ 141 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */ 142 143 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 144 145 #define xrun_debug(substream, mask) \ 146 ((substream)->pstr->xrun_debug & (mask)) 147 #else 148 #define xrun_debug(substream, mask) 0 149 #endif 150 151 #define dump_stack_on_xrun(substream) do { \ 152 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \ 153 dump_stack(); \ 154 } while (0) 155 156 static void xrun(struct snd_pcm_substream *substream) 157 { 158 struct snd_pcm_runtime *runtime = substream->runtime; 159 160 trace_xrun(substream); 161 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) 162 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp); 163 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 164 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { 165 char name[16]; 166 snd_pcm_debug_name(substream, name, sizeof(name)); 167 pcm_warn(substream->pcm, "XRUN: %s\n", name); 168 dump_stack_on_xrun(substream); 169 } 170 } 171 172 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 173 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \ 174 do { \ 175 trace_hw_ptr_error(substream, reason); \ 176 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \ 177 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \ 178 (in_interrupt) ? 'Q' : 'P', ##args); \ 179 dump_stack_on_xrun(substream); \ 180 } \ 181 } while (0) 182 183 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */ 184 185 #define hw_ptr_error(substream, fmt, args...) do { } while (0) 186 187 #endif 188 189 int snd_pcm_update_state(struct snd_pcm_substream *substream, 190 struct snd_pcm_runtime *runtime) 191 { 192 snd_pcm_uframes_t avail; 193 194 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 195 avail = snd_pcm_playback_avail(runtime); 196 else 197 avail = snd_pcm_capture_avail(runtime); 198 if (avail > runtime->avail_max) 199 runtime->avail_max = avail; 200 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 201 if (avail >= runtime->buffer_size) { 202 snd_pcm_drain_done(substream); 203 return -EPIPE; 204 } 205 } else { 206 if (avail >= runtime->stop_threshold) { 207 xrun(substream); 208 return -EPIPE; 209 } 210 } 211 if (runtime->twake) { 212 if (avail >= runtime->twake) 213 wake_up(&runtime->tsleep); 214 } else if (avail >= runtime->control->avail_min) 215 wake_up(&runtime->sleep); 216 return 0; 217 } 218 219 static void update_audio_tstamp(struct snd_pcm_substream *substream, 220 struct timespec *curr_tstamp, 221 struct timespec *audio_tstamp) 222 { 223 struct snd_pcm_runtime *runtime = substream->runtime; 224 u64 audio_frames, audio_nsecs; 225 struct timespec driver_tstamp; 226 227 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE) 228 return; 229 230 if (!(substream->ops->get_time_info) || 231 (runtime->audio_tstamp_report.actual_type == 232 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 233 234 /* 235 * provide audio timestamp derived from pointer position 236 * add delay only if requested 237 */ 238 239 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr; 240 241 if (runtime->audio_tstamp_config.report_delay) { 242 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 243 audio_frames -= runtime->delay; 244 else 245 audio_frames += runtime->delay; 246 } 247 audio_nsecs = div_u64(audio_frames * 1000000000LL, 248 runtime->rate); 249 *audio_tstamp = ns_to_timespec(audio_nsecs); 250 } 251 if (!timespec_equal(&runtime->status->audio_tstamp, audio_tstamp)) { 252 runtime->status->audio_tstamp = *audio_tstamp; 253 runtime->status->tstamp = *curr_tstamp; 254 } 255 256 /* 257 * re-take a driver timestamp to let apps detect if the reference tstamp 258 * read by low-level hardware was provided with a delay 259 */ 260 snd_pcm_gettime(substream->runtime, (struct timespec *)&driver_tstamp); 261 runtime->driver_tstamp = driver_tstamp; 262 } 263 264 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream, 265 unsigned int in_interrupt) 266 { 267 struct snd_pcm_runtime *runtime = substream->runtime; 268 snd_pcm_uframes_t pos; 269 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base; 270 snd_pcm_sframes_t hdelta, delta; 271 unsigned long jdelta; 272 unsigned long curr_jiffies; 273 struct timespec curr_tstamp; 274 struct timespec audio_tstamp; 275 int crossed_boundary = 0; 276 277 old_hw_ptr = runtime->status->hw_ptr; 278 279 /* 280 * group pointer, time and jiffies reads to allow for more 281 * accurate correlations/corrections. 282 * The values are stored at the end of this routine after 283 * corrections for hw_ptr position 284 */ 285 pos = substream->ops->pointer(substream); 286 curr_jiffies = jiffies; 287 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) { 288 if ((substream->ops->get_time_info) && 289 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) { 290 substream->ops->get_time_info(substream, &curr_tstamp, 291 &audio_tstamp, 292 &runtime->audio_tstamp_config, 293 &runtime->audio_tstamp_report); 294 295 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */ 296 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT) 297 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 298 } else 299 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp); 300 } 301 302 if (pos == SNDRV_PCM_POS_XRUN) { 303 xrun(substream); 304 return -EPIPE; 305 } 306 if (pos >= runtime->buffer_size) { 307 if (printk_ratelimit()) { 308 char name[16]; 309 snd_pcm_debug_name(substream, name, sizeof(name)); 310 pcm_err(substream->pcm, 311 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n", 312 name, pos, runtime->buffer_size, 313 runtime->period_size); 314 } 315 pos = 0; 316 } 317 pos -= pos % runtime->min_align; 318 trace_hwptr(substream, pos, in_interrupt); 319 hw_base = runtime->hw_ptr_base; 320 new_hw_ptr = hw_base + pos; 321 if (in_interrupt) { 322 /* we know that one period was processed */ 323 /* delta = "expected next hw_ptr" for in_interrupt != 0 */ 324 delta = runtime->hw_ptr_interrupt + runtime->period_size; 325 if (delta > new_hw_ptr) { 326 /* check for double acknowledged interrupts */ 327 hdelta = curr_jiffies - runtime->hw_ptr_jiffies; 328 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) { 329 hw_base += runtime->buffer_size; 330 if (hw_base >= runtime->boundary) { 331 hw_base = 0; 332 crossed_boundary++; 333 } 334 new_hw_ptr = hw_base + pos; 335 goto __delta; 336 } 337 } 338 } 339 /* new_hw_ptr might be lower than old_hw_ptr in case when */ 340 /* pointer crosses the end of the ring buffer */ 341 if (new_hw_ptr < old_hw_ptr) { 342 hw_base += runtime->buffer_size; 343 if (hw_base >= runtime->boundary) { 344 hw_base = 0; 345 crossed_boundary++; 346 } 347 new_hw_ptr = hw_base + pos; 348 } 349 __delta: 350 delta = new_hw_ptr - old_hw_ptr; 351 if (delta < 0) 352 delta += runtime->boundary; 353 354 if (runtime->no_period_wakeup) { 355 snd_pcm_sframes_t xrun_threshold; 356 /* 357 * Without regular period interrupts, we have to check 358 * the elapsed time to detect xruns. 359 */ 360 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 361 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2) 362 goto no_delta_check; 363 hdelta = jdelta - delta * HZ / runtime->rate; 364 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1; 365 while (hdelta > xrun_threshold) { 366 delta += runtime->buffer_size; 367 hw_base += runtime->buffer_size; 368 if (hw_base >= runtime->boundary) { 369 hw_base = 0; 370 crossed_boundary++; 371 } 372 new_hw_ptr = hw_base + pos; 373 hdelta -= runtime->hw_ptr_buffer_jiffies; 374 } 375 goto no_delta_check; 376 } 377 378 /* something must be really wrong */ 379 if (delta >= runtime->buffer_size + runtime->period_size) { 380 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr", 381 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 382 substream->stream, (long)pos, 383 (long)new_hw_ptr, (long)old_hw_ptr); 384 return 0; 385 } 386 387 /* Do jiffies check only in xrun_debug mode */ 388 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK)) 389 goto no_jiffies_check; 390 391 /* Skip the jiffies check for hardwares with BATCH flag. 392 * Such hardware usually just increases the position at each IRQ, 393 * thus it can't give any strange position. 394 */ 395 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH) 396 goto no_jiffies_check; 397 hdelta = delta; 398 if (hdelta < runtime->delay) 399 goto no_jiffies_check; 400 hdelta -= runtime->delay; 401 jdelta = curr_jiffies - runtime->hw_ptr_jiffies; 402 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) { 403 delta = jdelta / 404 (((runtime->period_size * HZ) / runtime->rate) 405 + HZ/100); 406 /* move new_hw_ptr according jiffies not pos variable */ 407 new_hw_ptr = old_hw_ptr; 408 hw_base = delta; 409 /* use loop to avoid checks for delta overflows */ 410 /* the delta value is small or zero in most cases */ 411 while (delta > 0) { 412 new_hw_ptr += runtime->period_size; 413 if (new_hw_ptr >= runtime->boundary) { 414 new_hw_ptr -= runtime->boundary; 415 crossed_boundary--; 416 } 417 delta--; 418 } 419 /* align hw_base to buffer_size */ 420 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping", 421 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n", 422 (long)pos, (long)hdelta, 423 (long)runtime->period_size, jdelta, 424 ((hdelta * HZ) / runtime->rate), hw_base, 425 (unsigned long)old_hw_ptr, 426 (unsigned long)new_hw_ptr); 427 /* reset values to proper state */ 428 delta = 0; 429 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size); 430 } 431 no_jiffies_check: 432 if (delta > runtime->period_size + runtime->period_size / 2) { 433 hw_ptr_error(substream, in_interrupt, 434 "Lost interrupts?", 435 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n", 436 substream->stream, (long)delta, 437 (long)new_hw_ptr, 438 (long)old_hw_ptr); 439 } 440 441 no_delta_check: 442 if (runtime->status->hw_ptr == new_hw_ptr) { 443 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 444 return 0; 445 } 446 447 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 448 runtime->silence_size > 0) 449 snd_pcm_playback_silence(substream, new_hw_ptr); 450 451 if (in_interrupt) { 452 delta = new_hw_ptr - runtime->hw_ptr_interrupt; 453 if (delta < 0) 454 delta += runtime->boundary; 455 delta -= (snd_pcm_uframes_t)delta % runtime->period_size; 456 runtime->hw_ptr_interrupt += delta; 457 if (runtime->hw_ptr_interrupt >= runtime->boundary) 458 runtime->hw_ptr_interrupt -= runtime->boundary; 459 } 460 runtime->hw_ptr_base = hw_base; 461 runtime->status->hw_ptr = new_hw_ptr; 462 runtime->hw_ptr_jiffies = curr_jiffies; 463 if (crossed_boundary) { 464 snd_BUG_ON(crossed_boundary != 1); 465 runtime->hw_ptr_wrap += runtime->boundary; 466 } 467 468 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp); 469 470 return snd_pcm_update_state(substream, runtime); 471 } 472 473 /* CAUTION: call it with irq disabled */ 474 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 475 { 476 return snd_pcm_update_hw_ptr0(substream, 0); 477 } 478 479 /** 480 * snd_pcm_set_ops - set the PCM operators 481 * @pcm: the pcm instance 482 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 483 * @ops: the operator table 484 * 485 * Sets the given PCM operators to the pcm instance. 486 */ 487 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, 488 const struct snd_pcm_ops *ops) 489 { 490 struct snd_pcm_str *stream = &pcm->streams[direction]; 491 struct snd_pcm_substream *substream; 492 493 for (substream = stream->substream; substream != NULL; substream = substream->next) 494 substream->ops = ops; 495 } 496 EXPORT_SYMBOL(snd_pcm_set_ops); 497 498 /** 499 * snd_pcm_sync - set the PCM sync id 500 * @substream: the pcm substream 501 * 502 * Sets the PCM sync identifier for the card. 503 */ 504 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 505 { 506 struct snd_pcm_runtime *runtime = substream->runtime; 507 508 runtime->sync.id32[0] = substream->pcm->card->number; 509 runtime->sync.id32[1] = -1; 510 runtime->sync.id32[2] = -1; 511 runtime->sync.id32[3] = -1; 512 } 513 EXPORT_SYMBOL(snd_pcm_set_sync); 514 515 /* 516 * Standard ioctl routine 517 */ 518 519 static inline unsigned int div32(unsigned int a, unsigned int b, 520 unsigned int *r) 521 { 522 if (b == 0) { 523 *r = 0; 524 return UINT_MAX; 525 } 526 *r = a % b; 527 return a / b; 528 } 529 530 static inline unsigned int div_down(unsigned int a, unsigned int b) 531 { 532 if (b == 0) 533 return UINT_MAX; 534 return a / b; 535 } 536 537 static inline unsigned int div_up(unsigned int a, unsigned int b) 538 { 539 unsigned int r; 540 unsigned int q; 541 if (b == 0) 542 return UINT_MAX; 543 q = div32(a, b, &r); 544 if (r) 545 ++q; 546 return q; 547 } 548 549 static inline unsigned int mul(unsigned int a, unsigned int b) 550 { 551 if (a == 0) 552 return 0; 553 if (div_down(UINT_MAX, a) < b) 554 return UINT_MAX; 555 return a * b; 556 } 557 558 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 559 unsigned int c, unsigned int *r) 560 { 561 u_int64_t n = (u_int64_t) a * b; 562 if (c == 0) { 563 snd_BUG_ON(!n); 564 *r = 0; 565 return UINT_MAX; 566 } 567 n = div_u64_rem(n, c, r); 568 if (n >= UINT_MAX) { 569 *r = 0; 570 return UINT_MAX; 571 } 572 return n; 573 } 574 575 /** 576 * snd_interval_refine - refine the interval value of configurator 577 * @i: the interval value to refine 578 * @v: the interval value to refer to 579 * 580 * Refines the interval value with the reference value. 581 * The interval is changed to the range satisfying both intervals. 582 * The interval status (min, max, integer, etc.) are evaluated. 583 * 584 * Return: Positive if the value is changed, zero if it's not changed, or a 585 * negative error code. 586 */ 587 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 588 { 589 int changed = 0; 590 if (snd_BUG_ON(snd_interval_empty(i))) 591 return -EINVAL; 592 if (i->min < v->min) { 593 i->min = v->min; 594 i->openmin = v->openmin; 595 changed = 1; 596 } else if (i->min == v->min && !i->openmin && v->openmin) { 597 i->openmin = 1; 598 changed = 1; 599 } 600 if (i->max > v->max) { 601 i->max = v->max; 602 i->openmax = v->openmax; 603 changed = 1; 604 } else if (i->max == v->max && !i->openmax && v->openmax) { 605 i->openmax = 1; 606 changed = 1; 607 } 608 if (!i->integer && v->integer) { 609 i->integer = 1; 610 changed = 1; 611 } 612 if (i->integer) { 613 if (i->openmin) { 614 i->min++; 615 i->openmin = 0; 616 } 617 if (i->openmax) { 618 i->max--; 619 i->openmax = 0; 620 } 621 } else if (!i->openmin && !i->openmax && i->min == i->max) 622 i->integer = 1; 623 if (snd_interval_checkempty(i)) { 624 snd_interval_none(i); 625 return -EINVAL; 626 } 627 return changed; 628 } 629 EXPORT_SYMBOL(snd_interval_refine); 630 631 static int snd_interval_refine_first(struct snd_interval *i) 632 { 633 if (snd_BUG_ON(snd_interval_empty(i))) 634 return -EINVAL; 635 if (snd_interval_single(i)) 636 return 0; 637 i->max = i->min; 638 i->openmax = i->openmin; 639 if (i->openmax) 640 i->max++; 641 return 1; 642 } 643 644 static int snd_interval_refine_last(struct snd_interval *i) 645 { 646 if (snd_BUG_ON(snd_interval_empty(i))) 647 return -EINVAL; 648 if (snd_interval_single(i)) 649 return 0; 650 i->min = i->max; 651 i->openmin = i->openmax; 652 if (i->openmin) 653 i->min--; 654 return 1; 655 } 656 657 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 658 { 659 if (a->empty || b->empty) { 660 snd_interval_none(c); 661 return; 662 } 663 c->empty = 0; 664 c->min = mul(a->min, b->min); 665 c->openmin = (a->openmin || b->openmin); 666 c->max = mul(a->max, b->max); 667 c->openmax = (a->openmax || b->openmax); 668 c->integer = (a->integer && b->integer); 669 } 670 671 /** 672 * snd_interval_div - refine the interval value with division 673 * @a: dividend 674 * @b: divisor 675 * @c: quotient 676 * 677 * c = a / b 678 * 679 * Returns non-zero if the value is changed, zero if not changed. 680 */ 681 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 682 { 683 unsigned int r; 684 if (a->empty || b->empty) { 685 snd_interval_none(c); 686 return; 687 } 688 c->empty = 0; 689 c->min = div32(a->min, b->max, &r); 690 c->openmin = (r || a->openmin || b->openmax); 691 if (b->min > 0) { 692 c->max = div32(a->max, b->min, &r); 693 if (r) { 694 c->max++; 695 c->openmax = 1; 696 } else 697 c->openmax = (a->openmax || b->openmin); 698 } else { 699 c->max = UINT_MAX; 700 c->openmax = 0; 701 } 702 c->integer = 0; 703 } 704 705 /** 706 * snd_interval_muldivk - refine the interval value 707 * @a: dividend 1 708 * @b: dividend 2 709 * @k: divisor (as integer) 710 * @c: result 711 * 712 * c = a * b / k 713 * 714 * Returns non-zero if the value is changed, zero if not changed. 715 */ 716 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 717 unsigned int k, struct snd_interval *c) 718 { 719 unsigned int r; 720 if (a->empty || b->empty) { 721 snd_interval_none(c); 722 return; 723 } 724 c->empty = 0; 725 c->min = muldiv32(a->min, b->min, k, &r); 726 c->openmin = (r || a->openmin || b->openmin); 727 c->max = muldiv32(a->max, b->max, k, &r); 728 if (r) { 729 c->max++; 730 c->openmax = 1; 731 } else 732 c->openmax = (a->openmax || b->openmax); 733 c->integer = 0; 734 } 735 736 /** 737 * snd_interval_mulkdiv - refine the interval value 738 * @a: dividend 1 739 * @k: dividend 2 (as integer) 740 * @b: divisor 741 * @c: result 742 * 743 * c = a * k / b 744 * 745 * Returns non-zero if the value is changed, zero if not changed. 746 */ 747 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 748 const struct snd_interval *b, struct snd_interval *c) 749 { 750 unsigned int r; 751 if (a->empty || b->empty) { 752 snd_interval_none(c); 753 return; 754 } 755 c->empty = 0; 756 c->min = muldiv32(a->min, k, b->max, &r); 757 c->openmin = (r || a->openmin || b->openmax); 758 if (b->min > 0) { 759 c->max = muldiv32(a->max, k, b->min, &r); 760 if (r) { 761 c->max++; 762 c->openmax = 1; 763 } else 764 c->openmax = (a->openmax || b->openmin); 765 } else { 766 c->max = UINT_MAX; 767 c->openmax = 0; 768 } 769 c->integer = 0; 770 } 771 772 /* ---- */ 773 774 775 /** 776 * snd_interval_ratnum - refine the interval value 777 * @i: interval to refine 778 * @rats_count: number of ratnum_t 779 * @rats: ratnum_t array 780 * @nump: pointer to store the resultant numerator 781 * @denp: pointer to store the resultant denominator 782 * 783 * Return: Positive if the value is changed, zero if it's not changed, or a 784 * negative error code. 785 */ 786 int snd_interval_ratnum(struct snd_interval *i, 787 unsigned int rats_count, const struct snd_ratnum *rats, 788 unsigned int *nump, unsigned int *denp) 789 { 790 unsigned int best_num, best_den; 791 int best_diff; 792 unsigned int k; 793 struct snd_interval t; 794 int err; 795 unsigned int result_num, result_den; 796 int result_diff; 797 798 best_num = best_den = best_diff = 0; 799 for (k = 0; k < rats_count; ++k) { 800 unsigned int num = rats[k].num; 801 unsigned int den; 802 unsigned int q = i->min; 803 int diff; 804 if (q == 0) 805 q = 1; 806 den = div_up(num, q); 807 if (den < rats[k].den_min) 808 continue; 809 if (den > rats[k].den_max) 810 den = rats[k].den_max; 811 else { 812 unsigned int r; 813 r = (den - rats[k].den_min) % rats[k].den_step; 814 if (r != 0) 815 den -= r; 816 } 817 diff = num - q * den; 818 if (diff < 0) 819 diff = -diff; 820 if (best_num == 0 || 821 diff * best_den < best_diff * den) { 822 best_diff = diff; 823 best_den = den; 824 best_num = num; 825 } 826 } 827 if (best_den == 0) { 828 i->empty = 1; 829 return -EINVAL; 830 } 831 t.min = div_down(best_num, best_den); 832 t.openmin = !!(best_num % best_den); 833 834 result_num = best_num; 835 result_diff = best_diff; 836 result_den = best_den; 837 best_num = best_den = best_diff = 0; 838 for (k = 0; k < rats_count; ++k) { 839 unsigned int num = rats[k].num; 840 unsigned int den; 841 unsigned int q = i->max; 842 int diff; 843 if (q == 0) { 844 i->empty = 1; 845 return -EINVAL; 846 } 847 den = div_down(num, q); 848 if (den > rats[k].den_max) 849 continue; 850 if (den < rats[k].den_min) 851 den = rats[k].den_min; 852 else { 853 unsigned int r; 854 r = (den - rats[k].den_min) % rats[k].den_step; 855 if (r != 0) 856 den += rats[k].den_step - r; 857 } 858 diff = q * den - num; 859 if (diff < 0) 860 diff = -diff; 861 if (best_num == 0 || 862 diff * best_den < best_diff * den) { 863 best_diff = diff; 864 best_den = den; 865 best_num = num; 866 } 867 } 868 if (best_den == 0) { 869 i->empty = 1; 870 return -EINVAL; 871 } 872 t.max = div_up(best_num, best_den); 873 t.openmax = !!(best_num % best_den); 874 t.integer = 0; 875 err = snd_interval_refine(i, &t); 876 if (err < 0) 877 return err; 878 879 if (snd_interval_single(i)) { 880 if (best_diff * result_den < result_diff * best_den) { 881 result_num = best_num; 882 result_den = best_den; 883 } 884 if (nump) 885 *nump = result_num; 886 if (denp) 887 *denp = result_den; 888 } 889 return err; 890 } 891 EXPORT_SYMBOL(snd_interval_ratnum); 892 893 /** 894 * snd_interval_ratden - refine the interval value 895 * @i: interval to refine 896 * @rats_count: number of struct ratden 897 * @rats: struct ratden array 898 * @nump: pointer to store the resultant numerator 899 * @denp: pointer to store the resultant denominator 900 * 901 * Return: Positive if the value is changed, zero if it's not changed, or a 902 * negative error code. 903 */ 904 static int snd_interval_ratden(struct snd_interval *i, 905 unsigned int rats_count, 906 const struct snd_ratden *rats, 907 unsigned int *nump, unsigned int *denp) 908 { 909 unsigned int best_num, best_diff, best_den; 910 unsigned int k; 911 struct snd_interval t; 912 int err; 913 914 best_num = best_den = best_diff = 0; 915 for (k = 0; k < rats_count; ++k) { 916 unsigned int num; 917 unsigned int den = rats[k].den; 918 unsigned int q = i->min; 919 int diff; 920 num = mul(q, den); 921 if (num > rats[k].num_max) 922 continue; 923 if (num < rats[k].num_min) 924 num = rats[k].num_max; 925 else { 926 unsigned int r; 927 r = (num - rats[k].num_min) % rats[k].num_step; 928 if (r != 0) 929 num += rats[k].num_step - r; 930 } 931 diff = num - q * den; 932 if (best_num == 0 || 933 diff * best_den < best_diff * den) { 934 best_diff = diff; 935 best_den = den; 936 best_num = num; 937 } 938 } 939 if (best_den == 0) { 940 i->empty = 1; 941 return -EINVAL; 942 } 943 t.min = div_down(best_num, best_den); 944 t.openmin = !!(best_num % best_den); 945 946 best_num = best_den = best_diff = 0; 947 for (k = 0; k < rats_count; ++k) { 948 unsigned int num; 949 unsigned int den = rats[k].den; 950 unsigned int q = i->max; 951 int diff; 952 num = mul(q, den); 953 if (num < rats[k].num_min) 954 continue; 955 if (num > rats[k].num_max) 956 num = rats[k].num_max; 957 else { 958 unsigned int r; 959 r = (num - rats[k].num_min) % rats[k].num_step; 960 if (r != 0) 961 num -= r; 962 } 963 diff = q * den - num; 964 if (best_num == 0 || 965 diff * best_den < best_diff * den) { 966 best_diff = diff; 967 best_den = den; 968 best_num = num; 969 } 970 } 971 if (best_den == 0) { 972 i->empty = 1; 973 return -EINVAL; 974 } 975 t.max = div_up(best_num, best_den); 976 t.openmax = !!(best_num % best_den); 977 t.integer = 0; 978 err = snd_interval_refine(i, &t); 979 if (err < 0) 980 return err; 981 982 if (snd_interval_single(i)) { 983 if (nump) 984 *nump = best_num; 985 if (denp) 986 *denp = best_den; 987 } 988 return err; 989 } 990 991 /** 992 * snd_interval_list - refine the interval value from the list 993 * @i: the interval value to refine 994 * @count: the number of elements in the list 995 * @list: the value list 996 * @mask: the bit-mask to evaluate 997 * 998 * Refines the interval value from the list. 999 * When mask is non-zero, only the elements corresponding to bit 1 are 1000 * evaluated. 1001 * 1002 * Return: Positive if the value is changed, zero if it's not changed, or a 1003 * negative error code. 1004 */ 1005 int snd_interval_list(struct snd_interval *i, unsigned int count, 1006 const unsigned int *list, unsigned int mask) 1007 { 1008 unsigned int k; 1009 struct snd_interval list_range; 1010 1011 if (!count) { 1012 i->empty = 1; 1013 return -EINVAL; 1014 } 1015 snd_interval_any(&list_range); 1016 list_range.min = UINT_MAX; 1017 list_range.max = 0; 1018 for (k = 0; k < count; k++) { 1019 if (mask && !(mask & (1 << k))) 1020 continue; 1021 if (!snd_interval_test(i, list[k])) 1022 continue; 1023 list_range.min = min(list_range.min, list[k]); 1024 list_range.max = max(list_range.max, list[k]); 1025 } 1026 return snd_interval_refine(i, &list_range); 1027 } 1028 EXPORT_SYMBOL(snd_interval_list); 1029 1030 /** 1031 * snd_interval_ranges - refine the interval value from the list of ranges 1032 * @i: the interval value to refine 1033 * @count: the number of elements in the list of ranges 1034 * @ranges: the ranges list 1035 * @mask: the bit-mask to evaluate 1036 * 1037 * Refines the interval value from the list of ranges. 1038 * When mask is non-zero, only the elements corresponding to bit 1 are 1039 * evaluated. 1040 * 1041 * Return: Positive if the value is changed, zero if it's not changed, or a 1042 * negative error code. 1043 */ 1044 int snd_interval_ranges(struct snd_interval *i, unsigned int count, 1045 const struct snd_interval *ranges, unsigned int mask) 1046 { 1047 unsigned int k; 1048 struct snd_interval range_union; 1049 struct snd_interval range; 1050 1051 if (!count) { 1052 snd_interval_none(i); 1053 return -EINVAL; 1054 } 1055 snd_interval_any(&range_union); 1056 range_union.min = UINT_MAX; 1057 range_union.max = 0; 1058 for (k = 0; k < count; k++) { 1059 if (mask && !(mask & (1 << k))) 1060 continue; 1061 snd_interval_copy(&range, &ranges[k]); 1062 if (snd_interval_refine(&range, i) < 0) 1063 continue; 1064 if (snd_interval_empty(&range)) 1065 continue; 1066 1067 if (range.min < range_union.min) { 1068 range_union.min = range.min; 1069 range_union.openmin = 1; 1070 } 1071 if (range.min == range_union.min && !range.openmin) 1072 range_union.openmin = 0; 1073 if (range.max > range_union.max) { 1074 range_union.max = range.max; 1075 range_union.openmax = 1; 1076 } 1077 if (range.max == range_union.max && !range.openmax) 1078 range_union.openmax = 0; 1079 } 1080 return snd_interval_refine(i, &range_union); 1081 } 1082 EXPORT_SYMBOL(snd_interval_ranges); 1083 1084 static int snd_interval_step(struct snd_interval *i, unsigned int step) 1085 { 1086 unsigned int n; 1087 int changed = 0; 1088 n = i->min % step; 1089 if (n != 0 || i->openmin) { 1090 i->min += step - n; 1091 i->openmin = 0; 1092 changed = 1; 1093 } 1094 n = i->max % step; 1095 if (n != 0 || i->openmax) { 1096 i->max -= n; 1097 i->openmax = 0; 1098 changed = 1; 1099 } 1100 if (snd_interval_checkempty(i)) { 1101 i->empty = 1; 1102 return -EINVAL; 1103 } 1104 return changed; 1105 } 1106 1107 /* Info constraints helpers */ 1108 1109 /** 1110 * snd_pcm_hw_rule_add - add the hw-constraint rule 1111 * @runtime: the pcm runtime instance 1112 * @cond: condition bits 1113 * @var: the variable to evaluate 1114 * @func: the evaluation function 1115 * @private: the private data pointer passed to function 1116 * @dep: the dependent variables 1117 * 1118 * Return: Zero if successful, or a negative error code on failure. 1119 */ 1120 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 1121 int var, 1122 snd_pcm_hw_rule_func_t func, void *private, 1123 int dep, ...) 1124 { 1125 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1126 struct snd_pcm_hw_rule *c; 1127 unsigned int k; 1128 va_list args; 1129 va_start(args, dep); 1130 if (constrs->rules_num >= constrs->rules_all) { 1131 struct snd_pcm_hw_rule *new; 1132 unsigned int new_rules = constrs->rules_all + 16; 1133 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 1134 if (!new) { 1135 va_end(args); 1136 return -ENOMEM; 1137 } 1138 if (constrs->rules) { 1139 memcpy(new, constrs->rules, 1140 constrs->rules_num * sizeof(*c)); 1141 kfree(constrs->rules); 1142 } 1143 constrs->rules = new; 1144 constrs->rules_all = new_rules; 1145 } 1146 c = &constrs->rules[constrs->rules_num]; 1147 c->cond = cond; 1148 c->func = func; 1149 c->var = var; 1150 c->private = private; 1151 k = 0; 1152 while (1) { 1153 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) { 1154 va_end(args); 1155 return -EINVAL; 1156 } 1157 c->deps[k++] = dep; 1158 if (dep < 0) 1159 break; 1160 dep = va_arg(args, int); 1161 } 1162 constrs->rules_num++; 1163 va_end(args); 1164 return 0; 1165 } 1166 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 1167 1168 /** 1169 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint 1170 * @runtime: PCM runtime instance 1171 * @var: hw_params variable to apply the mask 1172 * @mask: the bitmap mask 1173 * 1174 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter. 1175 * 1176 * Return: Zero if successful, or a negative error code on failure. 1177 */ 1178 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1179 u_int32_t mask) 1180 { 1181 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1182 struct snd_mask *maskp = constrs_mask(constrs, var); 1183 *maskp->bits &= mask; 1184 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 1185 if (*maskp->bits == 0) 1186 return -EINVAL; 1187 return 0; 1188 } 1189 1190 /** 1191 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint 1192 * @runtime: PCM runtime instance 1193 * @var: hw_params variable to apply the mask 1194 * @mask: the 64bit bitmap mask 1195 * 1196 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter. 1197 * 1198 * Return: Zero if successful, or a negative error code on failure. 1199 */ 1200 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1201 u_int64_t mask) 1202 { 1203 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1204 struct snd_mask *maskp = constrs_mask(constrs, var); 1205 maskp->bits[0] &= (u_int32_t)mask; 1206 maskp->bits[1] &= (u_int32_t)(mask >> 32); 1207 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 1208 if (! maskp->bits[0] && ! maskp->bits[1]) 1209 return -EINVAL; 1210 return 0; 1211 } 1212 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64); 1213 1214 /** 1215 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval 1216 * @runtime: PCM runtime instance 1217 * @var: hw_params variable to apply the integer constraint 1218 * 1219 * Apply the constraint of integer to an interval parameter. 1220 * 1221 * Return: Positive if the value is changed, zero if it's not changed, or a 1222 * negative error code. 1223 */ 1224 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1225 { 1226 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1227 return snd_interval_setinteger(constrs_interval(constrs, var)); 1228 } 1229 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 1230 1231 /** 1232 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval 1233 * @runtime: PCM runtime instance 1234 * @var: hw_params variable to apply the range 1235 * @min: the minimal value 1236 * @max: the maximal value 1237 * 1238 * Apply the min/max range constraint to an interval parameter. 1239 * 1240 * Return: Positive if the value is changed, zero if it's not changed, or a 1241 * negative error code. 1242 */ 1243 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1244 unsigned int min, unsigned int max) 1245 { 1246 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1247 struct snd_interval t; 1248 t.min = min; 1249 t.max = max; 1250 t.openmin = t.openmax = 0; 1251 t.integer = 0; 1252 return snd_interval_refine(constrs_interval(constrs, var), &t); 1253 } 1254 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 1255 1256 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1257 struct snd_pcm_hw_rule *rule) 1258 { 1259 struct snd_pcm_hw_constraint_list *list = rule->private; 1260 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1261 } 1262 1263 1264 /** 1265 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter 1266 * @runtime: PCM runtime instance 1267 * @cond: condition bits 1268 * @var: hw_params variable to apply the list constraint 1269 * @l: list 1270 * 1271 * Apply the list of constraints to an interval parameter. 1272 * 1273 * Return: Zero if successful, or a negative error code on failure. 1274 */ 1275 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1276 unsigned int cond, 1277 snd_pcm_hw_param_t var, 1278 const struct snd_pcm_hw_constraint_list *l) 1279 { 1280 return snd_pcm_hw_rule_add(runtime, cond, var, 1281 snd_pcm_hw_rule_list, (void *)l, 1282 var, -1); 1283 } 1284 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1285 1286 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params, 1287 struct snd_pcm_hw_rule *rule) 1288 { 1289 struct snd_pcm_hw_constraint_ranges *r = rule->private; 1290 return snd_interval_ranges(hw_param_interval(params, rule->var), 1291 r->count, r->ranges, r->mask); 1292 } 1293 1294 1295 /** 1296 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter 1297 * @runtime: PCM runtime instance 1298 * @cond: condition bits 1299 * @var: hw_params variable to apply the list of range constraints 1300 * @r: ranges 1301 * 1302 * Apply the list of range constraints to an interval parameter. 1303 * 1304 * Return: Zero if successful, or a negative error code on failure. 1305 */ 1306 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime, 1307 unsigned int cond, 1308 snd_pcm_hw_param_t var, 1309 const struct snd_pcm_hw_constraint_ranges *r) 1310 { 1311 return snd_pcm_hw_rule_add(runtime, cond, var, 1312 snd_pcm_hw_rule_ranges, (void *)r, 1313 var, -1); 1314 } 1315 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges); 1316 1317 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1318 struct snd_pcm_hw_rule *rule) 1319 { 1320 const struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1321 unsigned int num = 0, den = 0; 1322 int err; 1323 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1324 r->nrats, r->rats, &num, &den); 1325 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1326 params->rate_num = num; 1327 params->rate_den = den; 1328 } 1329 return err; 1330 } 1331 1332 /** 1333 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter 1334 * @runtime: PCM runtime instance 1335 * @cond: condition bits 1336 * @var: hw_params variable to apply the ratnums constraint 1337 * @r: struct snd_ratnums constriants 1338 * 1339 * Return: Zero if successful, or a negative error code on failure. 1340 */ 1341 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1342 unsigned int cond, 1343 snd_pcm_hw_param_t var, 1344 const struct snd_pcm_hw_constraint_ratnums *r) 1345 { 1346 return snd_pcm_hw_rule_add(runtime, cond, var, 1347 snd_pcm_hw_rule_ratnums, (void *)r, 1348 var, -1); 1349 } 1350 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1351 1352 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1353 struct snd_pcm_hw_rule *rule) 1354 { 1355 const struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1356 unsigned int num = 0, den = 0; 1357 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1358 r->nrats, r->rats, &num, &den); 1359 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1360 params->rate_num = num; 1361 params->rate_den = den; 1362 } 1363 return err; 1364 } 1365 1366 /** 1367 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter 1368 * @runtime: PCM runtime instance 1369 * @cond: condition bits 1370 * @var: hw_params variable to apply the ratdens constraint 1371 * @r: struct snd_ratdens constriants 1372 * 1373 * Return: Zero if successful, or a negative error code on failure. 1374 */ 1375 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1376 unsigned int cond, 1377 snd_pcm_hw_param_t var, 1378 const struct snd_pcm_hw_constraint_ratdens *r) 1379 { 1380 return snd_pcm_hw_rule_add(runtime, cond, var, 1381 snd_pcm_hw_rule_ratdens, (void *)r, 1382 var, -1); 1383 } 1384 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1385 1386 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1387 struct snd_pcm_hw_rule *rule) 1388 { 1389 unsigned int l = (unsigned long) rule->private; 1390 int width = l & 0xffff; 1391 unsigned int msbits = l >> 16; 1392 const struct snd_interval *i = 1393 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1394 1395 if (!snd_interval_single(i)) 1396 return 0; 1397 1398 if ((snd_interval_value(i) == width) || 1399 (width == 0 && snd_interval_value(i) > msbits)) 1400 params->msbits = min_not_zero(params->msbits, msbits); 1401 1402 return 0; 1403 } 1404 1405 /** 1406 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule 1407 * @runtime: PCM runtime instance 1408 * @cond: condition bits 1409 * @width: sample bits width 1410 * @msbits: msbits width 1411 * 1412 * This constraint will set the number of most significant bits (msbits) if a 1413 * sample format with the specified width has been select. If width is set to 0 1414 * the msbits will be set for any sample format with a width larger than the 1415 * specified msbits. 1416 * 1417 * Return: Zero if successful, or a negative error code on failure. 1418 */ 1419 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1420 unsigned int cond, 1421 unsigned int width, 1422 unsigned int msbits) 1423 { 1424 unsigned long l = (msbits << 16) | width; 1425 return snd_pcm_hw_rule_add(runtime, cond, -1, 1426 snd_pcm_hw_rule_msbits, 1427 (void*) l, 1428 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1429 } 1430 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1431 1432 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1433 struct snd_pcm_hw_rule *rule) 1434 { 1435 unsigned long step = (unsigned long) rule->private; 1436 return snd_interval_step(hw_param_interval(params, rule->var), step); 1437 } 1438 1439 /** 1440 * snd_pcm_hw_constraint_step - add a hw constraint step rule 1441 * @runtime: PCM runtime instance 1442 * @cond: condition bits 1443 * @var: hw_params variable to apply the step constraint 1444 * @step: step size 1445 * 1446 * Return: Zero if successful, or a negative error code on failure. 1447 */ 1448 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1449 unsigned int cond, 1450 snd_pcm_hw_param_t var, 1451 unsigned long step) 1452 { 1453 return snd_pcm_hw_rule_add(runtime, cond, var, 1454 snd_pcm_hw_rule_step, (void *) step, 1455 var, -1); 1456 } 1457 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1458 1459 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1460 { 1461 static unsigned int pow2_sizes[] = { 1462 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1463 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1464 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1465 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1466 }; 1467 return snd_interval_list(hw_param_interval(params, rule->var), 1468 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1469 } 1470 1471 /** 1472 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule 1473 * @runtime: PCM runtime instance 1474 * @cond: condition bits 1475 * @var: hw_params variable to apply the power-of-2 constraint 1476 * 1477 * Return: Zero if successful, or a negative error code on failure. 1478 */ 1479 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1480 unsigned int cond, 1481 snd_pcm_hw_param_t var) 1482 { 1483 return snd_pcm_hw_rule_add(runtime, cond, var, 1484 snd_pcm_hw_rule_pow2, NULL, 1485 var, -1); 1486 } 1487 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1488 1489 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params, 1490 struct snd_pcm_hw_rule *rule) 1491 { 1492 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private; 1493 struct snd_interval *rate; 1494 1495 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 1496 return snd_interval_list(rate, 1, &base_rate, 0); 1497 } 1498 1499 /** 1500 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling 1501 * @runtime: PCM runtime instance 1502 * @base_rate: the rate at which the hardware does not resample 1503 * 1504 * Return: Zero if successful, or a negative error code on failure. 1505 */ 1506 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime, 1507 unsigned int base_rate) 1508 { 1509 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE, 1510 SNDRV_PCM_HW_PARAM_RATE, 1511 snd_pcm_hw_rule_noresample_func, 1512 (void *)(uintptr_t)base_rate, 1513 SNDRV_PCM_HW_PARAM_RATE, -1); 1514 } 1515 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample); 1516 1517 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1518 snd_pcm_hw_param_t var) 1519 { 1520 if (hw_is_mask(var)) { 1521 snd_mask_any(hw_param_mask(params, var)); 1522 params->cmask |= 1 << var; 1523 params->rmask |= 1 << var; 1524 return; 1525 } 1526 if (hw_is_interval(var)) { 1527 snd_interval_any(hw_param_interval(params, var)); 1528 params->cmask |= 1 << var; 1529 params->rmask |= 1 << var; 1530 return; 1531 } 1532 snd_BUG(); 1533 } 1534 1535 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1536 { 1537 unsigned int k; 1538 memset(params, 0, sizeof(*params)); 1539 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1540 _snd_pcm_hw_param_any(params, k); 1541 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1542 _snd_pcm_hw_param_any(params, k); 1543 params->info = ~0U; 1544 } 1545 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1546 1547 /** 1548 * snd_pcm_hw_param_value - return @params field @var value 1549 * @params: the hw_params instance 1550 * @var: parameter to retrieve 1551 * @dir: pointer to the direction (-1,0,1) or %NULL 1552 * 1553 * Return: The value for field @var if it's fixed in configuration space 1554 * defined by @params. -%EINVAL otherwise. 1555 */ 1556 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1557 snd_pcm_hw_param_t var, int *dir) 1558 { 1559 if (hw_is_mask(var)) { 1560 const struct snd_mask *mask = hw_param_mask_c(params, var); 1561 if (!snd_mask_single(mask)) 1562 return -EINVAL; 1563 if (dir) 1564 *dir = 0; 1565 return snd_mask_value(mask); 1566 } 1567 if (hw_is_interval(var)) { 1568 const struct snd_interval *i = hw_param_interval_c(params, var); 1569 if (!snd_interval_single(i)) 1570 return -EINVAL; 1571 if (dir) 1572 *dir = i->openmin; 1573 return snd_interval_value(i); 1574 } 1575 return -EINVAL; 1576 } 1577 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1578 1579 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1580 snd_pcm_hw_param_t var) 1581 { 1582 if (hw_is_mask(var)) { 1583 snd_mask_none(hw_param_mask(params, var)); 1584 params->cmask |= 1 << var; 1585 params->rmask |= 1 << var; 1586 } else if (hw_is_interval(var)) { 1587 snd_interval_none(hw_param_interval(params, var)); 1588 params->cmask |= 1 << var; 1589 params->rmask |= 1 << var; 1590 } else { 1591 snd_BUG(); 1592 } 1593 } 1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1595 1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1597 snd_pcm_hw_param_t var) 1598 { 1599 int changed; 1600 if (hw_is_mask(var)) 1601 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1602 else if (hw_is_interval(var)) 1603 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1604 else 1605 return -EINVAL; 1606 if (changed) { 1607 params->cmask |= 1 << var; 1608 params->rmask |= 1 << var; 1609 } 1610 return changed; 1611 } 1612 1613 1614 /** 1615 * snd_pcm_hw_param_first - refine config space and return minimum value 1616 * @pcm: PCM instance 1617 * @params: the hw_params instance 1618 * @var: parameter to retrieve 1619 * @dir: pointer to the direction (-1,0,1) or %NULL 1620 * 1621 * Inside configuration space defined by @params remove from @var all 1622 * values > minimum. Reduce configuration space accordingly. 1623 * 1624 * Return: The minimum, or a negative error code on failure. 1625 */ 1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1627 struct snd_pcm_hw_params *params, 1628 snd_pcm_hw_param_t var, int *dir) 1629 { 1630 int changed = _snd_pcm_hw_param_first(params, var); 1631 if (changed < 0) 1632 return changed; 1633 if (params->rmask) { 1634 int err = snd_pcm_hw_refine(pcm, params); 1635 if (snd_BUG_ON(err < 0)) 1636 return err; 1637 } 1638 return snd_pcm_hw_param_value(params, var, dir); 1639 } 1640 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1641 1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1643 snd_pcm_hw_param_t var) 1644 { 1645 int changed; 1646 if (hw_is_mask(var)) 1647 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1648 else if (hw_is_interval(var)) 1649 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1650 else 1651 return -EINVAL; 1652 if (changed) { 1653 params->cmask |= 1 << var; 1654 params->rmask |= 1 << var; 1655 } 1656 return changed; 1657 } 1658 1659 1660 /** 1661 * snd_pcm_hw_param_last - refine config space and return maximum value 1662 * @pcm: PCM instance 1663 * @params: the hw_params instance 1664 * @var: parameter to retrieve 1665 * @dir: pointer to the direction (-1,0,1) or %NULL 1666 * 1667 * Inside configuration space defined by @params remove from @var all 1668 * values < maximum. Reduce configuration space accordingly. 1669 * 1670 * Return: The maximum, or a negative error code on failure. 1671 */ 1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1673 struct snd_pcm_hw_params *params, 1674 snd_pcm_hw_param_t var, int *dir) 1675 { 1676 int changed = _snd_pcm_hw_param_last(params, var); 1677 if (changed < 0) 1678 return changed; 1679 if (params->rmask) { 1680 int err = snd_pcm_hw_refine(pcm, params); 1681 if (snd_BUG_ON(err < 0)) 1682 return err; 1683 } 1684 return snd_pcm_hw_param_value(params, var, dir); 1685 } 1686 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1687 1688 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1689 void *arg) 1690 { 1691 struct snd_pcm_runtime *runtime = substream->runtime; 1692 unsigned long flags; 1693 snd_pcm_stream_lock_irqsave(substream, flags); 1694 if (snd_pcm_running(substream) && 1695 snd_pcm_update_hw_ptr(substream) >= 0) 1696 runtime->status->hw_ptr %= runtime->buffer_size; 1697 else { 1698 runtime->status->hw_ptr = 0; 1699 runtime->hw_ptr_wrap = 0; 1700 } 1701 snd_pcm_stream_unlock_irqrestore(substream, flags); 1702 return 0; 1703 } 1704 1705 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1706 void *arg) 1707 { 1708 struct snd_pcm_channel_info *info = arg; 1709 struct snd_pcm_runtime *runtime = substream->runtime; 1710 int width; 1711 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1712 info->offset = -1; 1713 return 0; 1714 } 1715 width = snd_pcm_format_physical_width(runtime->format); 1716 if (width < 0) 1717 return width; 1718 info->offset = 0; 1719 switch (runtime->access) { 1720 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1721 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1722 info->first = info->channel * width; 1723 info->step = runtime->channels * width; 1724 break; 1725 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1726 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1727 { 1728 size_t size = runtime->dma_bytes / runtime->channels; 1729 info->first = info->channel * size * 8; 1730 info->step = width; 1731 break; 1732 } 1733 default: 1734 snd_BUG(); 1735 break; 1736 } 1737 return 0; 1738 } 1739 1740 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream, 1741 void *arg) 1742 { 1743 struct snd_pcm_hw_params *params = arg; 1744 snd_pcm_format_t format; 1745 int channels; 1746 ssize_t frame_size; 1747 1748 params->fifo_size = substream->runtime->hw.fifo_size; 1749 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) { 1750 format = params_format(params); 1751 channels = params_channels(params); 1752 frame_size = snd_pcm_format_size(format, channels); 1753 if (frame_size > 0) 1754 params->fifo_size /= (unsigned)frame_size; 1755 } 1756 return 0; 1757 } 1758 1759 /** 1760 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1761 * @substream: the pcm substream instance 1762 * @cmd: ioctl command 1763 * @arg: ioctl argument 1764 * 1765 * Processes the generic ioctl commands for PCM. 1766 * Can be passed as the ioctl callback for PCM ops. 1767 * 1768 * Return: Zero if successful, or a negative error code on failure. 1769 */ 1770 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1771 unsigned int cmd, void *arg) 1772 { 1773 switch (cmd) { 1774 case SNDRV_PCM_IOCTL1_RESET: 1775 return snd_pcm_lib_ioctl_reset(substream, arg); 1776 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1777 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1778 case SNDRV_PCM_IOCTL1_FIFO_SIZE: 1779 return snd_pcm_lib_ioctl_fifo_size(substream, arg); 1780 } 1781 return -ENXIO; 1782 } 1783 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1784 1785 /** 1786 * snd_pcm_period_elapsed - update the pcm status for the next period 1787 * @substream: the pcm substream instance 1788 * 1789 * This function is called from the interrupt handler when the 1790 * PCM has processed the period size. It will update the current 1791 * pointer, wake up sleepers, etc. 1792 * 1793 * Even if more than one periods have elapsed since the last call, you 1794 * have to call this only once. 1795 */ 1796 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1797 { 1798 struct snd_pcm_runtime *runtime; 1799 unsigned long flags; 1800 1801 if (PCM_RUNTIME_CHECK(substream)) 1802 return; 1803 runtime = substream->runtime; 1804 1805 snd_pcm_stream_lock_irqsave(substream, flags); 1806 if (!snd_pcm_running(substream) || 1807 snd_pcm_update_hw_ptr0(substream, 1) < 0) 1808 goto _end; 1809 1810 #ifdef CONFIG_SND_PCM_TIMER 1811 if (substream->timer_running) 1812 snd_timer_interrupt(substream->timer, 1); 1813 #endif 1814 _end: 1815 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1816 snd_pcm_stream_unlock_irqrestore(substream, flags); 1817 } 1818 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1819 1820 /* 1821 * Wait until avail_min data becomes available 1822 * Returns a negative error code if any error occurs during operation. 1823 * The available space is stored on availp. When err = 0 and avail = 0 1824 * on the capture stream, it indicates the stream is in DRAINING state. 1825 */ 1826 static int wait_for_avail(struct snd_pcm_substream *substream, 1827 snd_pcm_uframes_t *availp) 1828 { 1829 struct snd_pcm_runtime *runtime = substream->runtime; 1830 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 1831 wait_queue_entry_t wait; 1832 int err = 0; 1833 snd_pcm_uframes_t avail = 0; 1834 long wait_time, tout; 1835 1836 init_waitqueue_entry(&wait, current); 1837 set_current_state(TASK_INTERRUPTIBLE); 1838 add_wait_queue(&runtime->tsleep, &wait); 1839 1840 if (runtime->no_period_wakeup) 1841 wait_time = MAX_SCHEDULE_TIMEOUT; 1842 else { 1843 wait_time = 10; 1844 if (runtime->rate) { 1845 long t = runtime->period_size * 2 / runtime->rate; 1846 wait_time = max(t, wait_time); 1847 } 1848 wait_time = msecs_to_jiffies(wait_time * 1000); 1849 } 1850 1851 for (;;) { 1852 if (signal_pending(current)) { 1853 err = -ERESTARTSYS; 1854 break; 1855 } 1856 1857 /* 1858 * We need to check if space became available already 1859 * (and thus the wakeup happened already) first to close 1860 * the race of space already having become available. 1861 * This check must happen after been added to the waitqueue 1862 * and having current state be INTERRUPTIBLE. 1863 */ 1864 if (is_playback) 1865 avail = snd_pcm_playback_avail(runtime); 1866 else 1867 avail = snd_pcm_capture_avail(runtime); 1868 if (avail >= runtime->twake) 1869 break; 1870 snd_pcm_stream_unlock_irq(substream); 1871 1872 tout = schedule_timeout(wait_time); 1873 1874 snd_pcm_stream_lock_irq(substream); 1875 set_current_state(TASK_INTERRUPTIBLE); 1876 switch (runtime->status->state) { 1877 case SNDRV_PCM_STATE_SUSPENDED: 1878 err = -ESTRPIPE; 1879 goto _endloop; 1880 case SNDRV_PCM_STATE_XRUN: 1881 err = -EPIPE; 1882 goto _endloop; 1883 case SNDRV_PCM_STATE_DRAINING: 1884 if (is_playback) 1885 err = -EPIPE; 1886 else 1887 avail = 0; /* indicate draining */ 1888 goto _endloop; 1889 case SNDRV_PCM_STATE_OPEN: 1890 case SNDRV_PCM_STATE_SETUP: 1891 case SNDRV_PCM_STATE_DISCONNECTED: 1892 err = -EBADFD; 1893 goto _endloop; 1894 case SNDRV_PCM_STATE_PAUSED: 1895 continue; 1896 } 1897 if (!tout) { 1898 pcm_dbg(substream->pcm, 1899 "%s write error (DMA or IRQ trouble?)\n", 1900 is_playback ? "playback" : "capture"); 1901 err = -EIO; 1902 break; 1903 } 1904 } 1905 _endloop: 1906 set_current_state(TASK_RUNNING); 1907 remove_wait_queue(&runtime->tsleep, &wait); 1908 *availp = avail; 1909 return err; 1910 } 1911 1912 typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream, 1913 int channel, unsigned long hwoff, 1914 void *buf, unsigned long bytes); 1915 1916 typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *, 1917 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f); 1918 1919 /* calculate the target DMA-buffer position to be written/read */ 1920 static void *get_dma_ptr(struct snd_pcm_runtime *runtime, 1921 int channel, unsigned long hwoff) 1922 { 1923 return runtime->dma_area + hwoff + 1924 channel * (runtime->dma_bytes / runtime->channels); 1925 } 1926 1927 /* default copy_user ops for write; used for both interleaved and non- modes */ 1928 static int default_write_copy(struct snd_pcm_substream *substream, 1929 int channel, unsigned long hwoff, 1930 void *buf, unsigned long bytes) 1931 { 1932 if (copy_from_user(get_dma_ptr(substream->runtime, channel, hwoff), 1933 (void __user *)buf, bytes)) 1934 return -EFAULT; 1935 return 0; 1936 } 1937 1938 /* default copy_kernel ops for write */ 1939 static int default_write_copy_kernel(struct snd_pcm_substream *substream, 1940 int channel, unsigned long hwoff, 1941 void *buf, unsigned long bytes) 1942 { 1943 memcpy(get_dma_ptr(substream->runtime, channel, hwoff), buf, bytes); 1944 return 0; 1945 } 1946 1947 /* fill silence instead of copy data; called as a transfer helper 1948 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when 1949 * a NULL buffer is passed 1950 */ 1951 static int fill_silence(struct snd_pcm_substream *substream, int channel, 1952 unsigned long hwoff, void *buf, unsigned long bytes) 1953 { 1954 struct snd_pcm_runtime *runtime = substream->runtime; 1955 1956 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK) 1957 return 0; 1958 if (substream->ops->fill_silence) 1959 return substream->ops->fill_silence(substream, channel, 1960 hwoff, bytes); 1961 1962 snd_pcm_format_set_silence(runtime->format, 1963 get_dma_ptr(runtime, channel, hwoff), 1964 bytes_to_samples(runtime, bytes)); 1965 return 0; 1966 } 1967 1968 /* default copy_user ops for read; used for both interleaved and non- modes */ 1969 static int default_read_copy(struct snd_pcm_substream *substream, 1970 int channel, unsigned long hwoff, 1971 void *buf, unsigned long bytes) 1972 { 1973 if (copy_to_user((void __user *)buf, 1974 get_dma_ptr(substream->runtime, channel, hwoff), 1975 bytes)) 1976 return -EFAULT; 1977 return 0; 1978 } 1979 1980 /* default copy_kernel ops for read */ 1981 static int default_read_copy_kernel(struct snd_pcm_substream *substream, 1982 int channel, unsigned long hwoff, 1983 void *buf, unsigned long bytes) 1984 { 1985 memcpy(buf, get_dma_ptr(substream->runtime, channel, hwoff), bytes); 1986 return 0; 1987 } 1988 1989 /* call transfer function with the converted pointers and sizes; 1990 * for interleaved mode, it's one shot for all samples 1991 */ 1992 static int interleaved_copy(struct snd_pcm_substream *substream, 1993 snd_pcm_uframes_t hwoff, void *data, 1994 snd_pcm_uframes_t off, 1995 snd_pcm_uframes_t frames, 1996 pcm_transfer_f transfer) 1997 { 1998 struct snd_pcm_runtime *runtime = substream->runtime; 1999 2000 /* convert to bytes */ 2001 hwoff = frames_to_bytes(runtime, hwoff); 2002 off = frames_to_bytes(runtime, off); 2003 frames = frames_to_bytes(runtime, frames); 2004 return transfer(substream, 0, hwoff, data + off, frames); 2005 } 2006 2007 /* call transfer function with the converted pointers and sizes for each 2008 * non-interleaved channel; when buffer is NULL, silencing instead of copying 2009 */ 2010 static int noninterleaved_copy(struct snd_pcm_substream *substream, 2011 snd_pcm_uframes_t hwoff, void *data, 2012 snd_pcm_uframes_t off, 2013 snd_pcm_uframes_t frames, 2014 pcm_transfer_f transfer) 2015 { 2016 struct snd_pcm_runtime *runtime = substream->runtime; 2017 int channels = runtime->channels; 2018 void **bufs = data; 2019 int c, err; 2020 2021 /* convert to bytes; note that it's not frames_to_bytes() here. 2022 * in non-interleaved mode, we copy for each channel, thus 2023 * each copy is n_samples bytes x channels = whole frames. 2024 */ 2025 off = samples_to_bytes(runtime, off); 2026 frames = samples_to_bytes(runtime, frames); 2027 hwoff = samples_to_bytes(runtime, hwoff); 2028 for (c = 0; c < channels; ++c, ++bufs) { 2029 if (!data || !*bufs) 2030 err = fill_silence(substream, c, hwoff, NULL, frames); 2031 else 2032 err = transfer(substream, c, hwoff, *bufs + off, 2033 frames); 2034 if (err < 0) 2035 return err; 2036 } 2037 return 0; 2038 } 2039 2040 /* fill silence on the given buffer position; 2041 * called from snd_pcm_playback_silence() 2042 */ 2043 static int fill_silence_frames(struct snd_pcm_substream *substream, 2044 snd_pcm_uframes_t off, snd_pcm_uframes_t frames) 2045 { 2046 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 2047 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) 2048 return interleaved_copy(substream, off, NULL, 0, frames, 2049 fill_silence); 2050 else 2051 return noninterleaved_copy(substream, off, NULL, 0, frames, 2052 fill_silence); 2053 } 2054 2055 /* sanity-check for read/write methods */ 2056 static int pcm_sanity_check(struct snd_pcm_substream *substream) 2057 { 2058 struct snd_pcm_runtime *runtime; 2059 if (PCM_RUNTIME_CHECK(substream)) 2060 return -ENXIO; 2061 runtime = substream->runtime; 2062 if (snd_BUG_ON(!substream->ops->copy_user && !runtime->dma_area)) 2063 return -EINVAL; 2064 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2065 return -EBADFD; 2066 return 0; 2067 } 2068 2069 static int pcm_accessible_state(struct snd_pcm_runtime *runtime) 2070 { 2071 switch (runtime->status->state) { 2072 case SNDRV_PCM_STATE_PREPARED: 2073 case SNDRV_PCM_STATE_RUNNING: 2074 case SNDRV_PCM_STATE_PAUSED: 2075 return 0; 2076 case SNDRV_PCM_STATE_XRUN: 2077 return -EPIPE; 2078 case SNDRV_PCM_STATE_SUSPENDED: 2079 return -ESTRPIPE; 2080 default: 2081 return -EBADFD; 2082 } 2083 } 2084 2085 /* update to the given appl_ptr and call ack callback if needed; 2086 * when an error is returned, take back to the original value 2087 */ 2088 int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream, 2089 snd_pcm_uframes_t appl_ptr) 2090 { 2091 struct snd_pcm_runtime *runtime = substream->runtime; 2092 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr; 2093 int ret; 2094 2095 if (old_appl_ptr == appl_ptr) 2096 return 0; 2097 2098 runtime->control->appl_ptr = appl_ptr; 2099 if (substream->ops->ack) { 2100 ret = substream->ops->ack(substream); 2101 if (ret < 0) { 2102 runtime->control->appl_ptr = old_appl_ptr; 2103 return ret; 2104 } 2105 } 2106 2107 trace_applptr(substream, old_appl_ptr, appl_ptr); 2108 2109 return 0; 2110 } 2111 2112 /* the common loop for read/write data */ 2113 snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream, 2114 void *data, bool interleaved, 2115 snd_pcm_uframes_t size, bool in_kernel) 2116 { 2117 struct snd_pcm_runtime *runtime = substream->runtime; 2118 snd_pcm_uframes_t xfer = 0; 2119 snd_pcm_uframes_t offset = 0; 2120 snd_pcm_uframes_t avail; 2121 pcm_copy_f writer; 2122 pcm_transfer_f transfer; 2123 bool nonblock; 2124 bool is_playback; 2125 int err; 2126 2127 err = pcm_sanity_check(substream); 2128 if (err < 0) 2129 return err; 2130 2131 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; 2132 if (interleaved) { 2133 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2134 runtime->channels > 1) 2135 return -EINVAL; 2136 writer = interleaved_copy; 2137 } else { 2138 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2139 return -EINVAL; 2140 writer = noninterleaved_copy; 2141 } 2142 2143 if (!data) { 2144 if (is_playback) 2145 transfer = fill_silence; 2146 else 2147 return -EINVAL; 2148 } else if (in_kernel) { 2149 if (substream->ops->copy_kernel) 2150 transfer = substream->ops->copy_kernel; 2151 else 2152 transfer = is_playback ? 2153 default_write_copy_kernel : default_read_copy_kernel; 2154 } else { 2155 if (substream->ops->copy_user) 2156 transfer = (pcm_transfer_f)substream->ops->copy_user; 2157 else 2158 transfer = is_playback ? 2159 default_write_copy : default_read_copy; 2160 } 2161 2162 if (size == 0) 2163 return 0; 2164 2165 nonblock = !!(substream->f_flags & O_NONBLOCK); 2166 2167 snd_pcm_stream_lock_irq(substream); 2168 err = pcm_accessible_state(runtime); 2169 if (err < 0) 2170 goto _end_unlock; 2171 2172 if (!is_playback && 2173 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2174 size >= runtime->start_threshold) { 2175 err = snd_pcm_start(substream); 2176 if (err < 0) 2177 goto _end_unlock; 2178 } 2179 2180 runtime->twake = runtime->control->avail_min ? : 1; 2181 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2182 snd_pcm_update_hw_ptr(substream); 2183 if (is_playback) 2184 avail = snd_pcm_playback_avail(runtime); 2185 else 2186 avail = snd_pcm_capture_avail(runtime); 2187 while (size > 0) { 2188 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2189 snd_pcm_uframes_t cont; 2190 if (!avail) { 2191 if (!is_playback && 2192 runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2193 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP); 2194 goto _end_unlock; 2195 } 2196 if (nonblock) { 2197 err = -EAGAIN; 2198 goto _end_unlock; 2199 } 2200 runtime->twake = min_t(snd_pcm_uframes_t, size, 2201 runtime->control->avail_min ? : 1); 2202 err = wait_for_avail(substream, &avail); 2203 if (err < 0) 2204 goto _end_unlock; 2205 if (!avail) 2206 continue; /* draining */ 2207 } 2208 frames = size > avail ? avail : size; 2209 appl_ptr = READ_ONCE(runtime->control->appl_ptr); 2210 appl_ofs = appl_ptr % runtime->buffer_size; 2211 cont = runtime->buffer_size - appl_ofs; 2212 if (frames > cont) 2213 frames = cont; 2214 if (snd_BUG_ON(!frames)) { 2215 runtime->twake = 0; 2216 snd_pcm_stream_unlock_irq(substream); 2217 return -EINVAL; 2218 } 2219 snd_pcm_stream_unlock_irq(substream); 2220 err = writer(substream, appl_ofs, data, offset, frames, 2221 transfer); 2222 snd_pcm_stream_lock_irq(substream); 2223 if (err < 0) 2224 goto _end_unlock; 2225 err = pcm_accessible_state(runtime); 2226 if (err < 0) 2227 goto _end_unlock; 2228 appl_ptr += frames; 2229 if (appl_ptr >= runtime->boundary) 2230 appl_ptr -= runtime->boundary; 2231 err = pcm_lib_apply_appl_ptr(substream, appl_ptr); 2232 if (err < 0) 2233 goto _end_unlock; 2234 2235 offset += frames; 2236 size -= frames; 2237 xfer += frames; 2238 avail -= frames; 2239 if (is_playback && 2240 runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2241 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2242 err = snd_pcm_start(substream); 2243 if (err < 0) 2244 goto _end_unlock; 2245 } 2246 } 2247 _end_unlock: 2248 runtime->twake = 0; 2249 if (xfer > 0 && err >= 0) 2250 snd_pcm_update_state(substream, runtime); 2251 snd_pcm_stream_unlock_irq(substream); 2252 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2253 } 2254 EXPORT_SYMBOL(__snd_pcm_lib_xfer); 2255 2256 /* 2257 * standard channel mapping helpers 2258 */ 2259 2260 /* default channel maps for multi-channel playbacks, up to 8 channels */ 2261 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = { 2262 { .channels = 1, 2263 .map = { SNDRV_CHMAP_MONO } }, 2264 { .channels = 2, 2265 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2266 { .channels = 4, 2267 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2268 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2269 { .channels = 6, 2270 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2271 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2272 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } }, 2273 { .channels = 8, 2274 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2275 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2276 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2277 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2278 { } 2279 }; 2280 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps); 2281 2282 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */ 2283 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = { 2284 { .channels = 1, 2285 .map = { SNDRV_CHMAP_MONO } }, 2286 { .channels = 2, 2287 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } }, 2288 { .channels = 4, 2289 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2290 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2291 { .channels = 6, 2292 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2293 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2294 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } }, 2295 { .channels = 8, 2296 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR, 2297 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE, 2298 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR, 2299 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } }, 2300 { } 2301 }; 2302 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps); 2303 2304 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch) 2305 { 2306 if (ch > info->max_channels) 2307 return false; 2308 return !info->channel_mask || (info->channel_mask & (1U << ch)); 2309 } 2310 2311 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol, 2312 struct snd_ctl_elem_info *uinfo) 2313 { 2314 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2315 2316 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 2317 uinfo->count = 0; 2318 uinfo->count = info->max_channels; 2319 uinfo->value.integer.min = 0; 2320 uinfo->value.integer.max = SNDRV_CHMAP_LAST; 2321 return 0; 2322 } 2323 2324 /* get callback for channel map ctl element 2325 * stores the channel position firstly matching with the current channels 2326 */ 2327 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol, 2328 struct snd_ctl_elem_value *ucontrol) 2329 { 2330 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2331 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id); 2332 struct snd_pcm_substream *substream; 2333 const struct snd_pcm_chmap_elem *map; 2334 2335 if (!info->chmap) 2336 return -EINVAL; 2337 substream = snd_pcm_chmap_substream(info, idx); 2338 if (!substream) 2339 return -ENODEV; 2340 memset(ucontrol->value.integer.value, 0, 2341 sizeof(ucontrol->value.integer.value)); 2342 if (!substream->runtime) 2343 return 0; /* no channels set */ 2344 for (map = info->chmap; map->channels; map++) { 2345 int i; 2346 if (map->channels == substream->runtime->channels && 2347 valid_chmap_channels(info, map->channels)) { 2348 for (i = 0; i < map->channels; i++) 2349 ucontrol->value.integer.value[i] = map->map[i]; 2350 return 0; 2351 } 2352 } 2353 return -EINVAL; 2354 } 2355 2356 /* tlv callback for channel map ctl element 2357 * expands the pre-defined channel maps in a form of TLV 2358 */ 2359 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag, 2360 unsigned int size, unsigned int __user *tlv) 2361 { 2362 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2363 const struct snd_pcm_chmap_elem *map; 2364 unsigned int __user *dst; 2365 int c, count = 0; 2366 2367 if (!info->chmap) 2368 return -EINVAL; 2369 if (size < 8) 2370 return -ENOMEM; 2371 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv)) 2372 return -EFAULT; 2373 size -= 8; 2374 dst = tlv + 2; 2375 for (map = info->chmap; map->channels; map++) { 2376 int chs_bytes = map->channels * 4; 2377 if (!valid_chmap_channels(info, map->channels)) 2378 continue; 2379 if (size < 8) 2380 return -ENOMEM; 2381 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) || 2382 put_user(chs_bytes, dst + 1)) 2383 return -EFAULT; 2384 dst += 2; 2385 size -= 8; 2386 count += 8; 2387 if (size < chs_bytes) 2388 return -ENOMEM; 2389 size -= chs_bytes; 2390 count += chs_bytes; 2391 for (c = 0; c < map->channels; c++) { 2392 if (put_user(map->map[c], dst)) 2393 return -EFAULT; 2394 dst++; 2395 } 2396 } 2397 if (put_user(count, tlv + 1)) 2398 return -EFAULT; 2399 return 0; 2400 } 2401 2402 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol) 2403 { 2404 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); 2405 info->pcm->streams[info->stream].chmap_kctl = NULL; 2406 kfree(info); 2407 } 2408 2409 /** 2410 * snd_pcm_add_chmap_ctls - create channel-mapping control elements 2411 * @pcm: the assigned PCM instance 2412 * @stream: stream direction 2413 * @chmap: channel map elements (for query) 2414 * @max_channels: the max number of channels for the stream 2415 * @private_value: the value passed to each kcontrol's private_value field 2416 * @info_ret: store struct snd_pcm_chmap instance if non-NULL 2417 * 2418 * Create channel-mapping control elements assigned to the given PCM stream(s). 2419 * Return: Zero if successful, or a negative error value. 2420 */ 2421 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream, 2422 const struct snd_pcm_chmap_elem *chmap, 2423 int max_channels, 2424 unsigned long private_value, 2425 struct snd_pcm_chmap **info_ret) 2426 { 2427 struct snd_pcm_chmap *info; 2428 struct snd_kcontrol_new knew = { 2429 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 2430 .access = SNDRV_CTL_ELEM_ACCESS_READ | 2431 SNDRV_CTL_ELEM_ACCESS_TLV_READ | 2432 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK, 2433 .info = pcm_chmap_ctl_info, 2434 .get = pcm_chmap_ctl_get, 2435 .tlv.c = pcm_chmap_ctl_tlv, 2436 }; 2437 int err; 2438 2439 if (WARN_ON(pcm->streams[stream].chmap_kctl)) 2440 return -EBUSY; 2441 info = kzalloc(sizeof(*info), GFP_KERNEL); 2442 if (!info) 2443 return -ENOMEM; 2444 info->pcm = pcm; 2445 info->stream = stream; 2446 info->chmap = chmap; 2447 info->max_channels = max_channels; 2448 if (stream == SNDRV_PCM_STREAM_PLAYBACK) 2449 knew.name = "Playback Channel Map"; 2450 else 2451 knew.name = "Capture Channel Map"; 2452 knew.device = pcm->device; 2453 knew.count = pcm->streams[stream].substream_count; 2454 knew.private_value = private_value; 2455 info->kctl = snd_ctl_new1(&knew, info); 2456 if (!info->kctl) { 2457 kfree(info); 2458 return -ENOMEM; 2459 } 2460 info->kctl->private_free = pcm_chmap_ctl_private_free; 2461 err = snd_ctl_add(pcm->card, info->kctl); 2462 if (err < 0) 2463 return err; 2464 pcm->streams[stream].chmap_kctl = info->kctl; 2465 if (info_ret) 2466 *info_ret = info; 2467 return 0; 2468 } 2469 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls); 2470