1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@suse.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <sound/driver.h> 24 #include <linux/slab.h> 25 #include <linux/time.h> 26 #include <sound/core.h> 27 #include <sound/control.h> 28 #include <sound/info.h> 29 #include <sound/pcm.h> 30 #include <sound/pcm_params.h> 31 #include <sound/timer.h> 32 33 /* 34 * fill ring buffer with silence 35 * runtime->silence_start: starting pointer to silence area 36 * runtime->silence_filled: size filled with silence 37 * runtime->silence_threshold: threshold from application 38 * runtime->silence_size: maximal size from application 39 * 40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 41 */ 42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 43 { 44 struct snd_pcm_runtime *runtime = substream->runtime; 45 snd_pcm_uframes_t frames, ofs, transfer; 46 47 if (runtime->silence_size < runtime->boundary) { 48 snd_pcm_sframes_t noise_dist, n; 49 if (runtime->silence_start != runtime->control->appl_ptr) { 50 n = runtime->control->appl_ptr - runtime->silence_start; 51 if (n < 0) 52 n += runtime->boundary; 53 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 54 runtime->silence_filled -= n; 55 else 56 runtime->silence_filled = 0; 57 runtime->silence_start = runtime->control->appl_ptr; 58 } 59 if (runtime->silence_filled >= runtime->buffer_size) 60 return; 61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 63 return; 64 frames = runtime->silence_threshold - noise_dist; 65 if (frames > runtime->silence_size) 66 frames = runtime->silence_size; 67 } else { 68 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 70 runtime->silence_filled = avail > 0 ? avail : 0; 71 runtime->silence_start = (runtime->status->hw_ptr + 72 runtime->silence_filled) % 73 runtime->boundary; 74 } else { 75 ofs = runtime->status->hw_ptr; 76 frames = new_hw_ptr - ofs; 77 if ((snd_pcm_sframes_t)frames < 0) 78 frames += runtime->boundary; 79 runtime->silence_filled -= frames; 80 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 81 runtime->silence_filled = 0; 82 runtime->silence_start = (ofs + frames) - runtime->buffer_size; 83 } else { 84 runtime->silence_start = ofs - runtime->silence_filled; 85 } 86 if ((snd_pcm_sframes_t)runtime->silence_start < 0) 87 runtime->silence_start += runtime->boundary; 88 } 89 frames = runtime->buffer_size - runtime->silence_filled; 90 } 91 snd_assert(frames <= runtime->buffer_size, return); 92 if (frames == 0) 93 return; 94 ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size; 95 while (frames > 0) { 96 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 97 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 98 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 99 if (substream->ops->silence) { 100 int err; 101 err = substream->ops->silence(substream, -1, ofs, transfer); 102 snd_assert(err >= 0, ); 103 } else { 104 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 105 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 106 } 107 } else { 108 unsigned int c; 109 unsigned int channels = runtime->channels; 110 if (substream->ops->silence) { 111 for (c = 0; c < channels; ++c) { 112 int err; 113 err = substream->ops->silence(substream, c, ofs, transfer); 114 snd_assert(err >= 0, ); 115 } 116 } else { 117 size_t dma_csize = runtime->dma_bytes / channels; 118 for (c = 0; c < channels; ++c) { 119 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 120 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 121 } 122 } 123 } 124 runtime->silence_filled += transfer; 125 frames -= transfer; 126 ofs = 0; 127 } 128 } 129 130 static void xrun(struct snd_pcm_substream *substream) 131 { 132 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 133 #ifdef CONFIG_SND_DEBUG 134 if (substream->pstr->xrun_debug) { 135 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n", 136 substream->pcm->card->number, 137 substream->pcm->device, 138 substream->stream ? 'c' : 'p'); 139 if (substream->pstr->xrun_debug > 1) 140 dump_stack(); 141 } 142 #endif 143 } 144 145 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream, 146 struct snd_pcm_runtime *runtime) 147 { 148 snd_pcm_uframes_t pos; 149 150 pos = substream->ops->pointer(substream); 151 if (pos == SNDRV_PCM_POS_XRUN) 152 return pos; /* XRUN */ 153 if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP) 154 getnstimeofday((struct timespec *)&runtime->status->tstamp); 155 #ifdef CONFIG_SND_DEBUG 156 if (pos >= runtime->buffer_size) { 157 snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size); 158 } 159 #endif 160 pos -= pos % runtime->min_align; 161 return pos; 162 } 163 164 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream, 165 struct snd_pcm_runtime *runtime) 166 { 167 snd_pcm_uframes_t avail; 168 169 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 170 avail = snd_pcm_playback_avail(runtime); 171 else 172 avail = snd_pcm_capture_avail(runtime); 173 if (avail > runtime->avail_max) 174 runtime->avail_max = avail; 175 if (avail >= runtime->stop_threshold) { 176 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING) 177 snd_pcm_drain_done(substream); 178 else 179 xrun(substream); 180 return -EPIPE; 181 } 182 if (avail >= runtime->control->avail_min) 183 wake_up(&runtime->sleep); 184 return 0; 185 } 186 187 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream) 188 { 189 struct snd_pcm_runtime *runtime = substream->runtime; 190 snd_pcm_uframes_t pos; 191 snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt; 192 snd_pcm_sframes_t delta; 193 194 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 195 if (pos == SNDRV_PCM_POS_XRUN) { 196 xrun(substream); 197 return -EPIPE; 198 } 199 if (runtime->period_size == runtime->buffer_size) 200 goto __next_buf; 201 new_hw_ptr = runtime->hw_ptr_base + pos; 202 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; 203 204 delta = hw_ptr_interrupt - new_hw_ptr; 205 if (delta > 0) { 206 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { 207 #ifdef CONFIG_SND_DEBUG 208 if (runtime->periods > 1 && substream->pstr->xrun_debug) { 209 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); 210 if (substream->pstr->xrun_debug > 1) 211 dump_stack(); 212 } 213 #endif 214 return 0; 215 } 216 __next_buf: 217 runtime->hw_ptr_base += runtime->buffer_size; 218 if (runtime->hw_ptr_base == runtime->boundary) 219 runtime->hw_ptr_base = 0; 220 new_hw_ptr = runtime->hw_ptr_base + pos; 221 } 222 223 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 224 runtime->silence_size > 0) 225 snd_pcm_playback_silence(substream, new_hw_ptr); 226 227 runtime->status->hw_ptr = new_hw_ptr; 228 runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size; 229 230 return snd_pcm_update_hw_ptr_post(substream, runtime); 231 } 232 233 /* CAUTION: call it with irq disabled */ 234 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 235 { 236 struct snd_pcm_runtime *runtime = substream->runtime; 237 snd_pcm_uframes_t pos; 238 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr; 239 snd_pcm_sframes_t delta; 240 241 old_hw_ptr = runtime->status->hw_ptr; 242 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 243 if (pos == SNDRV_PCM_POS_XRUN) { 244 xrun(substream); 245 return -EPIPE; 246 } 247 new_hw_ptr = runtime->hw_ptr_base + pos; 248 249 delta = old_hw_ptr - new_hw_ptr; 250 if (delta > 0) { 251 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { 252 #ifdef CONFIG_SND_DEBUG 253 if (runtime->periods > 2 && substream->pstr->xrun_debug) { 254 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); 255 if (substream->pstr->xrun_debug > 1) 256 dump_stack(); 257 } 258 #endif 259 return 0; 260 } 261 runtime->hw_ptr_base += runtime->buffer_size; 262 if (runtime->hw_ptr_base == runtime->boundary) 263 runtime->hw_ptr_base = 0; 264 new_hw_ptr = runtime->hw_ptr_base + pos; 265 } 266 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 267 runtime->silence_size > 0) 268 snd_pcm_playback_silence(substream, new_hw_ptr); 269 270 runtime->status->hw_ptr = new_hw_ptr; 271 272 return snd_pcm_update_hw_ptr_post(substream, runtime); 273 } 274 275 /** 276 * snd_pcm_set_ops - set the PCM operators 277 * @pcm: the pcm instance 278 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 279 * @ops: the operator table 280 * 281 * Sets the given PCM operators to the pcm instance. 282 */ 283 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 284 { 285 struct snd_pcm_str *stream = &pcm->streams[direction]; 286 struct snd_pcm_substream *substream; 287 288 for (substream = stream->substream; substream != NULL; substream = substream->next) 289 substream->ops = ops; 290 } 291 292 293 /** 294 * snd_pcm_sync - set the PCM sync id 295 * @substream: the pcm substream 296 * 297 * Sets the PCM sync identifier for the card. 298 */ 299 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 300 { 301 struct snd_pcm_runtime *runtime = substream->runtime; 302 303 runtime->sync.id32[0] = substream->pcm->card->number; 304 runtime->sync.id32[1] = -1; 305 runtime->sync.id32[2] = -1; 306 runtime->sync.id32[3] = -1; 307 } 308 309 /* 310 * Standard ioctl routine 311 */ 312 313 /* Code taken from alsa-lib */ 314 #define assert(a) snd_assert((a), return -EINVAL) 315 316 static inline unsigned int div32(unsigned int a, unsigned int b, 317 unsigned int *r) 318 { 319 if (b == 0) { 320 *r = 0; 321 return UINT_MAX; 322 } 323 *r = a % b; 324 return a / b; 325 } 326 327 static inline unsigned int div_down(unsigned int a, unsigned int b) 328 { 329 if (b == 0) 330 return UINT_MAX; 331 return a / b; 332 } 333 334 static inline unsigned int div_up(unsigned int a, unsigned int b) 335 { 336 unsigned int r; 337 unsigned int q; 338 if (b == 0) 339 return UINT_MAX; 340 q = div32(a, b, &r); 341 if (r) 342 ++q; 343 return q; 344 } 345 346 static inline unsigned int mul(unsigned int a, unsigned int b) 347 { 348 if (a == 0) 349 return 0; 350 if (div_down(UINT_MAX, a) < b) 351 return UINT_MAX; 352 return a * b; 353 } 354 355 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 356 unsigned int c, unsigned int *r) 357 { 358 u_int64_t n = (u_int64_t) a * b; 359 if (c == 0) { 360 snd_assert(n > 0, ); 361 *r = 0; 362 return UINT_MAX; 363 } 364 div64_32(&n, c, r); 365 if (n >= UINT_MAX) { 366 *r = 0; 367 return UINT_MAX; 368 } 369 return n; 370 } 371 372 static int snd_interval_refine_min(struct snd_interval *i, unsigned int min, int openmin) 373 { 374 int changed = 0; 375 assert(!snd_interval_empty(i)); 376 if (i->min < min) { 377 i->min = min; 378 i->openmin = openmin; 379 changed = 1; 380 } else if (i->min == min && !i->openmin && openmin) { 381 i->openmin = 1; 382 changed = 1; 383 } 384 if (i->integer) { 385 if (i->openmin) { 386 i->min++; 387 i->openmin = 0; 388 } 389 } 390 if (snd_interval_checkempty(i)) { 391 snd_interval_none(i); 392 return -EINVAL; 393 } 394 return changed; 395 } 396 397 static int snd_interval_refine_max(struct snd_interval *i, unsigned int max, int openmax) 398 { 399 int changed = 0; 400 assert(!snd_interval_empty(i)); 401 if (i->max > max) { 402 i->max = max; 403 i->openmax = openmax; 404 changed = 1; 405 } else if (i->max == max && !i->openmax && openmax) { 406 i->openmax = 1; 407 changed = 1; 408 } 409 if (i->integer) { 410 if (i->openmax) { 411 i->max--; 412 i->openmax = 0; 413 } 414 } 415 if (snd_interval_checkempty(i)) { 416 snd_interval_none(i); 417 return -EINVAL; 418 } 419 return changed; 420 } 421 422 /** 423 * snd_interval_refine - refine the interval value of configurator 424 * @i: the interval value to refine 425 * @v: the interval value to refer to 426 * 427 * Refines the interval value with the reference value. 428 * The interval is changed to the range satisfying both intervals. 429 * The interval status (min, max, integer, etc.) are evaluated. 430 * 431 * Returns non-zero if the value is changed, zero if not changed. 432 */ 433 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 434 { 435 int changed = 0; 436 assert(!snd_interval_empty(i)); 437 if (i->min < v->min) { 438 i->min = v->min; 439 i->openmin = v->openmin; 440 changed = 1; 441 } else if (i->min == v->min && !i->openmin && v->openmin) { 442 i->openmin = 1; 443 changed = 1; 444 } 445 if (i->max > v->max) { 446 i->max = v->max; 447 i->openmax = v->openmax; 448 changed = 1; 449 } else if (i->max == v->max && !i->openmax && v->openmax) { 450 i->openmax = 1; 451 changed = 1; 452 } 453 if (!i->integer && v->integer) { 454 i->integer = 1; 455 changed = 1; 456 } 457 if (i->integer) { 458 if (i->openmin) { 459 i->min++; 460 i->openmin = 0; 461 } 462 if (i->openmax) { 463 i->max--; 464 i->openmax = 0; 465 } 466 } else if (!i->openmin && !i->openmax && i->min == i->max) 467 i->integer = 1; 468 if (snd_interval_checkempty(i)) { 469 snd_interval_none(i); 470 return -EINVAL; 471 } 472 return changed; 473 } 474 475 static int snd_interval_refine_first(struct snd_interval *i) 476 { 477 assert(!snd_interval_empty(i)); 478 if (snd_interval_single(i)) 479 return 0; 480 i->max = i->min; 481 i->openmax = i->openmin; 482 if (i->openmax) 483 i->max++; 484 return 1; 485 } 486 487 static int snd_interval_refine_last(struct snd_interval *i) 488 { 489 assert(!snd_interval_empty(i)); 490 if (snd_interval_single(i)) 491 return 0; 492 i->min = i->max; 493 i->openmin = i->openmax; 494 if (i->openmin) 495 i->min--; 496 return 1; 497 } 498 499 static int snd_interval_refine_set(struct snd_interval *i, unsigned int val) 500 { 501 struct snd_interval t; 502 t.empty = 0; 503 t.min = t.max = val; 504 t.openmin = t.openmax = 0; 505 t.integer = 1; 506 return snd_interval_refine(i, &t); 507 } 508 509 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 510 { 511 if (a->empty || b->empty) { 512 snd_interval_none(c); 513 return; 514 } 515 c->empty = 0; 516 c->min = mul(a->min, b->min); 517 c->openmin = (a->openmin || b->openmin); 518 c->max = mul(a->max, b->max); 519 c->openmax = (a->openmax || b->openmax); 520 c->integer = (a->integer && b->integer); 521 } 522 523 /** 524 * snd_interval_div - refine the interval value with division 525 * @a: dividend 526 * @b: divisor 527 * @c: quotient 528 * 529 * c = a / b 530 * 531 * Returns non-zero if the value is changed, zero if not changed. 532 */ 533 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 534 { 535 unsigned int r; 536 if (a->empty || b->empty) { 537 snd_interval_none(c); 538 return; 539 } 540 c->empty = 0; 541 c->min = div32(a->min, b->max, &r); 542 c->openmin = (r || a->openmin || b->openmax); 543 if (b->min > 0) { 544 c->max = div32(a->max, b->min, &r); 545 if (r) { 546 c->max++; 547 c->openmax = 1; 548 } else 549 c->openmax = (a->openmax || b->openmin); 550 } else { 551 c->max = UINT_MAX; 552 c->openmax = 0; 553 } 554 c->integer = 0; 555 } 556 557 /** 558 * snd_interval_muldivk - refine the interval value 559 * @a: dividend 1 560 * @b: dividend 2 561 * @k: divisor (as integer) 562 * @c: result 563 * 564 * c = a * b / k 565 * 566 * Returns non-zero if the value is changed, zero if not changed. 567 */ 568 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 569 unsigned int k, struct snd_interval *c) 570 { 571 unsigned int r; 572 if (a->empty || b->empty) { 573 snd_interval_none(c); 574 return; 575 } 576 c->empty = 0; 577 c->min = muldiv32(a->min, b->min, k, &r); 578 c->openmin = (r || a->openmin || b->openmin); 579 c->max = muldiv32(a->max, b->max, k, &r); 580 if (r) { 581 c->max++; 582 c->openmax = 1; 583 } else 584 c->openmax = (a->openmax || b->openmax); 585 c->integer = 0; 586 } 587 588 /** 589 * snd_interval_mulkdiv - refine the interval value 590 * @a: dividend 1 591 * @k: dividend 2 (as integer) 592 * @b: divisor 593 * @c: result 594 * 595 * c = a * k / b 596 * 597 * Returns non-zero if the value is changed, zero if not changed. 598 */ 599 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 600 const struct snd_interval *b, struct snd_interval *c) 601 { 602 unsigned int r; 603 if (a->empty || b->empty) { 604 snd_interval_none(c); 605 return; 606 } 607 c->empty = 0; 608 c->min = muldiv32(a->min, k, b->max, &r); 609 c->openmin = (r || a->openmin || b->openmax); 610 if (b->min > 0) { 611 c->max = muldiv32(a->max, k, b->min, &r); 612 if (r) { 613 c->max++; 614 c->openmax = 1; 615 } else 616 c->openmax = (a->openmax || b->openmin); 617 } else { 618 c->max = UINT_MAX; 619 c->openmax = 0; 620 } 621 c->integer = 0; 622 } 623 624 #undef assert 625 /* ---- */ 626 627 628 /** 629 * snd_interval_ratnum - refine the interval value 630 * @i: interval to refine 631 * @rats_count: number of ratnum_t 632 * @rats: ratnum_t array 633 * @nump: pointer to store the resultant numerator 634 * @denp: pointer to store the resultant denominator 635 * 636 * Returns non-zero if the value is changed, zero if not changed. 637 */ 638 int snd_interval_ratnum(struct snd_interval *i, 639 unsigned int rats_count, struct snd_ratnum *rats, 640 unsigned int *nump, unsigned int *denp) 641 { 642 unsigned int best_num, best_diff, best_den; 643 unsigned int k; 644 struct snd_interval t; 645 int err; 646 647 best_num = best_den = best_diff = 0; 648 for (k = 0; k < rats_count; ++k) { 649 unsigned int num = rats[k].num; 650 unsigned int den; 651 unsigned int q = i->min; 652 int diff; 653 if (q == 0) 654 q = 1; 655 den = div_down(num, q); 656 if (den < rats[k].den_min) 657 continue; 658 if (den > rats[k].den_max) 659 den = rats[k].den_max; 660 else { 661 unsigned int r; 662 r = (den - rats[k].den_min) % rats[k].den_step; 663 if (r != 0) 664 den -= r; 665 } 666 diff = num - q * den; 667 if (best_num == 0 || 668 diff * best_den < best_diff * den) { 669 best_diff = diff; 670 best_den = den; 671 best_num = num; 672 } 673 } 674 if (best_den == 0) { 675 i->empty = 1; 676 return -EINVAL; 677 } 678 t.min = div_down(best_num, best_den); 679 t.openmin = !!(best_num % best_den); 680 681 best_num = best_den = best_diff = 0; 682 for (k = 0; k < rats_count; ++k) { 683 unsigned int num = rats[k].num; 684 unsigned int den; 685 unsigned int q = i->max; 686 int diff; 687 if (q == 0) { 688 i->empty = 1; 689 return -EINVAL; 690 } 691 den = div_up(num, q); 692 if (den > rats[k].den_max) 693 continue; 694 if (den < rats[k].den_min) 695 den = rats[k].den_min; 696 else { 697 unsigned int r; 698 r = (den - rats[k].den_min) % rats[k].den_step; 699 if (r != 0) 700 den += rats[k].den_step - r; 701 } 702 diff = q * den - num; 703 if (best_num == 0 || 704 diff * best_den < best_diff * den) { 705 best_diff = diff; 706 best_den = den; 707 best_num = num; 708 } 709 } 710 if (best_den == 0) { 711 i->empty = 1; 712 return -EINVAL; 713 } 714 t.max = div_up(best_num, best_den); 715 t.openmax = !!(best_num % best_den); 716 t.integer = 0; 717 err = snd_interval_refine(i, &t); 718 if (err < 0) 719 return err; 720 721 if (snd_interval_single(i)) { 722 if (nump) 723 *nump = best_num; 724 if (denp) 725 *denp = best_den; 726 } 727 return err; 728 } 729 730 /** 731 * snd_interval_ratden - refine the interval value 732 * @i: interval to refine 733 * @rats_count: number of struct ratden 734 * @rats: struct ratden array 735 * @nump: pointer to store the resultant numerator 736 * @denp: pointer to store the resultant denominator 737 * 738 * Returns non-zero if the value is changed, zero if not changed. 739 */ 740 static int snd_interval_ratden(struct snd_interval *i, 741 unsigned int rats_count, struct snd_ratden *rats, 742 unsigned int *nump, unsigned int *denp) 743 { 744 unsigned int best_num, best_diff, best_den; 745 unsigned int k; 746 struct snd_interval t; 747 int err; 748 749 best_num = best_den = best_diff = 0; 750 for (k = 0; k < rats_count; ++k) { 751 unsigned int num; 752 unsigned int den = rats[k].den; 753 unsigned int q = i->min; 754 int diff; 755 num = mul(q, den); 756 if (num > rats[k].num_max) 757 continue; 758 if (num < rats[k].num_min) 759 num = rats[k].num_max; 760 else { 761 unsigned int r; 762 r = (num - rats[k].num_min) % rats[k].num_step; 763 if (r != 0) 764 num += rats[k].num_step - r; 765 } 766 diff = num - q * den; 767 if (best_num == 0 || 768 diff * best_den < best_diff * den) { 769 best_diff = diff; 770 best_den = den; 771 best_num = num; 772 } 773 } 774 if (best_den == 0) { 775 i->empty = 1; 776 return -EINVAL; 777 } 778 t.min = div_down(best_num, best_den); 779 t.openmin = !!(best_num % best_den); 780 781 best_num = best_den = best_diff = 0; 782 for (k = 0; k < rats_count; ++k) { 783 unsigned int num; 784 unsigned int den = rats[k].den; 785 unsigned int q = i->max; 786 int diff; 787 num = mul(q, den); 788 if (num < rats[k].num_min) 789 continue; 790 if (num > rats[k].num_max) 791 num = rats[k].num_max; 792 else { 793 unsigned int r; 794 r = (num - rats[k].num_min) % rats[k].num_step; 795 if (r != 0) 796 num -= r; 797 } 798 diff = q * den - num; 799 if (best_num == 0 || 800 diff * best_den < best_diff * den) { 801 best_diff = diff; 802 best_den = den; 803 best_num = num; 804 } 805 } 806 if (best_den == 0) { 807 i->empty = 1; 808 return -EINVAL; 809 } 810 t.max = div_up(best_num, best_den); 811 t.openmax = !!(best_num % best_den); 812 t.integer = 0; 813 err = snd_interval_refine(i, &t); 814 if (err < 0) 815 return err; 816 817 if (snd_interval_single(i)) { 818 if (nump) 819 *nump = best_num; 820 if (denp) 821 *denp = best_den; 822 } 823 return err; 824 } 825 826 /** 827 * snd_interval_list - refine the interval value from the list 828 * @i: the interval value to refine 829 * @count: the number of elements in the list 830 * @list: the value list 831 * @mask: the bit-mask to evaluate 832 * 833 * Refines the interval value from the list. 834 * When mask is non-zero, only the elements corresponding to bit 1 are 835 * evaluated. 836 * 837 * Returns non-zero if the value is changed, zero if not changed. 838 */ 839 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 840 { 841 unsigned int k; 842 int changed = 0; 843 for (k = 0; k < count; k++) { 844 if (mask && !(mask & (1 << k))) 845 continue; 846 if (i->min == list[k] && !i->openmin) 847 goto _l1; 848 if (i->min < list[k]) { 849 i->min = list[k]; 850 i->openmin = 0; 851 changed = 1; 852 goto _l1; 853 } 854 } 855 i->empty = 1; 856 return -EINVAL; 857 _l1: 858 for (k = count; k-- > 0;) { 859 if (mask && !(mask & (1 << k))) 860 continue; 861 if (i->max == list[k] && !i->openmax) 862 goto _l2; 863 if (i->max > list[k]) { 864 i->max = list[k]; 865 i->openmax = 0; 866 changed = 1; 867 goto _l2; 868 } 869 } 870 i->empty = 1; 871 return -EINVAL; 872 _l2: 873 if (snd_interval_checkempty(i)) { 874 i->empty = 1; 875 return -EINVAL; 876 } 877 return changed; 878 } 879 880 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 881 { 882 unsigned int n; 883 int changed = 0; 884 n = (i->min - min) % step; 885 if (n != 0 || i->openmin) { 886 i->min += step - n; 887 changed = 1; 888 } 889 n = (i->max - min) % step; 890 if (n != 0 || i->openmax) { 891 i->max -= n; 892 changed = 1; 893 } 894 if (snd_interval_checkempty(i)) { 895 i->empty = 1; 896 return -EINVAL; 897 } 898 return changed; 899 } 900 901 /* Info constraints helpers */ 902 903 /** 904 * snd_pcm_hw_rule_add - add the hw-constraint rule 905 * @runtime: the pcm runtime instance 906 * @cond: condition bits 907 * @var: the variable to evaluate 908 * @func: the evaluation function 909 * @private: the private data pointer passed to function 910 * @dep: the dependent variables 911 * 912 * Returns zero if successful, or a negative error code on failure. 913 */ 914 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 915 int var, 916 snd_pcm_hw_rule_func_t func, void *private, 917 int dep, ...) 918 { 919 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 920 struct snd_pcm_hw_rule *c; 921 unsigned int k; 922 va_list args; 923 va_start(args, dep); 924 if (constrs->rules_num >= constrs->rules_all) { 925 struct snd_pcm_hw_rule *new; 926 unsigned int new_rules = constrs->rules_all + 16; 927 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 928 if (!new) 929 return -ENOMEM; 930 if (constrs->rules) { 931 memcpy(new, constrs->rules, 932 constrs->rules_num * sizeof(*c)); 933 kfree(constrs->rules); 934 } 935 constrs->rules = new; 936 constrs->rules_all = new_rules; 937 } 938 c = &constrs->rules[constrs->rules_num]; 939 c->cond = cond; 940 c->func = func; 941 c->var = var; 942 c->private = private; 943 k = 0; 944 while (1) { 945 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL); 946 c->deps[k++] = dep; 947 if (dep < 0) 948 break; 949 dep = va_arg(args, int); 950 } 951 constrs->rules_num++; 952 va_end(args); 953 return 0; 954 } 955 956 /** 957 * snd_pcm_hw_constraint_mask 958 * @runtime: PCM runtime instance 959 * @var: hw_params variable to apply the mask 960 * @mask: the bitmap mask 961 * 962 * Apply the constraint of the given bitmap mask to a mask parameter. 963 */ 964 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 965 u_int32_t mask) 966 { 967 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 968 struct snd_mask *maskp = constrs_mask(constrs, var); 969 *maskp->bits &= mask; 970 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 971 if (*maskp->bits == 0) 972 return -EINVAL; 973 return 0; 974 } 975 976 /** 977 * snd_pcm_hw_constraint_mask64 978 * @runtime: PCM runtime instance 979 * @var: hw_params variable to apply the mask 980 * @mask: the 64bit bitmap mask 981 * 982 * Apply the constraint of the given bitmap mask to a mask parameter. 983 */ 984 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 985 u_int64_t mask) 986 { 987 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 988 struct snd_mask *maskp = constrs_mask(constrs, var); 989 maskp->bits[0] &= (u_int32_t)mask; 990 maskp->bits[1] &= (u_int32_t)(mask >> 32); 991 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 992 if (! maskp->bits[0] && ! maskp->bits[1]) 993 return -EINVAL; 994 return 0; 995 } 996 997 /** 998 * snd_pcm_hw_constraint_integer 999 * @runtime: PCM runtime instance 1000 * @var: hw_params variable to apply the integer constraint 1001 * 1002 * Apply the constraint of integer to an interval parameter. 1003 */ 1004 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 1005 { 1006 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1007 return snd_interval_setinteger(constrs_interval(constrs, var)); 1008 } 1009 1010 /** 1011 * snd_pcm_hw_constraint_minmax 1012 * @runtime: PCM runtime instance 1013 * @var: hw_params variable to apply the range 1014 * @min: the minimal value 1015 * @max: the maximal value 1016 * 1017 * Apply the min/max range constraint to an interval parameter. 1018 */ 1019 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 1020 unsigned int min, unsigned int max) 1021 { 1022 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 1023 struct snd_interval t; 1024 t.min = min; 1025 t.max = max; 1026 t.openmin = t.openmax = 0; 1027 t.integer = 0; 1028 return snd_interval_refine(constrs_interval(constrs, var), &t); 1029 } 1030 1031 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 1032 struct snd_pcm_hw_rule *rule) 1033 { 1034 struct snd_pcm_hw_constraint_list *list = rule->private; 1035 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 1036 } 1037 1038 1039 /** 1040 * snd_pcm_hw_constraint_list 1041 * @runtime: PCM runtime instance 1042 * @cond: condition bits 1043 * @var: hw_params variable to apply the list constraint 1044 * @l: list 1045 * 1046 * Apply the list of constraints to an interval parameter. 1047 */ 1048 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 1049 unsigned int cond, 1050 snd_pcm_hw_param_t var, 1051 struct snd_pcm_hw_constraint_list *l) 1052 { 1053 return snd_pcm_hw_rule_add(runtime, cond, var, 1054 snd_pcm_hw_rule_list, l, 1055 var, -1); 1056 } 1057 1058 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1059 struct snd_pcm_hw_rule *rule) 1060 { 1061 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1062 unsigned int num = 0, den = 0; 1063 int err; 1064 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1065 r->nrats, r->rats, &num, &den); 1066 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1067 params->rate_num = num; 1068 params->rate_den = den; 1069 } 1070 return err; 1071 } 1072 1073 /** 1074 * snd_pcm_hw_constraint_ratnums 1075 * @runtime: PCM runtime instance 1076 * @cond: condition bits 1077 * @var: hw_params variable to apply the ratnums constraint 1078 * @r: struct snd_ratnums constriants 1079 */ 1080 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1081 unsigned int cond, 1082 snd_pcm_hw_param_t var, 1083 struct snd_pcm_hw_constraint_ratnums *r) 1084 { 1085 return snd_pcm_hw_rule_add(runtime, cond, var, 1086 snd_pcm_hw_rule_ratnums, r, 1087 var, -1); 1088 } 1089 1090 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1091 struct snd_pcm_hw_rule *rule) 1092 { 1093 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1094 unsigned int num = 0, den = 0; 1095 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1096 r->nrats, r->rats, &num, &den); 1097 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1098 params->rate_num = num; 1099 params->rate_den = den; 1100 } 1101 return err; 1102 } 1103 1104 /** 1105 * snd_pcm_hw_constraint_ratdens 1106 * @runtime: PCM runtime instance 1107 * @cond: condition bits 1108 * @var: hw_params variable to apply the ratdens constraint 1109 * @r: struct snd_ratdens constriants 1110 */ 1111 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1112 unsigned int cond, 1113 snd_pcm_hw_param_t var, 1114 struct snd_pcm_hw_constraint_ratdens *r) 1115 { 1116 return snd_pcm_hw_rule_add(runtime, cond, var, 1117 snd_pcm_hw_rule_ratdens, r, 1118 var, -1); 1119 } 1120 1121 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1122 struct snd_pcm_hw_rule *rule) 1123 { 1124 unsigned int l = (unsigned long) rule->private; 1125 int width = l & 0xffff; 1126 unsigned int msbits = l >> 16; 1127 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1128 if (snd_interval_single(i) && snd_interval_value(i) == width) 1129 params->msbits = msbits; 1130 return 0; 1131 } 1132 1133 /** 1134 * snd_pcm_hw_constraint_msbits 1135 * @runtime: PCM runtime instance 1136 * @cond: condition bits 1137 * @width: sample bits width 1138 * @msbits: msbits width 1139 */ 1140 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1141 unsigned int cond, 1142 unsigned int width, 1143 unsigned int msbits) 1144 { 1145 unsigned long l = (msbits << 16) | width; 1146 return snd_pcm_hw_rule_add(runtime, cond, -1, 1147 snd_pcm_hw_rule_msbits, 1148 (void*) l, 1149 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1150 } 1151 1152 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1153 struct snd_pcm_hw_rule *rule) 1154 { 1155 unsigned long step = (unsigned long) rule->private; 1156 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1157 } 1158 1159 /** 1160 * snd_pcm_hw_constraint_step 1161 * @runtime: PCM runtime instance 1162 * @cond: condition bits 1163 * @var: hw_params variable to apply the step constraint 1164 * @step: step size 1165 */ 1166 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1167 unsigned int cond, 1168 snd_pcm_hw_param_t var, 1169 unsigned long step) 1170 { 1171 return snd_pcm_hw_rule_add(runtime, cond, var, 1172 snd_pcm_hw_rule_step, (void *) step, 1173 var, -1); 1174 } 1175 1176 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1177 { 1178 static int pow2_sizes[] = { 1179 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1180 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1181 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1182 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1183 }; 1184 return snd_interval_list(hw_param_interval(params, rule->var), 1185 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1186 } 1187 1188 /** 1189 * snd_pcm_hw_constraint_pow2 1190 * @runtime: PCM runtime instance 1191 * @cond: condition bits 1192 * @var: hw_params variable to apply the power-of-2 constraint 1193 */ 1194 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1195 unsigned int cond, 1196 snd_pcm_hw_param_t var) 1197 { 1198 return snd_pcm_hw_rule_add(runtime, cond, var, 1199 snd_pcm_hw_rule_pow2, NULL, 1200 var, -1); 1201 } 1202 1203 /* To use the same code we have in alsa-lib */ 1204 #define assert(i) snd_assert((i), return -EINVAL) 1205 #ifndef INT_MIN 1206 #define INT_MIN ((int)((unsigned int)INT_MAX+1)) 1207 #endif 1208 1209 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1210 snd_pcm_hw_param_t var) 1211 { 1212 if (hw_is_mask(var)) { 1213 snd_mask_any(hw_param_mask(params, var)); 1214 params->cmask |= 1 << var; 1215 params->rmask |= 1 << var; 1216 return; 1217 } 1218 if (hw_is_interval(var)) { 1219 snd_interval_any(hw_param_interval(params, var)); 1220 params->cmask |= 1 << var; 1221 params->rmask |= 1 << var; 1222 return; 1223 } 1224 snd_BUG(); 1225 } 1226 1227 #if 0 1228 /* 1229 * snd_pcm_hw_param_any 1230 */ 1231 int snd_pcm_hw_param_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params, 1232 snd_pcm_hw_param_t var) 1233 { 1234 _snd_pcm_hw_param_any(params, var); 1235 return snd_pcm_hw_refine(pcm, params); 1236 } 1237 #endif /* 0 */ 1238 1239 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1240 { 1241 unsigned int k; 1242 memset(params, 0, sizeof(*params)); 1243 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1244 _snd_pcm_hw_param_any(params, k); 1245 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1246 _snd_pcm_hw_param_any(params, k); 1247 params->info = ~0U; 1248 } 1249 1250 #if 0 1251 /* 1252 * snd_pcm_hw_params_any 1253 * 1254 * Fill PARAMS with full configuration space boundaries 1255 */ 1256 int snd_pcm_hw_params_any(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params) 1257 { 1258 _snd_pcm_hw_params_any(params); 1259 return snd_pcm_hw_refine(pcm, params); 1260 } 1261 #endif /* 0 */ 1262 1263 /** 1264 * snd_pcm_hw_param_value 1265 * @params: the hw_params instance 1266 * @var: parameter to retrieve 1267 * @dir: pointer to the direction (-1,0,1) or NULL 1268 * 1269 * Return the value for field PAR if it's fixed in configuration space 1270 * defined by PARAMS. Return -EINVAL otherwise 1271 */ 1272 static int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1273 snd_pcm_hw_param_t var, int *dir) 1274 { 1275 if (hw_is_mask(var)) { 1276 const struct snd_mask *mask = hw_param_mask_c(params, var); 1277 if (!snd_mask_single(mask)) 1278 return -EINVAL; 1279 if (dir) 1280 *dir = 0; 1281 return snd_mask_value(mask); 1282 } 1283 if (hw_is_interval(var)) { 1284 const struct snd_interval *i = hw_param_interval_c(params, var); 1285 if (!snd_interval_single(i)) 1286 return -EINVAL; 1287 if (dir) 1288 *dir = i->openmin; 1289 return snd_interval_value(i); 1290 } 1291 assert(0); 1292 return -EINVAL; 1293 } 1294 1295 /** 1296 * snd_pcm_hw_param_value_min 1297 * @params: the hw_params instance 1298 * @var: parameter to retrieve 1299 * @dir: pointer to the direction (-1,0,1) or NULL 1300 * 1301 * Return the minimum value for field PAR. 1302 */ 1303 unsigned int snd_pcm_hw_param_value_min(const struct snd_pcm_hw_params *params, 1304 snd_pcm_hw_param_t var, int *dir) 1305 { 1306 if (hw_is_mask(var)) { 1307 if (dir) 1308 *dir = 0; 1309 return snd_mask_min(hw_param_mask_c(params, var)); 1310 } 1311 if (hw_is_interval(var)) { 1312 const struct snd_interval *i = hw_param_interval_c(params, var); 1313 if (dir) 1314 *dir = i->openmin; 1315 return snd_interval_min(i); 1316 } 1317 assert(0); 1318 return -EINVAL; 1319 } 1320 1321 /** 1322 * snd_pcm_hw_param_value_max 1323 * @params: the hw_params instance 1324 * @var: parameter to retrieve 1325 * @dir: pointer to the direction (-1,0,1) or NULL 1326 * 1327 * Return the maximum value for field PAR. 1328 */ 1329 unsigned int snd_pcm_hw_param_value_max(const struct snd_pcm_hw_params *params, 1330 snd_pcm_hw_param_t var, int *dir) 1331 { 1332 if (hw_is_mask(var)) { 1333 if (dir) 1334 *dir = 0; 1335 return snd_mask_max(hw_param_mask_c(params, var)); 1336 } 1337 if (hw_is_interval(var)) { 1338 const struct snd_interval *i = hw_param_interval_c(params, var); 1339 if (dir) 1340 *dir = - (int) i->openmax; 1341 return snd_interval_max(i); 1342 } 1343 assert(0); 1344 return -EINVAL; 1345 } 1346 1347 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1348 snd_pcm_hw_param_t var) 1349 { 1350 if (hw_is_mask(var)) { 1351 snd_mask_none(hw_param_mask(params, var)); 1352 params->cmask |= 1 << var; 1353 params->rmask |= 1 << var; 1354 } else if (hw_is_interval(var)) { 1355 snd_interval_none(hw_param_interval(params, var)); 1356 params->cmask |= 1 << var; 1357 params->rmask |= 1 << var; 1358 } else { 1359 snd_BUG(); 1360 } 1361 } 1362 1363 int _snd_pcm_hw_param_setinteger(struct snd_pcm_hw_params *params, 1364 snd_pcm_hw_param_t var) 1365 { 1366 int changed; 1367 assert(hw_is_interval(var)); 1368 changed = snd_interval_setinteger(hw_param_interval(params, var)); 1369 if (changed) { 1370 params->cmask |= 1 << var; 1371 params->rmask |= 1 << var; 1372 } 1373 return changed; 1374 } 1375 1376 #if 0 1377 /* 1378 * snd_pcm_hw_param_setinteger 1379 * 1380 * Inside configuration space defined by PARAMS remove from PAR all 1381 * non integer values. Reduce configuration space accordingly. 1382 * Return -EINVAL if the configuration space is empty 1383 */ 1384 int snd_pcm_hw_param_setinteger(struct snd_pcm_substream *pcm, 1385 struct snd_pcm_hw_params *params, 1386 snd_pcm_hw_param_t var) 1387 { 1388 int changed = _snd_pcm_hw_param_setinteger(params, var); 1389 if (changed < 0) 1390 return changed; 1391 if (params->rmask) { 1392 int err = snd_pcm_hw_refine(pcm, params); 1393 if (err < 0) 1394 return err; 1395 } 1396 return 0; 1397 } 1398 #endif /* 0 */ 1399 1400 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1401 snd_pcm_hw_param_t var) 1402 { 1403 int changed; 1404 if (hw_is_mask(var)) 1405 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1406 else if (hw_is_interval(var)) 1407 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1408 else { 1409 assert(0); 1410 return -EINVAL; 1411 } 1412 if (changed) { 1413 params->cmask |= 1 << var; 1414 params->rmask |= 1 << var; 1415 } 1416 return changed; 1417 } 1418 1419 1420 /** 1421 * snd_pcm_hw_param_first 1422 * @pcm: PCM instance 1423 * @params: the hw_params instance 1424 * @var: parameter to retrieve 1425 * @dir: pointer to the direction (-1,0,1) or NULL 1426 * 1427 * Inside configuration space defined by PARAMS remove from PAR all 1428 * values > minimum. Reduce configuration space accordingly. 1429 * Return the minimum. 1430 */ 1431 static int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1432 struct snd_pcm_hw_params *params, 1433 snd_pcm_hw_param_t var, int *dir) 1434 { 1435 int changed = _snd_pcm_hw_param_first(params, var); 1436 if (changed < 0) 1437 return changed; 1438 if (params->rmask) { 1439 int err = snd_pcm_hw_refine(pcm, params); 1440 assert(err >= 0); 1441 } 1442 return snd_pcm_hw_param_value(params, var, dir); 1443 } 1444 1445 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1446 snd_pcm_hw_param_t var) 1447 { 1448 int changed; 1449 if (hw_is_mask(var)) 1450 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1451 else if (hw_is_interval(var)) 1452 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1453 else { 1454 assert(0); 1455 return -EINVAL; 1456 } 1457 if (changed) { 1458 params->cmask |= 1 << var; 1459 params->rmask |= 1 << var; 1460 } 1461 return changed; 1462 } 1463 1464 1465 /** 1466 * snd_pcm_hw_param_last 1467 * @pcm: PCM instance 1468 * @params: the hw_params instance 1469 * @var: parameter to retrieve 1470 * @dir: pointer to the direction (-1,0,1) or NULL 1471 * 1472 * Inside configuration space defined by PARAMS remove from PAR all 1473 * values < maximum. Reduce configuration space accordingly. 1474 * Return the maximum. 1475 */ 1476 static int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1477 struct snd_pcm_hw_params *params, 1478 snd_pcm_hw_param_t var, int *dir) 1479 { 1480 int changed = _snd_pcm_hw_param_last(params, var); 1481 if (changed < 0) 1482 return changed; 1483 if (params->rmask) { 1484 int err = snd_pcm_hw_refine(pcm, params); 1485 assert(err >= 0); 1486 } 1487 return snd_pcm_hw_param_value(params, var, dir); 1488 } 1489 1490 int _snd_pcm_hw_param_min(struct snd_pcm_hw_params *params, 1491 snd_pcm_hw_param_t var, unsigned int val, int dir) 1492 { 1493 int changed; 1494 int open = 0; 1495 if (dir) { 1496 if (dir > 0) { 1497 open = 1; 1498 } else if (dir < 0) { 1499 if (val > 0) { 1500 open = 1; 1501 val--; 1502 } 1503 } 1504 } 1505 if (hw_is_mask(var)) 1506 changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open); 1507 else if (hw_is_interval(var)) 1508 changed = snd_interval_refine_min(hw_param_interval(params, var), val, open); 1509 else { 1510 assert(0); 1511 return -EINVAL; 1512 } 1513 if (changed) { 1514 params->cmask |= 1 << var; 1515 params->rmask |= 1 << var; 1516 } 1517 return changed; 1518 } 1519 1520 /** 1521 * snd_pcm_hw_param_min 1522 * @pcm: PCM instance 1523 * @params: the hw_params instance 1524 * @var: parameter to retrieve 1525 * @val: minimal value 1526 * @dir: pointer to the direction (-1,0,1) or NULL 1527 * 1528 * Inside configuration space defined by PARAMS remove from PAR all 1529 * values < VAL. Reduce configuration space accordingly. 1530 * Return new minimum or -EINVAL if the configuration space is empty 1531 */ 1532 static int snd_pcm_hw_param_min(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params, 1533 snd_pcm_hw_param_t var, unsigned int val, 1534 int *dir) 1535 { 1536 int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0); 1537 if (changed < 0) 1538 return changed; 1539 if (params->rmask) { 1540 int err = snd_pcm_hw_refine(pcm, params); 1541 if (err < 0) 1542 return err; 1543 } 1544 return snd_pcm_hw_param_value_min(params, var, dir); 1545 } 1546 1547 static int _snd_pcm_hw_param_max(struct snd_pcm_hw_params *params, 1548 snd_pcm_hw_param_t var, unsigned int val, 1549 int dir) 1550 { 1551 int changed; 1552 int open = 0; 1553 if (dir) { 1554 if (dir < 0) { 1555 open = 1; 1556 } else if (dir > 0) { 1557 open = 1; 1558 val++; 1559 } 1560 } 1561 if (hw_is_mask(var)) { 1562 if (val == 0 && open) { 1563 snd_mask_none(hw_param_mask(params, var)); 1564 changed = -EINVAL; 1565 } else 1566 changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open); 1567 } else if (hw_is_interval(var)) 1568 changed = snd_interval_refine_max(hw_param_interval(params, var), val, open); 1569 else { 1570 assert(0); 1571 return -EINVAL; 1572 } 1573 if (changed) { 1574 params->cmask |= 1 << var; 1575 params->rmask |= 1 << var; 1576 } 1577 return changed; 1578 } 1579 1580 /** 1581 * snd_pcm_hw_param_max 1582 * @pcm: PCM instance 1583 * @params: the hw_params instance 1584 * @var: parameter to retrieve 1585 * @val: maximal value 1586 * @dir: pointer to the direction (-1,0,1) or NULL 1587 * 1588 * Inside configuration space defined by PARAMS remove from PAR all 1589 * values >= VAL + 1. Reduce configuration space accordingly. 1590 * Return new maximum or -EINVAL if the configuration space is empty 1591 */ 1592 static int snd_pcm_hw_param_max(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params, 1593 snd_pcm_hw_param_t var, unsigned int val, 1594 int *dir) 1595 { 1596 int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0); 1597 if (changed < 0) 1598 return changed; 1599 if (params->rmask) { 1600 int err = snd_pcm_hw_refine(pcm, params); 1601 if (err < 0) 1602 return err; 1603 } 1604 return snd_pcm_hw_param_value_max(params, var, dir); 1605 } 1606 1607 int _snd_pcm_hw_param_set(struct snd_pcm_hw_params *params, 1608 snd_pcm_hw_param_t var, unsigned int val, int dir) 1609 { 1610 int changed; 1611 if (hw_is_mask(var)) { 1612 struct snd_mask *m = hw_param_mask(params, var); 1613 if (val == 0 && dir < 0) { 1614 changed = -EINVAL; 1615 snd_mask_none(m); 1616 } else { 1617 if (dir > 0) 1618 val++; 1619 else if (dir < 0) 1620 val--; 1621 changed = snd_mask_refine_set(hw_param_mask(params, var), val); 1622 } 1623 } else if (hw_is_interval(var)) { 1624 struct snd_interval *i = hw_param_interval(params, var); 1625 if (val == 0 && dir < 0) { 1626 changed = -EINVAL; 1627 snd_interval_none(i); 1628 } else if (dir == 0) 1629 changed = snd_interval_refine_set(i, val); 1630 else { 1631 struct snd_interval t; 1632 t.openmin = 1; 1633 t.openmax = 1; 1634 t.empty = 0; 1635 t.integer = 0; 1636 if (dir < 0) { 1637 t.min = val - 1; 1638 t.max = val; 1639 } else { 1640 t.min = val; 1641 t.max = val+1; 1642 } 1643 changed = snd_interval_refine(i, &t); 1644 } 1645 } else { 1646 assert(0); 1647 return -EINVAL; 1648 } 1649 if (changed) { 1650 params->cmask |= 1 << var; 1651 params->rmask |= 1 << var; 1652 } 1653 return changed; 1654 } 1655 1656 /** 1657 * snd_pcm_hw_param_set 1658 * @pcm: PCM instance 1659 * @params: the hw_params instance 1660 * @var: parameter to retrieve 1661 * @val: value to set 1662 * @dir: pointer to the direction (-1,0,1) or NULL 1663 * 1664 * Inside configuration space defined by PARAMS remove from PAR all 1665 * values != VAL. Reduce configuration space accordingly. 1666 * Return VAL or -EINVAL if the configuration space is empty 1667 */ 1668 int snd_pcm_hw_param_set(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params, 1669 snd_pcm_hw_param_t var, unsigned int val, int dir) 1670 { 1671 int changed = _snd_pcm_hw_param_set(params, var, val, dir); 1672 if (changed < 0) 1673 return changed; 1674 if (params->rmask) { 1675 int err = snd_pcm_hw_refine(pcm, params); 1676 if (err < 0) 1677 return err; 1678 } 1679 return snd_pcm_hw_param_value(params, var, NULL); 1680 } 1681 1682 static int _snd_pcm_hw_param_mask(struct snd_pcm_hw_params *params, 1683 snd_pcm_hw_param_t var, const struct snd_mask *val) 1684 { 1685 int changed; 1686 assert(hw_is_mask(var)); 1687 changed = snd_mask_refine(hw_param_mask(params, var), val); 1688 if (changed) { 1689 params->cmask |= 1 << var; 1690 params->rmask |= 1 << var; 1691 } 1692 return changed; 1693 } 1694 1695 /** 1696 * snd_pcm_hw_param_mask 1697 * @pcm: PCM instance 1698 * @params: the hw_params instance 1699 * @var: parameter to retrieve 1700 * @val: mask to apply 1701 * 1702 * Inside configuration space defined by PARAMS remove from PAR all values 1703 * not contained in MASK. Reduce configuration space accordingly. 1704 * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS, 1705 * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT. 1706 * Return 0 on success or -EINVAL 1707 * if the configuration space is empty 1708 */ 1709 int snd_pcm_hw_param_mask(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params, 1710 snd_pcm_hw_param_t var, const struct snd_mask *val) 1711 { 1712 int changed = _snd_pcm_hw_param_mask(params, var, val); 1713 if (changed < 0) 1714 return changed; 1715 if (params->rmask) { 1716 int err = snd_pcm_hw_refine(pcm, params); 1717 if (err < 0) 1718 return err; 1719 } 1720 return 0; 1721 } 1722 1723 static int boundary_sub(int a, int adir, 1724 int b, int bdir, 1725 int *c, int *cdir) 1726 { 1727 adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0); 1728 bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0); 1729 *c = a - b; 1730 *cdir = adir - bdir; 1731 if (*cdir == -2) { 1732 assert(*c > INT_MIN); 1733 (*c)--; 1734 } else if (*cdir == 2) { 1735 assert(*c < INT_MAX); 1736 (*c)++; 1737 } 1738 return 0; 1739 } 1740 1741 static int boundary_lt(unsigned int a, int adir, 1742 unsigned int b, int bdir) 1743 { 1744 assert(a > 0 || adir >= 0); 1745 assert(b > 0 || bdir >= 0); 1746 if (adir < 0) { 1747 a--; 1748 adir = 1; 1749 } else if (adir > 0) 1750 adir = 1; 1751 if (bdir < 0) { 1752 b--; 1753 bdir = 1; 1754 } else if (bdir > 0) 1755 bdir = 1; 1756 return a < b || (a == b && adir < bdir); 1757 } 1758 1759 /* Return 1 if min is nearer to best than max */ 1760 static int boundary_nearer(int min, int mindir, 1761 int best, int bestdir, 1762 int max, int maxdir) 1763 { 1764 int dmin, dmindir; 1765 int dmax, dmaxdir; 1766 boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir); 1767 boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir); 1768 return boundary_lt(dmin, dmindir, dmax, dmaxdir); 1769 } 1770 1771 /** 1772 * snd_pcm_hw_param_near 1773 * @pcm: PCM instance 1774 * @params: the hw_params instance 1775 * @var: parameter to retrieve 1776 * @best: value to set 1777 * @dir: pointer to the direction (-1,0,1) or NULL 1778 * 1779 * Inside configuration space defined by PARAMS set PAR to the available value 1780 * nearest to VAL. Reduce configuration space accordingly. 1781 * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS, 1782 * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT. 1783 * Return the value found. 1784 */ 1785 int snd_pcm_hw_param_near(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params, 1786 snd_pcm_hw_param_t var, unsigned int best, int *dir) 1787 { 1788 struct snd_pcm_hw_params *save = NULL; 1789 int v; 1790 unsigned int saved_min; 1791 int last = 0; 1792 int min, max; 1793 int mindir, maxdir; 1794 int valdir = dir ? *dir : 0; 1795 /* FIXME */ 1796 if (best > INT_MAX) 1797 best = INT_MAX; 1798 min = max = best; 1799 mindir = maxdir = valdir; 1800 if (maxdir > 0) 1801 maxdir = 0; 1802 else if (maxdir == 0) 1803 maxdir = -1; 1804 else { 1805 maxdir = 1; 1806 max--; 1807 } 1808 save = kmalloc(sizeof(*save), GFP_KERNEL); 1809 if (save == NULL) 1810 return -ENOMEM; 1811 *save = *params; 1812 saved_min = min; 1813 min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir); 1814 if (min >= 0) { 1815 struct snd_pcm_hw_params *params1; 1816 if (max < 0) 1817 goto _end; 1818 if ((unsigned int)min == saved_min && mindir == valdir) 1819 goto _end; 1820 params1 = kmalloc(sizeof(*params1), GFP_KERNEL); 1821 if (params1 == NULL) { 1822 kfree(save); 1823 return -ENOMEM; 1824 } 1825 *params1 = *save; 1826 max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir); 1827 if (max < 0) { 1828 kfree(params1); 1829 goto _end; 1830 } 1831 if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) { 1832 *params = *params1; 1833 last = 1; 1834 } 1835 kfree(params1); 1836 } else { 1837 *params = *save; 1838 max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir); 1839 assert(max >= 0); 1840 last = 1; 1841 } 1842 _end: 1843 kfree(save); 1844 if (last) 1845 v = snd_pcm_hw_param_last(pcm, params, var, dir); 1846 else 1847 v = snd_pcm_hw_param_first(pcm, params, var, dir); 1848 assert(v >= 0); 1849 return v; 1850 } 1851 1852 /** 1853 * snd_pcm_hw_param_choose 1854 * @pcm: PCM instance 1855 * @params: the hw_params instance 1856 * 1857 * Choose one configuration from configuration space defined by PARAMS 1858 * The configuration chosen is that obtained fixing in this order: 1859 * first access, first format, first subformat, min channels, 1860 * min rate, min period time, max buffer size, min tick time 1861 */ 1862 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, struct snd_pcm_hw_params *params) 1863 { 1864 int err; 1865 1866 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL); 1867 assert(err >= 0); 1868 1869 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL); 1870 assert(err >= 0); 1871 1872 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL); 1873 assert(err >= 0); 1874 1875 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL); 1876 assert(err >= 0); 1877 1878 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL); 1879 assert(err >= 0); 1880 1881 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL); 1882 assert(err >= 0); 1883 1884 err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL); 1885 assert(err >= 0); 1886 1887 err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL); 1888 assert(err >= 0); 1889 1890 return 0; 1891 } 1892 1893 #undef assert 1894 1895 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1896 void *arg) 1897 { 1898 struct snd_pcm_runtime *runtime = substream->runtime; 1899 unsigned long flags; 1900 snd_pcm_stream_lock_irqsave(substream, flags); 1901 if (snd_pcm_running(substream) && 1902 snd_pcm_update_hw_ptr(substream) >= 0) 1903 runtime->status->hw_ptr %= runtime->buffer_size; 1904 else 1905 runtime->status->hw_ptr = 0; 1906 snd_pcm_stream_unlock_irqrestore(substream, flags); 1907 return 0; 1908 } 1909 1910 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1911 void *arg) 1912 { 1913 struct snd_pcm_channel_info *info = arg; 1914 struct snd_pcm_runtime *runtime = substream->runtime; 1915 int width; 1916 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1917 info->offset = -1; 1918 return 0; 1919 } 1920 width = snd_pcm_format_physical_width(runtime->format); 1921 if (width < 0) 1922 return width; 1923 info->offset = 0; 1924 switch (runtime->access) { 1925 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1926 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1927 info->first = info->channel * width; 1928 info->step = runtime->channels * width; 1929 break; 1930 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1931 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1932 { 1933 size_t size = runtime->dma_bytes / runtime->channels; 1934 info->first = info->channel * size * 8; 1935 info->step = width; 1936 break; 1937 } 1938 default: 1939 snd_BUG(); 1940 break; 1941 } 1942 return 0; 1943 } 1944 1945 /** 1946 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1947 * @substream: the pcm substream instance 1948 * @cmd: ioctl command 1949 * @arg: ioctl argument 1950 * 1951 * Processes the generic ioctl commands for PCM. 1952 * Can be passed as the ioctl callback for PCM ops. 1953 * 1954 * Returns zero if successful, or a negative error code on failure. 1955 */ 1956 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1957 unsigned int cmd, void *arg) 1958 { 1959 switch (cmd) { 1960 case SNDRV_PCM_IOCTL1_INFO: 1961 return 0; 1962 case SNDRV_PCM_IOCTL1_RESET: 1963 return snd_pcm_lib_ioctl_reset(substream, arg); 1964 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1965 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1966 } 1967 return -ENXIO; 1968 } 1969 1970 /* 1971 * Conditions 1972 */ 1973 1974 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 1975 unsigned long ticks) 1976 { 1977 struct snd_pcm_runtime *runtime = substream->runtime; 1978 if (ticks == 0) 1979 del_timer(&runtime->tick_timer); 1980 else { 1981 ticks += (1000000 / HZ) - 1; 1982 ticks /= (1000000 / HZ); 1983 mod_timer(&runtime->tick_timer, jiffies + ticks); 1984 } 1985 } 1986 1987 /* Temporary alias */ 1988 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks) 1989 { 1990 snd_pcm_system_tick_set(substream, ticks); 1991 } 1992 1993 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream) 1994 { 1995 struct snd_pcm_runtime *runtime = substream->runtime; 1996 snd_pcm_uframes_t frames = ULONG_MAX; 1997 snd_pcm_uframes_t avail, dist; 1998 unsigned int ticks; 1999 u_int64_t n; 2000 u_int32_t r; 2001 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 2002 if (runtime->silence_size >= runtime->boundary) { 2003 frames = 1; 2004 } else if (runtime->silence_size > 0 && 2005 runtime->silence_filled < runtime->buffer_size) { 2006 snd_pcm_sframes_t noise_dist; 2007 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 2008 if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold) 2009 frames = noise_dist - runtime->silence_threshold; 2010 } 2011 avail = snd_pcm_playback_avail(runtime); 2012 } else { 2013 avail = snd_pcm_capture_avail(runtime); 2014 } 2015 if (avail < runtime->control->avail_min) { 2016 snd_pcm_sframes_t n = runtime->control->avail_min - avail; 2017 if (n > 0 && frames > (snd_pcm_uframes_t)n) 2018 frames = n; 2019 } 2020 if (avail < runtime->buffer_size) { 2021 snd_pcm_sframes_t n = runtime->buffer_size - avail; 2022 if (n > 0 && frames > (snd_pcm_uframes_t)n) 2023 frames = n; 2024 } 2025 if (frames == ULONG_MAX) { 2026 snd_pcm_tick_set(substream, 0); 2027 return; 2028 } 2029 dist = runtime->status->hw_ptr - runtime->hw_ptr_base; 2030 /* Distance to next interrupt */ 2031 dist = runtime->period_size - dist % runtime->period_size; 2032 if (dist <= frames) { 2033 snd_pcm_tick_set(substream, 0); 2034 return; 2035 } 2036 /* the base time is us */ 2037 n = frames; 2038 n *= 1000000; 2039 div64_32(&n, runtime->tick_time * runtime->rate, &r); 2040 ticks = n + (r > 0 ? 1 : 0); 2041 if (ticks < runtime->sleep_min) 2042 ticks = runtime->sleep_min; 2043 snd_pcm_tick_set(substream, (unsigned long) ticks); 2044 } 2045 2046 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream) 2047 { 2048 struct snd_pcm_runtime *runtime; 2049 unsigned long flags; 2050 2051 snd_assert(substream != NULL, return); 2052 runtime = substream->runtime; 2053 snd_assert(runtime != NULL, return); 2054 2055 snd_pcm_stream_lock_irqsave(substream, flags); 2056 if (!snd_pcm_running(substream) || 2057 snd_pcm_update_hw_ptr(substream) < 0) 2058 goto _end; 2059 if (runtime->sleep_min) 2060 snd_pcm_tick_prepare(substream); 2061 _end: 2062 snd_pcm_stream_unlock_irqrestore(substream, flags); 2063 } 2064 2065 /** 2066 * snd_pcm_period_elapsed - update the pcm status for the next period 2067 * @substream: the pcm substream instance 2068 * 2069 * This function is called from the interrupt handler when the 2070 * PCM has processed the period size. It will update the current 2071 * pointer, set up the tick, wake up sleepers, etc. 2072 * 2073 * Even if more than one periods have elapsed since the last call, you 2074 * have to call this only once. 2075 */ 2076 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 2077 { 2078 struct snd_pcm_runtime *runtime; 2079 unsigned long flags; 2080 2081 snd_assert(substream != NULL, return); 2082 runtime = substream->runtime; 2083 snd_assert(runtime != NULL, return); 2084 2085 if (runtime->transfer_ack_begin) 2086 runtime->transfer_ack_begin(substream); 2087 2088 snd_pcm_stream_lock_irqsave(substream, flags); 2089 if (!snd_pcm_running(substream) || 2090 snd_pcm_update_hw_ptr_interrupt(substream) < 0) 2091 goto _end; 2092 2093 if (substream->timer_running) 2094 snd_timer_interrupt(substream->timer, 1); 2095 if (runtime->sleep_min) 2096 snd_pcm_tick_prepare(substream); 2097 _end: 2098 snd_pcm_stream_unlock_irqrestore(substream, flags); 2099 if (runtime->transfer_ack_end) 2100 runtime->transfer_ack_end(substream); 2101 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 2102 } 2103 2104 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 2105 unsigned int hwoff, 2106 unsigned long data, unsigned int off, 2107 snd_pcm_uframes_t frames) 2108 { 2109 struct snd_pcm_runtime *runtime = substream->runtime; 2110 int err; 2111 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2112 if (substream->ops->copy) { 2113 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2114 return err; 2115 } else { 2116 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2117 snd_assert(runtime->dma_area, return -EFAULT); 2118 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 2119 return -EFAULT; 2120 } 2121 return 0; 2122 } 2123 2124 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 2125 unsigned long data, unsigned int off, 2126 snd_pcm_uframes_t size); 2127 2128 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 2129 unsigned long data, 2130 snd_pcm_uframes_t size, 2131 int nonblock, 2132 transfer_f transfer) 2133 { 2134 struct snd_pcm_runtime *runtime = substream->runtime; 2135 snd_pcm_uframes_t xfer = 0; 2136 snd_pcm_uframes_t offset = 0; 2137 int err = 0; 2138 2139 if (size == 0) 2140 return 0; 2141 if (size > runtime->xfer_align) 2142 size -= size % runtime->xfer_align; 2143 2144 snd_pcm_stream_lock_irq(substream); 2145 switch (runtime->status->state) { 2146 case SNDRV_PCM_STATE_PREPARED: 2147 case SNDRV_PCM_STATE_RUNNING: 2148 case SNDRV_PCM_STATE_PAUSED: 2149 break; 2150 case SNDRV_PCM_STATE_XRUN: 2151 err = -EPIPE; 2152 goto _end_unlock; 2153 case SNDRV_PCM_STATE_SUSPENDED: 2154 err = -ESTRPIPE; 2155 goto _end_unlock; 2156 default: 2157 err = -EBADFD; 2158 goto _end_unlock; 2159 } 2160 2161 while (size > 0) { 2162 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2163 snd_pcm_uframes_t avail; 2164 snd_pcm_uframes_t cont; 2165 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2166 snd_pcm_update_hw_ptr(substream); 2167 avail = snd_pcm_playback_avail(runtime); 2168 if (((avail < runtime->control->avail_min && size > avail) || 2169 (size >= runtime->xfer_align && avail < runtime->xfer_align))) { 2170 wait_queue_t wait; 2171 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state; 2172 long tout; 2173 2174 if (nonblock) { 2175 err = -EAGAIN; 2176 goto _end_unlock; 2177 } 2178 2179 init_waitqueue_entry(&wait, current); 2180 add_wait_queue(&runtime->sleep, &wait); 2181 while (1) { 2182 if (signal_pending(current)) { 2183 state = SIGNALED; 2184 break; 2185 } 2186 set_current_state(TASK_INTERRUPTIBLE); 2187 snd_pcm_stream_unlock_irq(substream); 2188 tout = schedule_timeout(10 * HZ); 2189 snd_pcm_stream_lock_irq(substream); 2190 if (tout == 0) { 2191 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED && 2192 runtime->status->state != SNDRV_PCM_STATE_PAUSED) { 2193 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED; 2194 break; 2195 } 2196 } 2197 switch (runtime->status->state) { 2198 case SNDRV_PCM_STATE_XRUN: 2199 case SNDRV_PCM_STATE_DRAINING: 2200 state = ERROR; 2201 goto _end_loop; 2202 case SNDRV_PCM_STATE_SUSPENDED: 2203 state = SUSPENDED; 2204 goto _end_loop; 2205 case SNDRV_PCM_STATE_SETUP: 2206 state = DROPPED; 2207 goto _end_loop; 2208 default: 2209 break; 2210 } 2211 avail = snd_pcm_playback_avail(runtime); 2212 if (avail >= runtime->control->avail_min) { 2213 state = READY; 2214 break; 2215 } 2216 } 2217 _end_loop: 2218 remove_wait_queue(&runtime->sleep, &wait); 2219 2220 switch (state) { 2221 case ERROR: 2222 err = -EPIPE; 2223 goto _end_unlock; 2224 case SUSPENDED: 2225 err = -ESTRPIPE; 2226 goto _end_unlock; 2227 case SIGNALED: 2228 err = -ERESTARTSYS; 2229 goto _end_unlock; 2230 case EXPIRED: 2231 snd_printd("playback write error (DMA or IRQ trouble?)\n"); 2232 err = -EIO; 2233 goto _end_unlock; 2234 case DROPPED: 2235 err = -EBADFD; 2236 goto _end_unlock; 2237 default: 2238 break; 2239 } 2240 } 2241 if (avail > runtime->xfer_align) 2242 avail -= avail % runtime->xfer_align; 2243 frames = size > avail ? avail : size; 2244 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2245 if (frames > cont) 2246 frames = cont; 2247 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); 2248 appl_ptr = runtime->control->appl_ptr; 2249 appl_ofs = appl_ptr % runtime->buffer_size; 2250 snd_pcm_stream_unlock_irq(substream); 2251 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 2252 goto _end; 2253 snd_pcm_stream_lock_irq(substream); 2254 switch (runtime->status->state) { 2255 case SNDRV_PCM_STATE_XRUN: 2256 err = -EPIPE; 2257 goto _end_unlock; 2258 case SNDRV_PCM_STATE_SUSPENDED: 2259 err = -ESTRPIPE; 2260 goto _end_unlock; 2261 default: 2262 break; 2263 } 2264 appl_ptr += frames; 2265 if (appl_ptr >= runtime->boundary) 2266 appl_ptr -= runtime->boundary; 2267 runtime->control->appl_ptr = appl_ptr; 2268 if (substream->ops->ack) 2269 substream->ops->ack(substream); 2270 2271 offset += frames; 2272 size -= frames; 2273 xfer += frames; 2274 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 2275 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 2276 err = snd_pcm_start(substream); 2277 if (err < 0) 2278 goto _end_unlock; 2279 } 2280 if (runtime->sleep_min && 2281 runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2282 snd_pcm_tick_prepare(substream); 2283 } 2284 _end_unlock: 2285 snd_pcm_stream_unlock_irq(substream); 2286 _end: 2287 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2288 } 2289 2290 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 2291 { 2292 struct snd_pcm_runtime *runtime; 2293 int nonblock; 2294 2295 snd_assert(substream != NULL, return -ENXIO); 2296 runtime = substream->runtime; 2297 snd_assert(runtime != NULL, return -ENXIO); 2298 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 2299 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2300 return -EBADFD; 2301 2302 snd_assert(substream->ffile != NULL, return -ENXIO); 2303 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); 2304 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) 2305 if (substream->oss.oss) { 2306 struct snd_pcm_oss_setup *setup = substream->oss.setup; 2307 if (setup != NULL) { 2308 if (setup->nonblock) 2309 nonblock = 1; 2310 else if (setup->block) 2311 nonblock = 0; 2312 } 2313 } 2314 #endif 2315 2316 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 2317 runtime->channels > 1) 2318 return -EINVAL; 2319 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 2320 snd_pcm_lib_write_transfer); 2321 } 2322 2323 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 2324 unsigned int hwoff, 2325 unsigned long data, unsigned int off, 2326 snd_pcm_uframes_t frames) 2327 { 2328 struct snd_pcm_runtime *runtime = substream->runtime; 2329 int err; 2330 void __user **bufs = (void __user **)data; 2331 int channels = runtime->channels; 2332 int c; 2333 if (substream->ops->copy) { 2334 snd_assert(substream->ops->silence != NULL, return -EINVAL); 2335 for (c = 0; c < channels; ++c, ++bufs) { 2336 if (*bufs == NULL) { 2337 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 2338 return err; 2339 } else { 2340 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2341 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2342 return err; 2343 } 2344 } 2345 } else { 2346 /* default transfer behaviour */ 2347 size_t dma_csize = runtime->dma_bytes / channels; 2348 snd_assert(runtime->dma_area, return -EFAULT); 2349 for (c = 0; c < channels; ++c, ++bufs) { 2350 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2351 if (*bufs == NULL) { 2352 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 2353 } else { 2354 char __user *buf = *bufs + samples_to_bytes(runtime, off); 2355 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 2356 return -EFAULT; 2357 } 2358 } 2359 } 2360 return 0; 2361 } 2362 2363 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 2364 void __user **bufs, 2365 snd_pcm_uframes_t frames) 2366 { 2367 struct snd_pcm_runtime *runtime; 2368 int nonblock; 2369 2370 snd_assert(substream != NULL, return -ENXIO); 2371 runtime = substream->runtime; 2372 snd_assert(runtime != NULL, return -ENXIO); 2373 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 2374 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2375 return -EBADFD; 2376 2377 snd_assert(substream->ffile != NULL, return -ENXIO); 2378 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); 2379 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) 2380 if (substream->oss.oss) { 2381 struct snd_pcm_oss_setup *setup = substream->oss.setup; 2382 if (setup != NULL) { 2383 if (setup->nonblock) 2384 nonblock = 1; 2385 else if (setup->block) 2386 nonblock = 0; 2387 } 2388 } 2389 #endif 2390 2391 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2392 return -EINVAL; 2393 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 2394 nonblock, snd_pcm_lib_writev_transfer); 2395 } 2396 2397 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 2398 unsigned int hwoff, 2399 unsigned long data, unsigned int off, 2400 snd_pcm_uframes_t frames) 2401 { 2402 struct snd_pcm_runtime *runtime = substream->runtime; 2403 int err; 2404 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 2405 if (substream->ops->copy) { 2406 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 2407 return err; 2408 } else { 2409 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 2410 snd_assert(runtime->dma_area, return -EFAULT); 2411 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 2412 return -EFAULT; 2413 } 2414 return 0; 2415 } 2416 2417 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 2418 unsigned long data, 2419 snd_pcm_uframes_t size, 2420 int nonblock, 2421 transfer_f transfer) 2422 { 2423 struct snd_pcm_runtime *runtime = substream->runtime; 2424 snd_pcm_uframes_t xfer = 0; 2425 snd_pcm_uframes_t offset = 0; 2426 int err = 0; 2427 2428 if (size == 0) 2429 return 0; 2430 if (size > runtime->xfer_align) 2431 size -= size % runtime->xfer_align; 2432 2433 snd_pcm_stream_lock_irq(substream); 2434 switch (runtime->status->state) { 2435 case SNDRV_PCM_STATE_PREPARED: 2436 if (size >= runtime->start_threshold) { 2437 err = snd_pcm_start(substream); 2438 if (err < 0) 2439 goto _end_unlock; 2440 } 2441 break; 2442 case SNDRV_PCM_STATE_DRAINING: 2443 case SNDRV_PCM_STATE_RUNNING: 2444 case SNDRV_PCM_STATE_PAUSED: 2445 break; 2446 case SNDRV_PCM_STATE_XRUN: 2447 err = -EPIPE; 2448 goto _end_unlock; 2449 case SNDRV_PCM_STATE_SUSPENDED: 2450 err = -ESTRPIPE; 2451 goto _end_unlock; 2452 default: 2453 err = -EBADFD; 2454 goto _end_unlock; 2455 } 2456 2457 while (size > 0) { 2458 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 2459 snd_pcm_uframes_t avail; 2460 snd_pcm_uframes_t cont; 2461 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2462 snd_pcm_update_hw_ptr(substream); 2463 __draining: 2464 avail = snd_pcm_capture_avail(runtime); 2465 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 2466 if (avail < runtime->xfer_align) { 2467 err = -EPIPE; 2468 goto _end_unlock; 2469 } 2470 } else if ((avail < runtime->control->avail_min && size > avail) || 2471 (size >= runtime->xfer_align && avail < runtime->xfer_align)) { 2472 wait_queue_t wait; 2473 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state; 2474 long tout; 2475 2476 if (nonblock) { 2477 err = -EAGAIN; 2478 goto _end_unlock; 2479 } 2480 2481 init_waitqueue_entry(&wait, current); 2482 add_wait_queue(&runtime->sleep, &wait); 2483 while (1) { 2484 if (signal_pending(current)) { 2485 state = SIGNALED; 2486 break; 2487 } 2488 set_current_state(TASK_INTERRUPTIBLE); 2489 snd_pcm_stream_unlock_irq(substream); 2490 tout = schedule_timeout(10 * HZ); 2491 snd_pcm_stream_lock_irq(substream); 2492 if (tout == 0) { 2493 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED && 2494 runtime->status->state != SNDRV_PCM_STATE_PAUSED) { 2495 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED; 2496 break; 2497 } 2498 } 2499 switch (runtime->status->state) { 2500 case SNDRV_PCM_STATE_XRUN: 2501 state = ERROR; 2502 goto _end_loop; 2503 case SNDRV_PCM_STATE_SUSPENDED: 2504 state = SUSPENDED; 2505 goto _end_loop; 2506 case SNDRV_PCM_STATE_DRAINING: 2507 goto __draining; 2508 case SNDRV_PCM_STATE_SETUP: 2509 state = DROPPED; 2510 goto _end_loop; 2511 default: 2512 break; 2513 } 2514 avail = snd_pcm_capture_avail(runtime); 2515 if (avail >= runtime->control->avail_min) { 2516 state = READY; 2517 break; 2518 } 2519 } 2520 _end_loop: 2521 remove_wait_queue(&runtime->sleep, &wait); 2522 2523 switch (state) { 2524 case ERROR: 2525 err = -EPIPE; 2526 goto _end_unlock; 2527 case SUSPENDED: 2528 err = -ESTRPIPE; 2529 goto _end_unlock; 2530 case SIGNALED: 2531 err = -ERESTARTSYS; 2532 goto _end_unlock; 2533 case EXPIRED: 2534 snd_printd("capture read error (DMA or IRQ trouble?)\n"); 2535 err = -EIO; 2536 goto _end_unlock; 2537 case DROPPED: 2538 err = -EBADFD; 2539 goto _end_unlock; 2540 default: 2541 break; 2542 } 2543 } 2544 if (avail > runtime->xfer_align) 2545 avail -= avail % runtime->xfer_align; 2546 frames = size > avail ? avail : size; 2547 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2548 if (frames > cont) 2549 frames = cont; 2550 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); 2551 appl_ptr = runtime->control->appl_ptr; 2552 appl_ofs = appl_ptr % runtime->buffer_size; 2553 snd_pcm_stream_unlock_irq(substream); 2554 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 2555 goto _end; 2556 snd_pcm_stream_lock_irq(substream); 2557 switch (runtime->status->state) { 2558 case SNDRV_PCM_STATE_XRUN: 2559 err = -EPIPE; 2560 goto _end_unlock; 2561 case SNDRV_PCM_STATE_SUSPENDED: 2562 err = -ESTRPIPE; 2563 goto _end_unlock; 2564 default: 2565 break; 2566 } 2567 appl_ptr += frames; 2568 if (appl_ptr >= runtime->boundary) 2569 appl_ptr -= runtime->boundary; 2570 runtime->control->appl_ptr = appl_ptr; 2571 if (substream->ops->ack) 2572 substream->ops->ack(substream); 2573 2574 offset += frames; 2575 size -= frames; 2576 xfer += frames; 2577 if (runtime->sleep_min && 2578 runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2579 snd_pcm_tick_prepare(substream); 2580 } 2581 _end_unlock: 2582 snd_pcm_stream_unlock_irq(substream); 2583 _end: 2584 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2585 } 2586 2587 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2588 { 2589 struct snd_pcm_runtime *runtime; 2590 int nonblock; 2591 2592 snd_assert(substream != NULL, return -ENXIO); 2593 runtime = substream->runtime; 2594 snd_assert(runtime != NULL, return -ENXIO); 2595 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 2596 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2597 return -EBADFD; 2598 2599 snd_assert(substream->ffile != NULL, return -ENXIO); 2600 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); 2601 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) 2602 if (substream->oss.oss) { 2603 struct snd_pcm_oss_setup *setup = substream->oss.setup; 2604 if (setup != NULL) { 2605 if (setup->nonblock) 2606 nonblock = 1; 2607 else if (setup->block) 2608 nonblock = 0; 2609 } 2610 } 2611 #endif 2612 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2613 return -EINVAL; 2614 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2615 } 2616 2617 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2618 unsigned int hwoff, 2619 unsigned long data, unsigned int off, 2620 snd_pcm_uframes_t frames) 2621 { 2622 struct snd_pcm_runtime *runtime = substream->runtime; 2623 int err; 2624 void __user **bufs = (void __user **)data; 2625 int channels = runtime->channels; 2626 int c; 2627 if (substream->ops->copy) { 2628 for (c = 0; c < channels; ++c, ++bufs) { 2629 char __user *buf; 2630 if (*bufs == NULL) 2631 continue; 2632 buf = *bufs + samples_to_bytes(runtime, off); 2633 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2634 return err; 2635 } 2636 } else { 2637 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2638 snd_assert(runtime->dma_area, return -EFAULT); 2639 for (c = 0; c < channels; ++c, ++bufs) { 2640 char *hwbuf; 2641 char __user *buf; 2642 if (*bufs == NULL) 2643 continue; 2644 2645 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2646 buf = *bufs + samples_to_bytes(runtime, off); 2647 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2648 return -EFAULT; 2649 } 2650 } 2651 return 0; 2652 } 2653 2654 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2655 void __user **bufs, 2656 snd_pcm_uframes_t frames) 2657 { 2658 struct snd_pcm_runtime *runtime; 2659 int nonblock; 2660 2661 snd_assert(substream != NULL, return -ENXIO); 2662 runtime = substream->runtime; 2663 snd_assert(runtime != NULL, return -ENXIO); 2664 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 2665 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2666 return -EBADFD; 2667 2668 snd_assert(substream->ffile != NULL, return -ENXIO); 2669 nonblock = !!(substream->ffile->f_flags & O_NONBLOCK); 2670 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) 2671 if (substream->oss.oss) { 2672 struct snd_pcm_oss_setup *setup = substream->oss.setup; 2673 if (setup != NULL) { 2674 if (setup->nonblock) 2675 nonblock = 1; 2676 else if (setup->block) 2677 nonblock = 0; 2678 } 2679 } 2680 #endif 2681 2682 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2683 return -EINVAL; 2684 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2685 } 2686 2687 /* 2688 * Exported symbols 2689 */ 2690 2691 EXPORT_SYMBOL(snd_interval_refine); 2692 EXPORT_SYMBOL(snd_interval_list); 2693 EXPORT_SYMBOL(snd_interval_ratnum); 2694 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 2695 EXPORT_SYMBOL(_snd_pcm_hw_param_min); 2696 EXPORT_SYMBOL(_snd_pcm_hw_param_set); 2697 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 2698 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger); 2699 EXPORT_SYMBOL(snd_pcm_hw_param_value_min); 2700 EXPORT_SYMBOL(snd_pcm_hw_param_value_max); 2701 EXPORT_SYMBOL(snd_pcm_hw_param_mask); 2702 EXPORT_SYMBOL(snd_pcm_hw_param_first); 2703 EXPORT_SYMBOL(snd_pcm_hw_param_last); 2704 EXPORT_SYMBOL(snd_pcm_hw_param_near); 2705 EXPORT_SYMBOL(snd_pcm_hw_param_set); 2706 EXPORT_SYMBOL(snd_pcm_hw_refine); 2707 EXPORT_SYMBOL(snd_pcm_hw_constraints_init); 2708 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete); 2709 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 2710 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 2711 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 2712 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 2713 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 2714 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 2715 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 2716 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 2717 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 2718 EXPORT_SYMBOL(snd_pcm_set_ops); 2719 EXPORT_SYMBOL(snd_pcm_set_sync); 2720 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 2721 EXPORT_SYMBOL(snd_pcm_stop); 2722 EXPORT_SYMBOL(snd_pcm_period_elapsed); 2723 EXPORT_SYMBOL(snd_pcm_lib_write); 2724 EXPORT_SYMBOL(snd_pcm_lib_read); 2725 EXPORT_SYMBOL(snd_pcm_lib_writev); 2726 EXPORT_SYMBOL(snd_pcm_lib_readv); 2727 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes); 2728 EXPORT_SYMBOL(snd_pcm_lib_period_bytes); 2729 /* pcm_memory.c */ 2730 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all); 2731 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages); 2732 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all); 2733 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page); 2734 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages); 2735 EXPORT_SYMBOL(snd_pcm_lib_free_pages); 2736