1 /* 2 * Digital Audio (PCM) abstract layer 3 * Copyright (c) by Jaroslav Kysela <perex@suse.cz> 4 * Abramo Bagnara <abramo@alsa-project.org> 5 * 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 20 * 21 */ 22 23 #include <sound/driver.h> 24 #include <linux/slab.h> 25 #include <linux/time.h> 26 #include <sound/core.h> 27 #include <sound/control.h> 28 #include <sound/info.h> 29 #include <sound/pcm.h> 30 #include <sound/pcm_params.h> 31 #include <sound/timer.h> 32 33 /* 34 * fill ring buffer with silence 35 * runtime->silence_start: starting pointer to silence area 36 * runtime->silence_filled: size filled with silence 37 * runtime->silence_threshold: threshold from application 38 * runtime->silence_size: maximal size from application 39 * 40 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately 41 */ 42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr) 43 { 44 struct snd_pcm_runtime *runtime = substream->runtime; 45 snd_pcm_uframes_t frames, ofs, transfer; 46 47 if (runtime->silence_size < runtime->boundary) { 48 snd_pcm_sframes_t noise_dist, n; 49 if (runtime->silence_start != runtime->control->appl_ptr) { 50 n = runtime->control->appl_ptr - runtime->silence_start; 51 if (n < 0) 52 n += runtime->boundary; 53 if ((snd_pcm_uframes_t)n < runtime->silence_filled) 54 runtime->silence_filled -= n; 55 else 56 runtime->silence_filled = 0; 57 runtime->silence_start = runtime->control->appl_ptr; 58 } 59 if (runtime->silence_filled >= runtime->buffer_size) 60 return; 61 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 62 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold) 63 return; 64 frames = runtime->silence_threshold - noise_dist; 65 if (frames > runtime->silence_size) 66 frames = runtime->silence_size; 67 } else { 68 if (new_hw_ptr == ULONG_MAX) { /* initialization */ 69 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime); 70 runtime->silence_filled = avail > 0 ? avail : 0; 71 runtime->silence_start = (runtime->status->hw_ptr + 72 runtime->silence_filled) % 73 runtime->boundary; 74 } else { 75 ofs = runtime->status->hw_ptr; 76 frames = new_hw_ptr - ofs; 77 if ((snd_pcm_sframes_t)frames < 0) 78 frames += runtime->boundary; 79 runtime->silence_filled -= frames; 80 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) { 81 runtime->silence_filled = 0; 82 runtime->silence_start = new_hw_ptr; 83 } else { 84 runtime->silence_start = ofs; 85 } 86 } 87 frames = runtime->buffer_size - runtime->silence_filled; 88 } 89 snd_assert(frames <= runtime->buffer_size, return); 90 if (frames == 0) 91 return; 92 ofs = runtime->silence_start % runtime->buffer_size; 93 while (frames > 0) { 94 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames; 95 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED || 96 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) { 97 if (substream->ops->silence) { 98 int err; 99 err = substream->ops->silence(substream, -1, ofs, transfer); 100 snd_assert(err >= 0, ); 101 } else { 102 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs); 103 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels); 104 } 105 } else { 106 unsigned int c; 107 unsigned int channels = runtime->channels; 108 if (substream->ops->silence) { 109 for (c = 0; c < channels; ++c) { 110 int err; 111 err = substream->ops->silence(substream, c, ofs, transfer); 112 snd_assert(err >= 0, ); 113 } 114 } else { 115 size_t dma_csize = runtime->dma_bytes / channels; 116 for (c = 0; c < channels; ++c) { 117 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs); 118 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer); 119 } 120 } 121 } 122 runtime->silence_filled += transfer; 123 frames -= transfer; 124 ofs = 0; 125 } 126 } 127 128 static void xrun(struct snd_pcm_substream *substream) 129 { 130 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN); 131 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 132 if (substream->pstr->xrun_debug) { 133 snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n", 134 substream->pcm->card->number, 135 substream->pcm->device, 136 substream->stream ? 'c' : 'p'); 137 if (substream->pstr->xrun_debug > 1) 138 dump_stack(); 139 } 140 #endif 141 } 142 143 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream, 144 struct snd_pcm_runtime *runtime) 145 { 146 snd_pcm_uframes_t pos; 147 148 pos = substream->ops->pointer(substream); 149 if (pos == SNDRV_PCM_POS_XRUN) 150 return pos; /* XRUN */ 151 if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP) 152 getnstimeofday((struct timespec *)&runtime->status->tstamp); 153 #ifdef CONFIG_SND_DEBUG 154 if (pos >= runtime->buffer_size) { 155 snd_printk(KERN_ERR "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size); 156 } 157 #endif 158 pos -= pos % runtime->min_align; 159 return pos; 160 } 161 162 static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream, 163 struct snd_pcm_runtime *runtime) 164 { 165 snd_pcm_uframes_t avail; 166 167 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 168 avail = snd_pcm_playback_avail(runtime); 169 else 170 avail = snd_pcm_capture_avail(runtime); 171 if (avail > runtime->avail_max) 172 runtime->avail_max = avail; 173 if (avail >= runtime->stop_threshold) { 174 if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING) 175 snd_pcm_drain_done(substream); 176 else 177 xrun(substream); 178 return -EPIPE; 179 } 180 if (avail >= runtime->control->avail_min) 181 wake_up(&runtime->sleep); 182 return 0; 183 } 184 185 static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream) 186 { 187 struct snd_pcm_runtime *runtime = substream->runtime; 188 snd_pcm_uframes_t pos; 189 snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt; 190 snd_pcm_sframes_t delta; 191 192 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 193 if (pos == SNDRV_PCM_POS_XRUN) { 194 xrun(substream); 195 return -EPIPE; 196 } 197 if (runtime->period_size == runtime->buffer_size) 198 goto __next_buf; 199 new_hw_ptr = runtime->hw_ptr_base + pos; 200 hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size; 201 202 delta = hw_ptr_interrupt - new_hw_ptr; 203 if (delta > 0) { 204 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { 205 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 206 if (runtime->periods > 1 && substream->pstr->xrun_debug) { 207 snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); 208 if (substream->pstr->xrun_debug > 1) 209 dump_stack(); 210 } 211 #endif 212 return 0; 213 } 214 __next_buf: 215 runtime->hw_ptr_base += runtime->buffer_size; 216 if (runtime->hw_ptr_base == runtime->boundary) 217 runtime->hw_ptr_base = 0; 218 new_hw_ptr = runtime->hw_ptr_base + pos; 219 } 220 221 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 222 runtime->silence_size > 0) 223 snd_pcm_playback_silence(substream, new_hw_ptr); 224 225 runtime->status->hw_ptr = new_hw_ptr; 226 runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size; 227 228 return snd_pcm_update_hw_ptr_post(substream, runtime); 229 } 230 231 /* CAUTION: call it with irq disabled */ 232 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream) 233 { 234 struct snd_pcm_runtime *runtime = substream->runtime; 235 snd_pcm_uframes_t pos; 236 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr; 237 snd_pcm_sframes_t delta; 238 239 old_hw_ptr = runtime->status->hw_ptr; 240 pos = snd_pcm_update_hw_ptr_pos(substream, runtime); 241 if (pos == SNDRV_PCM_POS_XRUN) { 242 xrun(substream); 243 return -EPIPE; 244 } 245 new_hw_ptr = runtime->hw_ptr_base + pos; 246 247 delta = old_hw_ptr - new_hw_ptr; 248 if (delta > 0) { 249 if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) { 250 #ifdef CONFIG_SND_PCM_XRUN_DEBUG 251 if (runtime->periods > 2 && substream->pstr->xrun_debug) { 252 snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2); 253 if (substream->pstr->xrun_debug > 1) 254 dump_stack(); 255 } 256 #endif 257 return 0; 258 } 259 runtime->hw_ptr_base += runtime->buffer_size; 260 if (runtime->hw_ptr_base == runtime->boundary) 261 runtime->hw_ptr_base = 0; 262 new_hw_ptr = runtime->hw_ptr_base + pos; 263 } 264 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 265 runtime->silence_size > 0) 266 snd_pcm_playback_silence(substream, new_hw_ptr); 267 268 runtime->status->hw_ptr = new_hw_ptr; 269 270 return snd_pcm_update_hw_ptr_post(substream, runtime); 271 } 272 273 /** 274 * snd_pcm_set_ops - set the PCM operators 275 * @pcm: the pcm instance 276 * @direction: stream direction, SNDRV_PCM_STREAM_XXX 277 * @ops: the operator table 278 * 279 * Sets the given PCM operators to the pcm instance. 280 */ 281 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops) 282 { 283 struct snd_pcm_str *stream = &pcm->streams[direction]; 284 struct snd_pcm_substream *substream; 285 286 for (substream = stream->substream; substream != NULL; substream = substream->next) 287 substream->ops = ops; 288 } 289 290 EXPORT_SYMBOL(snd_pcm_set_ops); 291 292 /** 293 * snd_pcm_sync - set the PCM sync id 294 * @substream: the pcm substream 295 * 296 * Sets the PCM sync identifier for the card. 297 */ 298 void snd_pcm_set_sync(struct snd_pcm_substream *substream) 299 { 300 struct snd_pcm_runtime *runtime = substream->runtime; 301 302 runtime->sync.id32[0] = substream->pcm->card->number; 303 runtime->sync.id32[1] = -1; 304 runtime->sync.id32[2] = -1; 305 runtime->sync.id32[3] = -1; 306 } 307 308 EXPORT_SYMBOL(snd_pcm_set_sync); 309 310 /* 311 * Standard ioctl routine 312 */ 313 314 static inline unsigned int div32(unsigned int a, unsigned int b, 315 unsigned int *r) 316 { 317 if (b == 0) { 318 *r = 0; 319 return UINT_MAX; 320 } 321 *r = a % b; 322 return a / b; 323 } 324 325 static inline unsigned int div_down(unsigned int a, unsigned int b) 326 { 327 if (b == 0) 328 return UINT_MAX; 329 return a / b; 330 } 331 332 static inline unsigned int div_up(unsigned int a, unsigned int b) 333 { 334 unsigned int r; 335 unsigned int q; 336 if (b == 0) 337 return UINT_MAX; 338 q = div32(a, b, &r); 339 if (r) 340 ++q; 341 return q; 342 } 343 344 static inline unsigned int mul(unsigned int a, unsigned int b) 345 { 346 if (a == 0) 347 return 0; 348 if (div_down(UINT_MAX, a) < b) 349 return UINT_MAX; 350 return a * b; 351 } 352 353 static inline unsigned int muldiv32(unsigned int a, unsigned int b, 354 unsigned int c, unsigned int *r) 355 { 356 u_int64_t n = (u_int64_t) a * b; 357 if (c == 0) { 358 snd_assert(n > 0, ); 359 *r = 0; 360 return UINT_MAX; 361 } 362 div64_32(&n, c, r); 363 if (n >= UINT_MAX) { 364 *r = 0; 365 return UINT_MAX; 366 } 367 return n; 368 } 369 370 /** 371 * snd_interval_refine - refine the interval value of configurator 372 * @i: the interval value to refine 373 * @v: the interval value to refer to 374 * 375 * Refines the interval value with the reference value. 376 * The interval is changed to the range satisfying both intervals. 377 * The interval status (min, max, integer, etc.) are evaluated. 378 * 379 * Returns non-zero if the value is changed, zero if not changed. 380 */ 381 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v) 382 { 383 int changed = 0; 384 snd_assert(!snd_interval_empty(i), return -EINVAL); 385 if (i->min < v->min) { 386 i->min = v->min; 387 i->openmin = v->openmin; 388 changed = 1; 389 } else if (i->min == v->min && !i->openmin && v->openmin) { 390 i->openmin = 1; 391 changed = 1; 392 } 393 if (i->max > v->max) { 394 i->max = v->max; 395 i->openmax = v->openmax; 396 changed = 1; 397 } else if (i->max == v->max && !i->openmax && v->openmax) { 398 i->openmax = 1; 399 changed = 1; 400 } 401 if (!i->integer && v->integer) { 402 i->integer = 1; 403 changed = 1; 404 } 405 if (i->integer) { 406 if (i->openmin) { 407 i->min++; 408 i->openmin = 0; 409 } 410 if (i->openmax) { 411 i->max--; 412 i->openmax = 0; 413 } 414 } else if (!i->openmin && !i->openmax && i->min == i->max) 415 i->integer = 1; 416 if (snd_interval_checkempty(i)) { 417 snd_interval_none(i); 418 return -EINVAL; 419 } 420 return changed; 421 } 422 423 EXPORT_SYMBOL(snd_interval_refine); 424 425 static int snd_interval_refine_first(struct snd_interval *i) 426 { 427 snd_assert(!snd_interval_empty(i), return -EINVAL); 428 if (snd_interval_single(i)) 429 return 0; 430 i->max = i->min; 431 i->openmax = i->openmin; 432 if (i->openmax) 433 i->max++; 434 return 1; 435 } 436 437 static int snd_interval_refine_last(struct snd_interval *i) 438 { 439 snd_assert(!snd_interval_empty(i), return -EINVAL); 440 if (snd_interval_single(i)) 441 return 0; 442 i->min = i->max; 443 i->openmin = i->openmax; 444 if (i->openmin) 445 i->min--; 446 return 1; 447 } 448 449 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 450 { 451 if (a->empty || b->empty) { 452 snd_interval_none(c); 453 return; 454 } 455 c->empty = 0; 456 c->min = mul(a->min, b->min); 457 c->openmin = (a->openmin || b->openmin); 458 c->max = mul(a->max, b->max); 459 c->openmax = (a->openmax || b->openmax); 460 c->integer = (a->integer && b->integer); 461 } 462 463 /** 464 * snd_interval_div - refine the interval value with division 465 * @a: dividend 466 * @b: divisor 467 * @c: quotient 468 * 469 * c = a / b 470 * 471 * Returns non-zero if the value is changed, zero if not changed. 472 */ 473 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c) 474 { 475 unsigned int r; 476 if (a->empty || b->empty) { 477 snd_interval_none(c); 478 return; 479 } 480 c->empty = 0; 481 c->min = div32(a->min, b->max, &r); 482 c->openmin = (r || a->openmin || b->openmax); 483 if (b->min > 0) { 484 c->max = div32(a->max, b->min, &r); 485 if (r) { 486 c->max++; 487 c->openmax = 1; 488 } else 489 c->openmax = (a->openmax || b->openmin); 490 } else { 491 c->max = UINT_MAX; 492 c->openmax = 0; 493 } 494 c->integer = 0; 495 } 496 497 /** 498 * snd_interval_muldivk - refine the interval value 499 * @a: dividend 1 500 * @b: dividend 2 501 * @k: divisor (as integer) 502 * @c: result 503 * 504 * c = a * b / k 505 * 506 * Returns non-zero if the value is changed, zero if not changed. 507 */ 508 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b, 509 unsigned int k, struct snd_interval *c) 510 { 511 unsigned int r; 512 if (a->empty || b->empty) { 513 snd_interval_none(c); 514 return; 515 } 516 c->empty = 0; 517 c->min = muldiv32(a->min, b->min, k, &r); 518 c->openmin = (r || a->openmin || b->openmin); 519 c->max = muldiv32(a->max, b->max, k, &r); 520 if (r) { 521 c->max++; 522 c->openmax = 1; 523 } else 524 c->openmax = (a->openmax || b->openmax); 525 c->integer = 0; 526 } 527 528 /** 529 * snd_interval_mulkdiv - refine the interval value 530 * @a: dividend 1 531 * @k: dividend 2 (as integer) 532 * @b: divisor 533 * @c: result 534 * 535 * c = a * k / b 536 * 537 * Returns non-zero if the value is changed, zero if not changed. 538 */ 539 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k, 540 const struct snd_interval *b, struct snd_interval *c) 541 { 542 unsigned int r; 543 if (a->empty || b->empty) { 544 snd_interval_none(c); 545 return; 546 } 547 c->empty = 0; 548 c->min = muldiv32(a->min, k, b->max, &r); 549 c->openmin = (r || a->openmin || b->openmax); 550 if (b->min > 0) { 551 c->max = muldiv32(a->max, k, b->min, &r); 552 if (r) { 553 c->max++; 554 c->openmax = 1; 555 } else 556 c->openmax = (a->openmax || b->openmin); 557 } else { 558 c->max = UINT_MAX; 559 c->openmax = 0; 560 } 561 c->integer = 0; 562 } 563 564 /* ---- */ 565 566 567 /** 568 * snd_interval_ratnum - refine the interval value 569 * @i: interval to refine 570 * @rats_count: number of ratnum_t 571 * @rats: ratnum_t array 572 * @nump: pointer to store the resultant numerator 573 * @denp: pointer to store the resultant denominator 574 * 575 * Returns non-zero if the value is changed, zero if not changed. 576 */ 577 int snd_interval_ratnum(struct snd_interval *i, 578 unsigned int rats_count, struct snd_ratnum *rats, 579 unsigned int *nump, unsigned int *denp) 580 { 581 unsigned int best_num, best_diff, best_den; 582 unsigned int k; 583 struct snd_interval t; 584 int err; 585 586 best_num = best_den = best_diff = 0; 587 for (k = 0; k < rats_count; ++k) { 588 unsigned int num = rats[k].num; 589 unsigned int den; 590 unsigned int q = i->min; 591 int diff; 592 if (q == 0) 593 q = 1; 594 den = div_down(num, q); 595 if (den < rats[k].den_min) 596 continue; 597 if (den > rats[k].den_max) 598 den = rats[k].den_max; 599 else { 600 unsigned int r; 601 r = (den - rats[k].den_min) % rats[k].den_step; 602 if (r != 0) 603 den -= r; 604 } 605 diff = num - q * den; 606 if (best_num == 0 || 607 diff * best_den < best_diff * den) { 608 best_diff = diff; 609 best_den = den; 610 best_num = num; 611 } 612 } 613 if (best_den == 0) { 614 i->empty = 1; 615 return -EINVAL; 616 } 617 t.min = div_down(best_num, best_den); 618 t.openmin = !!(best_num % best_den); 619 620 best_num = best_den = best_diff = 0; 621 for (k = 0; k < rats_count; ++k) { 622 unsigned int num = rats[k].num; 623 unsigned int den; 624 unsigned int q = i->max; 625 int diff; 626 if (q == 0) { 627 i->empty = 1; 628 return -EINVAL; 629 } 630 den = div_up(num, q); 631 if (den > rats[k].den_max) 632 continue; 633 if (den < rats[k].den_min) 634 den = rats[k].den_min; 635 else { 636 unsigned int r; 637 r = (den - rats[k].den_min) % rats[k].den_step; 638 if (r != 0) 639 den += rats[k].den_step - r; 640 } 641 diff = q * den - num; 642 if (best_num == 0 || 643 diff * best_den < best_diff * den) { 644 best_diff = diff; 645 best_den = den; 646 best_num = num; 647 } 648 } 649 if (best_den == 0) { 650 i->empty = 1; 651 return -EINVAL; 652 } 653 t.max = div_up(best_num, best_den); 654 t.openmax = !!(best_num % best_den); 655 t.integer = 0; 656 err = snd_interval_refine(i, &t); 657 if (err < 0) 658 return err; 659 660 if (snd_interval_single(i)) { 661 if (nump) 662 *nump = best_num; 663 if (denp) 664 *denp = best_den; 665 } 666 return err; 667 } 668 669 EXPORT_SYMBOL(snd_interval_ratnum); 670 671 /** 672 * snd_interval_ratden - refine the interval value 673 * @i: interval to refine 674 * @rats_count: number of struct ratden 675 * @rats: struct ratden array 676 * @nump: pointer to store the resultant numerator 677 * @denp: pointer to store the resultant denominator 678 * 679 * Returns non-zero if the value is changed, zero if not changed. 680 */ 681 static int snd_interval_ratden(struct snd_interval *i, 682 unsigned int rats_count, struct snd_ratden *rats, 683 unsigned int *nump, unsigned int *denp) 684 { 685 unsigned int best_num, best_diff, best_den; 686 unsigned int k; 687 struct snd_interval t; 688 int err; 689 690 best_num = best_den = best_diff = 0; 691 for (k = 0; k < rats_count; ++k) { 692 unsigned int num; 693 unsigned int den = rats[k].den; 694 unsigned int q = i->min; 695 int diff; 696 num = mul(q, den); 697 if (num > rats[k].num_max) 698 continue; 699 if (num < rats[k].num_min) 700 num = rats[k].num_max; 701 else { 702 unsigned int r; 703 r = (num - rats[k].num_min) % rats[k].num_step; 704 if (r != 0) 705 num += rats[k].num_step - r; 706 } 707 diff = num - q * den; 708 if (best_num == 0 || 709 diff * best_den < best_diff * den) { 710 best_diff = diff; 711 best_den = den; 712 best_num = num; 713 } 714 } 715 if (best_den == 0) { 716 i->empty = 1; 717 return -EINVAL; 718 } 719 t.min = div_down(best_num, best_den); 720 t.openmin = !!(best_num % best_den); 721 722 best_num = best_den = best_diff = 0; 723 for (k = 0; k < rats_count; ++k) { 724 unsigned int num; 725 unsigned int den = rats[k].den; 726 unsigned int q = i->max; 727 int diff; 728 num = mul(q, den); 729 if (num < rats[k].num_min) 730 continue; 731 if (num > rats[k].num_max) 732 num = rats[k].num_max; 733 else { 734 unsigned int r; 735 r = (num - rats[k].num_min) % rats[k].num_step; 736 if (r != 0) 737 num -= r; 738 } 739 diff = q * den - num; 740 if (best_num == 0 || 741 diff * best_den < best_diff * den) { 742 best_diff = diff; 743 best_den = den; 744 best_num = num; 745 } 746 } 747 if (best_den == 0) { 748 i->empty = 1; 749 return -EINVAL; 750 } 751 t.max = div_up(best_num, best_den); 752 t.openmax = !!(best_num % best_den); 753 t.integer = 0; 754 err = snd_interval_refine(i, &t); 755 if (err < 0) 756 return err; 757 758 if (snd_interval_single(i)) { 759 if (nump) 760 *nump = best_num; 761 if (denp) 762 *denp = best_den; 763 } 764 return err; 765 } 766 767 /** 768 * snd_interval_list - refine the interval value from the list 769 * @i: the interval value to refine 770 * @count: the number of elements in the list 771 * @list: the value list 772 * @mask: the bit-mask to evaluate 773 * 774 * Refines the interval value from the list. 775 * When mask is non-zero, only the elements corresponding to bit 1 are 776 * evaluated. 777 * 778 * Returns non-zero if the value is changed, zero if not changed. 779 */ 780 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask) 781 { 782 unsigned int k; 783 int changed = 0; 784 for (k = 0; k < count; k++) { 785 if (mask && !(mask & (1 << k))) 786 continue; 787 if (i->min == list[k] && !i->openmin) 788 goto _l1; 789 if (i->min < list[k]) { 790 i->min = list[k]; 791 i->openmin = 0; 792 changed = 1; 793 goto _l1; 794 } 795 } 796 i->empty = 1; 797 return -EINVAL; 798 _l1: 799 for (k = count; k-- > 0;) { 800 if (mask && !(mask & (1 << k))) 801 continue; 802 if (i->max == list[k] && !i->openmax) 803 goto _l2; 804 if (i->max > list[k]) { 805 i->max = list[k]; 806 i->openmax = 0; 807 changed = 1; 808 goto _l2; 809 } 810 } 811 i->empty = 1; 812 return -EINVAL; 813 _l2: 814 if (snd_interval_checkempty(i)) { 815 i->empty = 1; 816 return -EINVAL; 817 } 818 return changed; 819 } 820 821 EXPORT_SYMBOL(snd_interval_list); 822 823 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step) 824 { 825 unsigned int n; 826 int changed = 0; 827 n = (i->min - min) % step; 828 if (n != 0 || i->openmin) { 829 i->min += step - n; 830 changed = 1; 831 } 832 n = (i->max - min) % step; 833 if (n != 0 || i->openmax) { 834 i->max -= n; 835 changed = 1; 836 } 837 if (snd_interval_checkempty(i)) { 838 i->empty = 1; 839 return -EINVAL; 840 } 841 return changed; 842 } 843 844 /* Info constraints helpers */ 845 846 /** 847 * snd_pcm_hw_rule_add - add the hw-constraint rule 848 * @runtime: the pcm runtime instance 849 * @cond: condition bits 850 * @var: the variable to evaluate 851 * @func: the evaluation function 852 * @private: the private data pointer passed to function 853 * @dep: the dependent variables 854 * 855 * Returns zero if successful, or a negative error code on failure. 856 */ 857 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond, 858 int var, 859 snd_pcm_hw_rule_func_t func, void *private, 860 int dep, ...) 861 { 862 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 863 struct snd_pcm_hw_rule *c; 864 unsigned int k; 865 va_list args; 866 va_start(args, dep); 867 if (constrs->rules_num >= constrs->rules_all) { 868 struct snd_pcm_hw_rule *new; 869 unsigned int new_rules = constrs->rules_all + 16; 870 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL); 871 if (!new) 872 return -ENOMEM; 873 if (constrs->rules) { 874 memcpy(new, constrs->rules, 875 constrs->rules_num * sizeof(*c)); 876 kfree(constrs->rules); 877 } 878 constrs->rules = new; 879 constrs->rules_all = new_rules; 880 } 881 c = &constrs->rules[constrs->rules_num]; 882 c->cond = cond; 883 c->func = func; 884 c->var = var; 885 c->private = private; 886 k = 0; 887 while (1) { 888 snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL); 889 c->deps[k++] = dep; 890 if (dep < 0) 891 break; 892 dep = va_arg(args, int); 893 } 894 constrs->rules_num++; 895 va_end(args); 896 return 0; 897 } 898 899 EXPORT_SYMBOL(snd_pcm_hw_rule_add); 900 901 /** 902 * snd_pcm_hw_constraint_mask 903 * @runtime: PCM runtime instance 904 * @var: hw_params variable to apply the mask 905 * @mask: the bitmap mask 906 * 907 * Apply the constraint of the given bitmap mask to a mask parameter. 908 */ 909 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 910 u_int32_t mask) 911 { 912 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 913 struct snd_mask *maskp = constrs_mask(constrs, var); 914 *maskp->bits &= mask; 915 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */ 916 if (*maskp->bits == 0) 917 return -EINVAL; 918 return 0; 919 } 920 921 /** 922 * snd_pcm_hw_constraint_mask64 923 * @runtime: PCM runtime instance 924 * @var: hw_params variable to apply the mask 925 * @mask: the 64bit bitmap mask 926 * 927 * Apply the constraint of the given bitmap mask to a mask parameter. 928 */ 929 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 930 u_int64_t mask) 931 { 932 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 933 struct snd_mask *maskp = constrs_mask(constrs, var); 934 maskp->bits[0] &= (u_int32_t)mask; 935 maskp->bits[1] &= (u_int32_t)(mask >> 32); 936 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */ 937 if (! maskp->bits[0] && ! maskp->bits[1]) 938 return -EINVAL; 939 return 0; 940 } 941 942 /** 943 * snd_pcm_hw_constraint_integer 944 * @runtime: PCM runtime instance 945 * @var: hw_params variable to apply the integer constraint 946 * 947 * Apply the constraint of integer to an interval parameter. 948 */ 949 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var) 950 { 951 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 952 return snd_interval_setinteger(constrs_interval(constrs, var)); 953 } 954 955 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer); 956 957 /** 958 * snd_pcm_hw_constraint_minmax 959 * @runtime: PCM runtime instance 960 * @var: hw_params variable to apply the range 961 * @min: the minimal value 962 * @max: the maximal value 963 * 964 * Apply the min/max range constraint to an interval parameter. 965 */ 966 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var, 967 unsigned int min, unsigned int max) 968 { 969 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints; 970 struct snd_interval t; 971 t.min = min; 972 t.max = max; 973 t.openmin = t.openmax = 0; 974 t.integer = 0; 975 return snd_interval_refine(constrs_interval(constrs, var), &t); 976 } 977 978 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax); 979 980 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params, 981 struct snd_pcm_hw_rule *rule) 982 { 983 struct snd_pcm_hw_constraint_list *list = rule->private; 984 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask); 985 } 986 987 988 /** 989 * snd_pcm_hw_constraint_list 990 * @runtime: PCM runtime instance 991 * @cond: condition bits 992 * @var: hw_params variable to apply the list constraint 993 * @l: list 994 * 995 * Apply the list of constraints to an interval parameter. 996 */ 997 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime, 998 unsigned int cond, 999 snd_pcm_hw_param_t var, 1000 struct snd_pcm_hw_constraint_list *l) 1001 { 1002 return snd_pcm_hw_rule_add(runtime, cond, var, 1003 snd_pcm_hw_rule_list, l, 1004 var, -1); 1005 } 1006 1007 EXPORT_SYMBOL(snd_pcm_hw_constraint_list); 1008 1009 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params, 1010 struct snd_pcm_hw_rule *rule) 1011 { 1012 struct snd_pcm_hw_constraint_ratnums *r = rule->private; 1013 unsigned int num = 0, den = 0; 1014 int err; 1015 err = snd_interval_ratnum(hw_param_interval(params, rule->var), 1016 r->nrats, r->rats, &num, &den); 1017 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1018 params->rate_num = num; 1019 params->rate_den = den; 1020 } 1021 return err; 1022 } 1023 1024 /** 1025 * snd_pcm_hw_constraint_ratnums 1026 * @runtime: PCM runtime instance 1027 * @cond: condition bits 1028 * @var: hw_params variable to apply the ratnums constraint 1029 * @r: struct snd_ratnums constriants 1030 */ 1031 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 1032 unsigned int cond, 1033 snd_pcm_hw_param_t var, 1034 struct snd_pcm_hw_constraint_ratnums *r) 1035 { 1036 return snd_pcm_hw_rule_add(runtime, cond, var, 1037 snd_pcm_hw_rule_ratnums, r, 1038 var, -1); 1039 } 1040 1041 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums); 1042 1043 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params, 1044 struct snd_pcm_hw_rule *rule) 1045 { 1046 struct snd_pcm_hw_constraint_ratdens *r = rule->private; 1047 unsigned int num = 0, den = 0; 1048 int err = snd_interval_ratden(hw_param_interval(params, rule->var), 1049 r->nrats, r->rats, &num, &den); 1050 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) { 1051 params->rate_num = num; 1052 params->rate_den = den; 1053 } 1054 return err; 1055 } 1056 1057 /** 1058 * snd_pcm_hw_constraint_ratdens 1059 * @runtime: PCM runtime instance 1060 * @cond: condition bits 1061 * @var: hw_params variable to apply the ratdens constraint 1062 * @r: struct snd_ratdens constriants 1063 */ 1064 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 1065 unsigned int cond, 1066 snd_pcm_hw_param_t var, 1067 struct snd_pcm_hw_constraint_ratdens *r) 1068 { 1069 return snd_pcm_hw_rule_add(runtime, cond, var, 1070 snd_pcm_hw_rule_ratdens, r, 1071 var, -1); 1072 } 1073 1074 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens); 1075 1076 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params, 1077 struct snd_pcm_hw_rule *rule) 1078 { 1079 unsigned int l = (unsigned long) rule->private; 1080 int width = l & 0xffff; 1081 unsigned int msbits = l >> 16; 1082 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS); 1083 if (snd_interval_single(i) && snd_interval_value(i) == width) 1084 params->msbits = msbits; 1085 return 0; 1086 } 1087 1088 /** 1089 * snd_pcm_hw_constraint_msbits 1090 * @runtime: PCM runtime instance 1091 * @cond: condition bits 1092 * @width: sample bits width 1093 * @msbits: msbits width 1094 */ 1095 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 1096 unsigned int cond, 1097 unsigned int width, 1098 unsigned int msbits) 1099 { 1100 unsigned long l = (msbits << 16) | width; 1101 return snd_pcm_hw_rule_add(runtime, cond, -1, 1102 snd_pcm_hw_rule_msbits, 1103 (void*) l, 1104 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1); 1105 } 1106 1107 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits); 1108 1109 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params, 1110 struct snd_pcm_hw_rule *rule) 1111 { 1112 unsigned long step = (unsigned long) rule->private; 1113 return snd_interval_step(hw_param_interval(params, rule->var), 0, step); 1114 } 1115 1116 /** 1117 * snd_pcm_hw_constraint_step 1118 * @runtime: PCM runtime instance 1119 * @cond: condition bits 1120 * @var: hw_params variable to apply the step constraint 1121 * @step: step size 1122 */ 1123 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime, 1124 unsigned int cond, 1125 snd_pcm_hw_param_t var, 1126 unsigned long step) 1127 { 1128 return snd_pcm_hw_rule_add(runtime, cond, var, 1129 snd_pcm_hw_rule_step, (void *) step, 1130 var, -1); 1131 } 1132 1133 EXPORT_SYMBOL(snd_pcm_hw_constraint_step); 1134 1135 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) 1136 { 1137 static int pow2_sizes[] = { 1138 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7, 1139 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15, 1140 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23, 1141 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30 1142 }; 1143 return snd_interval_list(hw_param_interval(params, rule->var), 1144 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0); 1145 } 1146 1147 /** 1148 * snd_pcm_hw_constraint_pow2 1149 * @runtime: PCM runtime instance 1150 * @cond: condition bits 1151 * @var: hw_params variable to apply the power-of-2 constraint 1152 */ 1153 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime, 1154 unsigned int cond, 1155 snd_pcm_hw_param_t var) 1156 { 1157 return snd_pcm_hw_rule_add(runtime, cond, var, 1158 snd_pcm_hw_rule_pow2, NULL, 1159 var, -1); 1160 } 1161 1162 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2); 1163 1164 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params, 1165 snd_pcm_hw_param_t var) 1166 { 1167 if (hw_is_mask(var)) { 1168 snd_mask_any(hw_param_mask(params, var)); 1169 params->cmask |= 1 << var; 1170 params->rmask |= 1 << var; 1171 return; 1172 } 1173 if (hw_is_interval(var)) { 1174 snd_interval_any(hw_param_interval(params, var)); 1175 params->cmask |= 1 << var; 1176 params->rmask |= 1 << var; 1177 return; 1178 } 1179 snd_BUG(); 1180 } 1181 1182 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params) 1183 { 1184 unsigned int k; 1185 memset(params, 0, sizeof(*params)); 1186 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++) 1187 _snd_pcm_hw_param_any(params, k); 1188 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++) 1189 _snd_pcm_hw_param_any(params, k); 1190 params->info = ~0U; 1191 } 1192 1193 EXPORT_SYMBOL(_snd_pcm_hw_params_any); 1194 1195 /** 1196 * snd_pcm_hw_param_value 1197 * @params: the hw_params instance 1198 * @var: parameter to retrieve 1199 * @dir: pointer to the direction (-1,0,1) or NULL 1200 * 1201 * Return the value for field PAR if it's fixed in configuration space 1202 * defined by PARAMS. Return -EINVAL otherwise 1203 */ 1204 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params, 1205 snd_pcm_hw_param_t var, int *dir) 1206 { 1207 if (hw_is_mask(var)) { 1208 const struct snd_mask *mask = hw_param_mask_c(params, var); 1209 if (!snd_mask_single(mask)) 1210 return -EINVAL; 1211 if (dir) 1212 *dir = 0; 1213 return snd_mask_value(mask); 1214 } 1215 if (hw_is_interval(var)) { 1216 const struct snd_interval *i = hw_param_interval_c(params, var); 1217 if (!snd_interval_single(i)) 1218 return -EINVAL; 1219 if (dir) 1220 *dir = i->openmin; 1221 return snd_interval_value(i); 1222 } 1223 return -EINVAL; 1224 } 1225 1226 EXPORT_SYMBOL(snd_pcm_hw_param_value); 1227 1228 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, 1229 snd_pcm_hw_param_t var) 1230 { 1231 if (hw_is_mask(var)) { 1232 snd_mask_none(hw_param_mask(params, var)); 1233 params->cmask |= 1 << var; 1234 params->rmask |= 1 << var; 1235 } else if (hw_is_interval(var)) { 1236 snd_interval_none(hw_param_interval(params, var)); 1237 params->cmask |= 1 << var; 1238 params->rmask |= 1 << var; 1239 } else { 1240 snd_BUG(); 1241 } 1242 } 1243 1244 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty); 1245 1246 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params, 1247 snd_pcm_hw_param_t var) 1248 { 1249 int changed; 1250 if (hw_is_mask(var)) 1251 changed = snd_mask_refine_first(hw_param_mask(params, var)); 1252 else if (hw_is_interval(var)) 1253 changed = snd_interval_refine_first(hw_param_interval(params, var)); 1254 else 1255 return -EINVAL; 1256 if (changed) { 1257 params->cmask |= 1 << var; 1258 params->rmask |= 1 << var; 1259 } 1260 return changed; 1261 } 1262 1263 1264 /** 1265 * snd_pcm_hw_param_first 1266 * @pcm: PCM instance 1267 * @params: the hw_params instance 1268 * @var: parameter to retrieve 1269 * @dir: pointer to the direction (-1,0,1) or NULL 1270 * 1271 * Inside configuration space defined by PARAMS remove from PAR all 1272 * values > minimum. Reduce configuration space accordingly. 1273 * Return the minimum. 1274 */ 1275 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 1276 struct snd_pcm_hw_params *params, 1277 snd_pcm_hw_param_t var, int *dir) 1278 { 1279 int changed = _snd_pcm_hw_param_first(params, var); 1280 if (changed < 0) 1281 return changed; 1282 if (params->rmask) { 1283 int err = snd_pcm_hw_refine(pcm, params); 1284 snd_assert(err >= 0, return err); 1285 } 1286 return snd_pcm_hw_param_value(params, var, dir); 1287 } 1288 1289 EXPORT_SYMBOL(snd_pcm_hw_param_first); 1290 1291 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params, 1292 snd_pcm_hw_param_t var) 1293 { 1294 int changed; 1295 if (hw_is_mask(var)) 1296 changed = snd_mask_refine_last(hw_param_mask(params, var)); 1297 else if (hw_is_interval(var)) 1298 changed = snd_interval_refine_last(hw_param_interval(params, var)); 1299 else 1300 return -EINVAL; 1301 if (changed) { 1302 params->cmask |= 1 << var; 1303 params->rmask |= 1 << var; 1304 } 1305 return changed; 1306 } 1307 1308 1309 /** 1310 * snd_pcm_hw_param_last 1311 * @pcm: PCM instance 1312 * @params: the hw_params instance 1313 * @var: parameter to retrieve 1314 * @dir: pointer to the direction (-1,0,1) or NULL 1315 * 1316 * Inside configuration space defined by PARAMS remove from PAR all 1317 * values < maximum. Reduce configuration space accordingly. 1318 * Return the maximum. 1319 */ 1320 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 1321 struct snd_pcm_hw_params *params, 1322 snd_pcm_hw_param_t var, int *dir) 1323 { 1324 int changed = _snd_pcm_hw_param_last(params, var); 1325 if (changed < 0) 1326 return changed; 1327 if (params->rmask) { 1328 int err = snd_pcm_hw_refine(pcm, params); 1329 snd_assert(err >= 0, return err); 1330 } 1331 return snd_pcm_hw_param_value(params, var, dir); 1332 } 1333 1334 EXPORT_SYMBOL(snd_pcm_hw_param_last); 1335 1336 /** 1337 * snd_pcm_hw_param_choose 1338 * @pcm: PCM instance 1339 * @params: the hw_params instance 1340 * 1341 * Choose one configuration from configuration space defined by PARAMS 1342 * The configuration chosen is that obtained fixing in this order: 1343 * first access, first format, first subformat, min channels, 1344 * min rate, min period time, max buffer size, min tick time 1345 */ 1346 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm, 1347 struct snd_pcm_hw_params *params) 1348 { 1349 static int vars[] = { 1350 SNDRV_PCM_HW_PARAM_ACCESS, 1351 SNDRV_PCM_HW_PARAM_FORMAT, 1352 SNDRV_PCM_HW_PARAM_SUBFORMAT, 1353 SNDRV_PCM_HW_PARAM_CHANNELS, 1354 SNDRV_PCM_HW_PARAM_RATE, 1355 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1356 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 1357 SNDRV_PCM_HW_PARAM_TICK_TIME, 1358 -1 1359 }; 1360 int err, *v; 1361 1362 for (v = vars; *v != -1; v++) { 1363 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE) 1364 err = snd_pcm_hw_param_first(pcm, params, *v, NULL); 1365 else 1366 err = snd_pcm_hw_param_last(pcm, params, *v, NULL); 1367 snd_assert(err >= 0, return err); 1368 } 1369 return 0; 1370 } 1371 1372 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream, 1373 void *arg) 1374 { 1375 struct snd_pcm_runtime *runtime = substream->runtime; 1376 unsigned long flags; 1377 snd_pcm_stream_lock_irqsave(substream, flags); 1378 if (snd_pcm_running(substream) && 1379 snd_pcm_update_hw_ptr(substream) >= 0) 1380 runtime->status->hw_ptr %= runtime->buffer_size; 1381 else 1382 runtime->status->hw_ptr = 0; 1383 snd_pcm_stream_unlock_irqrestore(substream, flags); 1384 return 0; 1385 } 1386 1387 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream, 1388 void *arg) 1389 { 1390 struct snd_pcm_channel_info *info = arg; 1391 struct snd_pcm_runtime *runtime = substream->runtime; 1392 int width; 1393 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) { 1394 info->offset = -1; 1395 return 0; 1396 } 1397 width = snd_pcm_format_physical_width(runtime->format); 1398 if (width < 0) 1399 return width; 1400 info->offset = 0; 1401 switch (runtime->access) { 1402 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED: 1403 case SNDRV_PCM_ACCESS_RW_INTERLEAVED: 1404 info->first = info->channel * width; 1405 info->step = runtime->channels * width; 1406 break; 1407 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED: 1408 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED: 1409 { 1410 size_t size = runtime->dma_bytes / runtime->channels; 1411 info->first = info->channel * size * 8; 1412 info->step = width; 1413 break; 1414 } 1415 default: 1416 snd_BUG(); 1417 break; 1418 } 1419 return 0; 1420 } 1421 1422 /** 1423 * snd_pcm_lib_ioctl - a generic PCM ioctl callback 1424 * @substream: the pcm substream instance 1425 * @cmd: ioctl command 1426 * @arg: ioctl argument 1427 * 1428 * Processes the generic ioctl commands for PCM. 1429 * Can be passed as the ioctl callback for PCM ops. 1430 * 1431 * Returns zero if successful, or a negative error code on failure. 1432 */ 1433 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream, 1434 unsigned int cmd, void *arg) 1435 { 1436 switch (cmd) { 1437 case SNDRV_PCM_IOCTL1_INFO: 1438 return 0; 1439 case SNDRV_PCM_IOCTL1_RESET: 1440 return snd_pcm_lib_ioctl_reset(substream, arg); 1441 case SNDRV_PCM_IOCTL1_CHANNEL_INFO: 1442 return snd_pcm_lib_ioctl_channel_info(substream, arg); 1443 } 1444 return -ENXIO; 1445 } 1446 1447 EXPORT_SYMBOL(snd_pcm_lib_ioctl); 1448 1449 /* 1450 * Conditions 1451 */ 1452 1453 static void snd_pcm_system_tick_set(struct snd_pcm_substream *substream, 1454 unsigned long ticks) 1455 { 1456 struct snd_pcm_runtime *runtime = substream->runtime; 1457 if (ticks == 0) 1458 del_timer(&runtime->tick_timer); 1459 else { 1460 ticks += (1000000 / HZ) - 1; 1461 ticks /= (1000000 / HZ); 1462 mod_timer(&runtime->tick_timer, jiffies + ticks); 1463 } 1464 } 1465 1466 /* Temporary alias */ 1467 void snd_pcm_tick_set(struct snd_pcm_substream *substream, unsigned long ticks) 1468 { 1469 snd_pcm_system_tick_set(substream, ticks); 1470 } 1471 1472 void snd_pcm_tick_prepare(struct snd_pcm_substream *substream) 1473 { 1474 struct snd_pcm_runtime *runtime = substream->runtime; 1475 snd_pcm_uframes_t frames = ULONG_MAX; 1476 snd_pcm_uframes_t avail, dist; 1477 unsigned int ticks; 1478 u_int64_t n; 1479 u_int32_t r; 1480 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { 1481 if (runtime->silence_size >= runtime->boundary) { 1482 frames = 1; 1483 } else if (runtime->silence_size > 0 && 1484 runtime->silence_filled < runtime->buffer_size) { 1485 snd_pcm_sframes_t noise_dist; 1486 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled; 1487 if (noise_dist > (snd_pcm_sframes_t)runtime->silence_threshold) 1488 frames = noise_dist - runtime->silence_threshold; 1489 } 1490 avail = snd_pcm_playback_avail(runtime); 1491 } else { 1492 avail = snd_pcm_capture_avail(runtime); 1493 } 1494 if (avail < runtime->control->avail_min) { 1495 snd_pcm_sframes_t n = runtime->control->avail_min - avail; 1496 if (n > 0 && frames > (snd_pcm_uframes_t)n) 1497 frames = n; 1498 } 1499 if (avail < runtime->buffer_size) { 1500 snd_pcm_sframes_t n = runtime->buffer_size - avail; 1501 if (n > 0 && frames > (snd_pcm_uframes_t)n) 1502 frames = n; 1503 } 1504 if (frames == ULONG_MAX) { 1505 snd_pcm_tick_set(substream, 0); 1506 return; 1507 } 1508 dist = runtime->status->hw_ptr - runtime->hw_ptr_base; 1509 /* Distance to next interrupt */ 1510 dist = runtime->period_size - dist % runtime->period_size; 1511 if (dist <= frames) { 1512 snd_pcm_tick_set(substream, 0); 1513 return; 1514 } 1515 /* the base time is us */ 1516 n = frames; 1517 n *= 1000000; 1518 div64_32(&n, runtime->tick_time * runtime->rate, &r); 1519 ticks = n + (r > 0 ? 1 : 0); 1520 if (ticks < runtime->sleep_min) 1521 ticks = runtime->sleep_min; 1522 snd_pcm_tick_set(substream, (unsigned long) ticks); 1523 } 1524 1525 void snd_pcm_tick_elapsed(struct snd_pcm_substream *substream) 1526 { 1527 struct snd_pcm_runtime *runtime; 1528 unsigned long flags; 1529 1530 snd_assert(substream != NULL, return); 1531 runtime = substream->runtime; 1532 snd_assert(runtime != NULL, return); 1533 1534 snd_pcm_stream_lock_irqsave(substream, flags); 1535 if (!snd_pcm_running(substream) || 1536 snd_pcm_update_hw_ptr(substream) < 0) 1537 goto _end; 1538 if (runtime->sleep_min) 1539 snd_pcm_tick_prepare(substream); 1540 _end: 1541 snd_pcm_stream_unlock_irqrestore(substream, flags); 1542 } 1543 1544 /** 1545 * snd_pcm_period_elapsed - update the pcm status for the next period 1546 * @substream: the pcm substream instance 1547 * 1548 * This function is called from the interrupt handler when the 1549 * PCM has processed the period size. It will update the current 1550 * pointer, set up the tick, wake up sleepers, etc. 1551 * 1552 * Even if more than one periods have elapsed since the last call, you 1553 * have to call this only once. 1554 */ 1555 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream) 1556 { 1557 struct snd_pcm_runtime *runtime; 1558 unsigned long flags; 1559 1560 snd_assert(substream != NULL, return); 1561 runtime = substream->runtime; 1562 snd_assert(runtime != NULL, return); 1563 1564 if (runtime->transfer_ack_begin) 1565 runtime->transfer_ack_begin(substream); 1566 1567 snd_pcm_stream_lock_irqsave(substream, flags); 1568 if (!snd_pcm_running(substream) || 1569 snd_pcm_update_hw_ptr_interrupt(substream) < 0) 1570 goto _end; 1571 1572 if (substream->timer_running) 1573 snd_timer_interrupt(substream->timer, 1); 1574 if (runtime->sleep_min) 1575 snd_pcm_tick_prepare(substream); 1576 _end: 1577 snd_pcm_stream_unlock_irqrestore(substream, flags); 1578 if (runtime->transfer_ack_end) 1579 runtime->transfer_ack_end(substream); 1580 kill_fasync(&runtime->fasync, SIGIO, POLL_IN); 1581 } 1582 1583 EXPORT_SYMBOL(snd_pcm_period_elapsed); 1584 1585 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream, 1586 unsigned int hwoff, 1587 unsigned long data, unsigned int off, 1588 snd_pcm_uframes_t frames) 1589 { 1590 struct snd_pcm_runtime *runtime = substream->runtime; 1591 int err; 1592 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1593 if (substream->ops->copy) { 1594 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1595 return err; 1596 } else { 1597 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1598 snd_assert(runtime->dma_area, return -EFAULT); 1599 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames))) 1600 return -EFAULT; 1601 } 1602 return 0; 1603 } 1604 1605 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff, 1606 unsigned long data, unsigned int off, 1607 snd_pcm_uframes_t size); 1608 1609 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 1610 unsigned long data, 1611 snd_pcm_uframes_t size, 1612 int nonblock, 1613 transfer_f transfer) 1614 { 1615 struct snd_pcm_runtime *runtime = substream->runtime; 1616 snd_pcm_uframes_t xfer = 0; 1617 snd_pcm_uframes_t offset = 0; 1618 int err = 0; 1619 1620 if (size == 0) 1621 return 0; 1622 if (size > runtime->xfer_align) 1623 size -= size % runtime->xfer_align; 1624 1625 snd_pcm_stream_lock_irq(substream); 1626 switch (runtime->status->state) { 1627 case SNDRV_PCM_STATE_PREPARED: 1628 case SNDRV_PCM_STATE_RUNNING: 1629 case SNDRV_PCM_STATE_PAUSED: 1630 break; 1631 case SNDRV_PCM_STATE_XRUN: 1632 err = -EPIPE; 1633 goto _end_unlock; 1634 case SNDRV_PCM_STATE_SUSPENDED: 1635 err = -ESTRPIPE; 1636 goto _end_unlock; 1637 default: 1638 err = -EBADFD; 1639 goto _end_unlock; 1640 } 1641 1642 while (size > 0) { 1643 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1644 snd_pcm_uframes_t avail; 1645 snd_pcm_uframes_t cont; 1646 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1647 snd_pcm_update_hw_ptr(substream); 1648 avail = snd_pcm_playback_avail(runtime); 1649 if (((avail < runtime->control->avail_min && size > avail) || 1650 (size >= runtime->xfer_align && avail < runtime->xfer_align))) { 1651 wait_queue_t wait; 1652 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state; 1653 long tout; 1654 1655 if (nonblock) { 1656 err = -EAGAIN; 1657 goto _end_unlock; 1658 } 1659 1660 init_waitqueue_entry(&wait, current); 1661 add_wait_queue(&runtime->sleep, &wait); 1662 while (1) { 1663 if (signal_pending(current)) { 1664 state = SIGNALED; 1665 break; 1666 } 1667 set_current_state(TASK_INTERRUPTIBLE); 1668 snd_pcm_stream_unlock_irq(substream); 1669 tout = schedule_timeout(10 * HZ); 1670 snd_pcm_stream_lock_irq(substream); 1671 if (tout == 0) { 1672 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED && 1673 runtime->status->state != SNDRV_PCM_STATE_PAUSED) { 1674 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED; 1675 break; 1676 } 1677 } 1678 switch (runtime->status->state) { 1679 case SNDRV_PCM_STATE_XRUN: 1680 case SNDRV_PCM_STATE_DRAINING: 1681 state = ERROR; 1682 goto _end_loop; 1683 case SNDRV_PCM_STATE_SUSPENDED: 1684 state = SUSPENDED; 1685 goto _end_loop; 1686 case SNDRV_PCM_STATE_SETUP: 1687 state = DROPPED; 1688 goto _end_loop; 1689 default: 1690 break; 1691 } 1692 avail = snd_pcm_playback_avail(runtime); 1693 if (avail >= runtime->control->avail_min) { 1694 state = READY; 1695 break; 1696 } 1697 } 1698 _end_loop: 1699 remove_wait_queue(&runtime->sleep, &wait); 1700 1701 switch (state) { 1702 case ERROR: 1703 err = -EPIPE; 1704 goto _end_unlock; 1705 case SUSPENDED: 1706 err = -ESTRPIPE; 1707 goto _end_unlock; 1708 case SIGNALED: 1709 err = -ERESTARTSYS; 1710 goto _end_unlock; 1711 case EXPIRED: 1712 snd_printd("playback write error (DMA or IRQ trouble?)\n"); 1713 err = -EIO; 1714 goto _end_unlock; 1715 case DROPPED: 1716 err = -EBADFD; 1717 goto _end_unlock; 1718 default: 1719 break; 1720 } 1721 } 1722 if (avail > runtime->xfer_align) 1723 avail -= avail % runtime->xfer_align; 1724 frames = size > avail ? avail : size; 1725 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 1726 if (frames > cont) 1727 frames = cont; 1728 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); 1729 appl_ptr = runtime->control->appl_ptr; 1730 appl_ofs = appl_ptr % runtime->buffer_size; 1731 snd_pcm_stream_unlock_irq(substream); 1732 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 1733 goto _end; 1734 snd_pcm_stream_lock_irq(substream); 1735 switch (runtime->status->state) { 1736 case SNDRV_PCM_STATE_XRUN: 1737 err = -EPIPE; 1738 goto _end_unlock; 1739 case SNDRV_PCM_STATE_SUSPENDED: 1740 err = -ESTRPIPE; 1741 goto _end_unlock; 1742 default: 1743 break; 1744 } 1745 appl_ptr += frames; 1746 if (appl_ptr >= runtime->boundary) 1747 appl_ptr -= runtime->boundary; 1748 runtime->control->appl_ptr = appl_ptr; 1749 if (substream->ops->ack) 1750 substream->ops->ack(substream); 1751 1752 offset += frames; 1753 size -= frames; 1754 xfer += frames; 1755 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED && 1756 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) { 1757 err = snd_pcm_start(substream); 1758 if (err < 0) 1759 goto _end_unlock; 1760 } 1761 if (runtime->sleep_min && 1762 runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1763 snd_pcm_tick_prepare(substream); 1764 } 1765 _end_unlock: 1766 snd_pcm_stream_unlock_irq(substream); 1767 _end: 1768 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 1769 } 1770 1771 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size) 1772 { 1773 struct snd_pcm_runtime *runtime; 1774 int nonblock; 1775 1776 snd_assert(substream != NULL, return -ENXIO); 1777 runtime = substream->runtime; 1778 snd_assert(runtime != NULL, return -ENXIO); 1779 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 1780 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1781 return -EBADFD; 1782 1783 nonblock = !!(substream->f_flags & O_NONBLOCK); 1784 1785 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED && 1786 runtime->channels > 1) 1787 return -EINVAL; 1788 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock, 1789 snd_pcm_lib_write_transfer); 1790 } 1791 1792 EXPORT_SYMBOL(snd_pcm_lib_write); 1793 1794 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream, 1795 unsigned int hwoff, 1796 unsigned long data, unsigned int off, 1797 snd_pcm_uframes_t frames) 1798 { 1799 struct snd_pcm_runtime *runtime = substream->runtime; 1800 int err; 1801 void __user **bufs = (void __user **)data; 1802 int channels = runtime->channels; 1803 int c; 1804 if (substream->ops->copy) { 1805 snd_assert(substream->ops->silence != NULL, return -EINVAL); 1806 for (c = 0; c < channels; ++c, ++bufs) { 1807 if (*bufs == NULL) { 1808 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0) 1809 return err; 1810 } else { 1811 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1812 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 1813 return err; 1814 } 1815 } 1816 } else { 1817 /* default transfer behaviour */ 1818 size_t dma_csize = runtime->dma_bytes / channels; 1819 snd_assert(runtime->dma_area, return -EFAULT); 1820 for (c = 0; c < channels; ++c, ++bufs) { 1821 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 1822 if (*bufs == NULL) { 1823 snd_pcm_format_set_silence(runtime->format, hwbuf, frames); 1824 } else { 1825 char __user *buf = *bufs + samples_to_bytes(runtime, off); 1826 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames))) 1827 return -EFAULT; 1828 } 1829 } 1830 } 1831 return 0; 1832 } 1833 1834 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream, 1835 void __user **bufs, 1836 snd_pcm_uframes_t frames) 1837 { 1838 struct snd_pcm_runtime *runtime; 1839 int nonblock; 1840 1841 snd_assert(substream != NULL, return -ENXIO); 1842 runtime = substream->runtime; 1843 snd_assert(runtime != NULL, return -ENXIO); 1844 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 1845 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 1846 return -EBADFD; 1847 1848 nonblock = !!(substream->f_flags & O_NONBLOCK); 1849 1850 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 1851 return -EINVAL; 1852 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames, 1853 nonblock, snd_pcm_lib_writev_transfer); 1854 } 1855 1856 EXPORT_SYMBOL(snd_pcm_lib_writev); 1857 1858 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 1859 unsigned int hwoff, 1860 unsigned long data, unsigned int off, 1861 snd_pcm_uframes_t frames) 1862 { 1863 struct snd_pcm_runtime *runtime = substream->runtime; 1864 int err; 1865 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); 1866 if (substream->ops->copy) { 1867 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) 1868 return err; 1869 } else { 1870 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); 1871 snd_assert(runtime->dma_area, return -EFAULT); 1872 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) 1873 return -EFAULT; 1874 } 1875 return 0; 1876 } 1877 1878 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream, 1879 unsigned long data, 1880 snd_pcm_uframes_t size, 1881 int nonblock, 1882 transfer_f transfer) 1883 { 1884 struct snd_pcm_runtime *runtime = substream->runtime; 1885 snd_pcm_uframes_t xfer = 0; 1886 snd_pcm_uframes_t offset = 0; 1887 int err = 0; 1888 1889 if (size == 0) 1890 return 0; 1891 if (size > runtime->xfer_align) 1892 size -= size % runtime->xfer_align; 1893 1894 snd_pcm_stream_lock_irq(substream); 1895 switch (runtime->status->state) { 1896 case SNDRV_PCM_STATE_PREPARED: 1897 if (size >= runtime->start_threshold) { 1898 err = snd_pcm_start(substream); 1899 if (err < 0) 1900 goto _end_unlock; 1901 } 1902 break; 1903 case SNDRV_PCM_STATE_DRAINING: 1904 case SNDRV_PCM_STATE_RUNNING: 1905 case SNDRV_PCM_STATE_PAUSED: 1906 break; 1907 case SNDRV_PCM_STATE_XRUN: 1908 err = -EPIPE; 1909 goto _end_unlock; 1910 case SNDRV_PCM_STATE_SUSPENDED: 1911 err = -ESTRPIPE; 1912 goto _end_unlock; 1913 default: 1914 err = -EBADFD; 1915 goto _end_unlock; 1916 } 1917 1918 while (size > 0) { 1919 snd_pcm_uframes_t frames, appl_ptr, appl_ofs; 1920 snd_pcm_uframes_t avail; 1921 snd_pcm_uframes_t cont; 1922 if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING) 1923 snd_pcm_update_hw_ptr(substream); 1924 __draining: 1925 avail = snd_pcm_capture_avail(runtime); 1926 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) { 1927 if (avail < runtime->xfer_align) { 1928 err = -EPIPE; 1929 goto _end_unlock; 1930 } 1931 } else if ((avail < runtime->control->avail_min && size > avail) || 1932 (size >= runtime->xfer_align && avail < runtime->xfer_align)) { 1933 wait_queue_t wait; 1934 enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state; 1935 long tout; 1936 1937 if (nonblock) { 1938 err = -EAGAIN; 1939 goto _end_unlock; 1940 } 1941 1942 init_waitqueue_entry(&wait, current); 1943 add_wait_queue(&runtime->sleep, &wait); 1944 while (1) { 1945 if (signal_pending(current)) { 1946 state = SIGNALED; 1947 break; 1948 } 1949 set_current_state(TASK_INTERRUPTIBLE); 1950 snd_pcm_stream_unlock_irq(substream); 1951 tout = schedule_timeout(10 * HZ); 1952 snd_pcm_stream_lock_irq(substream); 1953 if (tout == 0) { 1954 if (runtime->status->state != SNDRV_PCM_STATE_PREPARED && 1955 runtime->status->state != SNDRV_PCM_STATE_PAUSED) { 1956 state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED; 1957 break; 1958 } 1959 } 1960 switch (runtime->status->state) { 1961 case SNDRV_PCM_STATE_XRUN: 1962 state = ERROR; 1963 goto _end_loop; 1964 case SNDRV_PCM_STATE_SUSPENDED: 1965 state = SUSPENDED; 1966 goto _end_loop; 1967 case SNDRV_PCM_STATE_DRAINING: 1968 goto __draining; 1969 case SNDRV_PCM_STATE_SETUP: 1970 state = DROPPED; 1971 goto _end_loop; 1972 default: 1973 break; 1974 } 1975 avail = snd_pcm_capture_avail(runtime); 1976 if (avail >= runtime->control->avail_min) { 1977 state = READY; 1978 break; 1979 } 1980 } 1981 _end_loop: 1982 remove_wait_queue(&runtime->sleep, &wait); 1983 1984 switch (state) { 1985 case ERROR: 1986 err = -EPIPE; 1987 goto _end_unlock; 1988 case SUSPENDED: 1989 err = -ESTRPIPE; 1990 goto _end_unlock; 1991 case SIGNALED: 1992 err = -ERESTARTSYS; 1993 goto _end_unlock; 1994 case EXPIRED: 1995 snd_printd("capture read error (DMA or IRQ trouble?)\n"); 1996 err = -EIO; 1997 goto _end_unlock; 1998 case DROPPED: 1999 err = -EBADFD; 2000 goto _end_unlock; 2001 default: 2002 break; 2003 } 2004 } 2005 if (avail > runtime->xfer_align) 2006 avail -= avail % runtime->xfer_align; 2007 frames = size > avail ? avail : size; 2008 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size; 2009 if (frames > cont) 2010 frames = cont; 2011 snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL); 2012 appl_ptr = runtime->control->appl_ptr; 2013 appl_ofs = appl_ptr % runtime->buffer_size; 2014 snd_pcm_stream_unlock_irq(substream); 2015 if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0) 2016 goto _end; 2017 snd_pcm_stream_lock_irq(substream); 2018 switch (runtime->status->state) { 2019 case SNDRV_PCM_STATE_XRUN: 2020 err = -EPIPE; 2021 goto _end_unlock; 2022 case SNDRV_PCM_STATE_SUSPENDED: 2023 err = -ESTRPIPE; 2024 goto _end_unlock; 2025 default: 2026 break; 2027 } 2028 appl_ptr += frames; 2029 if (appl_ptr >= runtime->boundary) 2030 appl_ptr -= runtime->boundary; 2031 runtime->control->appl_ptr = appl_ptr; 2032 if (substream->ops->ack) 2033 substream->ops->ack(substream); 2034 2035 offset += frames; 2036 size -= frames; 2037 xfer += frames; 2038 if (runtime->sleep_min && 2039 runtime->status->state == SNDRV_PCM_STATE_RUNNING) 2040 snd_pcm_tick_prepare(substream); 2041 } 2042 _end_unlock: 2043 snd_pcm_stream_unlock_irq(substream); 2044 _end: 2045 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err; 2046 } 2047 2048 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size) 2049 { 2050 struct snd_pcm_runtime *runtime; 2051 int nonblock; 2052 2053 snd_assert(substream != NULL, return -ENXIO); 2054 runtime = substream->runtime; 2055 snd_assert(runtime != NULL, return -ENXIO); 2056 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 2057 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2058 return -EBADFD; 2059 2060 nonblock = !!(substream->f_flags & O_NONBLOCK); 2061 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED) 2062 return -EINVAL; 2063 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer); 2064 } 2065 2066 EXPORT_SYMBOL(snd_pcm_lib_read); 2067 2068 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream, 2069 unsigned int hwoff, 2070 unsigned long data, unsigned int off, 2071 snd_pcm_uframes_t frames) 2072 { 2073 struct snd_pcm_runtime *runtime = substream->runtime; 2074 int err; 2075 void __user **bufs = (void __user **)data; 2076 int channels = runtime->channels; 2077 int c; 2078 if (substream->ops->copy) { 2079 for (c = 0; c < channels; ++c, ++bufs) { 2080 char __user *buf; 2081 if (*bufs == NULL) 2082 continue; 2083 buf = *bufs + samples_to_bytes(runtime, off); 2084 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0) 2085 return err; 2086 } 2087 } else { 2088 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels; 2089 snd_assert(runtime->dma_area, return -EFAULT); 2090 for (c = 0; c < channels; ++c, ++bufs) { 2091 char *hwbuf; 2092 char __user *buf; 2093 if (*bufs == NULL) 2094 continue; 2095 2096 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff); 2097 buf = *bufs + samples_to_bytes(runtime, off); 2098 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames))) 2099 return -EFAULT; 2100 } 2101 } 2102 return 0; 2103 } 2104 2105 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream, 2106 void __user **bufs, 2107 snd_pcm_uframes_t frames) 2108 { 2109 struct snd_pcm_runtime *runtime; 2110 int nonblock; 2111 2112 snd_assert(substream != NULL, return -ENXIO); 2113 runtime = substream->runtime; 2114 snd_assert(runtime != NULL, return -ENXIO); 2115 snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL); 2116 if (runtime->status->state == SNDRV_PCM_STATE_OPEN) 2117 return -EBADFD; 2118 2119 nonblock = !!(substream->f_flags & O_NONBLOCK); 2120 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED) 2121 return -EINVAL; 2122 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer); 2123 } 2124 2125 EXPORT_SYMBOL(snd_pcm_lib_readv); 2126