xref: /linux/sound/core/pcm_lib.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <sound/driver.h>
24 #include <linux/slab.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32 
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(snd_pcm_substream_t *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44 	snd_pcm_runtime_t *runtime = substream->runtime;
45 	snd_pcm_uframes_t frames, ofs, transfer;
46 
47 	if (runtime->silence_size < runtime->boundary) {
48 		snd_pcm_sframes_t noise_dist, n;
49 		if (runtime->silence_start != runtime->control->appl_ptr) {
50 			n = runtime->control->appl_ptr - runtime->silence_start;
51 			if (n < 0)
52 				n += runtime->boundary;
53 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54 				runtime->silence_filled -= n;
55 			else
56 				runtime->silence_filled = 0;
57 			runtime->silence_start = runtime->control->appl_ptr;
58 		}
59 		if (runtime->silence_filled == runtime->buffer_size)
60 			return;
61 		snd_assert(runtime->silence_filled <= runtime->buffer_size, return);
62 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 			return;
65 		frames = runtime->silence_threshold - noise_dist;
66 		if (frames > runtime->silence_size)
67 			frames = runtime->silence_size;
68 	} else {
69 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
70 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 			runtime->silence_filled = avail > 0 ? avail : 0;
72 			runtime->silence_start = (runtime->status->hw_ptr +
73 						  runtime->silence_filled) %
74 						 runtime->boundary;
75 		} else {
76 			ofs = runtime->status->hw_ptr;
77 			frames = new_hw_ptr - ofs;
78 			if ((snd_pcm_sframes_t)frames < 0)
79 				frames += runtime->boundary;
80 			runtime->silence_filled -= frames;
81 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
82 				runtime->silence_filled = 0;
83 				runtime->silence_start = (ofs + frames) - runtime->buffer_size;
84 			} else {
85 				runtime->silence_start = ofs - runtime->silence_filled;
86 			}
87 			if ((snd_pcm_sframes_t)runtime->silence_start < 0)
88 				runtime->silence_start += runtime->boundary;
89 		}
90 		frames = runtime->buffer_size - runtime->silence_filled;
91 	}
92 	snd_assert(frames <= runtime->buffer_size, return);
93 	if (frames == 0)
94 		return;
95 	ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
96 	while (frames > 0) {
97 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100 			if (substream->ops->silence) {
101 				int err;
102 				err = substream->ops->silence(substream, -1, ofs, transfer);
103 				snd_assert(err >= 0, );
104 			} else {
105 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107 			}
108 		} else {
109 			unsigned int c;
110 			unsigned int channels = runtime->channels;
111 			if (substream->ops->silence) {
112 				for (c = 0; c < channels; ++c) {
113 					int err;
114 					err = substream->ops->silence(substream, c, ofs, transfer);
115 					snd_assert(err >= 0, );
116 				}
117 			} else {
118 				size_t dma_csize = runtime->dma_bytes / channels;
119 				for (c = 0; c < channels; ++c) {
120 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122 				}
123 			}
124 		}
125 		runtime->silence_filled += transfer;
126 		frames -= transfer;
127 		ofs = 0;
128 	}
129 }
130 
131 static void xrun(snd_pcm_substream_t *substream)
132 {
133 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
134 #ifdef CONFIG_SND_DEBUG
135 	if (substream->pstr->xrun_debug) {
136 		snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
137 			   substream->pcm->card->number,
138 			   substream->pcm->device,
139 			   substream->stream ? 'c' : 'p');
140 		if (substream->pstr->xrun_debug > 1)
141 			dump_stack();
142 	}
143 #endif
144 }
145 
146 static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(snd_pcm_substream_t *substream,
147 							  snd_pcm_runtime_t *runtime)
148 {
149 	snd_pcm_uframes_t pos;
150 
151 	pos = substream->ops->pointer(substream);
152 	if (pos == SNDRV_PCM_POS_XRUN)
153 		return pos; /* XRUN */
154 	if (runtime->tstamp_mode & SNDRV_PCM_TSTAMP_MMAP)
155 		snd_timestamp_now((snd_timestamp_t*)&runtime->status->tstamp, runtime->tstamp_timespec);
156 #ifdef CONFIG_SND_DEBUG
157 	if (pos >= runtime->buffer_size) {
158 		snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
159 	} else
160 #endif
161 	snd_runtime_check(pos < runtime->buffer_size, return 0);
162 	pos -= pos % runtime->min_align;
163 	return pos;
164 }
165 
166 static inline int snd_pcm_update_hw_ptr_post(snd_pcm_substream_t *substream,
167 					     snd_pcm_runtime_t *runtime)
168 {
169 	snd_pcm_uframes_t avail;
170 
171 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
172 		avail = snd_pcm_playback_avail(runtime);
173 	else
174 		avail = snd_pcm_capture_avail(runtime);
175 	if (avail > runtime->avail_max)
176 		runtime->avail_max = avail;
177 	if (avail >= runtime->stop_threshold) {
178 		if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
179 			snd_pcm_drain_done(substream);
180 		else
181 			xrun(substream);
182 		return -EPIPE;
183 	}
184 	if (avail >= runtime->control->avail_min)
185 		wake_up(&runtime->sleep);
186 	return 0;
187 }
188 
189 static inline int snd_pcm_update_hw_ptr_interrupt(snd_pcm_substream_t *substream)
190 {
191 	snd_pcm_runtime_t *runtime = substream->runtime;
192 	snd_pcm_uframes_t pos;
193 	snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
194 	snd_pcm_sframes_t delta;
195 
196 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
197 	if (pos == SNDRV_PCM_POS_XRUN) {
198 		xrun(substream);
199 		return -EPIPE;
200 	}
201 	if (runtime->period_size == runtime->buffer_size)
202 		goto __next_buf;
203 	new_hw_ptr = runtime->hw_ptr_base + pos;
204 	hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;
205 
206 	delta = hw_ptr_interrupt - new_hw_ptr;
207 	if (delta > 0) {
208 		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
209 #ifdef CONFIG_SND_DEBUG
210 			if (runtime->periods > 1 && substream->pstr->xrun_debug) {
211 				snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
212 				if (substream->pstr->xrun_debug > 1)
213 					dump_stack();
214 			}
215 #endif
216 			return 0;
217 		}
218 	      __next_buf:
219 		runtime->hw_ptr_base += runtime->buffer_size;
220 		if (runtime->hw_ptr_base == runtime->boundary)
221 			runtime->hw_ptr_base = 0;
222 		new_hw_ptr = runtime->hw_ptr_base + pos;
223 	}
224 
225 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
226 	    runtime->silence_size > 0)
227 		snd_pcm_playback_silence(substream, new_hw_ptr);
228 
229 	runtime->status->hw_ptr = new_hw_ptr;
230 	runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;
231 
232 	return snd_pcm_update_hw_ptr_post(substream, runtime);
233 }
234 
235 /* CAUTION: call it with irq disabled */
236 int snd_pcm_update_hw_ptr(snd_pcm_substream_t *substream)
237 {
238 	snd_pcm_runtime_t *runtime = substream->runtime;
239 	snd_pcm_uframes_t pos;
240 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
241 	snd_pcm_sframes_t delta;
242 
243 	old_hw_ptr = runtime->status->hw_ptr;
244 	pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
245 	if (pos == SNDRV_PCM_POS_XRUN) {
246 		xrun(substream);
247 		return -EPIPE;
248 	}
249 	new_hw_ptr = runtime->hw_ptr_base + pos;
250 
251 	delta = old_hw_ptr - new_hw_ptr;
252 	if (delta > 0) {
253 		if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
254 #ifdef CONFIG_SND_DEBUG
255 			if (runtime->periods > 2 && substream->pstr->xrun_debug) {
256 				snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
257 				if (substream->pstr->xrun_debug > 1)
258 					dump_stack();
259 			}
260 #endif
261 			return 0;
262 		}
263 		runtime->hw_ptr_base += runtime->buffer_size;
264 		if (runtime->hw_ptr_base == runtime->boundary)
265 			runtime->hw_ptr_base = 0;
266 		new_hw_ptr = runtime->hw_ptr_base + pos;
267 	}
268 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
269 	    runtime->silence_size > 0)
270 		snd_pcm_playback_silence(substream, new_hw_ptr);
271 
272 	runtime->status->hw_ptr = new_hw_ptr;
273 
274 	return snd_pcm_update_hw_ptr_post(substream, runtime);
275 }
276 
277 /**
278  * snd_pcm_set_ops - set the PCM operators
279  * @pcm: the pcm instance
280  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
281  * @ops: the operator table
282  *
283  * Sets the given PCM operators to the pcm instance.
284  */
285 void snd_pcm_set_ops(snd_pcm_t *pcm, int direction, snd_pcm_ops_t *ops)
286 {
287 	snd_pcm_str_t *stream = &pcm->streams[direction];
288 	snd_pcm_substream_t *substream;
289 
290 	for (substream = stream->substream; substream != NULL; substream = substream->next)
291 		substream->ops = ops;
292 }
293 
294 
295 /**
296  * snd_pcm_sync - set the PCM sync id
297  * @substream: the pcm substream
298  *
299  * Sets the PCM sync identifier for the card.
300  */
301 void snd_pcm_set_sync(snd_pcm_substream_t * substream)
302 {
303 	snd_pcm_runtime_t *runtime = substream->runtime;
304 
305 	runtime->sync.id32[0] = substream->pcm->card->number;
306 	runtime->sync.id32[1] = -1;
307 	runtime->sync.id32[2] = -1;
308 	runtime->sync.id32[3] = -1;
309 }
310 
311 /*
312  *  Standard ioctl routine
313  */
314 
315 /* Code taken from alsa-lib */
316 #define assert(a) snd_assert((a), return -EINVAL)
317 
318 static inline unsigned int div32(unsigned int a, unsigned int b,
319 				 unsigned int *r)
320 {
321 	if (b == 0) {
322 		*r = 0;
323 		return UINT_MAX;
324 	}
325 	*r = a % b;
326 	return a / b;
327 }
328 
329 static inline unsigned int div_down(unsigned int a, unsigned int b)
330 {
331 	if (b == 0)
332 		return UINT_MAX;
333 	return a / b;
334 }
335 
336 static inline unsigned int div_up(unsigned int a, unsigned int b)
337 {
338 	unsigned int r;
339 	unsigned int q;
340 	if (b == 0)
341 		return UINT_MAX;
342 	q = div32(a, b, &r);
343 	if (r)
344 		++q;
345 	return q;
346 }
347 
348 static inline unsigned int mul(unsigned int a, unsigned int b)
349 {
350 	if (a == 0)
351 		return 0;
352 	if (div_down(UINT_MAX, a) < b)
353 		return UINT_MAX;
354 	return a * b;
355 }
356 
357 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
358 				    unsigned int c, unsigned int *r)
359 {
360 	u_int64_t n = (u_int64_t) a * b;
361 	if (c == 0) {
362 		snd_assert(n > 0, );
363 		*r = 0;
364 		return UINT_MAX;
365 	}
366 	div64_32(&n, c, r);
367 	if (n >= UINT_MAX) {
368 		*r = 0;
369 		return UINT_MAX;
370 	}
371 	return n;
372 }
373 
374 static int snd_interval_refine_min(snd_interval_t *i, unsigned int min, int openmin)
375 {
376 	int changed = 0;
377 	assert(!snd_interval_empty(i));
378 	if (i->min < min) {
379 		i->min = min;
380 		i->openmin = openmin;
381 		changed = 1;
382 	} else if (i->min == min && !i->openmin && openmin) {
383 		i->openmin = 1;
384 		changed = 1;
385 	}
386 	if (i->integer) {
387 		if (i->openmin) {
388 			i->min++;
389 			i->openmin = 0;
390 		}
391 	}
392 	if (snd_interval_checkempty(i)) {
393 		snd_interval_none(i);
394 		return -EINVAL;
395 	}
396 	return changed;
397 }
398 
399 static int snd_interval_refine_max(snd_interval_t *i, unsigned int max, int openmax)
400 {
401 	int changed = 0;
402 	assert(!snd_interval_empty(i));
403 	if (i->max > max) {
404 		i->max = max;
405 		i->openmax = openmax;
406 		changed = 1;
407 	} else if (i->max == max && !i->openmax && openmax) {
408 		i->openmax = 1;
409 		changed = 1;
410 	}
411 	if (i->integer) {
412 		if (i->openmax) {
413 			i->max--;
414 			i->openmax = 0;
415 		}
416 	}
417 	if (snd_interval_checkempty(i)) {
418 		snd_interval_none(i);
419 		return -EINVAL;
420 	}
421 	return changed;
422 }
423 
424 /**
425  * snd_interval_refine - refine the interval value of configurator
426  * @i: the interval value to refine
427  * @v: the interval value to refer to
428  *
429  * Refines the interval value with the reference value.
430  * The interval is changed to the range satisfying both intervals.
431  * The interval status (min, max, integer, etc.) are evaluated.
432  *
433  * Returns non-zero if the value is changed, zero if not changed.
434  */
435 int snd_interval_refine(snd_interval_t *i, const snd_interval_t *v)
436 {
437 	int changed = 0;
438 	assert(!snd_interval_empty(i));
439 	if (i->min < v->min) {
440 		i->min = v->min;
441 		i->openmin = v->openmin;
442 		changed = 1;
443 	} else if (i->min == v->min && !i->openmin && v->openmin) {
444 		i->openmin = 1;
445 		changed = 1;
446 	}
447 	if (i->max > v->max) {
448 		i->max = v->max;
449 		i->openmax = v->openmax;
450 		changed = 1;
451 	} else if (i->max == v->max && !i->openmax && v->openmax) {
452 		i->openmax = 1;
453 		changed = 1;
454 	}
455 	if (!i->integer && v->integer) {
456 		i->integer = 1;
457 		changed = 1;
458 	}
459 	if (i->integer) {
460 		if (i->openmin) {
461 			i->min++;
462 			i->openmin = 0;
463 		}
464 		if (i->openmax) {
465 			i->max--;
466 			i->openmax = 0;
467 		}
468 	} else if (!i->openmin && !i->openmax && i->min == i->max)
469 		i->integer = 1;
470 	if (snd_interval_checkempty(i)) {
471 		snd_interval_none(i);
472 		return -EINVAL;
473 	}
474 	return changed;
475 }
476 
477 static int snd_interval_refine_first(snd_interval_t *i)
478 {
479 	assert(!snd_interval_empty(i));
480 	if (snd_interval_single(i))
481 		return 0;
482 	i->max = i->min;
483 	i->openmax = i->openmin;
484 	if (i->openmax)
485 		i->max++;
486 	return 1;
487 }
488 
489 static int snd_interval_refine_last(snd_interval_t *i)
490 {
491 	assert(!snd_interval_empty(i));
492 	if (snd_interval_single(i))
493 		return 0;
494 	i->min = i->max;
495 	i->openmin = i->openmax;
496 	if (i->openmin)
497 		i->min--;
498 	return 1;
499 }
500 
501 static int snd_interval_refine_set(snd_interval_t *i, unsigned int val)
502 {
503 	snd_interval_t t;
504 	t.empty = 0;
505 	t.min = t.max = val;
506 	t.openmin = t.openmax = 0;
507 	t.integer = 1;
508 	return snd_interval_refine(i, &t);
509 }
510 
511 void snd_interval_mul(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
512 {
513 	if (a->empty || b->empty) {
514 		snd_interval_none(c);
515 		return;
516 	}
517 	c->empty = 0;
518 	c->min = mul(a->min, b->min);
519 	c->openmin = (a->openmin || b->openmin);
520 	c->max = mul(a->max,  b->max);
521 	c->openmax = (a->openmax || b->openmax);
522 	c->integer = (a->integer && b->integer);
523 }
524 
525 /**
526  * snd_interval_div - refine the interval value with division
527  * @a: dividend
528  * @b: divisor
529  * @c: quotient
530  *
531  * c = a / b
532  *
533  * Returns non-zero if the value is changed, zero if not changed.
534  */
535 void snd_interval_div(const snd_interval_t *a, const snd_interval_t *b, snd_interval_t *c)
536 {
537 	unsigned int r;
538 	if (a->empty || b->empty) {
539 		snd_interval_none(c);
540 		return;
541 	}
542 	c->empty = 0;
543 	c->min = div32(a->min, b->max, &r);
544 	c->openmin = (r || a->openmin || b->openmax);
545 	if (b->min > 0) {
546 		c->max = div32(a->max, b->min, &r);
547 		if (r) {
548 			c->max++;
549 			c->openmax = 1;
550 		} else
551 			c->openmax = (a->openmax || b->openmin);
552 	} else {
553 		c->max = UINT_MAX;
554 		c->openmax = 0;
555 	}
556 	c->integer = 0;
557 }
558 
559 /**
560  * snd_interval_muldivk - refine the interval value
561  * @a: dividend 1
562  * @b: dividend 2
563  * @k: divisor (as integer)
564  * @c: result
565   *
566  * c = a * b / k
567  *
568  * Returns non-zero if the value is changed, zero if not changed.
569  */
570 void snd_interval_muldivk(const snd_interval_t *a, const snd_interval_t *b,
571 		      unsigned int k, snd_interval_t *c)
572 {
573 	unsigned int r;
574 	if (a->empty || b->empty) {
575 		snd_interval_none(c);
576 		return;
577 	}
578 	c->empty = 0;
579 	c->min = muldiv32(a->min, b->min, k, &r);
580 	c->openmin = (r || a->openmin || b->openmin);
581 	c->max = muldiv32(a->max, b->max, k, &r);
582 	if (r) {
583 		c->max++;
584 		c->openmax = 1;
585 	} else
586 		c->openmax = (a->openmax || b->openmax);
587 	c->integer = 0;
588 }
589 
590 /**
591  * snd_interval_mulkdiv - refine the interval value
592  * @a: dividend 1
593  * @k: dividend 2 (as integer)
594  * @b: divisor
595  * @c: result
596  *
597  * c = a * k / b
598  *
599  * Returns non-zero if the value is changed, zero if not changed.
600  */
601 void snd_interval_mulkdiv(const snd_interval_t *a, unsigned int k,
602 		      const snd_interval_t *b, snd_interval_t *c)
603 {
604 	unsigned int r;
605 	if (a->empty || b->empty) {
606 		snd_interval_none(c);
607 		return;
608 	}
609 	c->empty = 0;
610 	c->min = muldiv32(a->min, k, b->max, &r);
611 	c->openmin = (r || a->openmin || b->openmax);
612 	if (b->min > 0) {
613 		c->max = muldiv32(a->max, k, b->min, &r);
614 		if (r) {
615 			c->max++;
616 			c->openmax = 1;
617 		} else
618 			c->openmax = (a->openmax || b->openmin);
619 	} else {
620 		c->max = UINT_MAX;
621 		c->openmax = 0;
622 	}
623 	c->integer = 0;
624 }
625 
626 #undef assert
627 /* ---- */
628 
629 
630 /**
631  * snd_interval_ratnum - refine the interval value
632  * @i: interval to refine
633  * @rats_count: number of ratnum_t
634  * @rats: ratnum_t array
635  * @nump: pointer to store the resultant numerator
636  * @denp: pointer to store the resultant denominator
637  *
638  * Returns non-zero if the value is changed, zero if not changed.
639  */
640 int snd_interval_ratnum(snd_interval_t *i,
641 		    unsigned int rats_count, ratnum_t *rats,
642 		    unsigned int *nump, unsigned int *denp)
643 {
644 	unsigned int best_num, best_diff, best_den;
645 	unsigned int k;
646 	snd_interval_t t;
647 	int err;
648 
649 	best_num = best_den = best_diff = 0;
650 	for (k = 0; k < rats_count; ++k) {
651 		unsigned int num = rats[k].num;
652 		unsigned int den;
653 		unsigned int q = i->min;
654 		int diff;
655 		if (q == 0)
656 			q = 1;
657 		den = div_down(num, q);
658 		if (den < rats[k].den_min)
659 			continue;
660 		if (den > rats[k].den_max)
661 			den = rats[k].den_max;
662 		else {
663 			unsigned int r;
664 			r = (den - rats[k].den_min) % rats[k].den_step;
665 			if (r != 0)
666 				den -= r;
667 		}
668 		diff = num - q * den;
669 		if (best_num == 0 ||
670 		    diff * best_den < best_diff * den) {
671 			best_diff = diff;
672 			best_den = den;
673 			best_num = num;
674 		}
675 	}
676 	if (best_den == 0) {
677 		i->empty = 1;
678 		return -EINVAL;
679 	}
680 	t.min = div_down(best_num, best_den);
681 	t.openmin = !!(best_num % best_den);
682 
683 	best_num = best_den = best_diff = 0;
684 	for (k = 0; k < rats_count; ++k) {
685 		unsigned int num = rats[k].num;
686 		unsigned int den;
687 		unsigned int q = i->max;
688 		int diff;
689 		if (q == 0) {
690 			i->empty = 1;
691 			return -EINVAL;
692 		}
693 		den = div_up(num, q);
694 		if (den > rats[k].den_max)
695 			continue;
696 		if (den < rats[k].den_min)
697 			den = rats[k].den_min;
698 		else {
699 			unsigned int r;
700 			r = (den - rats[k].den_min) % rats[k].den_step;
701 			if (r != 0)
702 				den += rats[k].den_step - r;
703 		}
704 		diff = q * den - num;
705 		if (best_num == 0 ||
706 		    diff * best_den < best_diff * den) {
707 			best_diff = diff;
708 			best_den = den;
709 			best_num = num;
710 		}
711 	}
712 	if (best_den == 0) {
713 		i->empty = 1;
714 		return -EINVAL;
715 	}
716 	t.max = div_up(best_num, best_den);
717 	t.openmax = !!(best_num % best_den);
718 	t.integer = 0;
719 	err = snd_interval_refine(i, &t);
720 	if (err < 0)
721 		return err;
722 
723 	if (snd_interval_single(i)) {
724 		if (nump)
725 			*nump = best_num;
726 		if (denp)
727 			*denp = best_den;
728 	}
729 	return err;
730 }
731 
732 /**
733  * snd_interval_ratden - refine the interval value
734  * @i: interval to refine
735  * @rats_count: number of ratden_t
736  * @rats: ratden_t array
737  * @nump: pointer to store the resultant numerator
738  * @denp: pointer to store the resultant denominator
739  *
740  * Returns non-zero if the value is changed, zero if not changed.
741  */
742 static int snd_interval_ratden(snd_interval_t *i,
743 			       unsigned int rats_count, ratden_t *rats,
744 			       unsigned int *nump, unsigned int *denp)
745 {
746 	unsigned int best_num, best_diff, best_den;
747 	unsigned int k;
748 	snd_interval_t t;
749 	int err;
750 
751 	best_num = best_den = best_diff = 0;
752 	for (k = 0; k < rats_count; ++k) {
753 		unsigned int num;
754 		unsigned int den = rats[k].den;
755 		unsigned int q = i->min;
756 		int diff;
757 		num = mul(q, den);
758 		if (num > rats[k].num_max)
759 			continue;
760 		if (num < rats[k].num_min)
761 			num = rats[k].num_max;
762 		else {
763 			unsigned int r;
764 			r = (num - rats[k].num_min) % rats[k].num_step;
765 			if (r != 0)
766 				num += rats[k].num_step - r;
767 		}
768 		diff = num - q * den;
769 		if (best_num == 0 ||
770 		    diff * best_den < best_diff * den) {
771 			best_diff = diff;
772 			best_den = den;
773 			best_num = num;
774 		}
775 	}
776 	if (best_den == 0) {
777 		i->empty = 1;
778 		return -EINVAL;
779 	}
780 	t.min = div_down(best_num, best_den);
781 	t.openmin = !!(best_num % best_den);
782 
783 	best_num = best_den = best_diff = 0;
784 	for (k = 0; k < rats_count; ++k) {
785 		unsigned int num;
786 		unsigned int den = rats[k].den;
787 		unsigned int q = i->max;
788 		int diff;
789 		num = mul(q, den);
790 		if (num < rats[k].num_min)
791 			continue;
792 		if (num > rats[k].num_max)
793 			num = rats[k].num_max;
794 		else {
795 			unsigned int r;
796 			r = (num - rats[k].num_min) % rats[k].num_step;
797 			if (r != 0)
798 				num -= r;
799 		}
800 		diff = q * den - num;
801 		if (best_num == 0 ||
802 		    diff * best_den < best_diff * den) {
803 			best_diff = diff;
804 			best_den = den;
805 			best_num = num;
806 		}
807 	}
808 	if (best_den == 0) {
809 		i->empty = 1;
810 		return -EINVAL;
811 	}
812 	t.max = div_up(best_num, best_den);
813 	t.openmax = !!(best_num % best_den);
814 	t.integer = 0;
815 	err = snd_interval_refine(i, &t);
816 	if (err < 0)
817 		return err;
818 
819 	if (snd_interval_single(i)) {
820 		if (nump)
821 			*nump = best_num;
822 		if (denp)
823 			*denp = best_den;
824 	}
825 	return err;
826 }
827 
828 /**
829  * snd_interval_list - refine the interval value from the list
830  * @i: the interval value to refine
831  * @count: the number of elements in the list
832  * @list: the value list
833  * @mask: the bit-mask to evaluate
834  *
835  * Refines the interval value from the list.
836  * When mask is non-zero, only the elements corresponding to bit 1 are
837  * evaluated.
838  *
839  * Returns non-zero if the value is changed, zero if not changed.
840  */
841 int snd_interval_list(snd_interval_t *i, unsigned int count, unsigned int *list, unsigned int mask)
842 {
843         unsigned int k;
844 	int changed = 0;
845         for (k = 0; k < count; k++) {
846 		if (mask && !(mask & (1 << k)))
847 			continue;
848                 if (i->min == list[k] && !i->openmin)
849                         goto _l1;
850                 if (i->min < list[k]) {
851                         i->min = list[k];
852 			i->openmin = 0;
853 			changed = 1;
854                         goto _l1;
855                 }
856         }
857         i->empty = 1;
858         return -EINVAL;
859  _l1:
860         for (k = count; k-- > 0;) {
861 		if (mask && !(mask & (1 << k)))
862 			continue;
863                 if (i->max == list[k] && !i->openmax)
864                         goto _l2;
865                 if (i->max > list[k]) {
866                         i->max = list[k];
867 			i->openmax = 0;
868 			changed = 1;
869                         goto _l2;
870                 }
871         }
872         i->empty = 1;
873         return -EINVAL;
874  _l2:
875 	if (snd_interval_checkempty(i)) {
876 		i->empty = 1;
877 		return -EINVAL;
878 	}
879         return changed;
880 }
881 
882 static int snd_interval_step(snd_interval_t *i, unsigned int min, unsigned int step)
883 {
884 	unsigned int n;
885 	int changed = 0;
886 	n = (i->min - min) % step;
887 	if (n != 0 || i->openmin) {
888 		i->min += step - n;
889 		changed = 1;
890 	}
891 	n = (i->max - min) % step;
892 	if (n != 0 || i->openmax) {
893 		i->max -= n;
894 		changed = 1;
895 	}
896 	if (snd_interval_checkempty(i)) {
897 		i->empty = 1;
898 		return -EINVAL;
899 	}
900 	return changed;
901 }
902 
903 /* Info constraints helpers */
904 
905 /**
906  * snd_pcm_hw_rule_add - add the hw-constraint rule
907  * @runtime: the pcm runtime instance
908  * @cond: condition bits
909  * @var: the variable to evaluate
910  * @func: the evaluation function
911  * @private: the private data pointer passed to function
912  * @dep: the dependent variables
913  *
914  * Returns zero if successful, or a negative error code on failure.
915  */
916 int snd_pcm_hw_rule_add(snd_pcm_runtime_t *runtime, unsigned int cond,
917 			int var,
918 			snd_pcm_hw_rule_func_t func, void *private,
919 			int dep, ...)
920 {
921 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
922 	snd_pcm_hw_rule_t *c;
923 	unsigned int k;
924 	va_list args;
925 	va_start(args, dep);
926 	if (constrs->rules_num >= constrs->rules_all) {
927 		snd_pcm_hw_rule_t *new;
928 		unsigned int new_rules = constrs->rules_all + 16;
929 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
930 		if (!new)
931 			return -ENOMEM;
932 		if (constrs->rules) {
933 			memcpy(new, constrs->rules,
934 			       constrs->rules_num * sizeof(*c));
935 			kfree(constrs->rules);
936 		}
937 		constrs->rules = new;
938 		constrs->rules_all = new_rules;
939 	}
940 	c = &constrs->rules[constrs->rules_num];
941 	c->cond = cond;
942 	c->func = func;
943 	c->var = var;
944 	c->private = private;
945 	k = 0;
946 	while (1) {
947 		snd_assert(k < ARRAY_SIZE(c->deps), return -EINVAL);
948 		c->deps[k++] = dep;
949 		if (dep < 0)
950 			break;
951 		dep = va_arg(args, int);
952 	}
953 	constrs->rules_num++;
954 	va_end(args);
955 	return 0;
956 }
957 
958 /**
959  * snd_pcm_hw_constraint_mask
960  * @runtime: PCM runtime instance
961  * @var: hw_params variable to apply the mask
962  * @mask: the bitmap mask
963  *
964  * Apply the constraint of the given bitmap mask to a mask parameter.
965  */
966 int snd_pcm_hw_constraint_mask(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
967 			       u_int32_t mask)
968 {
969 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
970 	snd_mask_t *maskp = constrs_mask(constrs, var);
971 	*maskp->bits &= mask;
972 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
973 	if (*maskp->bits == 0)
974 		return -EINVAL;
975 	return 0;
976 }
977 
978 /**
979  * snd_pcm_hw_constraint_mask64
980  * @runtime: PCM runtime instance
981  * @var: hw_params variable to apply the mask
982  * @mask: the 64bit bitmap mask
983  *
984  * Apply the constraint of the given bitmap mask to a mask parameter.
985  */
986 int snd_pcm_hw_constraint_mask64(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
987 				 u_int64_t mask)
988 {
989 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
990 	snd_mask_t *maskp = constrs_mask(constrs, var);
991 	maskp->bits[0] &= (u_int32_t)mask;
992 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
993 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
994 	if (! maskp->bits[0] && ! maskp->bits[1])
995 		return -EINVAL;
996 	return 0;
997 }
998 
999 /**
1000  * snd_pcm_hw_constraint_integer
1001  * @runtime: PCM runtime instance
1002  * @var: hw_params variable to apply the integer constraint
1003  *
1004  * Apply the constraint of integer to an interval parameter.
1005  */
1006 int snd_pcm_hw_constraint_integer(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var)
1007 {
1008 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
1009 	return snd_interval_setinteger(constrs_interval(constrs, var));
1010 }
1011 
1012 /**
1013  * snd_pcm_hw_constraint_minmax
1014  * @runtime: PCM runtime instance
1015  * @var: hw_params variable to apply the range
1016  * @min: the minimal value
1017  * @max: the maximal value
1018  *
1019  * Apply the min/max range constraint to an interval parameter.
1020  */
1021 int snd_pcm_hw_constraint_minmax(snd_pcm_runtime_t *runtime, snd_pcm_hw_param_t var,
1022 				 unsigned int min, unsigned int max)
1023 {
1024 	snd_pcm_hw_constraints_t *constrs = &runtime->hw_constraints;
1025 	snd_interval_t t;
1026 	t.min = min;
1027 	t.max = max;
1028 	t.openmin = t.openmax = 0;
1029 	t.integer = 0;
1030 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1031 }
1032 
1033 static int snd_pcm_hw_rule_list(snd_pcm_hw_params_t *params,
1034 				snd_pcm_hw_rule_t *rule)
1035 {
1036 	snd_pcm_hw_constraint_list_t *list = rule->private;
1037 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1038 }
1039 
1040 
1041 /**
1042  * snd_pcm_hw_constraint_list
1043  * @runtime: PCM runtime instance
1044  * @cond: condition bits
1045  * @var: hw_params variable to apply the list constraint
1046  * @l: list
1047  *
1048  * Apply the list of constraints to an interval parameter.
1049  */
1050 int snd_pcm_hw_constraint_list(snd_pcm_runtime_t *runtime,
1051 			       unsigned int cond,
1052 			       snd_pcm_hw_param_t var,
1053 			       snd_pcm_hw_constraint_list_t *l)
1054 {
1055 	return snd_pcm_hw_rule_add(runtime, cond, var,
1056 				   snd_pcm_hw_rule_list, l,
1057 				   var, -1);
1058 }
1059 
1060 static int snd_pcm_hw_rule_ratnums(snd_pcm_hw_params_t *params,
1061 				   snd_pcm_hw_rule_t *rule)
1062 {
1063 	snd_pcm_hw_constraint_ratnums_t *r = rule->private;
1064 	unsigned int num = 0, den = 0;
1065 	int err;
1066 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1067 				  r->nrats, r->rats, &num, &den);
1068 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1069 		params->rate_num = num;
1070 		params->rate_den = den;
1071 	}
1072 	return err;
1073 }
1074 
1075 /**
1076  * snd_pcm_hw_constraint_ratnums
1077  * @runtime: PCM runtime instance
1078  * @cond: condition bits
1079  * @var: hw_params variable to apply the ratnums constraint
1080  * @r: ratnums_t constriants
1081  */
1082 int snd_pcm_hw_constraint_ratnums(snd_pcm_runtime_t *runtime,
1083 				  unsigned int cond,
1084 				  snd_pcm_hw_param_t var,
1085 				  snd_pcm_hw_constraint_ratnums_t *r)
1086 {
1087 	return snd_pcm_hw_rule_add(runtime, cond, var,
1088 				   snd_pcm_hw_rule_ratnums, r,
1089 				   var, -1);
1090 }
1091 
1092 static int snd_pcm_hw_rule_ratdens(snd_pcm_hw_params_t *params,
1093 				   snd_pcm_hw_rule_t *rule)
1094 {
1095 	snd_pcm_hw_constraint_ratdens_t *r = rule->private;
1096 	unsigned int num = 0, den = 0;
1097 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1098 				  r->nrats, r->rats, &num, &den);
1099 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1100 		params->rate_num = num;
1101 		params->rate_den = den;
1102 	}
1103 	return err;
1104 }
1105 
1106 /**
1107  * snd_pcm_hw_constraint_ratdens
1108  * @runtime: PCM runtime instance
1109  * @cond: condition bits
1110  * @var: hw_params variable to apply the ratdens constraint
1111  * @r: ratdens_t constriants
1112  */
1113 int snd_pcm_hw_constraint_ratdens(snd_pcm_runtime_t *runtime,
1114 				  unsigned int cond,
1115 				  snd_pcm_hw_param_t var,
1116 				  snd_pcm_hw_constraint_ratdens_t *r)
1117 {
1118 	return snd_pcm_hw_rule_add(runtime, cond, var,
1119 				   snd_pcm_hw_rule_ratdens, r,
1120 				   var, -1);
1121 }
1122 
1123 static int snd_pcm_hw_rule_msbits(snd_pcm_hw_params_t *params,
1124 				  snd_pcm_hw_rule_t *rule)
1125 {
1126 	unsigned int l = (unsigned long) rule->private;
1127 	int width = l & 0xffff;
1128 	unsigned int msbits = l >> 16;
1129 	snd_interval_t *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1130 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1131 		params->msbits = msbits;
1132 	return 0;
1133 }
1134 
1135 /**
1136  * snd_pcm_hw_constraint_msbits
1137  * @runtime: PCM runtime instance
1138  * @cond: condition bits
1139  * @width: sample bits width
1140  * @msbits: msbits width
1141  */
1142 int snd_pcm_hw_constraint_msbits(snd_pcm_runtime_t *runtime,
1143 				 unsigned int cond,
1144 				 unsigned int width,
1145 				 unsigned int msbits)
1146 {
1147 	unsigned long l = (msbits << 16) | width;
1148 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1149 				    snd_pcm_hw_rule_msbits,
1150 				    (void*) l,
1151 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1152 }
1153 
1154 static int snd_pcm_hw_rule_step(snd_pcm_hw_params_t *params,
1155 				snd_pcm_hw_rule_t *rule)
1156 {
1157 	unsigned long step = (unsigned long) rule->private;
1158 	return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1159 }
1160 
1161 /**
1162  * snd_pcm_hw_constraint_step
1163  * @runtime: PCM runtime instance
1164  * @cond: condition bits
1165  * @var: hw_params variable to apply the step constraint
1166  * @step: step size
1167  */
1168 int snd_pcm_hw_constraint_step(snd_pcm_runtime_t *runtime,
1169 			       unsigned int cond,
1170 			       snd_pcm_hw_param_t var,
1171 			       unsigned long step)
1172 {
1173 	return snd_pcm_hw_rule_add(runtime, cond, var,
1174 				   snd_pcm_hw_rule_step, (void *) step,
1175 				   var, -1);
1176 }
1177 
1178 static int snd_pcm_hw_rule_pow2(snd_pcm_hw_params_t *params, snd_pcm_hw_rule_t *rule)
1179 {
1180 	static int pow2_sizes[] = {
1181 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1182 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1183 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1184 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1185 	};
1186 	return snd_interval_list(hw_param_interval(params, rule->var),
1187 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1188 }
1189 
1190 /**
1191  * snd_pcm_hw_constraint_pow2
1192  * @runtime: PCM runtime instance
1193  * @cond: condition bits
1194  * @var: hw_params variable to apply the power-of-2 constraint
1195  */
1196 int snd_pcm_hw_constraint_pow2(snd_pcm_runtime_t *runtime,
1197 			       unsigned int cond,
1198 			       snd_pcm_hw_param_t var)
1199 {
1200 	return snd_pcm_hw_rule_add(runtime, cond, var,
1201 				   snd_pcm_hw_rule_pow2, NULL,
1202 				   var, -1);
1203 }
1204 
1205 /* To use the same code we have in alsa-lib */
1206 #define snd_pcm_t snd_pcm_substream_t
1207 #define assert(i) snd_assert((i), return -EINVAL)
1208 #ifndef INT_MIN
1209 #define INT_MIN ((int)((unsigned int)INT_MAX+1))
1210 #endif
1211 
1212 static void _snd_pcm_hw_param_any(snd_pcm_hw_params_t *params,
1213 				  snd_pcm_hw_param_t var)
1214 {
1215 	if (hw_is_mask(var)) {
1216 		snd_mask_any(hw_param_mask(params, var));
1217 		params->cmask |= 1 << var;
1218 		params->rmask |= 1 << var;
1219 		return;
1220 	}
1221 	if (hw_is_interval(var)) {
1222 		snd_interval_any(hw_param_interval(params, var));
1223 		params->cmask |= 1 << var;
1224 		params->rmask |= 1 << var;
1225 		return;
1226 	}
1227 	snd_BUG();
1228 }
1229 
1230 #if 0
1231 /*
1232  * snd_pcm_hw_param_any
1233  */
1234 int snd_pcm_hw_param_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1235 			 snd_pcm_hw_param_t var)
1236 {
1237 	_snd_pcm_hw_param_any(params, var);
1238 	return snd_pcm_hw_refine(pcm, params);
1239 }
1240 #endif  /*  0  */
1241 
1242 void _snd_pcm_hw_params_any(snd_pcm_hw_params_t *params)
1243 {
1244 	unsigned int k;
1245 	memset(params, 0, sizeof(*params));
1246 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1247 		_snd_pcm_hw_param_any(params, k);
1248 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1249 		_snd_pcm_hw_param_any(params, k);
1250 	params->info = ~0U;
1251 }
1252 
1253 #if 0
1254 /*
1255  * snd_pcm_hw_params_any
1256  *
1257  * Fill PARAMS with full configuration space boundaries
1258  */
1259 int snd_pcm_hw_params_any(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1260 {
1261 	_snd_pcm_hw_params_any(params);
1262 	return snd_pcm_hw_refine(pcm, params);
1263 }
1264 #endif  /*  0  */
1265 
1266 /**
1267  * snd_pcm_hw_param_value
1268  * @params: the hw_params instance
1269  * @var: parameter to retrieve
1270  * @dir: pointer to the direction (-1,0,1) or NULL
1271  *
1272  * Return the value for field PAR if it's fixed in configuration space
1273  *  defined by PARAMS. Return -EINVAL otherwise
1274  */
1275 static int snd_pcm_hw_param_value(const snd_pcm_hw_params_t *params,
1276 				  snd_pcm_hw_param_t var, int *dir)
1277 {
1278 	if (hw_is_mask(var)) {
1279 		const snd_mask_t *mask = hw_param_mask_c(params, var);
1280 		if (!snd_mask_single(mask))
1281 			return -EINVAL;
1282 		if (dir)
1283 			*dir = 0;
1284 		return snd_mask_value(mask);
1285 	}
1286 	if (hw_is_interval(var)) {
1287 		const snd_interval_t *i = hw_param_interval_c(params, var);
1288 		if (!snd_interval_single(i))
1289 			return -EINVAL;
1290 		if (dir)
1291 			*dir = i->openmin;
1292 		return snd_interval_value(i);
1293 	}
1294 	assert(0);
1295 	return -EINVAL;
1296 }
1297 
1298 /**
1299  * snd_pcm_hw_param_value_min
1300  * @params: the hw_params instance
1301  * @var: parameter to retrieve
1302  * @dir: pointer to the direction (-1,0,1) or NULL
1303  *
1304  * Return the minimum value for field PAR.
1305  */
1306 unsigned int snd_pcm_hw_param_value_min(const snd_pcm_hw_params_t *params,
1307 					snd_pcm_hw_param_t var, int *dir)
1308 {
1309 	if (hw_is_mask(var)) {
1310 		if (dir)
1311 			*dir = 0;
1312 		return snd_mask_min(hw_param_mask_c(params, var));
1313 	}
1314 	if (hw_is_interval(var)) {
1315 		const snd_interval_t *i = hw_param_interval_c(params, var);
1316 		if (dir)
1317 			*dir = i->openmin;
1318 		return snd_interval_min(i);
1319 	}
1320 	assert(0);
1321 	return -EINVAL;
1322 }
1323 
1324 /**
1325  * snd_pcm_hw_param_value_max
1326  * @params: the hw_params instance
1327  * @var: parameter to retrieve
1328  * @dir: pointer to the direction (-1,0,1) or NULL
1329  *
1330  * Return the maximum value for field PAR.
1331  */
1332 unsigned int snd_pcm_hw_param_value_max(const snd_pcm_hw_params_t *params,
1333 					snd_pcm_hw_param_t var, int *dir)
1334 {
1335 	if (hw_is_mask(var)) {
1336 		if (dir)
1337 			*dir = 0;
1338 		return snd_mask_max(hw_param_mask_c(params, var));
1339 	}
1340 	if (hw_is_interval(var)) {
1341 		const snd_interval_t *i = hw_param_interval_c(params, var);
1342 		if (dir)
1343 			*dir = - (int) i->openmax;
1344 		return snd_interval_max(i);
1345 	}
1346 	assert(0);
1347 	return -EINVAL;
1348 }
1349 
1350 void _snd_pcm_hw_param_setempty(snd_pcm_hw_params_t *params,
1351 				snd_pcm_hw_param_t var)
1352 {
1353 	if (hw_is_mask(var)) {
1354 		snd_mask_none(hw_param_mask(params, var));
1355 		params->cmask |= 1 << var;
1356 		params->rmask |= 1 << var;
1357 	} else if (hw_is_interval(var)) {
1358 		snd_interval_none(hw_param_interval(params, var));
1359 		params->cmask |= 1 << var;
1360 		params->rmask |= 1 << var;
1361 	} else {
1362 		snd_BUG();
1363 	}
1364 }
1365 
1366 int _snd_pcm_hw_param_setinteger(snd_pcm_hw_params_t *params,
1367 				 snd_pcm_hw_param_t var)
1368 {
1369 	int changed;
1370 	assert(hw_is_interval(var));
1371 	changed = snd_interval_setinteger(hw_param_interval(params, var));
1372 	if (changed) {
1373 		params->cmask |= 1 << var;
1374 		params->rmask |= 1 << var;
1375 	}
1376 	return changed;
1377 }
1378 
1379 #if 0
1380 /*
1381  * snd_pcm_hw_param_setinteger
1382  *
1383  * Inside configuration space defined by PARAMS remove from PAR all
1384  * non integer values. Reduce configuration space accordingly.
1385  * Return -EINVAL if the configuration space is empty
1386  */
1387 int snd_pcm_hw_param_setinteger(snd_pcm_t *pcm,
1388 				snd_pcm_hw_params_t *params,
1389 				snd_pcm_hw_param_t var)
1390 {
1391 	int changed = _snd_pcm_hw_param_setinteger(params, var);
1392 	if (changed < 0)
1393 		return changed;
1394 	if (params->rmask) {
1395 		int err = snd_pcm_hw_refine(pcm, params);
1396 		if (err < 0)
1397 			return err;
1398 	}
1399 	return 0;
1400 }
1401 #endif  /*  0  */
1402 
1403 static int _snd_pcm_hw_param_first(snd_pcm_hw_params_t *params,
1404 				   snd_pcm_hw_param_t var)
1405 {
1406 	int changed;
1407 	if (hw_is_mask(var))
1408 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1409 	else if (hw_is_interval(var))
1410 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1411 	else {
1412 		assert(0);
1413 		return -EINVAL;
1414 	}
1415 	if (changed) {
1416 		params->cmask |= 1 << var;
1417 		params->rmask |= 1 << var;
1418 	}
1419 	return changed;
1420 }
1421 
1422 
1423 /**
1424  * snd_pcm_hw_param_first
1425  * @pcm: PCM instance
1426  * @params: the hw_params instance
1427  * @var: parameter to retrieve
1428  * @dir: pointer to the direction (-1,0,1) or NULL
1429  *
1430  * Inside configuration space defined by PARAMS remove from PAR all
1431  * values > minimum. Reduce configuration space accordingly.
1432  * Return the minimum.
1433  */
1434 static int snd_pcm_hw_param_first(snd_pcm_t *pcm,
1435 				  snd_pcm_hw_params_t *params,
1436 				  snd_pcm_hw_param_t var, int *dir)
1437 {
1438 	int changed = _snd_pcm_hw_param_first(params, var);
1439 	if (changed < 0)
1440 		return changed;
1441 	if (params->rmask) {
1442 		int err = snd_pcm_hw_refine(pcm, params);
1443 		assert(err >= 0);
1444 	}
1445 	return snd_pcm_hw_param_value(params, var, dir);
1446 }
1447 
1448 static int _snd_pcm_hw_param_last(snd_pcm_hw_params_t *params,
1449 				  snd_pcm_hw_param_t var)
1450 {
1451 	int changed;
1452 	if (hw_is_mask(var))
1453 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1454 	else if (hw_is_interval(var))
1455 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1456 	else {
1457 		assert(0);
1458 		return -EINVAL;
1459 	}
1460 	if (changed) {
1461 		params->cmask |= 1 << var;
1462 		params->rmask |= 1 << var;
1463 	}
1464 	return changed;
1465 }
1466 
1467 
1468 /**
1469  * snd_pcm_hw_param_last
1470  * @pcm: PCM instance
1471  * @params: the hw_params instance
1472  * @var: parameter to retrieve
1473  * @dir: pointer to the direction (-1,0,1) or NULL
1474  *
1475  * Inside configuration space defined by PARAMS remove from PAR all
1476  * values < maximum. Reduce configuration space accordingly.
1477  * Return the maximum.
1478  */
1479 static int snd_pcm_hw_param_last(snd_pcm_t *pcm,
1480 				 snd_pcm_hw_params_t *params,
1481 				 snd_pcm_hw_param_t var, int *dir)
1482 {
1483 	int changed = _snd_pcm_hw_param_last(params, var);
1484 	if (changed < 0)
1485 		return changed;
1486 	if (params->rmask) {
1487 		int err = snd_pcm_hw_refine(pcm, params);
1488 		assert(err >= 0);
1489 	}
1490 	return snd_pcm_hw_param_value(params, var, dir);
1491 }
1492 
1493 int _snd_pcm_hw_param_min(snd_pcm_hw_params_t *params,
1494 			  snd_pcm_hw_param_t var, unsigned int val, int dir)
1495 {
1496 	int changed;
1497 	int open = 0;
1498 	if (dir) {
1499 		if (dir > 0) {
1500 			open = 1;
1501 		} else if (dir < 0) {
1502 			if (val > 0) {
1503 				open = 1;
1504 				val--;
1505 			}
1506 		}
1507 	}
1508 	if (hw_is_mask(var))
1509 		changed = snd_mask_refine_min(hw_param_mask(params, var), val + !!open);
1510 	else if (hw_is_interval(var))
1511 		changed = snd_interval_refine_min(hw_param_interval(params, var), val, open);
1512 	else {
1513 		assert(0);
1514 		return -EINVAL;
1515 	}
1516 	if (changed) {
1517 		params->cmask |= 1 << var;
1518 		params->rmask |= 1 << var;
1519 	}
1520 	return changed;
1521 }
1522 
1523 /**
1524  * snd_pcm_hw_param_min
1525  * @pcm: PCM instance
1526  * @params: the hw_params instance
1527  * @var: parameter to retrieve
1528  * @val: minimal value
1529  * @dir: pointer to the direction (-1,0,1) or NULL
1530  *
1531  * Inside configuration space defined by PARAMS remove from PAR all
1532  * values < VAL. Reduce configuration space accordingly.
1533  * Return new minimum or -EINVAL if the configuration space is empty
1534  */
1535 static int snd_pcm_hw_param_min(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1536 				snd_pcm_hw_param_t var, unsigned int val,
1537 				int *dir)
1538 {
1539 	int changed = _snd_pcm_hw_param_min(params, var, val, dir ? *dir : 0);
1540 	if (changed < 0)
1541 		return changed;
1542 	if (params->rmask) {
1543 		int err = snd_pcm_hw_refine(pcm, params);
1544 		if (err < 0)
1545 			return err;
1546 	}
1547 	return snd_pcm_hw_param_value_min(params, var, dir);
1548 }
1549 
1550 static int _snd_pcm_hw_param_max(snd_pcm_hw_params_t *params,
1551 				 snd_pcm_hw_param_t var, unsigned int val,
1552 				 int dir)
1553 {
1554 	int changed;
1555 	int open = 0;
1556 	if (dir) {
1557 		if (dir < 0) {
1558 			open = 1;
1559 		} else if (dir > 0) {
1560 			open = 1;
1561 			val++;
1562 		}
1563 	}
1564 	if (hw_is_mask(var)) {
1565 		if (val == 0 && open) {
1566 			snd_mask_none(hw_param_mask(params, var));
1567 			changed = -EINVAL;
1568 		} else
1569 			changed = snd_mask_refine_max(hw_param_mask(params, var), val - !!open);
1570 	} else if (hw_is_interval(var))
1571 		changed = snd_interval_refine_max(hw_param_interval(params, var), val, open);
1572 	else {
1573 		assert(0);
1574 		return -EINVAL;
1575 	}
1576 	if (changed) {
1577 		params->cmask |= 1 << var;
1578 		params->rmask |= 1 << var;
1579 	}
1580 	return changed;
1581 }
1582 
1583 /**
1584  * snd_pcm_hw_param_max
1585  * @pcm: PCM instance
1586  * @params: the hw_params instance
1587  * @var: parameter to retrieve
1588  * @val: maximal value
1589  * @dir: pointer to the direction (-1,0,1) or NULL
1590  *
1591  * Inside configuration space defined by PARAMS remove from PAR all
1592  *  values >= VAL + 1. Reduce configuration space accordingly.
1593  *  Return new maximum or -EINVAL if the configuration space is empty
1594  */
1595 static int snd_pcm_hw_param_max(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1596 				snd_pcm_hw_param_t var, unsigned int val,
1597 				int *dir)
1598 {
1599 	int changed = _snd_pcm_hw_param_max(params, var, val, dir ? *dir : 0);
1600 	if (changed < 0)
1601 		return changed;
1602 	if (params->rmask) {
1603 		int err = snd_pcm_hw_refine(pcm, params);
1604 		if (err < 0)
1605 			return err;
1606 	}
1607 	return snd_pcm_hw_param_value_max(params, var, dir);
1608 }
1609 
1610 int _snd_pcm_hw_param_set(snd_pcm_hw_params_t *params,
1611 			  snd_pcm_hw_param_t var, unsigned int val, int dir)
1612 {
1613 	int changed;
1614 	if (hw_is_mask(var)) {
1615 		snd_mask_t *m = hw_param_mask(params, var);
1616 		if (val == 0 && dir < 0) {
1617 			changed = -EINVAL;
1618 			snd_mask_none(m);
1619 		} else {
1620 			if (dir > 0)
1621 				val++;
1622 			else if (dir < 0)
1623 				val--;
1624 			changed = snd_mask_refine_set(hw_param_mask(params, var), val);
1625 		}
1626 	} else if (hw_is_interval(var)) {
1627 		snd_interval_t *i = hw_param_interval(params, var);
1628 		if (val == 0 && dir < 0) {
1629 			changed = -EINVAL;
1630 			snd_interval_none(i);
1631 		} else if (dir == 0)
1632 			changed = snd_interval_refine_set(i, val);
1633 		else {
1634 			snd_interval_t t;
1635 			t.openmin = 1;
1636 			t.openmax = 1;
1637 			t.empty = 0;
1638 			t.integer = 0;
1639 			if (dir < 0) {
1640 				t.min = val - 1;
1641 				t.max = val;
1642 			} else {
1643 				t.min = val;
1644 				t.max = val+1;
1645 			}
1646 			changed = snd_interval_refine(i, &t);
1647 		}
1648 	} else {
1649 		assert(0);
1650 		return -EINVAL;
1651 	}
1652 	if (changed) {
1653 		params->cmask |= 1 << var;
1654 		params->rmask |= 1 << var;
1655 	}
1656 	return changed;
1657 }
1658 
1659 /**
1660  * snd_pcm_hw_param_set
1661  * @pcm: PCM instance
1662  * @params: the hw_params instance
1663  * @var: parameter to retrieve
1664  * @val: value to set
1665  * @dir: pointer to the direction (-1,0,1) or NULL
1666  *
1667  * Inside configuration space defined by PARAMS remove from PAR all
1668  * values != VAL. Reduce configuration space accordingly.
1669  *  Return VAL or -EINVAL if the configuration space is empty
1670  */
1671 int snd_pcm_hw_param_set(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1672 			 snd_pcm_hw_param_t var, unsigned int val, int dir)
1673 {
1674 	int changed = _snd_pcm_hw_param_set(params, var, val, dir);
1675 	if (changed < 0)
1676 		return changed;
1677 	if (params->rmask) {
1678 		int err = snd_pcm_hw_refine(pcm, params);
1679 		if (err < 0)
1680 			return err;
1681 	}
1682 	return snd_pcm_hw_param_value(params, var, NULL);
1683 }
1684 
1685 static int _snd_pcm_hw_param_mask(snd_pcm_hw_params_t *params,
1686 				  snd_pcm_hw_param_t var, const snd_mask_t *val)
1687 {
1688 	int changed;
1689 	assert(hw_is_mask(var));
1690 	changed = snd_mask_refine(hw_param_mask(params, var), val);
1691 	if (changed) {
1692 		params->cmask |= 1 << var;
1693 		params->rmask |= 1 << var;
1694 	}
1695 	return changed;
1696 }
1697 
1698 /**
1699  * snd_pcm_hw_param_mask
1700  * @pcm: PCM instance
1701  * @params: the hw_params instance
1702  * @var: parameter to retrieve
1703  * @val: mask to apply
1704  *
1705  * Inside configuration space defined by PARAMS remove from PAR all values
1706  * not contained in MASK. Reduce configuration space accordingly.
1707  * This function can be called only for SNDRV_PCM_HW_PARAM_ACCESS,
1708  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1709  * Return 0 on success or -EINVAL
1710  * if the configuration space is empty
1711  */
1712 int snd_pcm_hw_param_mask(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1713 			  snd_pcm_hw_param_t var, const snd_mask_t *val)
1714 {
1715 	int changed = _snd_pcm_hw_param_mask(params, var, val);
1716 	if (changed < 0)
1717 		return changed;
1718 	if (params->rmask) {
1719 		int err = snd_pcm_hw_refine(pcm, params);
1720 		if (err < 0)
1721 			return err;
1722 	}
1723 	return 0;
1724 }
1725 
1726 static int boundary_sub(int a, int adir,
1727 			int b, int bdir,
1728 			int *c, int *cdir)
1729 {
1730 	adir = adir < 0 ? -1 : (adir > 0 ? 1 : 0);
1731 	bdir = bdir < 0 ? -1 : (bdir > 0 ? 1 : 0);
1732 	*c = a - b;
1733 	*cdir = adir - bdir;
1734 	if (*cdir == -2) {
1735 		assert(*c > INT_MIN);
1736 		(*c)--;
1737 	} else if (*cdir == 2) {
1738 		assert(*c < INT_MAX);
1739 		(*c)++;
1740 	}
1741 	return 0;
1742 }
1743 
1744 static int boundary_lt(unsigned int a, int adir,
1745 		       unsigned int b, int bdir)
1746 {
1747 	assert(a > 0 || adir >= 0);
1748 	assert(b > 0 || bdir >= 0);
1749 	if (adir < 0) {
1750 		a--;
1751 		adir = 1;
1752 	} else if (adir > 0)
1753 		adir = 1;
1754 	if (bdir < 0) {
1755 		b--;
1756 		bdir = 1;
1757 	} else if (bdir > 0)
1758 		bdir = 1;
1759 	return a < b || (a == b && adir < bdir);
1760 }
1761 
1762 /* Return 1 if min is nearer to best than max */
1763 static int boundary_nearer(int min, int mindir,
1764 			   int best, int bestdir,
1765 			   int max, int maxdir)
1766 {
1767 	int dmin, dmindir;
1768 	int dmax, dmaxdir;
1769 	boundary_sub(best, bestdir, min, mindir, &dmin, &dmindir);
1770 	boundary_sub(max, maxdir, best, bestdir, &dmax, &dmaxdir);
1771 	return boundary_lt(dmin, dmindir, dmax, dmaxdir);
1772 }
1773 
1774 /**
1775  * snd_pcm_hw_param_near
1776  * @pcm: PCM instance
1777  * @params: the hw_params instance
1778  * @var: parameter to retrieve
1779  * @best: value to set
1780  * @dir: pointer to the direction (-1,0,1) or NULL
1781  *
1782  * Inside configuration space defined by PARAMS set PAR to the available value
1783  * nearest to VAL. Reduce configuration space accordingly.
1784  * This function cannot be called for SNDRV_PCM_HW_PARAM_ACCESS,
1785  * SNDRV_PCM_HW_PARAM_FORMAT, SNDRV_PCM_HW_PARAM_SUBFORMAT.
1786  * Return the value found.
1787   */
1788 int snd_pcm_hw_param_near(snd_pcm_t *pcm, snd_pcm_hw_params_t *params,
1789 			  snd_pcm_hw_param_t var, unsigned int best, int *dir)
1790 {
1791 	snd_pcm_hw_params_t *save = NULL;
1792 	int v;
1793 	unsigned int saved_min;
1794 	int last = 0;
1795 	int min, max;
1796 	int mindir, maxdir;
1797 	int valdir = dir ? *dir : 0;
1798 	/* FIXME */
1799 	if (best > INT_MAX)
1800 		best = INT_MAX;
1801 	min = max = best;
1802 	mindir = maxdir = valdir;
1803 	if (maxdir > 0)
1804 		maxdir = 0;
1805 	else if (maxdir == 0)
1806 		maxdir = -1;
1807 	else {
1808 		maxdir = 1;
1809 		max--;
1810 	}
1811 	save = kmalloc(sizeof(*save), GFP_KERNEL);
1812 	if (save == NULL)
1813 		return -ENOMEM;
1814 	*save = *params;
1815 	saved_min = min;
1816 	min = snd_pcm_hw_param_min(pcm, params, var, min, &mindir);
1817 	if (min >= 0) {
1818 		snd_pcm_hw_params_t *params1;
1819 		if (max < 0)
1820 			goto _end;
1821 		if ((unsigned int)min == saved_min && mindir == valdir)
1822 			goto _end;
1823 		params1 = kmalloc(sizeof(*params1), GFP_KERNEL);
1824 		if (params1 == NULL) {
1825 			kfree(save);
1826 			return -ENOMEM;
1827 		}
1828 		*params1 = *save;
1829 		max = snd_pcm_hw_param_max(pcm, params1, var, max, &maxdir);
1830 		if (max < 0) {
1831 			kfree(params1);
1832 			goto _end;
1833 		}
1834 		if (boundary_nearer(max, maxdir, best, valdir, min, mindir)) {
1835 			*params = *params1;
1836 			last = 1;
1837 		}
1838 		kfree(params1);
1839 	} else {
1840 		*params = *save;
1841 		max = snd_pcm_hw_param_max(pcm, params, var, max, &maxdir);
1842 		assert(max >= 0);
1843 		last = 1;
1844 	}
1845  _end:
1846  	kfree(save);
1847 	if (last)
1848 		v = snd_pcm_hw_param_last(pcm, params, var, dir);
1849 	else
1850 		v = snd_pcm_hw_param_first(pcm, params, var, dir);
1851 	assert(v >= 0);
1852 	return v;
1853 }
1854 
1855 /**
1856  * snd_pcm_hw_param_choose
1857  * @pcm: PCM instance
1858  * @params: the hw_params instance
1859  *
1860  * Choose one configuration from configuration space defined by PARAMS
1861  * The configuration chosen is that obtained fixing in this order:
1862  * first access, first format, first subformat, min channels,
1863  * min rate, min period time, max buffer size, min tick time
1864  */
1865 int snd_pcm_hw_params_choose(snd_pcm_t *pcm, snd_pcm_hw_params_t *params)
1866 {
1867 	int err;
1868 
1869 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_ACCESS, NULL);
1870 	assert(err >= 0);
1871 
1872 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_FORMAT, NULL);
1873 	assert(err >= 0);
1874 
1875 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_SUBFORMAT, NULL);
1876 	assert(err >= 0);
1877 
1878 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_CHANNELS, NULL);
1879 	assert(err >= 0);
1880 
1881 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_RATE, NULL);
1882 	assert(err >= 0);
1883 
1884 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_PERIOD_TIME, NULL);
1885 	assert(err >= 0);
1886 
1887 	err = snd_pcm_hw_param_last(pcm, params, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, NULL);
1888 	assert(err >= 0);
1889 
1890 	err = snd_pcm_hw_param_first(pcm, params, SNDRV_PCM_HW_PARAM_TICK_TIME, NULL);
1891 	assert(err >= 0);
1892 
1893 	return 0;
1894 }
1895 
1896 #undef snd_pcm_t
1897 #undef assert
1898 
1899 static int snd_pcm_lib_ioctl_reset(snd_pcm_substream_t *substream,
1900 				   void *arg)
1901 {
1902 	snd_pcm_runtime_t *runtime = substream->runtime;
1903 	unsigned long flags;
1904 	snd_pcm_stream_lock_irqsave(substream, flags);
1905 	if (snd_pcm_running(substream) &&
1906 	    snd_pcm_update_hw_ptr(substream) >= 0)
1907 		runtime->status->hw_ptr %= runtime->buffer_size;
1908 	else
1909 		runtime->status->hw_ptr = 0;
1910 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1911 	return 0;
1912 }
1913 
1914 static int snd_pcm_lib_ioctl_channel_info(snd_pcm_substream_t *substream,
1915 					  void *arg)
1916 {
1917 	snd_pcm_channel_info_t *info = arg;
1918 	snd_pcm_runtime_t *runtime = substream->runtime;
1919 	int width;
1920 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1921 		info->offset = -1;
1922 		return 0;
1923 	}
1924 	width = snd_pcm_format_physical_width(runtime->format);
1925 	if (width < 0)
1926 		return width;
1927 	info->offset = 0;
1928 	switch (runtime->access) {
1929 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1930 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1931 		info->first = info->channel * width;
1932 		info->step = runtime->channels * width;
1933 		break;
1934 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1935 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1936 	{
1937 		size_t size = runtime->dma_bytes / runtime->channels;
1938 		info->first = info->channel * size * 8;
1939 		info->step = width;
1940 		break;
1941 	}
1942 	default:
1943 		snd_BUG();
1944 		break;
1945 	}
1946 	return 0;
1947 }
1948 
1949 /**
1950  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1951  * @substream: the pcm substream instance
1952  * @cmd: ioctl command
1953  * @arg: ioctl argument
1954  *
1955  * Processes the generic ioctl commands for PCM.
1956  * Can be passed as the ioctl callback for PCM ops.
1957  *
1958  * Returns zero if successful, or a negative error code on failure.
1959  */
1960 int snd_pcm_lib_ioctl(snd_pcm_substream_t *substream,
1961 		      unsigned int cmd, void *arg)
1962 {
1963 	switch (cmd) {
1964 	case SNDRV_PCM_IOCTL1_INFO:
1965 		return 0;
1966 	case SNDRV_PCM_IOCTL1_RESET:
1967 		return snd_pcm_lib_ioctl_reset(substream, arg);
1968 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1969 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1970 	}
1971 	return -ENXIO;
1972 }
1973 
1974 /*
1975  *  Conditions
1976  */
1977 
1978 static void snd_pcm_system_tick_set(snd_pcm_substream_t *substream,
1979 				    unsigned long ticks)
1980 {
1981 	snd_pcm_runtime_t *runtime = substream->runtime;
1982 	if (ticks == 0)
1983 		del_timer(&runtime->tick_timer);
1984 	else {
1985 		ticks += (1000000 / HZ) - 1;
1986 		ticks /= (1000000 / HZ);
1987 		mod_timer(&runtime->tick_timer, jiffies + ticks);
1988 	}
1989 }
1990 
1991 /* Temporary alias */
1992 void snd_pcm_tick_set(snd_pcm_substream_t *substream, unsigned long ticks)
1993 {
1994 	snd_pcm_system_tick_set(substream, ticks);
1995 }
1996 
1997 void snd_pcm_tick_prepare(snd_pcm_substream_t *substream)
1998 {
1999 	snd_pcm_runtime_t *runtime = substream->runtime;
2000 	snd_pcm_uframes_t frames = ULONG_MAX;
2001 	snd_pcm_uframes_t avail, dist;
2002 	unsigned int ticks;
2003 	u_int64_t n;
2004 	u_int32_t r;
2005 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
2006 		if (runtime->silence_size >= runtime->boundary) {
2007 			frames = 1;
2008 		} else if (runtime->silence_size > 0 &&
2009 			   runtime->silence_filled < runtime->buffer_size) {
2010 			snd_pcm_sframes_t noise_dist;
2011 			noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
2012 			snd_assert(noise_dist <= (snd_pcm_sframes_t)runtime->silence_threshold, );
2013 			frames = noise_dist - runtime->silence_threshold;
2014 		}
2015 		avail = snd_pcm_playback_avail(runtime);
2016 	} else {
2017 		avail = snd_pcm_capture_avail(runtime);
2018 	}
2019 	if (avail < runtime->control->avail_min) {
2020 		snd_pcm_sframes_t n = runtime->control->avail_min - avail;
2021 		if (n > 0 && frames > (snd_pcm_uframes_t)n)
2022 			frames = n;
2023 	}
2024 	if (avail < runtime->buffer_size) {
2025 		snd_pcm_sframes_t n = runtime->buffer_size - avail;
2026 		if (n > 0 && frames > (snd_pcm_uframes_t)n)
2027 			frames = n;
2028 	}
2029 	if (frames == ULONG_MAX) {
2030 		snd_pcm_tick_set(substream, 0);
2031 		return;
2032 	}
2033 	dist = runtime->status->hw_ptr - runtime->hw_ptr_base;
2034 	/* Distance to next interrupt */
2035 	dist = runtime->period_size - dist % runtime->period_size;
2036 	if (dist <= frames) {
2037 		snd_pcm_tick_set(substream, 0);
2038 		return;
2039 	}
2040 	/* the base time is us */
2041 	n = frames;
2042 	n *= 1000000;
2043 	div64_32(&n, runtime->tick_time * runtime->rate, &r);
2044 	ticks = n + (r > 0 ? 1 : 0);
2045 	if (ticks < runtime->sleep_min)
2046 		ticks = runtime->sleep_min;
2047 	snd_pcm_tick_set(substream, (unsigned long) ticks);
2048 }
2049 
2050 void snd_pcm_tick_elapsed(snd_pcm_substream_t *substream)
2051 {
2052 	snd_pcm_runtime_t *runtime;
2053 	unsigned long flags;
2054 
2055 	snd_assert(substream != NULL, return);
2056 	runtime = substream->runtime;
2057 	snd_assert(runtime != NULL, return);
2058 
2059 	snd_pcm_stream_lock_irqsave(substream, flags);
2060 	if (!snd_pcm_running(substream) ||
2061 	    snd_pcm_update_hw_ptr(substream) < 0)
2062 		goto _end;
2063 	if (runtime->sleep_min)
2064 		snd_pcm_tick_prepare(substream);
2065  _end:
2066 	snd_pcm_stream_unlock_irqrestore(substream, flags);
2067 }
2068 
2069 /**
2070  * snd_pcm_period_elapsed - update the pcm status for the next period
2071  * @substream: the pcm substream instance
2072  *
2073  * This function is called from the interrupt handler when the
2074  * PCM has processed the period size.  It will update the current
2075  * pointer, set up the tick, wake up sleepers, etc.
2076  *
2077  * Even if more than one periods have elapsed since the last call, you
2078  * have to call this only once.
2079  */
2080 void snd_pcm_period_elapsed(snd_pcm_substream_t *substream)
2081 {
2082 	snd_pcm_runtime_t *runtime;
2083 	unsigned long flags;
2084 
2085 	snd_assert(substream != NULL, return);
2086 	runtime = substream->runtime;
2087 	snd_assert(runtime != NULL, return);
2088 
2089 	if (runtime->transfer_ack_begin)
2090 		runtime->transfer_ack_begin(substream);
2091 
2092 	snd_pcm_stream_lock_irqsave(substream, flags);
2093 	if (!snd_pcm_running(substream) ||
2094 	    snd_pcm_update_hw_ptr_interrupt(substream) < 0)
2095 		goto _end;
2096 
2097 	if (substream->timer_running)
2098 		snd_timer_interrupt(substream->timer, 1);
2099 	if (runtime->sleep_min)
2100 		snd_pcm_tick_prepare(substream);
2101  _end:
2102 	snd_pcm_stream_unlock_irqrestore(substream, flags);
2103 	if (runtime->transfer_ack_end)
2104 		runtime->transfer_ack_end(substream);
2105 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
2106 }
2107 
2108 static int snd_pcm_lib_write_transfer(snd_pcm_substream_t *substream,
2109 				      unsigned int hwoff,
2110 				      unsigned long data, unsigned int off,
2111 				      snd_pcm_uframes_t frames)
2112 {
2113 	snd_pcm_runtime_t *runtime = substream->runtime;
2114 	int err;
2115 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2116 	if (substream->ops->copy) {
2117 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2118 			return err;
2119 	} else {
2120 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2121 		snd_assert(runtime->dma_area, return -EFAULT);
2122 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
2123 			return -EFAULT;
2124 	}
2125 	return 0;
2126 }
2127 
2128 typedef int (*transfer_f)(snd_pcm_substream_t *substream, unsigned int hwoff,
2129 			  unsigned long data, unsigned int off,
2130 			  snd_pcm_uframes_t size);
2131 
2132 static snd_pcm_sframes_t snd_pcm_lib_write1(snd_pcm_substream_t *substream,
2133 					    unsigned long data,
2134 					    snd_pcm_uframes_t size,
2135 					    int nonblock,
2136 					    transfer_f transfer)
2137 {
2138 	snd_pcm_runtime_t *runtime = substream->runtime;
2139 	snd_pcm_uframes_t xfer = 0;
2140 	snd_pcm_uframes_t offset = 0;
2141 	int err = 0;
2142 
2143 	if (size == 0)
2144 		return 0;
2145 	if (size > runtime->xfer_align)
2146 		size -= size % runtime->xfer_align;
2147 
2148 	snd_pcm_stream_lock_irq(substream);
2149 	switch (runtime->status->state) {
2150 	case SNDRV_PCM_STATE_PREPARED:
2151 	case SNDRV_PCM_STATE_RUNNING:
2152 	case SNDRV_PCM_STATE_PAUSED:
2153 		break;
2154 	case SNDRV_PCM_STATE_XRUN:
2155 		err = -EPIPE;
2156 		goto _end_unlock;
2157 	case SNDRV_PCM_STATE_SUSPENDED:
2158 		err = -ESTRPIPE;
2159 		goto _end_unlock;
2160 	default:
2161 		err = -EBADFD;
2162 		goto _end_unlock;
2163 	}
2164 
2165 	while (size > 0) {
2166 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2167 		snd_pcm_uframes_t avail;
2168 		snd_pcm_uframes_t cont;
2169 		if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2170 			snd_pcm_update_hw_ptr(substream);
2171 		avail = snd_pcm_playback_avail(runtime);
2172 		if (((avail < runtime->control->avail_min && size > avail) ||
2173 		   (size >= runtime->xfer_align && avail < runtime->xfer_align))) {
2174 			wait_queue_t wait;
2175 			enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2176 			long tout;
2177 
2178 			if (nonblock) {
2179 				err = -EAGAIN;
2180 				goto _end_unlock;
2181 			}
2182 
2183 			init_waitqueue_entry(&wait, current);
2184 			add_wait_queue(&runtime->sleep, &wait);
2185 			while (1) {
2186 				if (signal_pending(current)) {
2187 					state = SIGNALED;
2188 					break;
2189 				}
2190 				set_current_state(TASK_INTERRUPTIBLE);
2191 				snd_pcm_stream_unlock_irq(substream);
2192 				tout = schedule_timeout(10 * HZ);
2193 				snd_pcm_stream_lock_irq(substream);
2194 				if (tout == 0) {
2195 					if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2196 					    runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2197 						state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2198 						break;
2199 					}
2200 				}
2201 				switch (runtime->status->state) {
2202 				case SNDRV_PCM_STATE_XRUN:
2203 				case SNDRV_PCM_STATE_DRAINING:
2204 					state = ERROR;
2205 					goto _end_loop;
2206 				case SNDRV_PCM_STATE_SUSPENDED:
2207 					state = SUSPENDED;
2208 					goto _end_loop;
2209 				case SNDRV_PCM_STATE_SETUP:
2210 					state = DROPPED;
2211 					goto _end_loop;
2212 				default:
2213 					break;
2214 				}
2215 				avail = snd_pcm_playback_avail(runtime);
2216 				if (avail >= runtime->control->avail_min) {
2217 					state = READY;
2218 					break;
2219 				}
2220 			}
2221 		       _end_loop:
2222 			remove_wait_queue(&runtime->sleep, &wait);
2223 
2224 			switch (state) {
2225 			case ERROR:
2226 				err = -EPIPE;
2227 				goto _end_unlock;
2228 			case SUSPENDED:
2229 				err = -ESTRPIPE;
2230 				goto _end_unlock;
2231 			case SIGNALED:
2232 				err = -ERESTARTSYS;
2233 				goto _end_unlock;
2234 			case EXPIRED:
2235 				snd_printd("playback write error (DMA or IRQ trouble?)\n");
2236 				err = -EIO;
2237 				goto _end_unlock;
2238 			case DROPPED:
2239 				err = -EBADFD;
2240 				goto _end_unlock;
2241 			default:
2242 				break;
2243 			}
2244 		}
2245 		if (avail > runtime->xfer_align)
2246 			avail -= avail % runtime->xfer_align;
2247 		frames = size > avail ? avail : size;
2248 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2249 		if (frames > cont)
2250 			frames = cont;
2251 		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2252 		appl_ptr = runtime->control->appl_ptr;
2253 		appl_ofs = appl_ptr % runtime->buffer_size;
2254 		snd_pcm_stream_unlock_irq(substream);
2255 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2256 			goto _end;
2257 		snd_pcm_stream_lock_irq(substream);
2258 		switch (runtime->status->state) {
2259 		case SNDRV_PCM_STATE_XRUN:
2260 			err = -EPIPE;
2261 			goto _end_unlock;
2262 		case SNDRV_PCM_STATE_SUSPENDED:
2263 			err = -ESTRPIPE;
2264 			goto _end_unlock;
2265 		default:
2266 			break;
2267 		}
2268 		appl_ptr += frames;
2269 		if (appl_ptr >= runtime->boundary)
2270 			appl_ptr -= runtime->boundary;
2271 		runtime->control->appl_ptr = appl_ptr;
2272 		if (substream->ops->ack)
2273 			substream->ops->ack(substream);
2274 
2275 		offset += frames;
2276 		size -= frames;
2277 		xfer += frames;
2278 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2279 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2280 			err = snd_pcm_start(substream);
2281 			if (err < 0)
2282 				goto _end_unlock;
2283 		}
2284 		if (runtime->sleep_min &&
2285 		    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2286 			snd_pcm_tick_prepare(substream);
2287 	}
2288  _end_unlock:
2289 	snd_pcm_stream_unlock_irq(substream);
2290  _end:
2291 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2292 }
2293 
2294 snd_pcm_sframes_t snd_pcm_lib_write(snd_pcm_substream_t *substream, const void __user *buf, snd_pcm_uframes_t size)
2295 {
2296 	snd_pcm_runtime_t *runtime;
2297 	int nonblock;
2298 
2299 	snd_assert(substream != NULL, return -ENXIO);
2300 	runtime = substream->runtime;
2301 	snd_assert(runtime != NULL, return -ENXIO);
2302 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2303 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2304 		return -EBADFD;
2305 
2306 	snd_assert(substream->ffile != NULL, return -ENXIO);
2307 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2308 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2309 	if (substream->oss.oss) {
2310 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2311 		if (setup != NULL) {
2312 			if (setup->nonblock)
2313 				nonblock = 1;
2314 			else if (setup->block)
2315 				nonblock = 0;
2316 		}
2317 	}
2318 #endif
2319 
2320 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2321 	    runtime->channels > 1)
2322 		return -EINVAL;
2323 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2324 				  snd_pcm_lib_write_transfer);
2325 }
2326 
2327 static int snd_pcm_lib_writev_transfer(snd_pcm_substream_t *substream,
2328 				       unsigned int hwoff,
2329 				       unsigned long data, unsigned int off,
2330 				       snd_pcm_uframes_t frames)
2331 {
2332 	snd_pcm_runtime_t *runtime = substream->runtime;
2333 	int err;
2334 	void __user **bufs = (void __user **)data;
2335 	int channels = runtime->channels;
2336 	int c;
2337 	if (substream->ops->copy) {
2338 		snd_assert(substream->ops->silence != NULL, return -EINVAL);
2339 		for (c = 0; c < channels; ++c, ++bufs) {
2340 			if (*bufs == NULL) {
2341 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2342 					return err;
2343 			} else {
2344 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2345 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2346 					return err;
2347 			}
2348 		}
2349 	} else {
2350 		/* default transfer behaviour */
2351 		size_t dma_csize = runtime->dma_bytes / channels;
2352 		snd_assert(runtime->dma_area, return -EFAULT);
2353 		for (c = 0; c < channels; ++c, ++bufs) {
2354 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2355 			if (*bufs == NULL) {
2356 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2357 			} else {
2358 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2359 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2360 					return -EFAULT;
2361 			}
2362 		}
2363 	}
2364 	return 0;
2365 }
2366 
2367 snd_pcm_sframes_t snd_pcm_lib_writev(snd_pcm_substream_t *substream,
2368 				     void __user **bufs,
2369 				     snd_pcm_uframes_t frames)
2370 {
2371 	snd_pcm_runtime_t *runtime;
2372 	int nonblock;
2373 
2374 	snd_assert(substream != NULL, return -ENXIO);
2375 	runtime = substream->runtime;
2376 	snd_assert(runtime != NULL, return -ENXIO);
2377 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2378 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2379 		return -EBADFD;
2380 
2381 	snd_assert(substream->ffile != NULL, return -ENXIO);
2382 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2383 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2384 	if (substream->oss.oss) {
2385 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2386 		if (setup != NULL) {
2387 			if (setup->nonblock)
2388 				nonblock = 1;
2389 			else if (setup->block)
2390 				nonblock = 0;
2391 		}
2392 	}
2393 #endif
2394 
2395 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2396 		return -EINVAL;
2397 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2398 				  nonblock, snd_pcm_lib_writev_transfer);
2399 }
2400 
2401 static int snd_pcm_lib_read_transfer(snd_pcm_substream_t *substream,
2402 				     unsigned int hwoff,
2403 				     unsigned long data, unsigned int off,
2404 				     snd_pcm_uframes_t frames)
2405 {
2406 	snd_pcm_runtime_t *runtime = substream->runtime;
2407 	int err;
2408 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2409 	if (substream->ops->copy) {
2410 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2411 			return err;
2412 	} else {
2413 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2414 		snd_assert(runtime->dma_area, return -EFAULT);
2415 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2416 			return -EFAULT;
2417 	}
2418 	return 0;
2419 }
2420 
2421 static snd_pcm_sframes_t snd_pcm_lib_read1(snd_pcm_substream_t *substream,
2422 					   unsigned long data,
2423 					   snd_pcm_uframes_t size,
2424 					   int nonblock,
2425 					   transfer_f transfer)
2426 {
2427 	snd_pcm_runtime_t *runtime = substream->runtime;
2428 	snd_pcm_uframes_t xfer = 0;
2429 	snd_pcm_uframes_t offset = 0;
2430 	int err = 0;
2431 
2432 	if (size == 0)
2433 		return 0;
2434 	if (size > runtime->xfer_align)
2435 		size -= size % runtime->xfer_align;
2436 
2437 	snd_pcm_stream_lock_irq(substream);
2438 	switch (runtime->status->state) {
2439 	case SNDRV_PCM_STATE_PREPARED:
2440 		if (size >= runtime->start_threshold) {
2441 			err = snd_pcm_start(substream);
2442 			if (err < 0)
2443 				goto _end_unlock;
2444 		}
2445 		break;
2446 	case SNDRV_PCM_STATE_DRAINING:
2447 	case SNDRV_PCM_STATE_RUNNING:
2448 	case SNDRV_PCM_STATE_PAUSED:
2449 		break;
2450 	case SNDRV_PCM_STATE_XRUN:
2451 		err = -EPIPE;
2452 		goto _end_unlock;
2453 	case SNDRV_PCM_STATE_SUSPENDED:
2454 		err = -ESTRPIPE;
2455 		goto _end_unlock;
2456 	default:
2457 		err = -EBADFD;
2458 		goto _end_unlock;
2459 	}
2460 
2461 	while (size > 0) {
2462 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2463 		snd_pcm_uframes_t avail;
2464 		snd_pcm_uframes_t cont;
2465 		if (runtime->sleep_min == 0 && runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2466 			snd_pcm_update_hw_ptr(substream);
2467 	      __draining:
2468 		avail = snd_pcm_capture_avail(runtime);
2469 		if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
2470 			if (avail < runtime->xfer_align) {
2471 				err = -EPIPE;
2472 				goto _end_unlock;
2473 			}
2474 		} else if ((avail < runtime->control->avail_min && size > avail) ||
2475 			   (size >= runtime->xfer_align && avail < runtime->xfer_align)) {
2476 			wait_queue_t wait;
2477 			enum { READY, SIGNALED, ERROR, SUSPENDED, EXPIRED, DROPPED } state;
2478 			long tout;
2479 
2480 			if (nonblock) {
2481 				err = -EAGAIN;
2482 				goto _end_unlock;
2483 			}
2484 
2485 			init_waitqueue_entry(&wait, current);
2486 			add_wait_queue(&runtime->sleep, &wait);
2487 			while (1) {
2488 				if (signal_pending(current)) {
2489 					state = SIGNALED;
2490 					break;
2491 				}
2492 				set_current_state(TASK_INTERRUPTIBLE);
2493 				snd_pcm_stream_unlock_irq(substream);
2494 				tout = schedule_timeout(10 * HZ);
2495 				snd_pcm_stream_lock_irq(substream);
2496 				if (tout == 0) {
2497 					if (runtime->status->state != SNDRV_PCM_STATE_PREPARED &&
2498 					    runtime->status->state != SNDRV_PCM_STATE_PAUSED) {
2499 						state = runtime->status->state == SNDRV_PCM_STATE_SUSPENDED ? SUSPENDED : EXPIRED;
2500 						break;
2501 					}
2502 				}
2503 				switch (runtime->status->state) {
2504 				case SNDRV_PCM_STATE_XRUN:
2505 					state = ERROR;
2506 					goto _end_loop;
2507 				case SNDRV_PCM_STATE_SUSPENDED:
2508 					state = SUSPENDED;
2509 					goto _end_loop;
2510 				case SNDRV_PCM_STATE_DRAINING:
2511 					goto __draining;
2512 				case SNDRV_PCM_STATE_SETUP:
2513 					state = DROPPED;
2514 					goto _end_loop;
2515 				default:
2516 					break;
2517 				}
2518 				avail = snd_pcm_capture_avail(runtime);
2519 				if (avail >= runtime->control->avail_min) {
2520 					state = READY;
2521 					break;
2522 				}
2523 			}
2524 		       _end_loop:
2525 			remove_wait_queue(&runtime->sleep, &wait);
2526 
2527 			switch (state) {
2528 			case ERROR:
2529 				err = -EPIPE;
2530 				goto _end_unlock;
2531 			case SUSPENDED:
2532 				err = -ESTRPIPE;
2533 				goto _end_unlock;
2534 			case SIGNALED:
2535 				err = -ERESTARTSYS;
2536 				goto _end_unlock;
2537 			case EXPIRED:
2538 				snd_printd("capture read error (DMA or IRQ trouble?)\n");
2539 				err = -EIO;
2540 				goto _end_unlock;
2541 			case DROPPED:
2542 				err = -EBADFD;
2543 				goto _end_unlock;
2544 			default:
2545 				break;
2546 			}
2547 		}
2548 		if (avail > runtime->xfer_align)
2549 			avail -= avail % runtime->xfer_align;
2550 		frames = size > avail ? avail : size;
2551 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2552 		if (frames > cont)
2553 			frames = cont;
2554 		snd_assert(frames != 0, snd_pcm_stream_unlock_irq(substream); return -EINVAL);
2555 		appl_ptr = runtime->control->appl_ptr;
2556 		appl_ofs = appl_ptr % runtime->buffer_size;
2557 		snd_pcm_stream_unlock_irq(substream);
2558 		if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
2559 			goto _end;
2560 		snd_pcm_stream_lock_irq(substream);
2561 		switch (runtime->status->state) {
2562 		case SNDRV_PCM_STATE_XRUN:
2563 			err = -EPIPE;
2564 			goto _end_unlock;
2565 		case SNDRV_PCM_STATE_SUSPENDED:
2566 			err = -ESTRPIPE;
2567 			goto _end_unlock;
2568 		default:
2569 			break;
2570 		}
2571 		appl_ptr += frames;
2572 		if (appl_ptr >= runtime->boundary)
2573 			appl_ptr -= runtime->boundary;
2574 		runtime->control->appl_ptr = appl_ptr;
2575 		if (substream->ops->ack)
2576 			substream->ops->ack(substream);
2577 
2578 		offset += frames;
2579 		size -= frames;
2580 		xfer += frames;
2581 		if (runtime->sleep_min &&
2582 		    runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2583 			snd_pcm_tick_prepare(substream);
2584 	}
2585  _end_unlock:
2586 	snd_pcm_stream_unlock_irq(substream);
2587  _end:
2588 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2589 }
2590 
2591 snd_pcm_sframes_t snd_pcm_lib_read(snd_pcm_substream_t *substream, void __user *buf, snd_pcm_uframes_t size)
2592 {
2593 	snd_pcm_runtime_t *runtime;
2594 	int nonblock;
2595 
2596 	snd_assert(substream != NULL, return -ENXIO);
2597 	runtime = substream->runtime;
2598 	snd_assert(runtime != NULL, return -ENXIO);
2599 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2600 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2601 		return -EBADFD;
2602 
2603 	snd_assert(substream->ffile != NULL, return -ENXIO);
2604 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2605 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2606 	if (substream->oss.oss) {
2607 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2608 		if (setup != NULL) {
2609 			if (setup->nonblock)
2610 				nonblock = 1;
2611 			else if (setup->block)
2612 				nonblock = 0;
2613 		}
2614 	}
2615 #endif
2616 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2617 		return -EINVAL;
2618 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2619 }
2620 
2621 static int snd_pcm_lib_readv_transfer(snd_pcm_substream_t *substream,
2622 				      unsigned int hwoff,
2623 				      unsigned long data, unsigned int off,
2624 				      snd_pcm_uframes_t frames)
2625 {
2626 	snd_pcm_runtime_t *runtime = substream->runtime;
2627 	int err;
2628 	void __user **bufs = (void __user **)data;
2629 	int channels = runtime->channels;
2630 	int c;
2631 	if (substream->ops->copy) {
2632 		for (c = 0; c < channels; ++c, ++bufs) {
2633 			char __user *buf;
2634 			if (*bufs == NULL)
2635 				continue;
2636 			buf = *bufs + samples_to_bytes(runtime, off);
2637 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2638 				return err;
2639 		}
2640 	} else {
2641 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2642 		snd_assert(runtime->dma_area, return -EFAULT);
2643 		for (c = 0; c < channels; ++c, ++bufs) {
2644 			char *hwbuf;
2645 			char __user *buf;
2646 			if (*bufs == NULL)
2647 				continue;
2648 
2649 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2650 			buf = *bufs + samples_to_bytes(runtime, off);
2651 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2652 				return -EFAULT;
2653 		}
2654 	}
2655 	return 0;
2656 }
2657 
2658 snd_pcm_sframes_t snd_pcm_lib_readv(snd_pcm_substream_t *substream,
2659 				    void __user **bufs,
2660 				    snd_pcm_uframes_t frames)
2661 {
2662 	snd_pcm_runtime_t *runtime;
2663 	int nonblock;
2664 
2665 	snd_assert(substream != NULL, return -ENXIO);
2666 	runtime = substream->runtime;
2667 	snd_assert(runtime != NULL, return -ENXIO);
2668 	snd_assert(substream->ops->copy != NULL || runtime->dma_area != NULL, return -EINVAL);
2669 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2670 		return -EBADFD;
2671 
2672 	snd_assert(substream->ffile != NULL, return -ENXIO);
2673 	nonblock = !!(substream->ffile->f_flags & O_NONBLOCK);
2674 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2675 	if (substream->oss.oss) {
2676 		snd_pcm_oss_setup_t *setup = substream->oss.setup;
2677 		if (setup != NULL) {
2678 			if (setup->nonblock)
2679 				nonblock = 1;
2680 			else if (setup->block)
2681 				nonblock = 0;
2682 		}
2683 	}
2684 #endif
2685 
2686 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2687 		return -EINVAL;
2688 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2689 }
2690 
2691 /*
2692  *  Exported symbols
2693  */
2694 
2695 EXPORT_SYMBOL(snd_interval_refine);
2696 EXPORT_SYMBOL(snd_interval_list);
2697 EXPORT_SYMBOL(snd_interval_ratnum);
2698 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
2699 EXPORT_SYMBOL(_snd_pcm_hw_param_min);
2700 EXPORT_SYMBOL(_snd_pcm_hw_param_set);
2701 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
2702 EXPORT_SYMBOL(_snd_pcm_hw_param_setinteger);
2703 EXPORT_SYMBOL(snd_pcm_hw_param_value_min);
2704 EXPORT_SYMBOL(snd_pcm_hw_param_value_max);
2705 EXPORT_SYMBOL(snd_pcm_hw_param_mask);
2706 EXPORT_SYMBOL(snd_pcm_hw_param_first);
2707 EXPORT_SYMBOL(snd_pcm_hw_param_last);
2708 EXPORT_SYMBOL(snd_pcm_hw_param_near);
2709 EXPORT_SYMBOL(snd_pcm_hw_param_set);
2710 EXPORT_SYMBOL(snd_pcm_hw_refine);
2711 EXPORT_SYMBOL(snd_pcm_hw_constraints_init);
2712 EXPORT_SYMBOL(snd_pcm_hw_constraints_complete);
2713 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
2714 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
2715 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
2716 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
2717 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
2718 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
2719 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
2720 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
2721 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
2722 EXPORT_SYMBOL(snd_pcm_set_ops);
2723 EXPORT_SYMBOL(snd_pcm_set_sync);
2724 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
2725 EXPORT_SYMBOL(snd_pcm_stop);
2726 EXPORT_SYMBOL(snd_pcm_period_elapsed);
2727 EXPORT_SYMBOL(snd_pcm_lib_write);
2728 EXPORT_SYMBOL(snd_pcm_lib_read);
2729 EXPORT_SYMBOL(snd_pcm_lib_writev);
2730 EXPORT_SYMBOL(snd_pcm_lib_readv);
2731 EXPORT_SYMBOL(snd_pcm_lib_buffer_bytes);
2732 EXPORT_SYMBOL(snd_pcm_lib_period_bytes);
2733 /* pcm_memory.c */
2734 EXPORT_SYMBOL(snd_pcm_lib_preallocate_free_for_all);
2735 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages);
2736 EXPORT_SYMBOL(snd_pcm_lib_preallocate_pages_for_all);
2737 EXPORT_SYMBOL(snd_pcm_sgbuf_ops_page);
2738 EXPORT_SYMBOL(snd_pcm_lib_malloc_pages);
2739 EXPORT_SYMBOL(snd_pcm_lib_free_pages);
2740