1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/highmem.h> 14 #include <linux/vmalloc.h> 15 #ifdef CONFIG_X86 16 #include <asm/set_memory.h> 17 #endif 18 #include <sound/memalloc.h> 19 #include "memalloc_local.h" 20 21 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 22 23 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 24 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 25 gfp_t default_gfp) 26 { 27 if (!dmab->dev.dev) 28 return default_gfp; 29 else 30 return (__force gfp_t)(unsigned long)dmab->dev.dev; 31 } 32 33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34 { 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40 } 41 42 /** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57 int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60 { 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78 } 79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81 /** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98 { 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112 } 113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115 /** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122 { 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127 } 128 EXPORT_SYMBOL(snd_dma_free_pages); 129 130 /* called by devres */ 131 static void __snd_release_pages(struct device *dev, void *res) 132 { 133 snd_dma_free_pages(res); 134 } 135 136 /** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * The function returns the snd_dma_buffer object at success, or NULL if failed. 151 */ 152 struct snd_dma_buffer * 153 snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155 { 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175 } 176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178 /** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 */ 183 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 184 struct vm_area_struct *area) 185 { 186 const struct snd_malloc_ops *ops; 187 188 if (!dmab) 189 return -ENOENT; 190 ops = snd_dma_get_ops(dmab); 191 if (ops && ops->mmap) 192 return ops->mmap(dmab, area); 193 else 194 return -ENOENT; 195 } 196 EXPORT_SYMBOL(snd_dma_buffer_mmap); 197 198 #ifdef CONFIG_HAS_DMA 199 /** 200 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 201 * @dmab: buffer allocation information 202 * @mode: sync mode 203 */ 204 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 205 enum snd_dma_sync_mode mode) 206 { 207 const struct snd_malloc_ops *ops; 208 209 if (!dmab || !dmab->dev.need_sync) 210 return; 211 ops = snd_dma_get_ops(dmab); 212 if (ops && ops->sync) 213 ops->sync(dmab, mode); 214 } 215 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 216 #endif /* CONFIG_HAS_DMA */ 217 218 /** 219 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 220 * @dmab: buffer allocation information 221 * @offset: offset in the ring buffer 222 */ 223 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 224 { 225 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 226 227 if (ops && ops->get_addr) 228 return ops->get_addr(dmab, offset); 229 else 230 return dmab->addr + offset; 231 } 232 EXPORT_SYMBOL(snd_sgbuf_get_addr); 233 234 /** 235 * snd_sgbuf_get_page - return the physical page at the corresponding offset 236 * @dmab: buffer allocation information 237 * @offset: offset in the ring buffer 238 */ 239 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 240 { 241 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 242 243 if (ops && ops->get_page) 244 return ops->get_page(dmab, offset); 245 else 246 return virt_to_page(dmab->area + offset); 247 } 248 EXPORT_SYMBOL(snd_sgbuf_get_page); 249 250 /** 251 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 252 * on sg-buffer 253 * @dmab: buffer allocation information 254 * @ofs: offset in the ring buffer 255 * @size: the requested size 256 */ 257 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 258 unsigned int ofs, unsigned int size) 259 { 260 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 261 262 if (ops && ops->get_chunk_size) 263 return ops->get_chunk_size(dmab, ofs, size); 264 else 265 return size; 266 } 267 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 268 269 /* 270 * Continuous pages allocator 271 */ 272 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 273 { 274 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 275 void *p = alloc_pages_exact(size, gfp); 276 277 if (p) 278 dmab->addr = page_to_phys(virt_to_page(p)); 279 return p; 280 } 281 282 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 283 { 284 free_pages_exact(dmab->area, dmab->bytes); 285 } 286 287 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 288 struct vm_area_struct *area) 289 { 290 return remap_pfn_range(area, area->vm_start, 291 dmab->addr >> PAGE_SHIFT, 292 area->vm_end - area->vm_start, 293 area->vm_page_prot); 294 } 295 296 static const struct snd_malloc_ops snd_dma_continuous_ops = { 297 .alloc = snd_dma_continuous_alloc, 298 .free = snd_dma_continuous_free, 299 .mmap = snd_dma_continuous_mmap, 300 }; 301 302 /* 303 * VMALLOC allocator 304 */ 305 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 306 { 307 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 308 309 return __vmalloc(size, gfp); 310 } 311 312 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 313 { 314 vfree(dmab->area); 315 } 316 317 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 318 struct vm_area_struct *area) 319 { 320 return remap_vmalloc_range(area, dmab->area, 0); 321 } 322 323 #define get_vmalloc_page_addr(dmab, offset) \ 324 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 325 326 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 327 size_t offset) 328 { 329 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 330 } 331 332 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 333 size_t offset) 334 { 335 return vmalloc_to_page(dmab->area + offset); 336 } 337 338 static unsigned int 339 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 340 unsigned int ofs, unsigned int size) 341 { 342 unsigned int start, end; 343 unsigned long addr; 344 345 start = ALIGN_DOWN(ofs, PAGE_SIZE); 346 end = ofs + size - 1; /* the last byte address */ 347 /* check page continuity */ 348 addr = get_vmalloc_page_addr(dmab, start); 349 for (;;) { 350 start += PAGE_SIZE; 351 if (start > end) 352 break; 353 addr += PAGE_SIZE; 354 if (get_vmalloc_page_addr(dmab, start) != addr) 355 return start - ofs; 356 } 357 /* ok, all on continuous pages */ 358 return size; 359 } 360 361 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 362 .alloc = snd_dma_vmalloc_alloc, 363 .free = snd_dma_vmalloc_free, 364 .mmap = snd_dma_vmalloc_mmap, 365 .get_addr = snd_dma_vmalloc_get_addr, 366 .get_page = snd_dma_vmalloc_get_page, 367 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 368 }; 369 370 #ifdef CONFIG_HAS_DMA 371 /* 372 * IRAM allocator 373 */ 374 #ifdef CONFIG_GENERIC_ALLOCATOR 375 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 376 { 377 struct device *dev = dmab->dev.dev; 378 struct gen_pool *pool; 379 void *p; 380 381 if (dev->of_node) { 382 pool = of_gen_pool_get(dev->of_node, "iram", 0); 383 /* Assign the pool into private_data field */ 384 dmab->private_data = pool; 385 386 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 387 if (p) 388 return p; 389 } 390 391 /* Internal memory might have limited size and no enough space, 392 * so if we fail to malloc, try to fetch memory traditionally. 393 */ 394 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 395 return __snd_dma_alloc_pages(dmab, size); 396 } 397 398 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 399 { 400 struct gen_pool *pool = dmab->private_data; 401 402 if (pool && dmab->area) 403 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 404 } 405 406 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 407 struct vm_area_struct *area) 408 { 409 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 410 return remap_pfn_range(area, area->vm_start, 411 dmab->addr >> PAGE_SHIFT, 412 area->vm_end - area->vm_start, 413 area->vm_page_prot); 414 } 415 416 static const struct snd_malloc_ops snd_dma_iram_ops = { 417 .alloc = snd_dma_iram_alloc, 418 .free = snd_dma_iram_free, 419 .mmap = snd_dma_iram_mmap, 420 }; 421 #endif /* CONFIG_GENERIC_ALLOCATOR */ 422 423 #define DEFAULT_GFP \ 424 (GFP_KERNEL | \ 425 __GFP_COMP | /* compound page lets parts be mapped */ \ 426 __GFP_NORETRY | /* don't trigger OOM-killer */ \ 427 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 428 429 /* 430 * Coherent device pages allocator 431 */ 432 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 433 { 434 void *p; 435 436 p = dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 437 #ifdef CONFIG_X86 438 if (p && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 439 set_memory_wc((unsigned long)p, PAGE_ALIGN(size) >> PAGE_SHIFT); 440 #endif 441 return p; 442 } 443 444 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 445 { 446 #ifdef CONFIG_X86 447 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 448 set_memory_wb((unsigned long)dmab->area, 449 PAGE_ALIGN(dmab->bytes) >> PAGE_SHIFT); 450 #endif 451 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 452 } 453 454 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 455 struct vm_area_struct *area) 456 { 457 #ifdef CONFIG_X86 458 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC) 459 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 460 #endif 461 return dma_mmap_coherent(dmab->dev.dev, area, 462 dmab->area, dmab->addr, dmab->bytes); 463 } 464 465 static const struct snd_malloc_ops snd_dma_dev_ops = { 466 .alloc = snd_dma_dev_alloc, 467 .free = snd_dma_dev_free, 468 .mmap = snd_dma_dev_mmap, 469 }; 470 471 /* 472 * Write-combined pages 473 */ 474 #ifdef CONFIG_X86 475 /* On x86, share the same ops as the standard dev ops */ 476 #define snd_dma_wc_ops snd_dma_dev_ops 477 #else /* CONFIG_X86 */ 478 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 479 { 480 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 481 } 482 483 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 484 { 485 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 486 } 487 488 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 489 struct vm_area_struct *area) 490 { 491 return dma_mmap_wc(dmab->dev.dev, area, 492 dmab->area, dmab->addr, dmab->bytes); 493 } 494 495 static const struct snd_malloc_ops snd_dma_wc_ops = { 496 .alloc = snd_dma_wc_alloc, 497 .free = snd_dma_wc_free, 498 .mmap = snd_dma_wc_mmap, 499 }; 500 #endif /* CONFIG_X86 */ 501 502 /* 503 * Non-contiguous pages allocator 504 */ 505 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 506 { 507 struct sg_table *sgt; 508 void *p; 509 510 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 511 DEFAULT_GFP, 0); 512 if (!sgt) 513 return NULL; 514 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir); 515 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 516 if (p) 517 dmab->private_data = sgt; 518 else 519 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 520 return p; 521 } 522 523 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 524 { 525 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 526 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 527 dmab->dev.dir); 528 } 529 530 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 531 struct vm_area_struct *area) 532 { 533 return dma_mmap_noncontiguous(dmab->dev.dev, area, 534 dmab->bytes, dmab->private_data); 535 } 536 537 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 538 enum snd_dma_sync_mode mode) 539 { 540 if (mode == SNDRV_DMA_SYNC_CPU) { 541 if (dmab->dev.dir == DMA_TO_DEVICE) 542 return; 543 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 544 dmab->dev.dir); 545 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 546 } else { 547 if (dmab->dev.dir == DMA_FROM_DEVICE) 548 return; 549 flush_kernel_vmap_range(dmab->area, dmab->bytes); 550 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 551 dmab->dev.dir); 552 } 553 } 554 555 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 556 struct sg_page_iter *piter, 557 size_t offset) 558 { 559 struct sg_table *sgt = dmab->private_data; 560 561 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 562 offset >> PAGE_SHIFT); 563 } 564 565 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 566 size_t offset) 567 { 568 struct sg_dma_page_iter iter; 569 570 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 571 __sg_page_iter_dma_next(&iter); 572 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 573 } 574 575 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 576 size_t offset) 577 { 578 struct sg_page_iter iter; 579 580 snd_dma_noncontig_iter_set(dmab, &iter, offset); 581 __sg_page_iter_next(&iter); 582 return sg_page_iter_page(&iter); 583 } 584 585 static unsigned int 586 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 587 unsigned int ofs, unsigned int size) 588 { 589 struct sg_dma_page_iter iter; 590 unsigned int start, end; 591 unsigned long addr; 592 593 start = ALIGN_DOWN(ofs, PAGE_SIZE); 594 end = ofs + size - 1; /* the last byte address */ 595 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 596 if (!__sg_page_iter_dma_next(&iter)) 597 return 0; 598 /* check page continuity */ 599 addr = sg_page_iter_dma_address(&iter); 600 for (;;) { 601 start += PAGE_SIZE; 602 if (start > end) 603 break; 604 addr += PAGE_SIZE; 605 if (!__sg_page_iter_dma_next(&iter) || 606 sg_page_iter_dma_address(&iter) != addr) 607 return start - ofs; 608 } 609 /* ok, all on continuous pages */ 610 return size; 611 } 612 613 static const struct snd_malloc_ops snd_dma_noncontig_ops = { 614 .alloc = snd_dma_noncontig_alloc, 615 .free = snd_dma_noncontig_free, 616 .mmap = snd_dma_noncontig_mmap, 617 .sync = snd_dma_noncontig_sync, 618 .get_addr = snd_dma_noncontig_get_addr, 619 .get_page = snd_dma_noncontig_get_page, 620 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 621 }; 622 623 /* x86-specific SG-buffer with WC pages */ 624 #ifdef CONFIG_SND_DMA_SGBUF 625 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it))) 626 627 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 628 { 629 void *p = snd_dma_noncontig_alloc(dmab, size); 630 struct sg_table *sgt = dmab->private_data; 631 struct sg_page_iter iter; 632 633 if (!p) 634 return NULL; 635 for_each_sgtable_page(sgt, &iter, 0) 636 set_memory_wc(sg_wc_address(&iter), 1); 637 return p; 638 } 639 640 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 641 { 642 struct sg_table *sgt = dmab->private_data; 643 struct sg_page_iter iter; 644 645 for_each_sgtable_page(sgt, &iter, 0) 646 set_memory_wb(sg_wc_address(&iter), 1); 647 snd_dma_noncontig_free(dmab); 648 } 649 650 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 651 struct vm_area_struct *area) 652 { 653 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 654 return dma_mmap_noncontiguous(dmab->dev.dev, area, 655 dmab->bytes, dmab->private_data); 656 } 657 658 static const struct snd_malloc_ops snd_dma_sg_wc_ops = { 659 .alloc = snd_dma_sg_wc_alloc, 660 .free = snd_dma_sg_wc_free, 661 .mmap = snd_dma_sg_wc_mmap, 662 .sync = snd_dma_noncontig_sync, 663 .get_addr = snd_dma_noncontig_get_addr, 664 .get_page = snd_dma_noncontig_get_page, 665 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 666 }; 667 #endif /* CONFIG_SND_DMA_SGBUF */ 668 669 /* 670 * Non-coherent pages allocator 671 */ 672 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 673 { 674 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->dev.dir); 675 return dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 676 dmab->dev.dir, DEFAULT_GFP); 677 } 678 679 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 680 { 681 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 682 dmab->addr, dmab->dev.dir); 683 } 684 685 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 686 struct vm_area_struct *area) 687 { 688 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 689 return dma_mmap_pages(dmab->dev.dev, area, 690 area->vm_end - area->vm_start, 691 virt_to_page(dmab->area)); 692 } 693 694 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 695 enum snd_dma_sync_mode mode) 696 { 697 if (mode == SNDRV_DMA_SYNC_CPU) { 698 if (dmab->dev.dir != DMA_TO_DEVICE) 699 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 700 dmab->bytes, dmab->dev.dir); 701 } else { 702 if (dmab->dev.dir != DMA_FROM_DEVICE) 703 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 704 dmab->bytes, dmab->dev.dir); 705 } 706 } 707 708 static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 709 .alloc = snd_dma_noncoherent_alloc, 710 .free = snd_dma_noncoherent_free, 711 .mmap = snd_dma_noncoherent_mmap, 712 .sync = snd_dma_noncoherent_sync, 713 }; 714 715 #endif /* CONFIG_HAS_DMA */ 716 717 /* 718 * Entry points 719 */ 720 static const struct snd_malloc_ops *dma_ops[] = { 721 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 722 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 723 #ifdef CONFIG_HAS_DMA 724 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 725 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 726 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 727 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 728 #ifdef CONFIG_SND_DMA_SGBUF 729 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 730 #endif 731 #ifdef CONFIG_GENERIC_ALLOCATOR 732 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 733 #endif /* CONFIG_GENERIC_ALLOCATOR */ 734 #endif /* CONFIG_HAS_DMA */ 735 }; 736 737 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 738 { 739 if (WARN_ON_ONCE(!dmab)) 740 return NULL; 741 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 742 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 743 return NULL; 744 return dma_ops[dmab->dev.type]; 745 } 746