xref: /linux/sound/core/memalloc.c (revision 54a8a2220c936a47840c9a3d74910c5a56fae2ed)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@suse.cz>
3  *                   Takashi Iwai <tiwai@suse.de>
4  *
5  *  Generic memory allocators
6  *
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  *
22  */
23 
24 #include <linux/config.h>
25 #include <linux/module.h>
26 #include <linux/proc_fs.h>
27 #include <linux/init.h>
28 #include <linux/pci.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <asm/uaccess.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/moduleparam.h>
34 #include <asm/semaphore.h>
35 #include <sound/memalloc.h>
36 #ifdef CONFIG_SBUS
37 #include <asm/sbus.h>
38 #endif
39 
40 
41 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
42 MODULE_DESCRIPTION("Memory allocator for ALSA system.");
43 MODULE_LICENSE("GPL");
44 
45 
46 #ifndef SNDRV_CARDS
47 #define SNDRV_CARDS	8
48 #endif
49 
50 /*
51  */
52 
53 void *snd_malloc_sgbuf_pages(struct device *device,
54                              size_t size, struct snd_dma_buffer *dmab,
55 			     size_t *res_size);
56 int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
57 
58 /*
59  */
60 
61 static DECLARE_MUTEX(list_mutex);
62 static LIST_HEAD(mem_list_head);
63 
64 /* buffer preservation list */
65 struct snd_mem_list {
66 	struct snd_dma_buffer buffer;
67 	unsigned int id;
68 	struct list_head list;
69 };
70 
71 /* id for pre-allocated buffers */
72 #define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
73 
74 #ifdef CONFIG_SND_DEBUG
75 #define __ASTRING__(x) #x
76 #define snd_assert(expr, args...) do {\
77 	if (!(expr)) {\
78 		printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
79 		args;\
80 	}\
81 } while (0)
82 #else
83 #define snd_assert(expr, args...) /**/
84 #endif
85 
86 /*
87  *  Hacks
88  */
89 
90 #if defined(__i386__) || defined(__ppc__) || defined(__x86_64__)
91 /*
92  * A hack to allocate large buffers via dma_alloc_coherent()
93  *
94  * since dma_alloc_coherent always tries GFP_DMA when the requested
95  * pci memory region is below 32bit, it happens quite often that even
96  * 2 order of pages cannot be allocated.
97  *
98  * so in the following, we allocate at first without dma_mask, so that
99  * allocation will be done without GFP_DMA.  if the area doesn't match
100  * with the requested region, then realloate with the original dma_mask
101  * again.
102  *
103  * Really, we want to move this type of thing into dma_alloc_coherent()
104  * so dma_mask doesn't have to be messed with.
105  */
106 
107 static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
108 					 dma_addr_t *dma_handle,
109 					 gfp_t flags)
110 {
111 	void *ret;
112 	u64 dma_mask, coherent_dma_mask;
113 
114 	if (dev == NULL || !dev->dma_mask)
115 		return dma_alloc_coherent(dev, size, dma_handle, flags);
116 	dma_mask = *dev->dma_mask;
117 	coherent_dma_mask = dev->coherent_dma_mask;
118 	*dev->dma_mask = 0xffffffff; 	/* do without masking */
119 	dev->coherent_dma_mask = 0xffffffff; 	/* do without masking */
120 	ret = dma_alloc_coherent(dev, size, dma_handle, flags);
121 	*dev->dma_mask = dma_mask;	/* restore */
122 	dev->coherent_dma_mask = coherent_dma_mask;	/* restore */
123 	if (ret) {
124 		/* obtained address is out of range? */
125 		if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
126 			/* reallocate with the proper mask */
127 			dma_free_coherent(dev, size, ret, *dma_handle);
128 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
129 		}
130 	} else {
131 		/* wish to success now with the proper mask... */
132 		if (dma_mask != 0xffffffffUL) {
133 			/* allocation with GFP_ATOMIC to avoid the long stall */
134 			flags &= ~GFP_KERNEL;
135 			flags |= GFP_ATOMIC;
136 			ret = dma_alloc_coherent(dev, size, dma_handle, flags);
137 		}
138 	}
139 	return ret;
140 }
141 
142 /* redefine dma_alloc_coherent for some architectures */
143 #undef dma_alloc_coherent
144 #define dma_alloc_coherent snd_dma_hack_alloc_coherent
145 
146 #endif /* arch */
147 
148 #if ! defined(__arm__)
149 #define NEED_RESERVE_PAGES
150 #endif
151 
152 /*
153  *
154  *  Generic memory allocators
155  *
156  */
157 
158 static long snd_allocated_pages; /* holding the number of allocated pages */
159 
160 static inline void inc_snd_pages(int order)
161 {
162 	snd_allocated_pages += 1 << order;
163 }
164 
165 static inline void dec_snd_pages(int order)
166 {
167 	snd_allocated_pages -= 1 << order;
168 }
169 
170 static void mark_pages(struct page *page, int order)
171 {
172 	struct page *last_page = page + (1 << order);
173 	while (page < last_page)
174 		SetPageReserved(page++);
175 }
176 
177 static void unmark_pages(struct page *page, int order)
178 {
179 	struct page *last_page = page + (1 << order);
180 	while (page < last_page)
181 		ClearPageReserved(page++);
182 }
183 
184 /**
185  * snd_malloc_pages - allocate pages with the given size
186  * @size: the size to allocate in bytes
187  * @gfp_flags: the allocation conditions, GFP_XXX
188  *
189  * Allocates the physically contiguous pages with the given size.
190  *
191  * Returns the pointer of the buffer, or NULL if no enoguh memory.
192  */
193 void *snd_malloc_pages(size_t size, unsigned int gfp_flags)
194 {
195 	int pg;
196 	void *res;
197 
198 	snd_assert(size > 0, return NULL);
199 	snd_assert(gfp_flags != 0, return NULL);
200 	pg = get_order(size);
201 	if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL) {
202 		mark_pages(virt_to_page(res), pg);
203 		inc_snd_pages(pg);
204 	}
205 	return res;
206 }
207 
208 /**
209  * snd_free_pages - release the pages
210  * @ptr: the buffer pointer to release
211  * @size: the allocated buffer size
212  *
213  * Releases the buffer allocated via snd_malloc_pages().
214  */
215 void snd_free_pages(void *ptr, size_t size)
216 {
217 	int pg;
218 
219 	if (ptr == NULL)
220 		return;
221 	pg = get_order(size);
222 	dec_snd_pages(pg);
223 	unmark_pages(virt_to_page(ptr), pg);
224 	free_pages((unsigned long) ptr, pg);
225 }
226 
227 /*
228  *
229  *  Bus-specific memory allocators
230  *
231  */
232 
233 /* allocate the coherent DMA pages */
234 static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
235 {
236 	int pg;
237 	void *res;
238 	unsigned int gfp_flags;
239 
240 	snd_assert(size > 0, return NULL);
241 	snd_assert(dma != NULL, return NULL);
242 	pg = get_order(size);
243 	gfp_flags = GFP_KERNEL
244 		| __GFP_NORETRY /* don't trigger OOM-killer */
245 		| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
246 	res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
247 	if (res != NULL) {
248 #ifdef NEED_RESERVE_PAGES
249 		mark_pages(virt_to_page(res), pg); /* should be dma_to_page() */
250 #endif
251 		inc_snd_pages(pg);
252 	}
253 
254 	return res;
255 }
256 
257 /* free the coherent DMA pages */
258 static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
259 			       dma_addr_t dma)
260 {
261 	int pg;
262 
263 	if (ptr == NULL)
264 		return;
265 	pg = get_order(size);
266 	dec_snd_pages(pg);
267 #ifdef NEED_RESERVE_PAGES
268 	unmark_pages(virt_to_page(ptr), pg); /* should be dma_to_page() */
269 #endif
270 	dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
271 }
272 
273 #ifdef CONFIG_SBUS
274 
275 static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
276 				   dma_addr_t *dma_addr)
277 {
278 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
279 	int pg;
280 	void *res;
281 
282 	snd_assert(size > 0, return NULL);
283 	snd_assert(dma_addr != NULL, return NULL);
284 	pg = get_order(size);
285 	res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
286 	if (res != NULL)
287 		inc_snd_pages(pg);
288 	return res;
289 }
290 
291 static void snd_free_sbus_pages(struct device *dev, size_t size,
292 				void *ptr, dma_addr_t dma_addr)
293 {
294 	struct sbus_dev *sdev = (struct sbus_dev *)dev;
295 	int pg;
296 
297 	if (ptr == NULL)
298 		return;
299 	pg = get_order(size);
300 	dec_snd_pages(pg);
301 	sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
302 }
303 
304 #endif /* CONFIG_SBUS */
305 
306 /*
307  *
308  *  ALSA generic memory management
309  *
310  */
311 
312 
313 /**
314  * snd_dma_alloc_pages - allocate the buffer area according to the given type
315  * @type: the DMA buffer type
316  * @device: the device pointer
317  * @size: the buffer size to allocate
318  * @dmab: buffer allocation record to store the allocated data
319  *
320  * Calls the memory-allocator function for the corresponding
321  * buffer type.
322  *
323  * Returns zero if the buffer with the given size is allocated successfuly,
324  * other a negative value at error.
325  */
326 int snd_dma_alloc_pages(int type, struct device *device, size_t size,
327 			struct snd_dma_buffer *dmab)
328 {
329 	snd_assert(size > 0, return -ENXIO);
330 	snd_assert(dmab != NULL, return -ENXIO);
331 
332 	dmab->dev.type = type;
333 	dmab->dev.dev = device;
334 	dmab->bytes = 0;
335 	switch (type) {
336 	case SNDRV_DMA_TYPE_CONTINUOUS:
337 		dmab->area = snd_malloc_pages(size, (unsigned long)device);
338 		dmab->addr = 0;
339 		break;
340 #ifdef CONFIG_SBUS
341 	case SNDRV_DMA_TYPE_SBUS:
342 		dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
343 		break;
344 #endif
345 	case SNDRV_DMA_TYPE_DEV:
346 		dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
347 		break;
348 	case SNDRV_DMA_TYPE_DEV_SG:
349 		snd_malloc_sgbuf_pages(device, size, dmab, NULL);
350 		break;
351 	default:
352 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
353 		dmab->area = NULL;
354 		dmab->addr = 0;
355 		return -ENXIO;
356 	}
357 	if (! dmab->area)
358 		return -ENOMEM;
359 	dmab->bytes = size;
360 	return 0;
361 }
362 
363 /**
364  * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
365  * @type: the DMA buffer type
366  * @device: the device pointer
367  * @size: the buffer size to allocate
368  * @dmab: buffer allocation record to store the allocated data
369  *
370  * Calls the memory-allocator function for the corresponding
371  * buffer type.  When no space is left, this function reduces the size and
372  * tries to allocate again.  The size actually allocated is stored in
373  * res_size argument.
374  *
375  * Returns zero if the buffer with the given size is allocated successfuly,
376  * other a negative value at error.
377  */
378 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
379 				 struct snd_dma_buffer *dmab)
380 {
381 	int err;
382 
383 	snd_assert(size > 0, return -ENXIO);
384 	snd_assert(dmab != NULL, return -ENXIO);
385 
386 	while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
387 		if (err != -ENOMEM)
388 			return err;
389 		size >>= 1;
390 		if (size <= PAGE_SIZE)
391 			return -ENOMEM;
392 	}
393 	if (! dmab->area)
394 		return -ENOMEM;
395 	return 0;
396 }
397 
398 
399 /**
400  * snd_dma_free_pages - release the allocated buffer
401  * @dmab: the buffer allocation record to release
402  *
403  * Releases the allocated buffer via snd_dma_alloc_pages().
404  */
405 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
406 {
407 	switch (dmab->dev.type) {
408 	case SNDRV_DMA_TYPE_CONTINUOUS:
409 		snd_free_pages(dmab->area, dmab->bytes);
410 		break;
411 #ifdef CONFIG_SBUS
412 	case SNDRV_DMA_TYPE_SBUS:
413 		snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
414 		break;
415 #endif
416 	case SNDRV_DMA_TYPE_DEV:
417 		snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
418 		break;
419 	case SNDRV_DMA_TYPE_DEV_SG:
420 		snd_free_sgbuf_pages(dmab);
421 		break;
422 	default:
423 		printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
424 	}
425 }
426 
427 
428 /**
429  * snd_dma_get_reserved - get the reserved buffer for the given device
430  * @dmab: the buffer allocation record to store
431  * @id: the buffer id
432  *
433  * Looks for the reserved-buffer list and re-uses if the same buffer
434  * is found in the list.  When the buffer is found, it's removed from the free list.
435  *
436  * Returns the size of buffer if the buffer is found, or zero if not found.
437  */
438 size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
439 {
440 	struct list_head *p;
441 	struct snd_mem_list *mem;
442 
443 	snd_assert(dmab, return 0);
444 
445 	down(&list_mutex);
446 	list_for_each(p, &mem_list_head) {
447 		mem = list_entry(p, struct snd_mem_list, list);
448 		if (mem->id == id &&
449 		    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
450 		     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
451 			struct device *dev = dmab->dev.dev;
452 			list_del(p);
453 			*dmab = mem->buffer;
454 			if (dmab->dev.dev == NULL)
455 				dmab->dev.dev = dev;
456 			kfree(mem);
457 			up(&list_mutex);
458 			return dmab->bytes;
459 		}
460 	}
461 	up(&list_mutex);
462 	return 0;
463 }
464 
465 /**
466  * snd_dma_reserve_buf - reserve the buffer
467  * @dmab: the buffer to reserve
468  * @id: the buffer id
469  *
470  * Reserves the given buffer as a reserved buffer.
471  *
472  * Returns zero if successful, or a negative code at error.
473  */
474 int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
475 {
476 	struct snd_mem_list *mem;
477 
478 	snd_assert(dmab, return -EINVAL);
479 	mem = kmalloc(sizeof(*mem), GFP_KERNEL);
480 	if (! mem)
481 		return -ENOMEM;
482 	down(&list_mutex);
483 	mem->buffer = *dmab;
484 	mem->id = id;
485 	list_add_tail(&mem->list, &mem_list_head);
486 	up(&list_mutex);
487 	return 0;
488 }
489 
490 /*
491  * purge all reserved buffers
492  */
493 static void free_all_reserved_pages(void)
494 {
495 	struct list_head *p;
496 	struct snd_mem_list *mem;
497 
498 	down(&list_mutex);
499 	while (! list_empty(&mem_list_head)) {
500 		p = mem_list_head.next;
501 		mem = list_entry(p, struct snd_mem_list, list);
502 		list_del(p);
503 		snd_dma_free_pages(&mem->buffer);
504 		kfree(mem);
505 	}
506 	up(&list_mutex);
507 }
508 
509 
510 #ifdef CONFIG_PROC_FS
511 /*
512  * proc file interface
513  */
514 #define SND_MEM_PROC_FILE	"driver/snd-page-alloc"
515 static struct proc_dir_entry *snd_mem_proc;
516 
517 static int snd_mem_proc_read(char *page, char **start, off_t off,
518 			     int count, int *eof, void *data)
519 {
520 	int len = 0;
521 	long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
522 	struct list_head *p;
523 	struct snd_mem_list *mem;
524 	int devno;
525 	static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
526 
527 	down(&list_mutex);
528 	len += snprintf(page + len, count - len,
529 			"pages  : %li bytes (%li pages per %likB)\n",
530 			pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
531 	devno = 0;
532 	list_for_each(p, &mem_list_head) {
533 		mem = list_entry(p, struct snd_mem_list, list);
534 		devno++;
535 		len += snprintf(page + len, count - len,
536 				"buffer %d : ID %08x : type %s\n",
537 				devno, mem->id, types[mem->buffer.dev.type]);
538 		len += snprintf(page + len, count - len,
539 				"  addr = 0x%lx, size = %d bytes\n",
540 				(unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
541 	}
542 	up(&list_mutex);
543 	return len;
544 }
545 
546 /* FIXME: for pci only - other bus? */
547 #ifdef CONFIG_PCI
548 #define gettoken(bufp) strsep(bufp, " \t\n")
549 
550 static int snd_mem_proc_write(struct file *file, const char __user *buffer,
551 			      unsigned long count, void *data)
552 {
553 	char buf[128];
554 	char *token, *p;
555 
556 	if (count > ARRAY_SIZE(buf) - 1)
557 		count = ARRAY_SIZE(buf) - 1;
558 	if (copy_from_user(buf, buffer, count))
559 		return -EFAULT;
560 	buf[ARRAY_SIZE(buf) - 1] = '\0';
561 
562 	p = buf;
563 	token = gettoken(&p);
564 	if (! token || *token == '#')
565 		return (int)count;
566 	if (strcmp(token, "add") == 0) {
567 		char *endp;
568 		int vendor, device, size, buffers;
569 		long mask;
570 		int i, alloced;
571 		struct pci_dev *pci;
572 
573 		if ((token = gettoken(&p)) == NULL ||
574 		    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
575 		    (token = gettoken(&p)) == NULL ||
576 		    (device = simple_strtol(token, NULL, 0)) <= 0 ||
577 		    (token = gettoken(&p)) == NULL ||
578 		    (mask = simple_strtol(token, NULL, 0)) < 0 ||
579 		    (token = gettoken(&p)) == NULL ||
580 		    (size = memparse(token, &endp)) < 64*1024 ||
581 		    size > 16*1024*1024 /* too big */ ||
582 		    (token = gettoken(&p)) == NULL ||
583 		    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
584 		    buffers > 4) {
585 			printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
586 			return (int)count;
587 		}
588 		vendor &= 0xffff;
589 		device &= 0xffff;
590 
591 		alloced = 0;
592 		pci = NULL;
593 		while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
594 			if (mask > 0 && mask < 0xffffffff) {
595 				if (pci_set_dma_mask(pci, mask) < 0 ||
596 				    pci_set_consistent_dma_mask(pci, mask) < 0) {
597 					printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
598 					return (int)count;
599 				}
600 			}
601 			for (i = 0; i < buffers; i++) {
602 				struct snd_dma_buffer dmab;
603 				memset(&dmab, 0, sizeof(dmab));
604 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
605 							size, &dmab) < 0) {
606 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
607 					pci_dev_put(pci);
608 					return (int)count;
609 				}
610 				snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
611 			}
612 			alloced++;
613 		}
614 		if (! alloced) {
615 			for (i = 0; i < buffers; i++) {
616 				struct snd_dma_buffer dmab;
617 				memset(&dmab, 0, sizeof(dmab));
618 				/* FIXME: We can allocate only in ZONE_DMA
619 				 * without a device pointer!
620 				 */
621 				if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
622 							size, &dmab) < 0) {
623 					printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
624 					break;
625 				}
626 				snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
627 			}
628 		}
629 	} else if (strcmp(token, "erase") == 0)
630 		/* FIXME: need for releasing each buffer chunk? */
631 		free_all_reserved_pages();
632 	else
633 		printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
634 	return (int)count;
635 }
636 #endif /* CONFIG_PCI */
637 #endif /* CONFIG_PROC_FS */
638 
639 /*
640  * module entry
641  */
642 
643 static int __init snd_mem_init(void)
644 {
645 #ifdef CONFIG_PROC_FS
646 	snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
647 	if (snd_mem_proc) {
648 		snd_mem_proc->read_proc = snd_mem_proc_read;
649 #ifdef CONFIG_PCI
650 		snd_mem_proc->write_proc = snd_mem_proc_write;
651 #endif
652 	}
653 #endif
654 	return 0;
655 }
656 
657 static void __exit snd_mem_exit(void)
658 {
659 	remove_proc_entry(SND_MEM_PROC_FILE, NULL);
660 	free_all_reserved_pages();
661 	if (snd_allocated_pages > 0)
662 		printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
663 }
664 
665 
666 module_init(snd_mem_init)
667 module_exit(snd_mem_exit)
668 
669 
670 /*
671  * exports
672  */
673 EXPORT_SYMBOL(snd_dma_alloc_pages);
674 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
675 EXPORT_SYMBOL(snd_dma_free_pages);
676 
677 EXPORT_SYMBOL(snd_dma_get_reserved_buf);
678 EXPORT_SYMBOL(snd_dma_reserve_buf);
679 
680 EXPORT_SYMBOL(snd_malloc_pages);
681 EXPORT_SYMBOL(snd_free_pages);
682