1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * Takashi Iwai <tiwai@suse.de> 5 * 6 * Generic memory allocators 7 */ 8 9 #include <linux/slab.h> 10 #include <linux/mm.h> 11 #include <linux/dma-mapping.h> 12 #include <linux/genalloc.h> 13 #include <linux/highmem.h> 14 #include <linux/vmalloc.h> 15 #ifdef CONFIG_X86 16 #include <asm/set_memory.h> 17 #endif 18 #include <sound/memalloc.h> 19 #include "memalloc_local.h" 20 21 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab); 22 23 /* a cast to gfp flag from the dev pointer; for CONTINUOUS and VMALLOC types */ 24 static inline gfp_t snd_mem_get_gfp_flags(const struct snd_dma_buffer *dmab, 25 gfp_t default_gfp) 26 { 27 if (!dmab->dev.dev) 28 return default_gfp; 29 else 30 return (__force gfp_t)(unsigned long)dmab->dev.dev; 31 } 32 33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size) 34 { 35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 36 37 if (WARN_ON_ONCE(!ops || !ops->alloc)) 38 return NULL; 39 return ops->alloc(dmab, size); 40 } 41 42 /** 43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given 44 * type and direction 45 * @type: the DMA buffer type 46 * @device: the device pointer 47 * @dir: DMA direction 48 * @size: the buffer size to allocate 49 * @dmab: buffer allocation record to store the allocated data 50 * 51 * Calls the memory-allocator function for the corresponding 52 * buffer type. 53 * 54 * Return: Zero if the buffer with the given size is allocated successfully, 55 * otherwise a negative value on error. 56 */ 57 int snd_dma_alloc_dir_pages(int type, struct device *device, 58 enum dma_data_direction dir, size_t size, 59 struct snd_dma_buffer *dmab) 60 { 61 if (WARN_ON(!size)) 62 return -ENXIO; 63 if (WARN_ON(!dmab)) 64 return -ENXIO; 65 66 size = PAGE_ALIGN(size); 67 dmab->dev.type = type; 68 dmab->dev.dev = device; 69 dmab->dev.dir = dir; 70 dmab->bytes = 0; 71 dmab->addr = 0; 72 dmab->private_data = NULL; 73 dmab->area = __snd_dma_alloc_pages(dmab, size); 74 if (!dmab->area) 75 return -ENOMEM; 76 dmab->bytes = size; 77 return 0; 78 } 79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages); 80 81 /** 82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback 83 * @type: the DMA buffer type 84 * @device: the device pointer 85 * @size: the buffer size to allocate 86 * @dmab: buffer allocation record to store the allocated data 87 * 88 * Calls the memory-allocator function for the corresponding 89 * buffer type. When no space is left, this function reduces the size and 90 * tries to allocate again. The size actually allocated is stored in 91 * res_size argument. 92 * 93 * Return: Zero if the buffer with the given size is allocated successfully, 94 * otherwise a negative value on error. 95 */ 96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size, 97 struct snd_dma_buffer *dmab) 98 { 99 int err; 100 101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) { 102 if (err != -ENOMEM) 103 return err; 104 if (size <= PAGE_SIZE) 105 return -ENOMEM; 106 size >>= 1; 107 size = PAGE_SIZE << get_order(size); 108 } 109 if (! dmab->area) 110 return -ENOMEM; 111 return 0; 112 } 113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback); 114 115 /** 116 * snd_dma_free_pages - release the allocated buffer 117 * @dmab: the buffer allocation record to release 118 * 119 * Releases the allocated buffer via snd_dma_alloc_pages(). 120 */ 121 void snd_dma_free_pages(struct snd_dma_buffer *dmab) 122 { 123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 124 125 if (ops && ops->free) 126 ops->free(dmab); 127 } 128 EXPORT_SYMBOL(snd_dma_free_pages); 129 130 /* called by devres */ 131 static void __snd_release_pages(struct device *dev, void *res) 132 { 133 snd_dma_free_pages(res); 134 } 135 136 /** 137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres 138 * @dev: the device pointer 139 * @type: the DMA buffer type 140 * @dir: DMA direction 141 * @size: the buffer size to allocate 142 * 143 * Allocate buffer pages depending on the given type and manage using devres. 144 * The pages will be released automatically at the device removal. 145 * 146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer, 147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or 148 * SNDRV_DMA_TYPE_VMALLOC type. 149 * 150 * Return: the snd_dma_buffer object at success, or NULL if failed 151 */ 152 struct snd_dma_buffer * 153 snd_devm_alloc_dir_pages(struct device *dev, int type, 154 enum dma_data_direction dir, size_t size) 155 { 156 struct snd_dma_buffer *dmab; 157 int err; 158 159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS || 160 type == SNDRV_DMA_TYPE_VMALLOC)) 161 return NULL; 162 163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL); 164 if (!dmab) 165 return NULL; 166 167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab); 168 if (err < 0) { 169 devres_free(dmab); 170 return NULL; 171 } 172 173 devres_add(dev, dmab); 174 return dmab; 175 } 176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages); 177 178 /** 179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer 180 * @dmab: buffer allocation information 181 * @area: VM area information 182 * 183 * Return: zero if successful, or a negative error code 184 */ 185 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab, 186 struct vm_area_struct *area) 187 { 188 const struct snd_malloc_ops *ops; 189 190 if (!dmab) 191 return -ENOENT; 192 ops = snd_dma_get_ops(dmab); 193 if (ops && ops->mmap) 194 return ops->mmap(dmab, area); 195 else 196 return -ENOENT; 197 } 198 EXPORT_SYMBOL(snd_dma_buffer_mmap); 199 200 #ifdef CONFIG_HAS_DMA 201 /** 202 * snd_dma_buffer_sync - sync DMA buffer between CPU and device 203 * @dmab: buffer allocation information 204 * @mode: sync mode 205 */ 206 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab, 207 enum snd_dma_sync_mode mode) 208 { 209 const struct snd_malloc_ops *ops; 210 211 if (!dmab || !dmab->dev.need_sync) 212 return; 213 ops = snd_dma_get_ops(dmab); 214 if (ops && ops->sync) 215 ops->sync(dmab, mode); 216 } 217 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync); 218 #endif /* CONFIG_HAS_DMA */ 219 220 /** 221 * snd_sgbuf_get_addr - return the physical address at the corresponding offset 222 * @dmab: buffer allocation information 223 * @offset: offset in the ring buffer 224 * 225 * Return: the physical address 226 */ 227 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset) 228 { 229 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 230 231 if (ops && ops->get_addr) 232 return ops->get_addr(dmab, offset); 233 else 234 return dmab->addr + offset; 235 } 236 EXPORT_SYMBOL(snd_sgbuf_get_addr); 237 238 /** 239 * snd_sgbuf_get_page - return the physical page at the corresponding offset 240 * @dmab: buffer allocation information 241 * @offset: offset in the ring buffer 242 * 243 * Return: the page pointer 244 */ 245 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset) 246 { 247 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 248 249 if (ops && ops->get_page) 250 return ops->get_page(dmab, offset); 251 else 252 return virt_to_page(dmab->area + offset); 253 } 254 EXPORT_SYMBOL(snd_sgbuf_get_page); 255 256 /** 257 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages 258 * on sg-buffer 259 * @dmab: buffer allocation information 260 * @ofs: offset in the ring buffer 261 * @size: the requested size 262 * 263 * Return: the chunk size 264 */ 265 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab, 266 unsigned int ofs, unsigned int size) 267 { 268 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab); 269 270 if (ops && ops->get_chunk_size) 271 return ops->get_chunk_size(dmab, ofs, size); 272 else 273 return size; 274 } 275 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size); 276 277 /* 278 * Continuous pages allocator 279 */ 280 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size) 281 { 282 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL); 283 void *p = alloc_pages_exact(size, gfp); 284 285 if (p) 286 dmab->addr = page_to_phys(virt_to_page(p)); 287 return p; 288 } 289 290 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab) 291 { 292 free_pages_exact(dmab->area, dmab->bytes); 293 } 294 295 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab, 296 struct vm_area_struct *area) 297 { 298 return remap_pfn_range(area, area->vm_start, 299 dmab->addr >> PAGE_SHIFT, 300 area->vm_end - area->vm_start, 301 area->vm_page_prot); 302 } 303 304 static const struct snd_malloc_ops snd_dma_continuous_ops = { 305 .alloc = snd_dma_continuous_alloc, 306 .free = snd_dma_continuous_free, 307 .mmap = snd_dma_continuous_mmap, 308 }; 309 310 /* 311 * VMALLOC allocator 312 */ 313 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size) 314 { 315 gfp_t gfp = snd_mem_get_gfp_flags(dmab, GFP_KERNEL | __GFP_HIGHMEM); 316 317 return __vmalloc(size, gfp); 318 } 319 320 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab) 321 { 322 vfree(dmab->area); 323 } 324 325 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab, 326 struct vm_area_struct *area) 327 { 328 return remap_vmalloc_range(area, dmab->area, 0); 329 } 330 331 #define get_vmalloc_page_addr(dmab, offset) \ 332 page_to_phys(vmalloc_to_page((dmab)->area + (offset))) 333 334 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab, 335 size_t offset) 336 { 337 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE; 338 } 339 340 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab, 341 size_t offset) 342 { 343 return vmalloc_to_page(dmab->area + offset); 344 } 345 346 static unsigned int 347 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab, 348 unsigned int ofs, unsigned int size) 349 { 350 unsigned int start, end; 351 unsigned long addr; 352 353 start = ALIGN_DOWN(ofs, PAGE_SIZE); 354 end = ofs + size - 1; /* the last byte address */ 355 /* check page continuity */ 356 addr = get_vmalloc_page_addr(dmab, start); 357 for (;;) { 358 start += PAGE_SIZE; 359 if (start > end) 360 break; 361 addr += PAGE_SIZE; 362 if (get_vmalloc_page_addr(dmab, start) != addr) 363 return start - ofs; 364 } 365 /* ok, all on continuous pages */ 366 return size; 367 } 368 369 static const struct snd_malloc_ops snd_dma_vmalloc_ops = { 370 .alloc = snd_dma_vmalloc_alloc, 371 .free = snd_dma_vmalloc_free, 372 .mmap = snd_dma_vmalloc_mmap, 373 .get_addr = snd_dma_vmalloc_get_addr, 374 .get_page = snd_dma_vmalloc_get_page, 375 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 376 }; 377 378 #ifdef CONFIG_HAS_DMA 379 /* 380 * IRAM allocator 381 */ 382 #ifdef CONFIG_GENERIC_ALLOCATOR 383 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size) 384 { 385 struct device *dev = dmab->dev.dev; 386 struct gen_pool *pool; 387 void *p; 388 389 if (dev->of_node) { 390 pool = of_gen_pool_get(dev->of_node, "iram", 0); 391 /* Assign the pool into private_data field */ 392 dmab->private_data = pool; 393 394 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE); 395 if (p) 396 return p; 397 } 398 399 /* Internal memory might have limited size and no enough space, 400 * so if we fail to malloc, try to fetch memory traditionally. 401 */ 402 dmab->dev.type = SNDRV_DMA_TYPE_DEV; 403 return __snd_dma_alloc_pages(dmab, size); 404 } 405 406 static void snd_dma_iram_free(struct snd_dma_buffer *dmab) 407 { 408 struct gen_pool *pool = dmab->private_data; 409 410 if (pool && dmab->area) 411 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes); 412 } 413 414 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab, 415 struct vm_area_struct *area) 416 { 417 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 418 return remap_pfn_range(area, area->vm_start, 419 dmab->addr >> PAGE_SHIFT, 420 area->vm_end - area->vm_start, 421 area->vm_page_prot); 422 } 423 424 static const struct snd_malloc_ops snd_dma_iram_ops = { 425 .alloc = snd_dma_iram_alloc, 426 .free = snd_dma_iram_free, 427 .mmap = snd_dma_iram_mmap, 428 }; 429 #endif /* CONFIG_GENERIC_ALLOCATOR */ 430 431 #define DEFAULT_GFP \ 432 (GFP_KERNEL | \ 433 __GFP_COMP | /* compound page lets parts be mapped */ \ 434 __GFP_NORETRY | /* don't trigger OOM-killer */ \ 435 __GFP_NOWARN) /* no stack trace print - this call is non-critical */ 436 437 /* 438 * Coherent device pages allocator 439 */ 440 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size) 441 { 442 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 443 } 444 445 static void snd_dma_dev_free(struct snd_dma_buffer *dmab) 446 { 447 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 448 } 449 450 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab, 451 struct vm_area_struct *area) 452 { 453 return dma_mmap_coherent(dmab->dev.dev, area, 454 dmab->area, dmab->addr, dmab->bytes); 455 } 456 457 static const struct snd_malloc_ops snd_dma_dev_ops = { 458 .alloc = snd_dma_dev_alloc, 459 .free = snd_dma_dev_free, 460 .mmap = snd_dma_dev_mmap, 461 }; 462 463 /* 464 * Write-combined pages 465 */ 466 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 467 { 468 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP); 469 } 470 471 static void snd_dma_wc_free(struct snd_dma_buffer *dmab) 472 { 473 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr); 474 } 475 476 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab, 477 struct vm_area_struct *area) 478 { 479 return dma_mmap_wc(dmab->dev.dev, area, 480 dmab->area, dmab->addr, dmab->bytes); 481 } 482 483 static const struct snd_malloc_ops snd_dma_wc_ops = { 484 .alloc = snd_dma_wc_alloc, 485 .free = snd_dma_wc_free, 486 .mmap = snd_dma_wc_mmap, 487 }; 488 489 #ifdef CONFIG_SND_DMA_SGBUF 490 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size); 491 #endif 492 493 /* 494 * Non-contiguous pages allocator 495 */ 496 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size) 497 { 498 struct sg_table *sgt; 499 void *p; 500 501 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir, 502 DEFAULT_GFP, 0); 503 if (!sgt) { 504 #ifdef CONFIG_SND_DMA_SGBUF 505 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG) 506 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK; 507 else 508 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK; 509 return snd_dma_sg_fallback_alloc(dmab, size); 510 #else 511 return NULL; 512 #endif 513 } 514 515 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, 516 sg_dma_address(sgt->sgl)); 517 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt); 518 if (p) 519 dmab->private_data = sgt; 520 else 521 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir); 522 return p; 523 } 524 525 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab) 526 { 527 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area); 528 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data, 529 dmab->dev.dir); 530 } 531 532 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab, 533 struct vm_area_struct *area) 534 { 535 return dma_mmap_noncontiguous(dmab->dev.dev, area, 536 dmab->bytes, dmab->private_data); 537 } 538 539 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab, 540 enum snd_dma_sync_mode mode) 541 { 542 if (mode == SNDRV_DMA_SYNC_CPU) { 543 if (dmab->dev.dir == DMA_TO_DEVICE) 544 return; 545 invalidate_kernel_vmap_range(dmab->area, dmab->bytes); 546 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data, 547 dmab->dev.dir); 548 } else { 549 if (dmab->dev.dir == DMA_FROM_DEVICE) 550 return; 551 flush_kernel_vmap_range(dmab->area, dmab->bytes); 552 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data, 553 dmab->dev.dir); 554 } 555 } 556 557 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab, 558 struct sg_page_iter *piter, 559 size_t offset) 560 { 561 struct sg_table *sgt = dmab->private_data; 562 563 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents, 564 offset >> PAGE_SHIFT); 565 } 566 567 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab, 568 size_t offset) 569 { 570 struct sg_dma_page_iter iter; 571 572 snd_dma_noncontig_iter_set(dmab, &iter.base, offset); 573 __sg_page_iter_dma_next(&iter); 574 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE; 575 } 576 577 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab, 578 size_t offset) 579 { 580 struct sg_page_iter iter; 581 582 snd_dma_noncontig_iter_set(dmab, &iter, offset); 583 __sg_page_iter_next(&iter); 584 return sg_page_iter_page(&iter); 585 } 586 587 static unsigned int 588 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab, 589 unsigned int ofs, unsigned int size) 590 { 591 struct sg_dma_page_iter iter; 592 unsigned int start, end; 593 unsigned long addr; 594 595 start = ALIGN_DOWN(ofs, PAGE_SIZE); 596 end = ofs + size - 1; /* the last byte address */ 597 snd_dma_noncontig_iter_set(dmab, &iter.base, start); 598 if (!__sg_page_iter_dma_next(&iter)) 599 return 0; 600 /* check page continuity */ 601 addr = sg_page_iter_dma_address(&iter); 602 for (;;) { 603 start += PAGE_SIZE; 604 if (start > end) 605 break; 606 addr += PAGE_SIZE; 607 if (!__sg_page_iter_dma_next(&iter) || 608 sg_page_iter_dma_address(&iter) != addr) 609 return start - ofs; 610 } 611 /* ok, all on continuous pages */ 612 return size; 613 } 614 615 static const struct snd_malloc_ops snd_dma_noncontig_ops = { 616 .alloc = snd_dma_noncontig_alloc, 617 .free = snd_dma_noncontig_free, 618 .mmap = snd_dma_noncontig_mmap, 619 .sync = snd_dma_noncontig_sync, 620 .get_addr = snd_dma_noncontig_get_addr, 621 .get_page = snd_dma_noncontig_get_page, 622 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 623 }; 624 625 /* x86-specific SG-buffer with WC pages */ 626 #ifdef CONFIG_SND_DMA_SGBUF 627 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it))) 628 629 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size) 630 { 631 void *p = snd_dma_noncontig_alloc(dmab, size); 632 struct sg_table *sgt = dmab->private_data; 633 struct sg_page_iter iter; 634 635 if (!p) 636 return NULL; 637 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG) 638 return p; 639 for_each_sgtable_page(sgt, &iter, 0) 640 set_memory_wc(sg_wc_address(&iter), 1); 641 return p; 642 } 643 644 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab) 645 { 646 struct sg_table *sgt = dmab->private_data; 647 struct sg_page_iter iter; 648 649 for_each_sgtable_page(sgt, &iter, 0) 650 set_memory_wb(sg_wc_address(&iter), 1); 651 snd_dma_noncontig_free(dmab); 652 } 653 654 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab, 655 struct vm_area_struct *area) 656 { 657 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 658 return dma_mmap_noncontiguous(dmab->dev.dev, area, 659 dmab->bytes, dmab->private_data); 660 } 661 662 static const struct snd_malloc_ops snd_dma_sg_wc_ops = { 663 .alloc = snd_dma_sg_wc_alloc, 664 .free = snd_dma_sg_wc_free, 665 .mmap = snd_dma_sg_wc_mmap, 666 .sync = snd_dma_noncontig_sync, 667 .get_addr = snd_dma_noncontig_get_addr, 668 .get_page = snd_dma_noncontig_get_page, 669 .get_chunk_size = snd_dma_noncontig_get_chunk_size, 670 }; 671 672 /* Fallback SG-buffer allocations for x86 */ 673 struct snd_dma_sg_fallback { 674 size_t count; 675 struct page **pages; 676 dma_addr_t *addrs; 677 }; 678 679 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab, 680 struct snd_dma_sg_fallback *sgbuf) 681 { 682 size_t i; 683 684 if (sgbuf->count && dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 685 set_pages_array_wb(sgbuf->pages, sgbuf->count); 686 for (i = 0; i < sgbuf->count && sgbuf->pages[i]; i++) 687 dma_free_coherent(dmab->dev.dev, PAGE_SIZE, 688 page_address(sgbuf->pages[i]), 689 sgbuf->addrs[i]); 690 kvfree(sgbuf->pages); 691 kvfree(sgbuf->addrs); 692 kfree(sgbuf); 693 } 694 695 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size) 696 { 697 struct snd_dma_sg_fallback *sgbuf; 698 struct page **pages; 699 size_t i, count; 700 void *p; 701 702 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL); 703 if (!sgbuf) 704 return NULL; 705 count = PAGE_ALIGN(size) >> PAGE_SHIFT; 706 pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL); 707 if (!pages) 708 goto error; 709 sgbuf->pages = pages; 710 sgbuf->addrs = kvcalloc(count, sizeof(*sgbuf->addrs), GFP_KERNEL); 711 if (!sgbuf->addrs) 712 goto error; 713 714 for (i = 0; i < count; sgbuf->count++, i++) { 715 p = dma_alloc_coherent(dmab->dev.dev, PAGE_SIZE, 716 &sgbuf->addrs[i], DEFAULT_GFP); 717 if (!p) 718 goto error; 719 sgbuf->pages[i] = virt_to_page(p); 720 } 721 722 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 723 set_pages_array_wc(pages, count); 724 p = vmap(pages, count, VM_MAP, PAGE_KERNEL); 725 if (!p) 726 goto error; 727 dmab->private_data = sgbuf; 728 return p; 729 730 error: 731 __snd_dma_sg_fallback_free(dmab, sgbuf); 732 return NULL; 733 } 734 735 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab) 736 { 737 vunmap(dmab->area); 738 __snd_dma_sg_fallback_free(dmab, dmab->private_data); 739 } 740 741 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab, 742 struct vm_area_struct *area) 743 { 744 struct snd_dma_sg_fallback *sgbuf = dmab->private_data; 745 746 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK) 747 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot); 748 return vm_map_pages(area, sgbuf->pages, sgbuf->count); 749 } 750 751 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = { 752 .alloc = snd_dma_sg_fallback_alloc, 753 .free = snd_dma_sg_fallback_free, 754 .mmap = snd_dma_sg_fallback_mmap, 755 /* reuse vmalloc helpers */ 756 .get_addr = snd_dma_vmalloc_get_addr, 757 .get_page = snd_dma_vmalloc_get_page, 758 .get_chunk_size = snd_dma_vmalloc_get_chunk_size, 759 }; 760 #endif /* CONFIG_SND_DMA_SGBUF */ 761 762 /* 763 * Non-coherent pages allocator 764 */ 765 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size) 766 { 767 void *p; 768 769 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr, 770 dmab->dev.dir, DEFAULT_GFP); 771 if (p) 772 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr); 773 return p; 774 } 775 776 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab) 777 { 778 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area, 779 dmab->addr, dmab->dev.dir); 780 } 781 782 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab, 783 struct vm_area_struct *area) 784 { 785 area->vm_page_prot = vm_get_page_prot(area->vm_flags); 786 return dma_mmap_pages(dmab->dev.dev, area, 787 area->vm_end - area->vm_start, 788 virt_to_page(dmab->area)); 789 } 790 791 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab, 792 enum snd_dma_sync_mode mode) 793 { 794 if (mode == SNDRV_DMA_SYNC_CPU) { 795 if (dmab->dev.dir != DMA_TO_DEVICE) 796 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr, 797 dmab->bytes, dmab->dev.dir); 798 } else { 799 if (dmab->dev.dir != DMA_FROM_DEVICE) 800 dma_sync_single_for_device(dmab->dev.dev, dmab->addr, 801 dmab->bytes, dmab->dev.dir); 802 } 803 } 804 805 static const struct snd_malloc_ops snd_dma_noncoherent_ops = { 806 .alloc = snd_dma_noncoherent_alloc, 807 .free = snd_dma_noncoherent_free, 808 .mmap = snd_dma_noncoherent_mmap, 809 .sync = snd_dma_noncoherent_sync, 810 }; 811 812 #endif /* CONFIG_HAS_DMA */ 813 814 /* 815 * Entry points 816 */ 817 static const struct snd_malloc_ops *dma_ops[] = { 818 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops, 819 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops, 820 #ifdef CONFIG_HAS_DMA 821 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops, 822 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops, 823 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops, 824 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops, 825 #ifdef CONFIG_SND_DMA_SGBUF 826 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops, 827 #endif 828 #ifdef CONFIG_GENERIC_ALLOCATOR 829 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops, 830 #endif /* CONFIG_GENERIC_ALLOCATOR */ 831 #ifdef CONFIG_SND_DMA_SGBUF 832 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 833 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops, 834 #endif 835 #endif /* CONFIG_HAS_DMA */ 836 }; 837 838 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab) 839 { 840 if (WARN_ON_ONCE(!dmab)) 841 return NULL; 842 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN || 843 dmab->dev.type >= ARRAY_SIZE(dma_ops))) 844 return NULL; 845 return dma_ops[dmab->dev.type]; 846 } 847